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In this paper, we introduce the notion of expansion tree for linear logic. As in Miller’s original
work, we have a shallow reading of an expansion tree that corresponds to the conclusion of the
proof, and a deep reading which is a formula that can be proved by propositional rules. We focus
our attention to MLL2, and we also present a deep inference system for that logic. This allows us to
give a syntactic proof to a version of Herbrand’s theorem.

1. Introduction

Expansion trees (Miller 1987) have been introduced by Miller to generalize Herbrand’s theorem
to higher order logic. In principle, an expansion tree is a data structure for proofs that carries the
information of two formulas. The shallow formula is the conclusion of the proof, and the deep
formula is a propositional tautology for which the information about the proof has to be provided
by other means.

This possible separation of the ‘quantifier part’ and the ‘propositional part’ in a proof is a
unique property of classical logic. For intuitionistic logic, for example, only a limited form
of Herbrand’s theorem can be obtained (Lyaletski and Konev 2006). The question we would
like to address in this paper is whether some form of Herbrand’s theorem can be achieved for
linear logic.

For simplicity, we concentrate in this paper on second-order multiplicative linear logic (MLL2)
because the notion of proof in its propositional fragment (MLL) is thoroughly understood: On the
deductive level via rule permutations in the sequent calculus (Lafont 1995) and the calculus of
structures (Straßburger 2003), on the combinatoric level via proof nets (Girard 1987) and on the
algebraic level via star-autonomous categories (Lafont 1988; Lamarche and Straßburger 2006),
and the first-order version has a rather simple proof theory (Bellin and van de Wiele 1995; Hughes
2018).

There are two main contributions in this paper:

— First, we will present a data structure for linear logic proofs that carries the information of
two formulas: a shallow formula that is the conclusion of the proof and the deep formula for
which another proof data structure will be provided that is essentially an ordinary MLL proof
net. Due to the similarities to Miller’s work (Miller 1987), we will call our data structure
expansion tree. Since we will also consider the multiplicative units, we follow the work
in Straßburger and Lamarche (2004) and Lamarche and Straßburger (2006) to present a
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Fig. 1. Sequent calculus system for MLL2.

notion of proof graph, that can be plugged on top of our expansion tree and that will cover
the propositional part of an MLL2 proof. In order to make cut elimination work, we need to
impose an equivalence relation on these proof graphs. This is a consequence of the PSPACE-
completeness of proof equivalence in MLL (Heijltjes and Houston 2014).

— Our second contribution will be a deductive proof system for MLL2 in the calculus of struc-
tures (Guglielmi 2007; Guglielmi and Straßburger 2001), making extensive use of deep
inference features. This allows us to achieve the same decomposition of a proof into a
‘quantifier part’ and a ‘propositional part,’ as it happens with the expansion trees and the
proof graphs. This relation will be made precise via a correspondence theorem.

The paper is organized as follows: We will first recall the presentation of MLL2 in the sequent
calculus (Section 2) and then give its presentation in the calculus of structures (Section 3). We
also show the relation between the sequent calculus system, that we call MLL2Seq and the deep
inference system that we call MLL2DI↓. Then, in Section 4, we introduce our expansion trees and
also show their relation to the deep inference system. This is followed by the introduction of
proof graphs in Section 5. In Section 6, we explore the relation between proof graphs and the
calculus of structures, i.e., we show how to translate between the two. Finally, in Section 7, we
show cut elimination for our proof graphs with expansion trees.

Some of the results of this paper have already been published at the TLCA 2009 confer-
ence (Straßburger 2009). The main additions here are (1) full proofs of all results, (2) the present-
ation of cut elimination and (3) an improved presentation that clearly separates the expansion
trees from the propositional part. Further technical details can be found in Straßburger (2017).

2. MLL2 in the sequent calculus

Let us first recall the logic MLL2 by giving its presentation in the sequent calculus, by providing a
grammar for well-formed formulas and sequents, together with a set of (sequent style) inference
rules. Then the theorems of the logic are defined to be those formulas that are derivable via the
rules. For MLL2, the set F of formulas is generated by the grammar

F ::= ⊥ | 1 | A | A ⊥ | [F �F ] | (F � F ) | ∀A.F | ∃A.F

where A = {a, b, c, . . .} is a countable set of propositional variables. Formulas are denoted by
capital Latin letters (A,B, C, . . .). Linear negation (−)⊥ is defined for all formulas by the usual
De Morgan laws:

⊥⊥ = 1 a⊥ = a⊥ [A�B]⊥ = (A⊥�B⊥) (∃a.A)⊥ = ∀a.A⊥

1⊥ = ⊥ a⊥⊥ = a (A�B)⊥ = [A⊥�B⊥] (∀a.A)⊥ = ∃a.A⊥
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Fig. 2. Deep inference system for MLL2.

An atom is a propositional variable a or its dual a⊥. Sequents are finite lists of formulas, separated
by comma, and are denoted by capital Greek letters (Γ,Δ, . . .). The notions of free and bound
variable are defined in the usual way, and we can always rename bound variables. In view of the
later parts of the paper, and in order to avoid changing syntax all the time, we use the following
syntactic conventions:

i. We always put parentheses around binary connectives. For better readability, we use [. . .] for
� and (. . .) for �.

ii. We omit parentheses if they are superfluous under the assumption that � and � associate to
the left, e.g., we write [A�B�C �D] to abbreviate [[[A�B] �C] �D].

iii. The scope of a quantifier ends at the earliest possible place (and not at the latest possible
place as usual). This helps saving unnecessary parentheses. For example, in
[∀a.(a� b) � ∃c.c� a], the scope of ∀a is (a� b), and the scope of ∃c is just c. In particular,
the a at the end is free.

The inference rules for MLL2 are shown in Figure 1. In the following, we will call this system
MLL2Seq. As shown in Girard (1987), it has the cut elimination property:

Theorem 2.1. The cut rule
� Γ, A � A⊥,Δ

cut
� Γ,Δ

is admissible for MLL2Seq.

3. MLL2 in the calculus of structures

We now present a deductive system for MLL2 based on deep inference. We use the calculus of
structures, in which the distinction between formulas and sequents disappears. This is the reason
for the syntactic conventions introduced above.†

The inference rules now work directly (as rewriting rules) on the formulas. The system for
MLL2 is shown in Figure 2. There, S{ } stands for an arbitrary formula context.‡ We omit the

† In the literature on deep inference, e.g., Brünnler and Tiu (2001) and Guglielmi (2007), the formula
(a�[b�(a⊥� c)]) would be written as (a, [b, (a⊥, c)]), while without our convention mentioned in the previous
section, it would be written as a�(b�(a⊥� c)). Our syntactic convention can therefore be seen as an attempt to please
both communities. In particular, note that the motivation for the syntactic convention (iii) above is the collapse of the �

on the formula level and the comma on the sequent level, e.g., [∀a.(a� b) � ∃c.c� a] is the same as [∀a.(a, b), ∃c.c, a].
‡ More precisely, an arbitrary positive formula context, which means that the context-hole must not occur inside the

scope of an odd number of negations. However, since we only have formulas in negation normal form, there is no
need for that additional condition.
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braces if the structural parentheses fill the hole. E.g., S[A�B] abbreviates S{[A�B]}. The
system in Figure 2 is called MLL2DI↓. We use the down arrow in the name to emphasize that we
consider here only the so-called down fragment of the system, which corresponds to the cut-free
system in the sequent calculus.§ Note that the ∀-rule of MLL2Seq is in MLL2DI↓ decomposed into
three pieces, namely, e↓, u↓ and f↓. In MLL2DI↓, we also need an explicit rule for associativity
which is in the sequent calculus ‘built in.’ The other rules are almost the same as in the sequent
calculus. In particular, the relation between the �-rule and the rules ls and rs (called switch) has
already in detail been investigated by several authors (Blute et al. 1996; Devarajan et al. 1999;
Guglielmi 2007; Retoré 1993). A derivation D in the system MLL2DI↓ is denoted by

A

MLL2DI↓
‖
‖ D

B

and is simply a rewriting path from A to B using the inference rules in MLL2DI↓. We say A is the
premise and B the conclusion of D . A proof in MLL2DI↓ is a derivation whose premise is 1. The
following theorem ensures that MLL2DI↓ is indeed a deductive system for MLL2.

Theorem 3.1. Let A1, . . . , An be arbitrary MLL2 formulas. For every proof of � A1, . . . , An in
MLL2Seq, there is a proof of [A1 � · · ·�An] in MLL2DI↓, and vice versa.

Proof. We proceed by structural induction on the sequent proof to construct the deep inference
proof. The only non-trivial cases are the rules for � and ∀, for which we can produce the
derivations 1

MLL2DI↓
‖
‖ D2

[B� Δ]
1↓

[(1 �B) � Δ]

MLL2DI↓
‖
‖ D1

[([Γ �A] �B) � Δ]
ls

[Γ �(A�B) � Δ]

and

1
e↓
∀a.1

MLL2DI↓
‖
‖ D

∀a.[A� Γ]
u↓

[∀a.A� ∃a.Γ]
f↓

[∀a.A� Γ]

where D2, D1 and D exist by induction hypothesis. Conversely, for translating a MLL2DI↓ proof
D into the sequent calculus, we proceed by induction on the length of D . We then translate

1

MLL2DI↓
‖
‖ D ′

A
ρ
B

into ��
��
������D1

� A
��
��
������D2

� A⊥, B
cut

� B

where D1 exists by induction hypothesis and D2 exists because every rule ρ of MLL2DI↓ is a valid
implication of MLL2. Finally, we apply cut elimination (Theorem 2.1).

§ The up fragment (which corresponds to the cut in the sequent calculus) is obtained by dualizing the rules in the down
fragment, i.e., by negating and exchanging premise and conclusion. See, e.g., Straßburger (2003), Brünnler (2003),
Brünnler and Tiu (2001), Guglielmi and Straßburger (2001) and Chaudhuri et al. (2011) for details. Note that here we
do not have associativity and commutativity of � and � as congruence, but as explicit inference rules. For �, they
belong to the down fragment and for � to the up fragment.
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Remark 3.2. Later, in this paper, we will introduce methods that will allow us to translate cut-
free proofs from deep inference to the sequent calculus without introducing cuts.

As for MLL2Seq, we also have for MLL2DI↓ the cut elimination property, which can be stated
as follows:

Theorem 3.3. The cut rule
S (A�A⊥)

i↑
S{⊥}

is admissible for MLL2DI↓.

Proof. Given a proof in MLL2DI↓ ∪ {i↑}, we translate it into MLL2Seq as done in the proof of
Theorem 3.1, eliminate the cut (Theorem 2.1), and translate the result back into MLL2DI↓.

We could also give a direct proof of Theorem 3.3, inside the calculus of structures, without
referring to the sequent calculus, by using a combination of the techniques of decomposition and
splitting (Brünnler 2003; Guglielmi 2007; Guglielmi and Straßburger 2011; Straßburger 2003;
Straßburger and Guglielmi 2011; Tubella 2016). However, presenting all the details would go
beyond the scope of this paper. We show here only the ‘one-sided’ version of the decomposition
theorem for MLL2DI↓, which can be seen as a version of Herbrand’s theorem for MLL2, and which
has no counterpart in the sequent calculus.

Theorem 3.4.

Every derivation

1

MLL2DI↓
‖
‖ D

C

can be transformed into

1

{ai↓,⊥↓, 1↓, e↓} ‖‖ D1

A

{α↓, σ↓, ls, rs, u↓} ‖‖ D2

B

{n↓, f↓} ‖‖ D3

C

.

The proof of that theorem is essentially a series of rule permutations. In the middle of that
process, the following inference rule is created:

S{∃a.[A�B]}
v↓

S [∃a.A� ∃a.B]
. (1)

And we need to show that this rule is admissible. This is done by proving a slightly more general
statement.

Lemma 3.5. (i) Whenever there are derivations

1

MLL2DI↓
‖
‖ D1

S{∃a.C}

and

C

MLL2DI↓
‖
‖ D2

A�B

, then there is

a derivation

1

MLL2DI↓
‖
‖ D3.

S [∃a.A� ∃a.B]

(ii) The rule v↓ is admissible for MLL2DI↓.

Proof. For proving the first statement, we proceed by induction on the length of D1, and make
a case analysis of the bottommost rule instance in D1. If this rule instance acts inside C or inside
the context S{ }, then we can apply immediately the induction hypothesis. The only interesting
cases are when this rule removes the ∃. There are two cases: u↓ and n↓. In the case of u↓, the
derivation D1 has the shape on the left below, and we can construct D3 as shown on the right
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below:

1

MLL2DI↓
‖
‖ D ′1

S ′{∀a.[D�C]}
u↓

S ′[∀a.D� ∃a.C]

�

1

MLL2DI↓
‖
‖ D ′1

S ′{∀a.[D�C]}
MLL2DI↓

‖
‖ D2

S ′{∀a.[D�[A�B]]}
α↓, σ↓

S ′{∀a.[[D�A] �B]}
u↓

S ′[∀a.[D�A] � ∃a.B]
u↓

S ′[[∀a.D� ∃a.A] � ∃a.B]
α↓

S ′[∀a.D�[∃a.A� ∃a.B]]

and in the case of n↓, the situation is as follows:

1

MLL2DI↓
‖
‖ D ′1

S{C〈a\D〉}
n↓

S{∃a.C}

�

1

MLL2DI↓
‖
‖ D ′1

S{C〈a\D〉}
MLL2DI↓

‖
‖ D2

S{[A�B]〈a\D〉}
=
S [A〈a\D〉�B〈a\D〉]

n↓
S [A〈a\D〉� ∃a.B]

n↓
S [∃a.A� ∃a.B]

.

The second statement of the lemma is just a special case of the first, where D2 is the identity.

Proof of Theorem 3.4 The construction is done in two phases. First, we permute all instances
of ai↓,⊥↓, 1↓, e↓ to the top of the derivation. For ai↓ and e↓, this is trivial, because all steps are
similar to the following:

S [A�B{1}]
σ↓

S [B{1}�A]
e↓

S [B{∀a.1}�A]

→
S [A�B{1}]

e↓
S [A�B{∀a.1}]

σ↓
S [B{∀a.1}�A]

For ⊥↓ and 1↓, there are some more cases to inspect. We show here only one because all others
are similar:

S{∀a.[A�B]}
u↓

S [∀a.A� ∃a.B]
1↓

S [(1 � ∀a.A) � ∃a.B]

→

S{∀a.[A�B]}
1↓

S (1 � ∀a.[A�B])
u↓

S (1 �[∀a.A� ∃a.B])
rs
S [(1 � ∀a.A) � ∃a.B]

Here, in order to permute the 1↓ above the u↓, we need an additional instance of rs (and possibly
two instances of σ↓). The situation is analogous if we permute the 1↓ over ls, rs or α↓ (or ai↓
or ⊥↓, but this is not needed for this theorem). When permuting ⊥↓ up (instead of 1↓), then we
need α↓ (and σ↓) instead of rs. For a detailed analysis of this kind of permutation arguments, the
reader is referred to Straßburger (2003).

In the second phase of the decomposition, all instances of n↓ and f↓ are permuted down to
the bottom of the derivation. For the rule n↓, this is trivial since no rule can interfere (except for
f↓, which is also permuted down). For permuting down the rule f↓, the problematic cases are
as before caused by the rules u↓, ls, rs and α↓. They are all similar and cause the need of the
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rule v↓. Below is the case for ls:

S (∃a.[A�B] �C)
f↓

S ([A�B] �C)
ls
S [A�(B�C)]

→

S (∃a.[A�B] �C)
v↓
S ([∃a.A� ∃a.B] �C)

ls
S [∃a.A�(∃a.B�C)]

f↓
S [A�(∃a.B �C)]

f↓
S [A�(B �C)]

We first eliminate the v↓-instance by applying Lemma 3.5, and then continue permuting the
two new f↓ further down. To see that this terminates, we can use a multiset-ordering where the
elements of the multiset are the sizes of the principal formulas of the f↓ to be permuted down.

Observation 3.6. The attentive reader might wonder why there are two versions of the ‘switch’
in MLL2DI↓, the left switch ls and the right switch rs. For completeness (Theorem 3.1), the ls-rule
would be sufficient, but for obtaining the decomposition in Theorem 3.4, we need the rs-rule as
well, because we do not have associativity and commutativity of � in MLL2DI↓.

If a derivation D uses only the rules α↓, σ↓, ls, rs, u↓, then premise and conclusion of D (and
every formula in between the two) must contain the same atom occurrences. Hence, the atomic
flow graph (Buss 1991; Guglielmi and Gundersen 2008) of the derivation D defines a bijection
between the atom occurrences of premise and conclusion of D . Here is an example of a derivation
together with its flow graph.

∀a.∀c.([ ⊥ ] [ ⊥ ])
ls ∀a.∀c.[ ⊥ ( [ ⊥ ])]
rs ∀a.∀c.[ ⊥ [( ⊥) ]]

u↓ ∀a.[∃c. ⊥ ∀c.[( ⊥) ]]
u↓ ∀a.[∃c. ⊥ [∃c.( ⊥) ∀c. ]]

u↓
[∀a.∃c. ⊥ ∃a.[∃c.( ⊥) ∀c. ]]

∀a.∀c.([a⊥ a] [c⊥ c])
ls ∀a.∀c.[a⊥ (a [c⊥ c])]
rs ∀a.∀c.[a⊥ [(a c⊥) c]]

u↓ ∀a.[∃c.a⊥ ∀c.[(a c⊥) c]]
u↓ ∀a.[∃c.a⊥ [∃c.(a c⊥) ∀c.c]]

u↓
[∀a.∃c.a⊥ ∃a.[∃c.(a c⊥) ∀c.c]]

(2)

To avoid crossings in the flow graph, we left some applications of α↓ and σ↓ implicit.

4. Expansion trees for MLL2

In their essence, expansion trees (Miller 1987) are enriched formula trees that encode two for-
mulas, called the deep formula and the shallow formula, at the same time. The shallow formula
is the conclusion of the proof, and the deep formula is a propositional tautology. Miller’s original
work makes indirect use of the properties of classical logic, and it is an interesting question
whether we can achieve a similar data structure for linear logic. In one sense, the situation is
more difficult because there is no simple Boolean semantics, but on the other hand, the situation
is simpler because we do not have to deal with contraction. We start with a set E of expanded
formulas that are generated by

E ::= ⊥ | 1 | A | A ⊥ | [E �E ] | (E �E ) | ∀A.E | ∃A.E |

E

A.E | ∃∃∃∃∃∃∃∃∃A.E

There are only two additional syntactic primitives: the

E

, called virtual existential quantifier, and
the ∃∃∃∃∃∃∃∃∃, called bold existential quantifier. An expanded sequent is a finite list of
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expanded formulas, separated by commas. We denote expanded sequents by capital Greek letters
(Γ, Δ, . . . ). For disambiguation, the formulas/sequents introduced in Section 2 (i.e., those withoutE

and ∃∃∃∃∃∃∃∃∃) will also be called simple formulas/sequents. In the following, we will identify formulas
with their syntax trees, where the leaves are decorated by elements of A ∪ A ⊥ ∪ {1,⊥}. We
can think of the inner nodes as decorated either with the connectives/quantifiers �, �, ∀a, ∃a,
∃∃∃∃∃∃∃∃∃a,

E

a, or with the whole subformula rooted at that node. For this reason, we will use capital
Latin letters (A, B, C, . . . ) to denote nodes in a formula tree. We write A ď B if A is a (not
necessarily proper) ancestor of B, i.e., B is a subformula occurrence in A. We write �Γ (resp.
�A) for denoting the set of leaves of a sequent Γ (resp. formula A).

Definition 4.1. A stretching σ for a sequent Γ consists of two binary relations ñ
σ
+ and ñ

σ
− on the

set of nodes of Γ (i.e., its subformula occurrences) such that ñ
σ
+ and ñ

σ
− are disjoint, and whenever

Añ
σ
+ B or Añ

σ
− B, then A = ∃∃∃∃∃∃∃∃∃a.A′ with A′ ď B in Γ. An expansion tree is an expanded formula E

or sequent Γ with a stretching, denoted by E đ σ or Γ đ σ, respectively.

A stretching consists of edges connecting ∃∃∃∃∃∃∃∃∃-nodes with some of its subformulas, and these
edges can be positive or negative. Their purpose is to mark the places of the substitution of the
atoms quantified by the ∃∃∃∃∃∃∃∃∃. When writing an expansion tree Γ đ σ, we will draw the stretching
edges either inside Γ when it is written as a tree, or below Γ when it is written as string. The
positive edges are dotted and the negative ones are dashed. Examples are shown in Figures 3
and 4. The next step is to define the deep and the shallow formula of an expansion tree.

Definition 4.2. For an expansion tree E đ σ, we define the deep formula, denoted by �E đ σ�,
and the shallow formula, denoted by �E đ σ�, inductively as follows:

�1 đ �� = 1 �a đ �� = a �A�B đ σ� = �A đ σ′���B đ σ′′�
�⊥ đ �� = ⊥ �a⊥ đ �� = a⊥ �A�B đ σ� = �A đ σ′���B đ σ′′�

�∀a.A đ σ� = ∀a.�A đ σ� �

E

a.A đ σ� = ∃a.�A đ σ�
�∃a.A đ σ� = ∃a.�A đ σ� �∃∃∃∃∃∃∃∃∃a.A đ σ� = �A đ σ′�

�1 đ �� = 1 �a đ �� = a �A�B đ σ� = �A đ σ′���B đ σ′′�
�⊥ đ �� = ⊥ �a⊥ đ �� = a⊥ �A�B đ σ� = �A đ σ′���B đ σ′′�

�∀a.A đ σ� = ∀a.�A đ σ� �

E

a.A đ σ� = �A đ σ�
�∃a.A đ σ� = ∃a.�A đ σ� �∃∃∃∃∃∃∃∃∃a.A đ σ� = ∃a.�Ã đ σ̃�

where σ′ is the restriction of σ to A, and σ′′ is the restriction of σ to B. The expanded formula
Ã in the last line is obtained from A as follows: For every node B with A ď B and ∃∃∃∃∃∃∃∃∃a.Añ

σ
+ B,

remove the whole subtree B and replace it by a, and for every B with ∃∃∃∃∃∃∃∃∃a.Añ
σ
− B, replace B by a⊥.

The stretching σ̃ is the restriction of σ to Ã. For an expanded sequent Γ, we proceed analogously.

Note that the deep and the shallow formula an expansion tree differ only on ∃∃∃∃∃∃∃∃∃ and

E

. In the deep
formula, the

E

is treated as ordinary ∃, and the ∃∃∃∃∃∃∃∃∃ is completely ignored. In the shallow formula,
the

E

is ignored, and the ∃∃∃∃∃∃∃∃∃ uses the information of the stretching to ‘undo the substitution.’ To
provide this information on the location is the purpose of the stretching. To ensure that we really
only ‘undo the substitution’ instead of doing something weird, we need some further constraints,
which are given by Definition 4.3.
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Fig. 3. Examples of expansion trees that are not appropriate.

Fig. 4. Appropriate examples of expansion trees.

Before, we need some additional notation. Let Γ đ σ be given, and let A and B be nodes in Γ

with A being a quantifier node and A ď B. Then, we write AñB if A is a ∃∃∃∃∃∃∃∃∃-node and there is a
stretching edge between A and B, or A is an ordinary quantifier node and B is the variable (or its
negation) that is bound in A.

Definition 4.3. An expansion tree Γ đ σ is appropriate, if the following three conditions hold:

1. Same-formula condition: For all nodes A, B1, B2,
if Añ

σ
+ B1 and Añ

σ
+ B2, then �B1 đ σ1� = �B2 đ σ2�,

if Añ
σ
− B1 and Añ

σ
− B2, then �B1 đ σ1� = �B2 đ σ2�,

if Añ
σ
+ B1 and Añ

σ
− B2, then �B1 đ σ1� = �B2 đ σ2�⊥,

where σ1 and σ2 are the restrictions of σ to B1 and B2, respectively.
2. No-capture condition: For all nodes A1, A2, B1, B2, where A1 is a ∃∃∃∃∃∃∃∃∃-node,

if A1ñB1 and A2ñB2 and A1 ď A2 and B1 ď B2, then B1 ď A2.
3. Not-free condition: For all subformulas

E

a.A, the formula �A đ σ′� does not contain a free
occurrence of a, where σ′ is the restriction of σ to A.

The first condition above says that in a substitution a variable is instantiated everywhere by
the same formula B. The second condition ensures that there is no variable capturing in such a
substitution step. The third condition is exactly the side condition of the rule f↓ in Figure 2. For
better explaining, the three conditions above, we show in Figure 3 three examples of pairs Γ đ σ
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that are not appropriate: the first fails Condition 4.3, the second fails Condition 4.3 and the third
fails Condition 4.3. In Figure 4, all three examples are appropriate.

We can characterize expansion trees Γ đ σ that are appropriate very naturally in terms of deep
inference.

Lemma 4.4. For every derivation

D

{n↓, f↓} ‖‖ D

C

, there is an appropriate expansion tree Γ đσ with

D = �Γ đ σ� and C = �Γ đ σ�. Conversely, if Γ đ σ is appropriate, then

�Γ đ σ�
{n↓, f↓} ‖‖ D

�Γ đ σ�

for some

derivation D .

Proof. We begin by extracting Γ đ σ from D . For this, we proceed by induction on the length
of D . In the base case, let Γ = D = C and σ be empty. In the inductive case, consider the

bottommost rule instance
C ′

ρ
C

in D , which is either
S{∃a.A}

f↓
S{A}

or
S{A〈a\B〉}

n↓
S{∃a.A}

, and let

Γ′ đ σ′ be obtained by induction hypothesis, in particular, C ′ = �Γ′ đ σ′�.

— If ρ is f↓, then we construct Γ from Γ′ as follows: If the ∃ to which f↓ is applied appears
in Γ′ as ordinary ∃, then replace it by a

E

-node, and let σ = σ′. If the ∃ is in fact a ∃∃∃∃∃∃∃∃∃, then
completely remove it, and let σ be obtained from σ′ by removing all edges adjacent to that ∃∃∃∃∃∃∃∃∃.
In both cases, the same-formula condition and the no-capture condition (4.3-4.3 and 4.3-4.3)
are satisfied for Γ đ σ by induction hypothesis (because Γ′ đ σ′ is appropriate). The not-free
condition (4.3-4.3) holds because otherwise the f↓ would not be a valid rule application.

— If ρ is n↓, we insert an ∃∃∃∃∃∃∃∃∃-node at the position where the n↓-rule is applied and let σ be
obtained from σ′ by adding a positive (resp. negative) edge from this new ∃∃∃∃∃∃∃∃∃ to every oc-
currence of B in C ′ which is replaced by a (resp. a⊥) in C. Then, clearly the same-formula
condition is satisfied since it is everywhere the same B which is substituted. Let us now
assume by way of contradiction, that the no-capture condition is violated. This means we
have A1, A2, B1, B2 such that A1ñB1 and A2ñB2 and A1 ď A2 and B1 ď B2 and B1 ę A2.
Note that by the definition of stretching, we have that A1, A2, B1, B2 all sit on the same branch
in Γ. Therefore, we must have that A′2 ď B1, where A′2 is child of A2. Since the no-capture
condition is satisfied for Γ′ đ σ′, we have that either A1 or A2 is the newly introduced ∃∃∃∃∃∃∃∃∃. Note
that it cannot be A2 because then B1 would not be visible in �Γ′ đ σ′� because it has been
replaced by the variable a bound in A1. Since B2 is inside B1, it would also be invisible in
�Γ′ đ σ′�. Hence, the new ∃∃∃∃∃∃∃∃∃ must be A1. Without loss of generality, let A1 = ∃∃∃∃∃∃∃∃∃a.A′1. Then,
our n↓-instance must look like

S{A′1{Qb.A′2{B1{b}}}}
n↓

S{∃a.Ã′1{Qb.Ã′2{a}}}
, (3)

where a is substituted by B1{b} everywhere inside Ã′1{Qb.Ã′2{a}} and Q is either ∀ or ∃.
Clearly, the variable b is captured. Therefore, Equation (3) is not a valid rule application.
Hence, the no-capture condition must be satisfied. Finally, the not-free condition could only
be violated in a situation as above where A2 is a

E

-node. But since Equation (3) is not valid,
the not-free condition does also hold.

1039Deep inference and expansion trees for second-order multiplicative linear logic

https://doi.org/10.1017/S0960129518000385 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000385


Conversely, for constructing D from Γ đ σ, we proceed by induction on the number of

E

and ∃∃∃∃∃∃∃∃∃
in Γ. The base case is trivial. Now pick in Γ an

E

or ∃∃∃∃∃∃∃∃∃ which is minimal wrt. ď, i.e., has no otherE

or ∃∃∃∃∃∃∃∃∃ as ancestor.

— If we pick an

E

, say Γ = S{

E

a.A}, then let Γ′ = S{∃a.A}. By the not-free-condition, a does

not appear free in �A đ σ�. Hence,
�Γ′ đ σ�

f↓
�Γ đ σ�

is a proper application of f↓.

— If we pick an ∃∃∃∃∃∃∃∃∃, say Γ = S{∃∃∃∃∃∃∃∃∃a.A}, then let Γ′ = S{A} and let σ′ be obtained from σ by

removing all edges coming out of the selected ∃∃∃∃∃∃∃∃∃a. We now have to check that
�Γ′ đ σ′�

n↓
�Γ đ σ�

is a proper application of n↓. Indeed, by the same-formula-condition, every occurrence of
a bound by ∃∃∃∃∃∃∃∃∃a in �Γ đ σ� is substituted by the same formula in �Γ′ đ σ′�. The no-capture
condition ensures that no other variable is captured by this.

In both cases, we have that �Γ′ đ σ′� = �Γ đ σ�, and we can proceed by induction hypothesis.

We can explain the idea of the previous lemma by considering again the examples in Figures 3
and 4. To the non-appropriate examples in Figure 3 would correspond the following incorrect
derivations:

[(a� b) � a⊥]
n↓

∃c.[c� c⊥]

∀b.[b⊥� b]
n↓
∃a.∀b.[a� b]

∃a.([a� a⊥] � b⊥)
f↓

([a� a⊥] � b⊥)
n↓

∃c.(c� b⊥)

And to the appropriate examples in Figure 4 correspond the following correct derivations:

[(a� b) � a⊥]
n↓
∃c.[(c� b) � c⊥]

∀b.[b⊥� b]
n↓
∀b.∃a.[a� b]

∃a.([a� a⊥] � b⊥)
n↓

∃a.∃c.(c� b⊥)
f↓
∃c.(c� b⊥)

5. Proof graphs for MLL2

After studying the ‘quantifier part’ of MLL2, we will now look into the ‘propositional part.’ Since
the units are present, we have to have more structure than ordinary proof nets. Furthermore, in
linear logic, we cannot fully separate the quantifier part from the propositional part, as it is the
case with classical logic.¶ We follow the ideas presented in Straßburger and Lamarche (2004)
and Lamarche and Straßburger (2006) where the axiom linking of multiplicative proof nets has
been replaced by a linking formula to accommodate the units 1 and ⊥. In such a linking formula,
the ordinary axiom links are replaced by �-nodes, which are then connected by �s. A unit can
then be attached to a sublinking by another �, and so on. Here, we extend the syntax for the
linking formula by an additional construct to accommodate the quantifiers. The set L of linking
formulas is generated by the grammar

L ::= ⊥ | (A � A ⊥) | (1 � L ) | [L �L ] | ∃A.L

¶ The reason is that we cannot transform every formula into an equivalent prenex normal form, since the two formulas
A� ∃a.B(a) and ∃a.(A�B(a)) are not equivalent in general.

1040L. Straßburger

https://doi.org/10.1017/S0960129518000385 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000385


Fig. 5. Two ways of writing a proof graph.

The basic idea of our proof graphs is to attach a linking formula to an expansion tree. This is
similar to Miller’s idea of attaching a mating (Andrews 1976) to an expansion tree in classical
logic (Miller 1987).

Definition 5.1. A pre-proof graph is a quadruple, denoted by P
ν
� Γ đ σ, where P a linking

formula, Γ đ σ is an expansion tree and ν is a bijection �Γ
ν→ �P from the leaves of Γ to the

leaves of P , such that only dual atoms/units are paired up. If Γ is simple, we say that the pre-proof

graph is simple. In this case, σ is empty, and we can simply write P
ν
� Γ.

The ‘pre-’ means that we do not yet know whether it really comes from an actual proof, and
that we need a correctness criterion to distinguish the pre-proofs from the proofs.

Observe that due to the mobility of⊥, we need to introduce the notion of proof graph. A proof
net will then be an equivalence class of proof graphs (see also Lamarche and Straßburger (2006)
for details). If there are no units present, then the notions of (pre-)proof graph and (pre-)proof
net coincide.

For B ∈ �Γ, we write Bν for its image under ν in �P . When we draw a pre-proof graph

P
ν
� Γ đσ, then we write P above Γ (as trees or as strings) and the leaves are connected by edges

according to ν. Figure 5 shows an example written in both ways. To help the reader, we marked
the traditional ‘axiom links’ in the tree-like version.
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Let us now turn our attention towards correctness. For this, we concentrate first on simple pre-
proof graphs and begin with pure multiplicative correctness, using the standard Danos–Regnier
criterion (Danos and Regnier 1989).

Definition 5.2. A switching s of a simple pre-proof graph P
ν
� Γ is the graph that is obtained

from P
ν
� Γ by removing for each �-node one of the two edges connecting it to its children.

A simple pre-proof graph P
ν
� Γ is multiplicatively correct if all its switchings are acyclic and

connected (Danos and Regnier 1989). For a pre-proof graph P
ν
� Γ đ σ, we define multiplicative

correctness accordingly, but we ignore the edges of the stretching when checking acyclicity and
connectedness.

For multiplicative correctness, the quantifiers are treated as unary connectives and are therefore
completely irrelevant. The example in Figure 5 is multiplicatively correct. For involving the
quantifiers into a correctness criterion, we need some more conditions.

Let s be a switching for P
ν
� Γ, and let A and B be two nodes in Γ. We write A �� s�������	��B for

saying that there is a path in s from A to B which starts from A going up to one of its children
and which comes into B down from one of its children, and we write A �� s�������	��B if the path comes
into B from its parent below. Similarly, we write A �� s�������	��B (resp. A �� s�������	��B) if the path starts from
A going down to its parent and comes into B from above (resp. from below).

Let Γ be a simple sequent, and let A and B be nodes in Γ with A ď B. Then, the quantifier
depth of B in A, denoted by

�
AB, is defined to be the number of quantifier nodes on the path

from A to B (including A if it happens to be an ∀a or an ∃a, but not including B). Similarly, we

define
�

ΓB. Now assume we have a simple pre-proof graph P
ν
� Γ and quantifier nodes A′ in P

and A in Γ. We say A and A′ are partners if there is a leaf B ∈ �Γ with A ď B in Γ, and A′ ď Bν

in P , and
�
AB =

�
A′B

ν . We denote this by A′ ‚←→P Γ A.

Definition 5.3. We say a simple pre-proof graph P
ν
� Γ is well nested if the following five

conditions are satisfied:

1. Same-depth condition: For every B ∈ �Γ, we have
�

ΓB =
�
PB

ν .

2. Same-variable condition: Whenever A′ ‚←→P Γ A, then A′ and A quantify the same variable.
3. One-∃ condition: For every quantifier node A in Γ, there is exactly one ∃-node A′ in P with

A′ ‚←→P Γ A.
4. One-∀ condition: For every ∃-node A′ in P , there is exactly one ∀-node A in Γ with A′ ‚←→P Γ A.

5. No-down-path condition: If A′ ‚←→P Γ A1 and A′ ‚←→P Γ A2 for some A′ in P and A1, A2 in Γ, then
there is no switching s with A1

�� s�������	��A2.

To understand the motivation behind this definition, observe that every quantifier node in P
must be an ∃, and every quantifier node in Γ has exactly one of them as partner. On the other
hand, an ∃ in P can have many partners in Γ, but exactly one of them has to be an ∀. Following
Girard (1987), we can call an ∃ in P together with its partners in Γ the doors of an ∀-box and the
sub-graph induced by the nodes that have such a door as ancestor is called the ∀-box associated
to the unique ∀-door. Even if the boxes are not really present, we can use the terminology to
relate our work to Girard’s. There should be no surprise here: If we claim at some point that our
proof graphs capture the essential information of a proof, we must be able to recover a sequent
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Fig. 6. Examples (1)–(5) are not well nested, only (6) is well nested.

calculus proof, which necessarily contains the Girard boxes. Furthermore, all the properties of
these boxes that are postulated in Girard (1987), e.g., that every box is correct in itself, follow
from the global multiplicative correctness and the five conditions above. In order to help the
reader to understand these five conditions, we show in Figure 6 six simple pre-proof graphs,
where the first fails Condition 5.3, the second one fails Condition 5.3, and so on; only the sixth
one is well nested.

Definition 5.4. A simple pre-proof graph P
ν
� Γ is correct if it is well nested and multiplicatively

correct. In this case, we will also speak of a simple proof graph.

Definition 5.5. We say that a pre-proof graph P
ν
� Γ đ σ is correct if the simple pre-proof graph

P
ν
� �Γ đ σ� is correct and the expansion tree Γ đ σ is appropriate. In this case, we say that

P
ν
� Γ đ σ is a proof graph and �Γ đ σ� is its conclusion.

The example in Figure 5 is correct. There �Γ đ σ� is

� ∃c.(c⊥� c⊥), (∀c.[c� c] �(a⊥� a⊥) �⊥), [a� a�[a⊥� a]]

and the conclusion �Γ đ σ� is

� ∃d.(d� d), ∃a.(a⊥� a�⊥), [a� a�[a⊥� a]] .

6. The relation between simple proof graphs and deep inference

With Lemma 4.4, we already gave a deep inference characterization of expansion trees. In this
section, we do something similar for simple proof graphs.

Let us begin with a characterization of linking formulas.

Lemma 6.1. An MLL2 formula P is a linking formula if and only if there is a derivation

1

{ai↓,⊥↓, 1↓, e↓} ‖‖ D .

P⊥

(4)
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Proof. We can proceed by structural induction on P to construct D . The base case is trivial.
Here are the four inductive cases:

{1}
ai↓

[a⊥� a]

1

‖
‖ D ′

A
⊥↓

[⊥�A]

1

‖
‖ D ′

B
1↓

(1 �B)

‖
‖ D ′′

(A�B)

1
e↓
∀a.1
‖
‖ D ′

∀a.A

where D ′ and D ′′ always exist by induction hypothesis. Conversely, we proceed by induction on
the length of D to show that P is a linking formula. We show only the case where the bottommost
rule in D is a ai↓. Then, by induction hypothesis, S{1}⊥ = P {⊥} is a linking for some context
P { }. Hence, S[a⊥� a]⊥ = P (a� a⊥) is also a linking. The other cases are similar.

Definition 6.2. If a linking has the shape S1(1 � S2(a� a⊥)) for some contexts S1{ } and S2{ },
then we say that the 1 governs the pair (a� a⊥). Now, let P1 and P2 be two linkings. We say that
P1 is weaker than P2, denoted by P1 � P2, if

— �P1 = �P2,
— P1 and P2 contain the same set of ∃-nodes, and for every ∃-node, its set of leaves is the same

in P1 and P2, and
— whenever a 1 governs a pair (a� a⊥) in P2, then it also governs this pair in P1.

This � relation can also be characterized by deep inference derivations. For this, we also use
the following inference rules:

S(A�(B�C))
α↑
S((A�B) �C)

and
S(A�B)

σ↑
S(B�A)

(5)

which are the duals for α↓ and σ↓, respectively.

Lemma 6.3. Let P1 and P2 be two linkings. Then the following are equivalent:

1. P1 � P2.
2. There is a derivation

P1

{α↓, σ↓, rs} ‖‖ D

P2

.

3. Dually, there is a derivation

P⊥2

{α↑, σ↑, ls} ‖‖ D ′

P⊥1

.

4. The simple pre-proof graph P2 � P
⊥
1 is correct.

Proof. 1 ⇒ 2: The only way in which P1 and P2 can differ from each other are the �-trees
above the pairs (a� a⊥) and where in these trees the 1-occurrences are attached. Therefore, the

rules for associativity and commutativity of � and the rule
S(1 �[B�C])

rs
S[(1 �B) �C]

are sufficient to
transform P1 into P2.

2⇒ 3: The derivation D ′ is the dual of D .
3⇒ 4: We proceed by induction on the length of D ′. Clearly, P2 � P

⊥
2 is correct. Furthermore,

all three inference rules α↑, σ↑ and ls preserve correctness.
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4 ⇒ 1: We have �P1 = �P2 because P2 � P
⊥
1 is a simple proof graph. The second condition

in Definition 6.2 follows immediately from the well-nestedness of P2 � P
⊥
1 and the fact that P1

and P2 are both linkings, i.e., do not contain ∀-nodes. Therefore, we only have to check the last
condition. Assume, by way of contradiction, that there is a 1-occurrence which governs a pair
(a� a⊥) in P2 but not in P1, i.e., P2 = S1(1 � S2(a� a⊥)) for some contexts S1{ } and S2{ },
and P1 = S3[S4{1}� S5(a� a⊥)] for some contexts S3{ }, S4{ } and S5{ }. This means we have
the following situation in P2 � P

⊥
1

⊥

⊥

1 a a⊥

⊥ a⊥ a

which clearly fails the acyclicity condition.

The next step is to characterize correctness via deep inference.

Lemma 6.4. A simple pre-proof graph P
ν
� Γ is correct if and only if there is a linking P ′ with

P ′ � P and a derivation P ′⊥

{α↓, σ↓, ls, rs, u↓} ‖‖ D

Γ

, (6)

such that ν coincides with the bijection induced by the flow graph of D .

As an example, consider the derivation in Equation (2) which corresponds to example (6) in
Figure 6.

Before we can give the proof of this lemma, we need a series of additional lemmas that we
have to show first. We also use the following notation: Let A and B be nodes in Γ with A ę B

and B ę A. Then, we write A!Γ
�
B if the first common ancestor of A and B is a �, and we

write A!Γ
�
B if it is a �, or if A and B appear in different formulas of Γ. We will also sometimes

identify a sequent � A1, . . . , An with the formula [A1 � · · ·�An].

Lemma 6.5. Let π = P (a� a⊥)
ν
� S[∀b.A′{a⊥}�(B′{a}�B′′)] be a simple proof graph,

where S{ }, A′{ } and B′{ } are arbitrary contexts, P { } is a linking formula context and ν

pairs up the shown occurrences of a and a⊥. Then the simple proof graph π′ = P (a� a⊥)
ν
�

S([∀b.A′{a⊥}�B′{a}] �B′′) is also correct.

Proof. Let π = P
ν
� Γ and π′ = P

ν
� Γ′. By way of contradiction, assume that P

ν
� Γ′

is not correct. If it is not multiplicatively correct, then there is a switching s which is either
disconnected or cyclic. If it is disconnected, then we get from s immediately a disconnected

switching for P
ν
� Γ. So let us assume s is cyclic. The only modification from Γ to Γ′ that could

produce such a cycle is the change from A′{a⊥}!Γ
�
B′′ to A′{a⊥}!Γ

′

�
B′′. Hence, we must have

a path A′{a⊥} �� s�������	��B′′, which is also present in P
ν
� Γ. Note that this path cannot pass through
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a⊥ and a because otherwise we could use (B′{a}�B′′) to get a cyclic switching for P
ν
� Γ.

Furthermore, because P
ν
� Γ is well nested, there is an ∃b-node inside B′{a} below a. We can

draw the following pictures to visualize the situation:

in Γ

⊥

⊥

in Γ

∃b

a a⊥

a⊥ a

A ∃b

∀b B B

in Γ

⊥

⊥

in Γ

∃b

a a⊥

a⊥ a

∃b

A B B

∀b

Now, let c be the leaf at which our path leaves A′{a⊥} and goes into P , and let c′ be the leaf

at which it leaves P and comes back into Γ. By well-nestedness of P
ν
� Γ, there must be some

∃b-node somewhere in Γ below c′. We also know that our path, coming into Γ at c′, goes first
down, and at some point goes up again. This turning point must be some �-node below c′. Since
the ∃b-node and the �-node are both on the path from c′ to the root of the formula, one must be
an ancestor of the other. Let us first assume the � is below the ∃b. Then, our path is of the shape
as shown on the left below:

∃b

c c⊥ a a⊥

c c a⊥ a

∃b ∃b

A B B

∀b

∃b

c c⊥ a a⊥

c c a⊥ a

∃b

∃b A B B

∀b

∃b

d d⊥ c c⊥ a a⊥

d d c c a⊥ a

∃b ∃b

∃b ∃b A B B

∀b

(7)
This, however, is a contradiction to the well nestedness of P

ν
� Γ because it violates the no-down-

path condition (5.3-5.3) because there is a path between the ∃b below the c′ and the ∃b below
the a. Therefore, the � must be above the ∃b. The situation is now as shown in the middle in
Equation (7). From the �, the path must go up again. Without loss of generality, assume it leaves
Γ at d and re-enters Γ at d′. For the same reasons as above, there must be an ∃b and a � below d′.
And so on. There are two possibilities: either at some point the � is below the ∃b, which gives us
a violation of the no-down-path condition as on the left in Equation (7), or we reach eventually
B′′, as shown on the right in Equation (7).
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For the same reasons as above, there must be an ∃b inside B′′, and we get immediately a
violation of the no-down-path condition because of the short path between the two ∃b above B′

and B′′. Consequently, P
ν
� Γ′ must be multiplicatively correct.

Let us therefore assume P
ν
� Γ′ is not well nested. The same-depth condition and the same-

variable condition (5.3-5.3 and 5.3-5.3) must hold in P
ν
� Γ′ because they hold in P

ν
� Γ and

the quantifier structure is identical in Γ and Γ′. For the same reasons also, the one-∃-condition

and the one-∀-condition (5.3-5.3 and 5.3-5.3) must hold in P
ν
� Γ′. Therefore, it must be the no-

down-path condition which is violated. This means we must have in Γ′ two quantifier nodes, say
∀c and ∃c, connected by a path ∀c �� s�������	��∃c in some switching s. Because this path is not present

in P
ν
� Γ, it must pass through the new � between ∀b.A′{a⊥} and B′′, as follows:

⊥

⊥

a a⊥

a⊥ a

A

∀c ∀b B B ∃c

(8)

Since P
ν
� Γ′ is multiplicatively correct, the switching s must be connected. Therefore, there is

in s a path from the ∀b-node to the a inside B′. This new path must follow the path between ∀c
and ∃c for some steps in one direction. Hence, we either have

⊥

⊥

a a⊥

a⊥ a

A

∀c ∀b B B ∃c

or

⊥

⊥

a a⊥

a⊥ a

A

∀c ∀b B B ∃c

ν

(9)

Clearly, the graph on the left in Equation (9) violates the acyclicity condition for P
ν
� Γ′ as well

as for P
ν
� Γ. And from the one on the right in Equation (9), we can obtain a switching for P

ν
� Γ
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with a path ∀c �� s�������	��∃c as follows:

⊥

⊥

a a⊥

a⊥ a

∀c A B B ∃c

∀b

(10)

Contradiction. (Note that although on the right in Equations (9) and (10), the path does not go
through the a⊥ inside A′, this case is not excluded by the argument.)

Lemma 6.6. Let π = P (a� a⊥)
ν
� S[(A′′�A′{a⊥}) �(B′{a}�B′′)] be a simple proof graph,

where S{ }, A′{ }, B′{ }, P { }, and ν are as above. Then, at least one of the two proof graphs

π′ = P (a� a⊥)
ν
� S([(A′′�A′{a⊥}) �B′{a}] �B′′) and π′′ = P (a� a⊥)

ν
� S(A′′�[A′{a⊥}�

(B′{a}�B′′)]) is also correct.

Proof. We start by showing that one of π′ and π′′ has to be multiplicatively correct. We
consider here only the acyclicity condition and leave connectedness to the reader. First, assume
that there is a switching s′ for π′ that is cyclic. Then, the cycle must pass through A′′, the root �
and the � as shown on the left below:

⊥

⊥

a a⊥

a⊥ a

A A B B

⊥

⊥

a a⊥

a⊥ a

A A B B

⊥

⊥

a a⊥

a⊥ a

A A B B

(11)

Otherwise we could construct a switching with the same cycle in π. If our cycle continues through
B′′ (as shown in the middle in Equation (11)) then we can use the path from A′′ to B′′ (which
cannot go through A′ or B′) to construct a cyclic switching s in π as shown on the right in
Equation (11). Hence, the cycle in s′ goes through B′, giving us a path from A′′ to B′ (not passing
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through A′), as shown on the left below:

⊥

⊥

a a⊥

a⊥ a

A A B B

⊥

⊥

a a⊥

a⊥ a

A A B B

(12)

By the same argumentation, we get a switching s′′ in π′′ with a path from A′ to B′′, not going
through B′. From s′ and s′′, we can now construct a switching s for π with a cycle as shown on
the right above in Equation (12), which contradicts the correctness of π.

We now have to show that π′ and π′′ are both well nested. This can be done in almost literally
the same way as in the proof of Lemma 6.5.

Lemma 6.7. Let π = P (a� a⊥)
ν
� S[∀b.A′{a⊥}� ∃b.B′{a}] be a simple proof graph, where

S{ }, A′{ }, B′{ }, P { } and ν are as above. Then, π′ = P (a� a⊥)
ν
� S{∀b.[A′{a⊥}�B′{a}]}

is also correct.

Proof. Multiplicative correctness of π′ follows immediately, because the �-�-structure is the
same as in π. Furthermore, all five conditions in Definition 5.3 are obviously preserved by going
from π to π′. Hence, π′ is correct.

Lemma 6.8. Let π = P (a� a⊥)
ν
� S[a⊥�(B′{a}�B′′)] be a simple proof graph. Then, π′ =

P (a� a⊥)
ν
� S([a⊥�B′{a}] �B′′) is also correct.

Proof. Well nestedness of π′ follows trivially from the well nestedness of π. By way of
contradiction, assume π′ is not multiplicatively correct. Since connectedness is trivial, assume
there is a cyclic switching s. If the cycle does not involve the � between a⊥ and B′′, then we
immediately have a cyclic switching for π. Since the cycle involves a⊥, it must also involve a.
Therefore, it must leave B′{a} at some other leaf, and finally enter B′′ from above, as shown
below left:

in π

⊥

⊥

in π

a a⊥

a⊥ a

B B

in π

⊥

⊥

in π

a a⊥

a⊥ a

B B
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This means there is a cyclic switching for π, as shown on the right above.
Contradiction.

We can now complete our proof.

Proof of Lemma 6.4 Let a simple pre-proof graph P
ν
� Γ be given, and assume we have

a linking P ′ � P and derivation D as in Equation (6) whose flow graph determines ν. By
Lemma 6.3, we have a derivation D1 such that

P⊥

{α↑, σ↑, ls} ‖‖ D1

P ′⊥

{α↓, σ↓, ls, rs, u↓} ‖‖ D

Γ

. (13)

Now, we proceed by induction on the length of D1 and D to show that P
ν
� Γ is multiplicatively

correct and well nested. In the base case, it is easy to see that P � P⊥ has the desired properties.
Now, it remains to show that all rules α↓, σ↓, α↑, σ↑, ls, rs, u↓ preserve multiplicative correctness
and well nestedness. For multiplicative correctness, it is easy: For u↓, it is trivial because it does
not change the �-�-structure of the graph, and for the other rules it is well known. That well
nestedness is preserved is also easy to see: rules α↓, σ↓, α↑, σ↑, ls, rs do not modify the ∀-∃-
structure of the graph, and therefore trivially preserve Conditions 5.3–5.3 in Definition 5.3. For
the no-down-path condition, it suffices to observe that it cannot happen that a !

�
is changed into

!
�

while going down in a derivation. Finally, it is easy to see that u↓ preserves all five conditions
in Definition 5.3.

Conversely, assume P
ν
� Γ is well nested and multiplicatively correct. For constructing D , we

will again need the rule v↓ that has already been used in the proof of Theorem 3.4. We proceed by
induction on the distance between P⊥ and Γ. For defining this formally, letA be a simple formula
and define #�A to be the number of pairs 〈a, b〉 with a, b ∈ �A and a!A

�
b, and define #∃A to be

the number of ∃-nodes in A. Now, observe that P⊥ and Γ have the same set of leaves. We can
therefore define δ�〈P⊥,Γ〉 = #�Γ−#�P

⊥ and δ∃〈P⊥,Γ〉 = #∃Γ−#∃P
⊥. Note that because

of acyclicity it can never happen that for some a, b ∈ �Γ we have a!P
⊥

�
b and a!Γ

�
b. Therefore,

δ�〈P⊥,Γ〉 is the number of pairs a, b ∈ �Γ with a!P
⊥

�
b and a!Γ

�
b. Furthermore, observe that by

definition there cannot be any ∃-node in P⊥. Hence, δ∃〈P⊥,Γ〉 = #∃Γ. Now, define the distance
between P⊥ and Γ to be the pair δ〈P⊥,Γ〉 = 〈δ�〈P⊥,Γ〉, δ∃〈P⊥,Γ〉〉, where we assume the
lexicographic ordering.

Let us now pick in Γ a pair of dual atoms, say a⊥ and a, which appear in the same ‘axiom link’
in P , i.e., P is P (a� a⊥). We now make a case analysis on the relative position of a⊥ and a to
each other in Γ. Because of acyclicity, we must have a⊥!Γ

�
a. This means Γ = S[A{a⊥}�B{a}]

for some contexts S{ }, A{ }, and B{ }. Without loss of generality, we assume that neither A
nor B has a � as root (otherwise apply α↓ and σ↓). There are the following cases:

— A{ } and B{ } have both a quantifier as root. Then both must quantify the same variable (be-
cause of the same-depth condition and the same-variable condition), and at least one of them
must be an ∃ (because of the one-∃-condition and the one-∀-condition). Assume, without
loss of generality, that A{a⊥} = ∀b.A′{a⊥} and B{a} = ∃b.B′{a}. Then, by Lemma 6.7, we
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have that P
ν
� Γ′ with Γ′ = S{∀b.[A′{a⊥}�B′{a}]} is also correct. We can therefore apply

the u↓-rule and proceed by induction hypothesis because δ〈P⊥,Γ′〉 is strictly smaller than
δ〈P⊥,Γ〉. If A and B have both an ∃ as root, we apply the v↓-rule instead of u↓.

— One of A{ } and B{ } has a quantifier as root and the other a �. Without loss of generality,
let A{ } = ∀b.A′{ } and B{ } = (B′{ }�B′′), i.e., Γ = S[∀b.A′{a⊥}�(B′{a}�B′′)]. By

Lemma 6.5, we have that P
ν
� Γ′ with Γ′ = S([∀b.A′{a⊥}�B′{a}] �B′′) is also correct. We

can apply ls and proceed by induction hypothesis because δ〈P⊥,Γ′〉 < δ〈P⊥,Γ〉.
— One of A{ } and B{ } has a quantifier as root and the other is just { }. This is impossible

because it is a violation of the same-depth condition.
— A{ } and B{ } have both a � as root. Assume Γ = S[(A′′�A′{a⊥}) �(B′{a}�B′′)]. By

Lemma 6.6, P
ν
� Γ′ is correct, with either Γ′ = S([(A′′�A′{a⊥}) �B′{a}] �B′′) or Γ′ =

S(A′′�[A′{a⊥}�(B′{a}�B′′)]). In one case, we apply the rs-rule, and in the other the ls-
rule. In both cases, we have that δ〈P⊥,Γ′〉 is strictly smaller than δ〈P⊥,Γ〉. Therefore, we
can proceed by induction hypothesis.

— One of A{ } and B{ } has a � as root and the other is just { }. Without loss of generality,

Γ = S[a⊥�(B′{a}�B′′)]. Then, by Lemma 6.8, P
ν
� S([a⊥�B′{a}] �B′′), is also correct.

We can apply the ls-rule and proceed by induction hypothesis.
— If A{ } and B{ } are both just { }, i.e., Γ = S[a⊥� a], then do nothing and pick another

pair of dual atoms.

We continue until we cannot proceed any further by applying these cases. This means, all pairs
of dual atoms in �Γ are in a situation as in the last case above. Now, observe that a formula is the
negation of a linking formula iff it is generated by the grammar

N ::= 1 | [A ⊥�A ] | [⊥� N ] | (N � N ) | ∀A.N

Consequently, the only thing that remains to do is to bring the all ⊥ to the left-hand side of
a �. This can be done in a similar fashion as we brought pairs [a⊥� a] together, by applying
α↓, σ↓, ls, rs, u↓. This makes Γ the negation of a linking. (Because of well nestedness, there can
be no ∃-nodes left.) Let us call this linking formula P ′. Now, we have a proof graph P � P ′⊥. By
Lemma 6.3, we have P ′ � P .

It remains to remove all instances of v↓, which is done as in the proof of Theorem 3.4.

We can now directly translate between deep inference proofs and proof graphs. More precisely,
we can translate a MLL2DI↓ proof into a pre-proof graph by first decomposing it via Theorem 3.4
and then applying Lemmas 6.1, 6.4 and 4.4. Let us call a pre-proof graph DI-sequentializable if
is obtained in this way from a MLL2DI↓ proof.

Theorem 6.9. Every DI-sequentializable pre-proof graph is a proof graph.

Proof. Theorem 3.4 decomposes a MLL2DI↓ proof into three parts, which correspond via Lem-
mas 6.1, 6.4 and 4.4 to the linking, the simple proof graph and the expansion tree, respectively,

of a proof graph P
ν
� Γ đ σ with P⊥ = A and �Γ đ σ� = B and �Γ đ σ� = C.

By the method presented in Straßburger (2011), it is also possible to translate a MLL2DI↓
directly into a proof graph without prior decomposition. However, the decomposition is the key
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for the translation from proof graphs back into MLL2DI↓ proofs (i.e., ‘sequentialization’ into the
calculus of structures):

Theorem 6.10. If P
ν
� Γ đ σ is correct, then there is a P ′ � P , such that P ′

ν
� Γ đ σ is DI-

sequentializable.

Proof. Lemmas 6.1, 6.4 and 4.4 give us for a P
ν
� Γ đ σ the derivation on the left below:

1

{ai↓,⊥↓, 1↓, e↓} ‖‖ D ′1

P ′⊥

{α↓, σ↓, ls, rs, u↓} ‖‖ D ′2

�Γ đ s�
{n↓, f↓} ‖‖ D3

�Γ đ s�

1

{ai↓,⊥↓, 1↓, e↓} ‖‖ D1

P⊥

{α↑, σ↑, α↓, σ↓, ls, rs, u↓} ‖‖ D2

�Γ đ s�
{n↓, f↓} ‖‖ D3

�Γ đ s�

where P ′ � P . Note that by Lemma 6.3, we also have derivation on the right above.

Remark 6.11. It is also possible to translate directly between sequent calculus proofs and proof
graphs. But for the details the reader is referred to Straßburger (2017).

7. Cut elimination

In proof graphs, the cut is represented by a special connective �, such that whenever we have

A�B in P
ν
� Γ đ σ, then we must have �A đ σ� = �B đ σ�⊥.‖ Morally, a � may occur only at

the root of a formula in Γ. However, due to well nestedness, we must allow cuts to have

E

-nodes
as ancestors. Then, the � is treated in the correctness criterion in exactly the same way as the �,
and sequentialization does also hold for proof graphs with cut.

As already discussed in Lamarche and Straßburger (2006), we need to work with an equi-
valence relation on proof graphs, because of the presence of the multiplicative units. This is a
consequence of the PSPACE-completeness of proof equivalence in MLL (Heijltjes and Houston
2014).

Definition 7.1. Let ∼ be the smallest equivalence relation on the set of proof graphs satisfying

P [Q�R]
ν
� Γ đ σ ∼ P [R�Q]

ν
� Γ đ σ

P [[Q�R] � S]
ν
� Γ đ σ ∼ P [Q�[R� S]]

ν
� Γ đ σ

P (1 �(1 �Q))
ν
� Γ đ σ ∼ P (1 �(1 �Q))

ν ′

� Γ đ σ

P (1 �[Q�R])
ν
� Γ đ σ ∼ P [(1 �Q) �R]

ν
� Γ đ σ

P (1 � ∃a.Q)
ν
� Γ{⊥} đ σ ∼ P {∃a.(1 �Q)} ν� Γ{

E

a.⊥} đ σ

‖ Note that it does not mean A = B⊥, because Γ is expanded.
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Fig. 7. Cut reduction for MLL2 proof nets (Part 1).

where in the third line ν ′ is obtained from ν by exchanging the pre-images of the two 1s. In all
other equations, the bijection ν does not change. In the last line, ν must match the 1 and ⊥. A
proof net is an equivalence class of ∼.

The first two equations in Definition 7.1 are simply associativity and commutativity of �
inside the linking. The third is a version of associativity of �. The fourth equation could destroy
multiplicative correctness, but since we defined ∼ only on proof graphs we do not need to worry
about that.†† The last equation says that a ⊥ can freely tunnel through the borders of a box. Let
us emphasize that this quotienting via an equivalence is due to the multiplicative units. If one
wishes to use a system without units, one could completely dispose the equivalence by using
n-ary �s in the linking.

The cut reduction relation � is defined on pre-proof graphs as shown in Figures 7 and 8. The
reductions not involving quantifiers are exactly as shown in Lamarche and Straßburger (2006).
If we encounter a cut between two binary connectives, then we replace [A�B] �(C �D) by
two smaller cuts A�C and B�D. Note that if �[A�B] đ σ� = �(C �D) đ σ�⊥, then �A đ

σ� = �C đ σ�⊥ and �B đ σ� = �D đ σ�⊥. If we have an atomic cut a⊥� a, then we must have
in P two ‘axiom links’ (a⊥� a), which are by the leaf mapping ν attached to the two atoms
in the cut. It was shown in Lamarche and Straßburger (2006) that the two pairs (a⊥� a) can,
under the equivalence relation in Definition 7.1, be brought next to each other such that P has
[(a� a⊥) �(a� a⊥)] as subformula. We can replace this by a single (a⊥� a) and remove the cut.
If we encounter a cut 1 �⊥ on the units, we must have in the linking a corresponding ⊥ and a
subformula (1 �Q), which can (for the same reasons as for the atomic cut) be brought together,
such that we have in P a subformula [⊥�(1 �Q)]. We replace this by Q and remove the cut.

Let us now consider the cuts that involve the quantifiers. There are three cases, one for each
of ∃∃∃∃∃∃∃∃∃,

E

and ∃. The first two correspond to the ones in Girard (1987). The third one does not

†† In Lamarche and Straßburger (2006), the relation ∼ is defined on pre-proof graphs, and therefore a side condition had
to be given to that equation (see also Hughes (2012)).
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Fig. 8. Cut reduction for MLL2 proof nets.

appear in Girard (1987) because there is never a ∃-node created when a sequent calculus proof is
translated into a proof net.

If one of the cut formulas is an ∃∃∃∃∃∃∃∃∃-node, then the other must be an ∀, which quantifies the same
variable, say we have ∃∃∃∃∃∃∃∃∃a.A� ∀a.B. Then, we pick a stretching edge starting from ∃∃∃∃∃∃∃∃∃a.A. Let C
be the node where it ends and let D = �C đ σ�. Note that by Condition 4.3-4.3, D is independent
from the choice of the edge in case there are many of them. (If there are only negative edges,
then let D = �C đ σ�⊥. If there are no stretching edges at all, then let D = a. Now, we can inside
the box of ∀a.B substitute a everywhere by D. Then, we remove all the doors of the ∀a.B-box
and replace the cut by A�B. There are two subtleties involved in this case. First, ‘removing a
door’ means for a

E

that the node is removed, but for and ∃, it means that the node is replaced
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by an ∃∃∃∃∃∃∃∃∃ and a stretching edge is added for every a and a⊥ bound by the ∃-node to be removed.
Second, by substituting a with D, we get ‘axiom links’ which are not atomic anymore, but it is
straightforward to make them atomic again: one proceeds by structural induction on D, and the
two reduction cases are

∀b.D1 ∃b.D⊥
1

∃b.D⊥
1 ∀b.D1

∃b

D1 D⊥
1

D⊥
1 D1

∃b ∀b

and (D1 D2) [D⊥
1 D⊥

2 ]

[D⊥
1 D⊥

2 ] (D1 D2)

D1 D⊥
1 D2 D⊥

2

D⊥
1 D⊥

2 D1 D2

If one of the two cut formulas is a

E

-node, then the other one can be anything. Say, we have

E

a.A�B. Let eB be the empire of B, i.e., largest sub-proof graph of P
ν
� Γ đ σ that has B as a

conclusion. Let B1, . . . , Bn be the other doors of eB inside Γ, and let R be the door of eB in P . If
eB has more than one root node inside the linking P , then we can rearrange the �-nodes in P via
the equivalence in 7.1 such that eB has a single �-root in P . Furthermore, as in the case of the
atomic cut, we can use the equivalence in 7.1 to get in P a sub-formula [∃a.Q�R], where ∃a.Q
is the partner of

E

a.A. Now, we replace on P the formula [∃a.Q�R] by ∃a.[Q�R] and in Γ the
formulas B1, . . . , Bn by

E

a.B1, . . . ,

E

a.Bn. Put in plain words, we have pulled the whole empire
of B inside the box of

E

a.A. But now we have a little problem: Morally, we should replace the
cut

E

a.A�B by A�B; the cut is also pulled inside the box. But by this, we would break our
correctness criterion, namely, the same-depth condition 5.3-5.3. To solve this problem, we allow
cut nodes to have

E

-nodes as ancestors, and we replace the cut

E

a.A�B by

E

a.(A�B). Note
that this does not cause problems for the other cut reduction steps because we can just keep allE

-ancestors when we replace a cut by a smaller one.
Finally, there is the cut between an ordinary ∃-node and a ∀-node, say ∃a.A� ∀a.B. Then, we

do not pull the whole empire of ∀a.B inside the box of ∃a.A but only the ∀a.B-box. This is the
same as merging the two boxes into one. Formally, let ∃a.Q and ∃a.R be the partners of ∃a.A and
∀a.B, respectively. Again, for the same reasons as in the case of the atomic cut, we can assume
that we have the configuration [∃a.Q� ∃a.R] in P , which we replace by ∃a.[Q�R]. The cut is
replaced by

E

a.(A�B).
This cut reduction relation is defined a priori only on pre-proof graphs. For a pre-proof graph

P
ν
� Γ đ σ and a cut A�B in Γ, we say the cut is ready, if the cut can immediately be reduced

without further modification of P . We now can show the following:

Theorem 7.2. The cut reduction relation preserves correctness and is well defined on proof nets.

Proof. That correctness is preserved follows immediately from inspecting the six cases. To
show that cut reduction is well defined on proof nets, we need to verify the following two facts:

— Whenever the same cut is reduced in two different representations of the same proof net, then
the two results also represent the same proof net.

— Whenever there is a cut in a proof net, then this cut can be reduced, i.e., there is a represent-
ation to which the corresponding reduction step in Figures 7 and 8 can be applied.
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For the first statement, it suffices to observe that whenever one of the basic equivalence steps in
Definition 7.1 can be performed in the non-reduced net, then the same step can be performed in
the reduced net or is vacuous in the reduced net. For the second statement, we have to make a
case analysis on the type of cut: If the cut is [A�B] �(C �D) or ∃∃∃∃∃∃∃∃∃a.A� ∀a.B, then it is trivial
because these cuts are always ready. Let us now consider a cut ∃a.A� ∀a.B. Clearly, the two
boxes of which ∃a and ∀a are doors each have a single door ∃a in P , and their first common
ancestor is a � (because of the acyclicity condition). Therefore, the linking is of the shape
P [S1{∃a.Q}� S2{∃a.R}] for some contexts S1{ } and S2{ }. Now, we proceed by induction
on the size of S1{ } and S2{ } and make a case analysis on their root nodes:‡‡

— Both contexts are empty. In this case, the linking has the desired shape, and we are done.
— One of them has a �-root. In this case, we apply associativity of the � and proceed by

induction hypothesis.
— One of them has an ∃-node as root. This is impossible because it would violate the well-nested

condition.
— One of them has a �-root, and the other context is empty. Without loss of generality, the

linking is of the shape P [(1 � S ′1{∃a.Q}) � ∃a.R]. We claim that in this case the correctness
is preserved if we replace the linking by P (1 �[S ′1{∃a.Q}� ∃a.R]). We leave the proof of
this claim to the reader because it is very similar to the proof of Lemma 6.8. Hence, we can
proceed by induction hypothesis.

— Both contexts have a �-root. Then, the linking is of the shape

P [(1 � S ′1{∃a.Q}) �(1 � S ′2{∃a.R})] .

Now, we claim that we can replace this linking with one of

P (1 �[S ′1{∃a.Q}�(1 � S ′2{∃a.R})]) and P (1 �[(1 � S ′1{∃a.Q}) � S ′2{∃a.R}])

without destroying correctness. Again, we leave the proof to the reader because it is almost
the same as the proof of Lemma 6.6. As before, we can proceed by induction hypothesis.

For a cut

E

a.A�B, we proceed similarly. The only difference is that we first have to apply
associativity and commutativity of � to bring the proof graph in a form where the empire eB has
a single root R in the linking. For cuts a� a⊥ and 1 �⊥, we can also proceed similarly.

The main results of this section is now:

Theorem 7.3. The cut reduction relation � is terminating and confluent.

Proof. Termination has already been shown in Girard (1987), and we will not repeat it here.
For showing confluence, it suffices to show local confluence. We will do this first for proof
graphs. Suppose we have two cuts which are ready in a given proof graph. We claim that the
result of reducing them is independent from the order of the reduction. There is only one critical
pair, since the only possibility for overlapping redexes is when one cut is ∃∃∃∃∃∃∃∃∃a.A� ∀a.B and the
other is ∃a.C � ∀a.D and the formulas ∀a.B and ∃a.C are doors of the same box. If we reduce
first the cut ∃∃∃∃∃∃∃∃∃a.A� ∀a.B, then we do first the substitution in the ∀a.B-box, remove its border,

‡‡ Note the similarity to the proof of Lemma 6.4.
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change the second cut to ∃∃∃∃∃∃∃∃∃a.C ′� ∀a.D, and then do the same substitution in the ∀a.D-box and
remove its border. If we reduce first the cut ∃a.C � ∀a.D, then we merge the two boxes into
one, and then do the substitution and remove the border of the box. Clearly, the result is the
same in both cases. Hence, we have local confluence for the cut reduction on proof graphs. In
the case of proof nets, it can happen that the two cuts are ready in two different representatives.
With the method shown in the previous proof, we can try to construct a representatives in which
both cuts are ready. There are only two cases in which this fails. The first is when we have two
atomic cuts using the same ‘axiom link.’ But then the result of reducing the two is a single axiom
link, independent from the order. The second case is when we have two cuts ∃a.A� ∀a.B and
∃a.C � ∀a.D, where ∀a.B and ∃a.C are doors of the same box. Here, the result of reducing the
two will be a big box which is the merge of all three boxes, independent of the order in which
the two cuts are reduced.

8. Some observations on the units

An important consequence of the last theorem is that we have a category of proof nets: The
objects are (simple) formulas and a map A → B is a proof net with conclusion � A⊥, B . The
composition of maps is defined by cut elimination. Unfortunately, we do not know much about
this category, apart from the fact that it is *-autonomous (Lamarche and Straßburger 2006). But
there are some observations that we can make about the units, which can be expressed with
the second-order quantifiers: 1 ≡ ∀a.[a⊥� a] and ⊥ ≡ ∃a.(a� a⊥). An interesting question to
ask is whether these logical equivalences should be isomorphisms in the categorification of the
logic. In the category of coherent spaces (Girard 1987), they are, but in our category of proof
nets they are not. This can be shown as follows. The two canonical maps ∀a.[a⊥� a] → 1 and
1→ ∀a.[a⊥� a] are given in the sequent calculus by

1
� 1

1
� 1

⊥
� ⊥, 1

�

� (1 �⊥), 1
∃
� ∃a.(a� a⊥), 1

and

id
� a⊥, a

�

� [a⊥� a]
∀
� ∀a.[a⊥� a]

weak
� ⊥, ∀a.[a⊥� a]

(14)

As proof nets, they are given as follows:

[⊥ (1 ⊥)]

∃∃∃∃∃∃∃∃∃a.(1 ⊥) , 1
and

(1 ∃a.(a a⊥))

⊥ , ∀a.[a⊥ a] (15)

respectively. Composing them means eliminating the cut from

[⊥ (1 ⊥) (1 ∃a.(a a⊥))]

∃∃∃∃∃∃∃∃∃a.(1 ⊥) , 1 ⊥ , ∀a.[a⊥ a] (16)
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This yields

[⊥ (1 ∃a.(a a⊥))]

∃∃∃∃∃∃∃∃∃a.(1 ⊥) , ∀a.[a⊥ a] (17)

If the two maps in (15) where isos, then the result in (17) would be the same as the identity map
∀a.[a⊥� a]→ ∀a.[a⊥� a], which is represented by the proof net

∃a.[(a⊥ a) (a a⊥)]

∃a.(a a⊥) , ∀a.[a⊥ a]
(18)

This is obviously not the case. Translating Equations (17) and (18) back into the sequent calculus
gives

1
� 1

id
� a⊥, a

�

� [a⊥� a]
⊥
� ⊥, [a⊥� a]

�

� (1 �⊥), [a⊥� a]
∃
� ∃a.(a� a⊥), [a⊥� a]

∀
� ∃a.(a� a⊥), ∀a.[a⊥� a]

and

id
� a, a⊥

id
� a⊥, a

�

� (a� a⊥), a⊥, a
�

� (a� a⊥), [a⊥� a]
∃
� ∃a.(a� a⊥), [a⊥� a]

∀
� ∃a.(a� a⊥), ∀a.[a⊥� a]

(19)

respectively.
A similar situation occurs with the additive units 0 and�. They can be expressed with second-

order quantifiers as follows: 0 ≡ ∀a.a and � ≡ ∃a.a. Since we do not have 0 and � in the
language, we cannot check whether we have these isos in our category. However, since 0 and
� are commonly understood as initial and terminal objects of the category of proofs, we could
ask whether ∀a.a and ∃a.a have this property: We clearly have a canonical proof for ∀a.a → A

for every formula A (simply instantiate a with A), but it is not unique for all A. For example,
we could prove the sequent � ∃a.a⊥, (c�[b� b⊥]) by substituting a with c. Nonetheless, one
could imagine an isomorphism 0 ∼= ∀a.a in a version of our proof nets which is extended with
additives and exponentials. However, in this case, 0 would not be initial.

9. Conclusions

In this paper, we have investigated the relation between three different ways of presenting proofs
in MLL2. First, in the sequent calculus, second, in the calculus of structures, and third, via proof
graphs and expansion trees, and we have shown how these three presentations can be translated
into each other. The main open question is now whether the identifications on proofs made
by proof nets (i.e., equivalence classes of proof graphs) is the ‘right one.’ The observations in
Section 8 show that the last word on this issue is not yet spoken. It would be important, to
find independent (category theoretical) axiomatizations for the proof identity in MLL2, based on
purely algebraic grounds. Then, one could compare this algebraic notion of proof identity for
MLL2 with the syntactic one based on proof nets.
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A detailed comparison of this work to Girard’s proof nets (Girard 1987, 1990) can be found
in Straßburger (2009, 2017).

Another direction for future research is the question how our method scales to larger fragments
of linear logic. This concerns not only the exponentials and the additives (Heijltjes and Hughes
2015; Hughes and van Glabbeek 2003) but also higher order linear logic.
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