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Abstract
This paper examines a new interpretation for spatial mutual information based on the mutual information between
an attribute value and a spatial random variable. This new interpretation permits the measurement of variations in
spatial mutual information over the domain, not only answering the question of whether a spatial dependency exists
and the strength of that dependency, but also allowing the identification of where such dependencies exist. Using
simulated and real vessel reporting data, the properties of this new interpretation of spatial mutual information
are explored. The utility of the technique in detecting spatial boundaries between regions of data having different
statistical properties is examined. The technique is shown to successfully identify vessel traffic boundaries, crossing
points between traffic lanes, and transitions between regions having differing vessel movement patterns.

1. Introduction

The analysis of vessel traffic for the purpose of obtaining information relevant to Maritime Domain
Awareness (MDA) has a long history, dating back to the first monitoring and control of vessel movement
within harbours. As technologies allowed the monitoring to encompass greater distances, the purpose of
the monitoring also changed from an activity focused on port management to one focused on safety and
security. With the introduction of technologies that allow vessel monitoring from space-based platforms
(Lapinski et al., 2016), the monitoring also took on a global perspective.

In Canada, MDA is defined as ‘the effective understanding of everything on, under, related to, adjacent
to, or bordering a sea, ocean or other navigable waterway, including all maritime-related activities,
infrastructure, people, cargo, vessels or other conveyance’ (IMSWG, 2011). One important aspect of
MDA is the aggregation of data and information to help formulate a consistent representation of vessel
activity over the domain. However, an overabundance of MDA input data has made manual analysis
time consuming, if not completely infeasible. As a consequence, there has been growing interest in the
application of techniques for automated or semi-automated analysis of vessel traffic from large volume
data sets (Lapinski and Isenor, 2011; Isenor et al., 2016).

The context of this work is MDA and how knowledge of normal vessel traffic patterns and the
characteristics of those patterns help to determine anomalous vessel behaviour. Given that an anomaly
is recognised as behaviour inconsistent with the norm (Roy, 2008), then determining the norm represents
a reasonable first step. Of course, normal can be dependent on the type of vessel with some vessel types
following more predictable patterns between ports (Kaluza et al., 2010). Nevertheless, traffic pattern
analysis does offer some insight into general patterns, traffic lanes and the statistical characteristics of
the traffic within particular lanes.
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The scientific motivation behind this work is the desire to understand relationships between spatial
vessel traffic patterns and vessel attributes. This includes relationships between vessel position and
other vessel attributes, including kinematic (e.g., speed, course) and nonkinematic (e.g., vessel type)
attributes. Given this motivation, the research question focuses on the use of information theoretics in
understanding the vessel traffic patterns. Effectively, the research asks, can mutual information between
a vessel’s spatial position and attribute values be used to identify and distinguish different traffic patterns
or traffic characteristics?

This paper addresses the research question by introducing a new interpretation for spatial mutual
information. This new interpretation provides a tool for quantifying the strength and directionality of
spatial dependencies in vessel attribute values. In terms of the vessel traffic, this means that at locations
where a dependency exists between location and the vessel attribute (e.g., course, vessel type), these
dependencies can be discerned with mathematical rigor.

The method is also able to detect the presence of spatial boundaries between regions having differ-
ing distributions of vessel attribute values. This allows regions to be associated with different vessel
movement patterns (e.g., fishing or merchant traffic), which then establishes baseline characteristics of
the traffic for that location. Understanding this baseline provides a basis from which the abnormal can
be determined. In this paper, the method is applied to the detection of vessel traffic boundaries in areas
of complex traffic patterns.

The paper is organised as follows. Section 2 provides background on related work in information the-
ory and MDA. Section 3 introduces the new interpretation of spatial mutual information and includes an
example of its application to simulated vessel position data. Section 4 then applies the new interpretation
to actual vessel positional data. Section 5 provides concluding comments.

2. Application of information–theoretic measures in MDA

For the purpose of this paper, spatial data reports (SDRs) are defined as including an n-dimensional
position, possibly a time stamp, and one or more nonspatial attributes. In the context of MDA appli-
cations, SDRs are most often associated with a report containing a vessel’s position, together with a
number of vessel-related attributes. These attributes may be nonspatial and represented by dynamically
changing kinematic data, such as vessel speed and course, or static data such as vessel identity or type,
and less-frequently changing information such as vessel cargo or destination. SDRs may be produced as
the output of a sensor-based tracking system or by a vessel self-reporting system, such as the Automatic
Identification System (AIS) (Creech and Ryan, 2003).

2.1. Information theoretics

Given the discrete random variable X, with the discrete probability mass function 𝑝(𝑥𝑖), the Shannon
entropy (Shannon and Weaver, 1949) 𝐻 (𝑋) is defined as

𝐻 (𝑋) =
∑
𝑥𝑖 𝜖 𝑋

𝑝(𝑥𝑖)log2
1

𝑝(𝑥𝑖)
(1)

Entropy has a minimum value of 0 when the probability mass is concentrated on a single outcome and
a maximum value of log2 |𝑉𝑋 | given a uniform distribution, where |𝑉𝑋 | is the number of outcomes of
X. Normalisation of entropy by the value log2 |𝑉𝑋 | is commonly used to produce entropy values in the
range [0,1].

Entropy measures have been applied to spatially indexed data using several different approaches.
These include: using the spatial component of the data while not taking into account any attribute
values (Ilachinski, 2004); using data points originating from specified spatial regions (Gilles, 1998;
Oikonomopoulos et al., 2006); and using pairs or higher-order sets of data points selected using specified
spatial criteria (Leibovici, 2009; Altieri et al., 2019).
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Mutual information (Cover and Thomas, 2006) considers the relationship between two discrete
random variables X and Y and is defined as

𝐼 (𝑋;𝑌 ) =
∑
𝑥𝑖 ∈𝑋

∑
𝑦 𝑗 ∈𝑌

𝑝(𝑥𝑖 , 𝑦 𝑗 )log2
𝑝(𝑥𝑖 , 𝑦 𝑗 )

𝑝(𝑥𝑖)𝑝(𝑦 𝑗 )
(2)

where 𝑝(𝑥𝑖 , 𝑦 𝑗 ) is the joint probability mass function of X and Y, and 𝑝(𝑥𝑖) and 𝑝(𝑦 𝑗 ) are the marginal
probability mass functions of X and Y, respectively.

Mutual information can be defined in terms of entropy as

𝐼 (𝑋;𝑌 ) = 𝐻 (𝑋) − 𝐻 (𝑋 |𝑌 ) = 𝐻 (𝑌 ) − 𝐻 (𝑌 |𝑋) (3)
𝐼 (𝑋;𝑌 ) = 𝐻 (𝑋) + 𝐻 (𝑌 ) − 𝐻 (𝑋,𝑌 ) (4)

where 𝐻 (𝑋,𝑌 ) and 𝐻 (𝑋 |𝑌 ) are the joint and conditional entropies of X and Y.
The conditional entropy can be defined in terms of the expected value of the subpopulation entropies

𝐻 (𝑋 |𝑦 𝑗 ) (Yao, 2003) as

𝐻 (𝑋 |𝑌 ) =
∑
𝑦 𝑗 ∈𝑌

𝑝(𝑦 𝑗 )𝐻 (𝑋 |𝑦 𝑗 ) (5)

A related concept, the specific information 𝐼 (𝑋; 𝑦 𝑗 ), is used to quantify dependencies between the
random variable X and a specific outcome 𝑦 𝑗 of Y (DeWeese and Meister, 1999):

𝐼 (𝑋; 𝑦 𝑗 ) = 𝐻 (𝑋) − 𝐻 (𝑋 |𝑦 𝑗 ) (6)

As in the case of entropy, spatial information may be incorporated into mutual information by
computing local spatial estimates of mutual information, based on sample subsets whose positions fall
within specified local spatial regions. Local estimates of mutual information have been applied to image
registration techniques using nonrigid transformations (Studholme et al., 2006). However, the majority
of the approaches for incorporating spatial information into the calculation of mutual information use
joint observations of two or more spatially separated samples (Li and Deutsch; 2010; Altieri et al.; 2018).

2.2. Maritime domain awareness

Considerable literature exists on defining vessel traffic patterns for the purpose of MDA. Pallotta et al.
(2013) applied an unsupervised learning technique to vessel trajectories in the North Adriatic Sea. The
technique used waypoint clustering to construct routes, with vessel tracks then compared to the historical
routes as a means to identify anomalies. This work was extended by Nguyen et al. (2018), where many
of the assumptions made by Pallotta et al. (2013) were relaxed. Nguyen et al. (2018) developed a
machine-learning technique using recurrent neural networks to distinguish anomalous trajectories that
do not follow shipping routes. The method also identified vessel types from the behavior of the vessel,
as represented by its trajectory.

Arguedas et al. (2018) considered an approach that built maritime traffic networks via clustering of
vessel trajectories. The technique first clustered trajectories that shared common start and end locations,
then decomposed these into distinguishable routes, and finally broke routes into straight segments.
Similar to Arguedas, Yan et al. (2020) constructed traffic networks using directed graphs and also
incorporated contextual information, such as water depth and distance from shore. This is important for
open-ocean pattern analysis where context greatly impacts trajectory alterations or what may appear as
anomalous behaviours (Filipiak et al., 2018). Work has also been conducted on accounting for context
by adjusting tracks to be attracted or repelled from certain influences (George et al., 2011).

The use of information theoretics in the analysis of vessel traffic is more limited. In the unsupervised
learning approach of Pallotta et al. (2013), it was noted how entropy provides a measure as to how
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well traffic patterns can be predicted based on the historical traffic data. Work by Pan et al. (2014) used
entropy in a traffic route analysis in the ports of Xiamen and Hong Kong. Using a trajectory comparison
method that considered a density of distances between tracks of different vessels, entropy was used as
an objective means to identify the trajectory spread. This technique was effective at identifying and
separating complex traffic routes in and around islands. Leibovici et al. (2014) applied spatial entropy
measures to the analysis of spatial and temporal clusters in a vessel activity data set. This work used
distance ratios and the co-occurrence of attribute values from multiple spatially separated data samples.
Entropy was also used by Liu et al. (2015) based on the spatial component of vessel reports. Here,
entropy contributed to the identification of seasonal trends in shipping and fishing activities. Vicente-
Cera et al. (2020) used entropy in an examination of vessels in ports throughout Europe. Using the
AIS destination field and more than 1000 defined European ports, entropy was used to determine the
diversity of vessels visiting the ports. In turn, this diversity index was used as an indicator of the port’s
economic resilience. In a similar manner, Scully et al. (2020) used the AIS vessel type in an entropy
calculation for a management of navigational structures, for example jetties, breakwaters and seawalls.
Here, the diversity of vessel type visiting the structure was proposed as a management tool for the
assessment of structure performance and use.

Entropy has also been used in past work for the quality control of vessel data supporting MDA.
For example, entropy has been applied to attribute matching between AIS messages and authoritative
databases for the purpose of correcting attribute values in high-volume data streams (Horn et al., 2015).
Information theory has also been used to assess the data quality of AIS messages (Iphar et al., 2015)
and applied to the semantics in MDA ontologies, for the matching of vessel labels (Blasch et al., 2010).

It should be noted that the cited literature on the use of information theoretics in vessel trajectory
construction does not document any specific data manipulation as a result of report-to-report correlation.
Although kinematic data will have a random component, there will also be a correlation between reports
originating from the same vessel track, with the degree of correlation dependent on the vessel motion.
The problem of report-to-report correlation in kinematic data has been studied extensively in the tracking
and data fusion literature (Bar-Shalom et al., 1990; Blackman and Popoli, 1999). Static or infrequently
changing AIS attribute data also have correlation issues because the repeated values are not independent
random samples. The impact of repeated measurements on statistical analyses is a recognised problem
in the statistics community (Millar and Anderson, 2004); however, there is little mention of this problem
in the literature on spatial information theoretic measures.

3. A new interpretation of spatial mutual information

A new interpretation is proposed for the characterisation of spatially indexed attribute data, based on
the mutual information between a spatial position and an attribute value. This measure is distinguished
from existing approaches, described in Section 2, that involve joint observations of spatially separated
variables or local spatial estimates of the mutual information between multiple attributes.

Assume a set of n spatially indexed data records of the form {𝑢𝑘 , 𝑥𝑘 }, 𝑘 = 1, . . . , 𝑛, with 𝑢𝑘 being the
continuous-valued spatial location and 𝑥𝑘 being a discrete-valued attribute measured at spatial location
𝑢𝑘 . The spatial locations, 𝑈 = {𝑢𝑘 }, are discretised into a set of i spatial subregions 𝑅 = {𝑟𝑖}; the
attribute data, 𝑋 = {𝑥𝑘 }, are assumed to have a set of j values.

Using the definition of mutual information in Equations (3) and (5), the spatial mutual information
𝐼 (𝑋; 𝑅) between the attribute X and the discretised spatial position R is defined as

𝐼 (𝑋; 𝑅) = 𝐻 (𝑋) − 𝐻 (𝑋 |𝑅) = 𝐻 (𝑋) −
∑
𝑟𝑖 ∈𝑅

𝑝(𝑟𝑖)𝐻 (𝑋 |𝑟𝑖) (7)

or equivalently

𝐼 (𝑋; 𝑅) = 𝐻 (𝑅) − 𝐻 (𝑅|𝑋) = 𝐻 (𝑅) −
∑
𝑥 𝑗 ∈𝑋

𝑝(𝑥 𝑗 )𝐻 (𝑅|𝑥 𝑗 ) (8)
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The spatial mutual information 𝐼 (𝑋; 𝑅) measures the reduction in uncertainty about X given knowl-
edge of the spatial position R; or, conversely the reduction in uncertainty of R given knowledge
of X.

This new interpretation of spatial mutual information is most closely compared with elements of the
work of Altieri et al. (2018) and of Studholme et al. (2006). However, the Altieri et al. (2018) spatial
mutual information measure, 𝐼 (𝑍;𝑊), measures dependencies between Z – a discrete random variable
whose instances describe the values of pairs of spatially indexed attributes X – and W, the distribution
of distances between the pairs of X. The Studholme et al. (2006) work considered a set of subregions
𝑟𝜖𝑅 to be a random variable. However, the mutual information between a spatial random variable and
an attribute was not considered.

Also defined here is the spatial specific information, 𝐼 (𝑋; 𝑟𝑖) between the attribute X and the spatial
outcome 𝑟𝑖

𝐼 (𝑋; 𝑟𝑖) = 𝐻 (𝑋) − 𝐻 (𝑋 |𝑟𝑖), (9)

which describes the reduction in the entropy of the attribute X, given knowledge of a specific value 𝑟𝑖 of
the spatial variable R. The spatial specific information is used to determine the subregions that have the
largest influence on the spatial dependence of attribute X. The spatial specific information bears some
similarity to the spatial partial information, 𝐼 (𝑍;𝑤𝑖), as formulated by Altieri et al. (2018). However,
𝐼 (𝑍;𝑤𝑖) is based on a formulation for specific information different than Equation (6) and that possesses
different properties.

Additional characterisation of the spatial mutual information is possible if the gradient of the spatial
specific information is considered. It is observed that the set {𝐼 (𝑋; 𝑟𝑖)}, calculated over R, if treated as
a spatially indexed function, can be used to estimate the direction and magnitude of the greatest rate
of change in 𝐼 (𝑋; 𝑟𝑖) by using a gradient operator. The gradient is calculated using a discrete gradient
operator, for example the Roberts operator for 2× 2 subregions or the Sobel or Prewitt operators for
3× 3 subregions (Rosenfeld and Kak, 1982). For R composed of a 2× 2 spatial array of four subregions
{{𝑟3, 𝑟4}, {𝑟1, 𝑟2}} and using the Roberts operator, the gradient magnitude1 and gradient direction2 of
{𝐼 (𝑋; 𝑟𝑖)} are defined as

|grad𝐼 (𝑋; 𝑟𝑖) | = max(|Δ+ |, |Δ−|) (10)

𝜃 (grad𝐼 (𝑋; 𝑟𝑖)) = tan−1 Δ+

Δ−

−
𝜋

4
(11)

respectively, where

Δ+ = 𝐼 (𝑋; 𝑟4) − 𝐼 (𝑋; 𝑟1) = 𝐻 (𝑋 |𝑟1) − 𝐻 (𝑋 |𝑟4) (12)
Δ− = 𝐼 (𝑋; 𝑟3) − 𝐼 (𝑋; 𝑟2) = 𝐻 (𝑋 |𝑟2) − 𝐻 (𝑋 |𝑟3) (13)

It is noted that the Roberts operator measures the difference in 𝐼 (𝑋; 𝑟𝑖) across diagonally opposed
subregions. Based on Equation (6), the gradient in the spatial specific information is equivalent to the
negative gradient in the conditional entropy, 𝐻 (𝑋 |𝑟𝑖).

The spatial mutual information and specific information gradient proposed here are useful in the
detection of spatial boundaries between regions of data having different statistical properties. As an
example, consider the kinematic property course over ground (COG) in a simulated vessel track data
set (Figure 1). Figure 1(a) shows foreground vessel tracks (shown in red) originating from two crossing
shipping lanes, overlaid on a background of random vessel traffic (shown in grey). Each track is composed

1Using max( |Δ+ |, |Δ− |) results in unbiased responses for different directions, as compared to the root mean-squared value,
√
Δ2
+ + Δ2

− (Rosenfeld
and Kak, 1982).

2An offset of 𝜋/4 is used in the definition of 𝜃 in Equation (11) so as to produce gradient directions that align with the definition of COG (which
is referenced to 0 degrees North).
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(a) (b)

(c)

(e)

(d)

Figure 1. Simulated vessel track data. (a) A subsample of 100 foreground tracks (red) (100 reports/track)
and 1000 background tracks (grey) generated within the 100× 100 spatial region; (b) Spatial mutual
information, 𝐼 (COG; 𝑅); (c) Spatial specific information gradient magnitude, |grad 𝐼 (COG; 𝑟𝑖) |;
(d) Spatial entropy, 𝐻 (COG); (e) Continuous-valued spectral colormap is scaled as fractional range
between plot minimum and maximum values: {0·000078, 0·00571} for (b); {0·000016, 0·0873} for
(c); and {0·899, 1·000} for (d).

of a defined number of evenly spaced reports, with each report consisting of an (x,y) location and a
single COG value between 1·0° and 360·0°.

The qualitative behaviour of the spatial mutual information, 𝐼 (COG; 𝑅), the spatial specific informa-
tion gradient magnitude, |grad 𝐼 (COG; 𝑟𝑖) |, and the normalised spatial entropy, 𝐻 (COG), are illustrated
in the plots shown in Figures 1(b)–1(d). Each information measure is computed over a 49× 49 array of
overlapping3 4× 4 unit local regions, defined over a 100× 100 unit spatial domain that contains 2 mil-
lion foreground track reports and 18·6 million background track reports. The information measures are
calculated using six outcomes for COG (based on bins of width 60°) and four outcomes for R (based on
subregions of size 2× 2 units). In order to better visualise the spatial variations in each plot, information
measure values in each local region are colour-coded using a continuous-valued spectral colour map,
with purple and red representing the plots’ minimum and maximum values, respectively.

As observed in Figures 1(b) and 1(c), 𝐼 (COG; 𝑅) and |grad 𝐼 (COG; 𝑟𝑖) | are both sensitive to the
spatial changes in the distribution of COG that occur at the boundaries of the shipping lanes. If we

3Two units of overlap are used in both the vertical and horizontal directions.
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consider a scenario in which the background tracks correspond to an activity other than merchant
shipping, such as fishing (based on the uniform distribution in COG), then this example illustrates how
the new information measures could be used to detect spatial changes in vessel activity. 𝐼 (COG; 𝑅)
has maximum values at the four intersections of the shipping lane boundaries. The identification of
intersections may be important for way-point detection, which would then be beneficial to algorithms
needing automated waypoint detection (Nguyen et al., 2018). In comparison, |grad 𝐼 (COG; 𝑟𝑖) | has a
stronger response to shipping lane boundaries but a much weaker response to boundary intersections.
In contrast to 𝐼 (COG; 𝑅) and |grad 𝐼 (COG; 𝑟𝑖) |, spatial entropy is sensitive to regions having differing
levels of dispersion in the distribution of COG. Entropy is high in local regions containing a uniform
distribution in COG from background vessel track reports. Local regions corresponding to the shipping
lanes have a less-uniform distribution of COG and, hence, a lower entropy.

Based on tests conducted using the simulation example, several factors are observed to affect the
measurements of spatial mutual information and spatial specific information gradient magnitude. These
include:

• Report-to-report correlation has an impact on the result. Having more than two reports originating
from the same track, in a given subregion, can result in elevated 𝐼 (COG; 𝑅) values in local regions
having a low spatial dependence in attribute values;

• The total number of reports influences the information measures. Reducing the total number of
reports available to compute 𝐼 (COG; 𝑅) or |grad 𝐼 (COG; 𝑟𝑖) | will increase the variability in the
resulting information measures; and

• To a lesser extent, information measures are affected by the number of outcomes selected for COG
and R; particularly, if bin boundaries for COG coincide with the courses of dominant shipping lanes.

4. Study using actual AIS track data

A data set for July 2019 was constructed from space- and land-based AIS receptions in the area of 7°S -
2°N, 75°E - 95°E. The data set contains a total of 324,168 position reports comprised of AIS message
types 1, 2, 3, 18, and 19. The area approximately coincides with the rectangular region identified in
Figure 6 of Isenor et al. (2016). Using this data set, local spatial estimates of entropy, spatial mutual
information and spatial specific information gradient were computed using AIS positions (latitude and
longitude) and COG, whose values are in the range (0·0, 359·9) degrees (relative to North).

A geospatial plot of the AIS position reports and a histogram of the distribution of COG are presented
in Figures 2(a) and 2(b), respectively. COG values have two dominant peaks – in the ranges 40°–60° and
220°–240° – that have a difference in course of 180° and are indicative of two-way shipping traffic. The
spatial distribution of position reports as a function of COG is illustrated in Figures 2(c) and 2(d). Three
dominant shipping lanes (labelled ‘A’, ‘B’, and ‘C’ in Figure 2(c)) are observed for COG values in the
range 220–240°.4 Position reports whose COG values fall outside the ranges 40°–60° and 220°–240°,
as shown in Figure 2(d), reveal several smaller shipping lanes (those labelled ‘E’ and ‘F’). In the region
labelled ‘D’, COG has the full range of values, which may indicate a movement pattern associated with
fishing. Crossing points between shipping lanes, such as between shipping lanes F and C and shipping
lanes E and C, are observed in Figure 2(a).

Local spatial estimates of normalised entropy, spatial mutual information, and spatial specific infor-
mation gradient were computed for the AIS data set using COG bin sizes of 45°, 60°, and 90° and a
single value for |𝑉𝑅 | (four 0·5°× 0·5° sub-regions). The selected subregion size and |𝑉𝑅 | are compro-
mises between maximising the spatial resolution of local estimates, having a sufficiently large sample
size, and minimising the number of reports/track in a given subregion. Each measure is calculated using
overlapping 1°× 1° local regions. This creates an effective spatial resolution of 0·5° by using vertical and
horizontal overlaps of 0·5°. Plots of 𝐻 (COG) and 𝐼 (COG; 𝑅) are shown in Figure 3. As in Section 3,
entropy and spatial mutual information values are colour-coded using the spectral colour map scaled to

4A corresponding set of shipping lanes are also observed for COG values in the range 40–60 degrees (not shown).
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(a) (b)

(c) (d)

Figure 2. AIS position reports as a function of COG. (a) Position reports for all COG values
(0° ≤ COG< 360°); (b) Histogram of COG values; (c) Position reports with 220° ≤ COG< 240°;
(d) Position reports with COG values falling outside 40°–60° and 220°–240° .

(a) (b)

(c) (d)

Figure 3. Entropy and spatial mutual information of AIS data using overlapping local regions.
(a) 𝐻 (COG), COG bin size= 45°; (b) 𝐼 (COG; 𝑅), COG bin size= 45°; (c) 𝐼 (COG; 𝑅), COG bin
size= 60°; (d) Continuous-valued spectral colormap is scaled as fractional range between values: {0·0,
1·0} for (a); {0·0, 0·6854} for (b); and {0·0, 0·7166} for (c).

the plot minimum and maximum values. Regions having no colour indicate an insufficient number of
reports to satisfy a minimum sample size constraint of 2|𝑉COG | for entropy, and 3|𝑉COG | |𝑉𝑅 | for mutual
information, in accordance with guidelines proposed by Wong and Chiu (1987) and Liu et al. (2015).

As illustrated in the plots in Figure 3, entropy and spatial mutual information provide complementary
information regarding spatial features in the AIS data. In the plot of 𝐻 (COG), in Figure 3(a), we observe:
regions of low and medium COG entropy that correspond to shipping lanes B and A, respectively; a
region of high COG entropy to the left of shipping lane B that corresponds to the region marked D in
Figure 2(d); and, the smaller high entropy region to the right of shipping lane B that corresponds to a
region of crossing tracks in Figure 2(d).

𝐼 (COG; 𝑅) is computed for COG bin sizes of 45° and 60° in Figures 3(b) and 3(c), respectively.
Regions having spatially homogeneous distributions of COG are observed to have low values of

https://doi.org/10.1017/S0373463321000734 Published online by Cambridge University Press

https://doi.org/10.1017/S0373463321000734


The Journal of Navigation 103

(a)

(b) (c)

Figure 4. Gradient magnitude and direction of 𝐼 (COG; 𝑟𝑖) for AIS data set. (a) Colour-coded magnitude
in gradient 𝐼 (COG; 𝑟𝑖), using the spectral colormap in Figure 3(d), scaled in the range {0·0, 1·0};
(b) Colour-coded direction in gradient 𝐼 (COG; 𝑟𝑖); (c) Colour-coded direction in gradient 𝐼 (COG; 𝑟𝑖)
for local regions with |grad 𝐼 (COG; 𝑟𝑖) | ≥ 0·4. Colour codes for directions, at 30° intervals, are shown
below (b) and (c). All plots use: overlapping 1°× 1° local regions (with 0·5° shifts between overlapped
regions); 𝐼 (COG; 𝑟𝑖) is based on four 0·5°× 0·5° sub-regions and 45° COG bins.

𝐼 (COG; 𝑅). Regions of COG homogeneity can occur if COG has a restricted range of values, such
as in the shipping lanes denoted A, B and C. In addition, COG homogeneity can occur when a broad
range of values are encountered, such as in region D. The boundaries of the shipping lanes are observed
as a weak transition to a higher level of spatial mutual information, as observed along the left boundary
of shipping lane B and the right boundary of shipping lane C. The boundary between shipping lanes
B and C is more clearly defined using a COG bin size of 45°. Several local maxima in 𝐼 (COG; 𝑅),
observed in consistent locations in both of Figures 3(b) and 3(c), and labelled as R1, R2 and R3, can be
confirmed as corresponding to crossing points between shipping lanes by applying the spatial specific
information, 𝐼 (COG; 𝑟𝑖).

The boundaries of spatially homogeneous regions, such as shipping lanes, are more reliably identified
by considering the magnitude and direction of the spatial specific information gradient. Figure 4(a)
presents |grad 𝐼 (COG; 𝑟𝑖) |. Regions of higher gradient magnitude are observed that correspond roughly
to the left boundary of region D, and the left and right boundaries of shipping lane B. Areas of high
gradient magnitude adjacent to blank regions are assumed to be spurious. Regions of low gradient
magnitude correspond to shipping lane B, possibly shipping lane C and region D.

The gradient direction, 𝜃 (grad𝐼 (COG; 𝑟𝑖)), is also useful to consider and is presented in Figure 4(b).
The gradient direction is colour-coded using the spectral colour map, with violet corresponding to
0·0° and red corresponding to 360·0°. As shown in Figure 4(c), by mapping the gradient direction
onto regions that have a high value of gradient magnitude (in this case, exceeding a threshold of 0·4),
boundary features are more clearly identified. It is observed that the gradient direction has a consistent
value over the spatial extents of the different boundary features; and, that for shipping lanes the values
of gradient direction are roughly orthogonal to the direction of the shipping lane.

Shipping lane boundaries and crossing points are observed to be less well discriminated in AIS data
when compared against the simulation example presented in Section 3. In part, this can be explained
by differences in the effects of report-to-report correlation as well as sample size. Using 0·5°× 0·5°
subregions, the AIS data set has a median value of three reports/track/subregion (computed over
all subregions). This value exceeds the guideline of two or fewer reports/track/subregion reported in
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Section 3. Perhaps more significantly, the distribution of AIS data has a ‘long tail’, with nine or more
reports/track/subregion in 20% of the cases and 17 or more reports/track/subregion in 10% of the cases.5
Also, considering the subset of local regions that meet the minimum sample size criteria for mutual
information (assuming |𝑉COG | = 8 and |𝑉𝑅 | = 4), the AIS data has a median and mean of 934 and
2136 reports/local region, respectively. This sample size is comparable to simulated data values when
variability in information measures began to be observed. Further study is required to quantify the
effects of report-to-report correlation on spatial information theoretic measures and to better understand
trade-offs between sample size and report-to-report correlation.

5. Conclusions

This paper introduces a new interpretation of spatial mutual information, which may be used to quantify
the degree of spatial dependence in attribute values in spatially indexed attribute data. Our measure
is differentiated from those spatial information measures based on the joint observations of spatially
separated variables. It is extended to characterise dependencies between attribute values and specific
values of spatial position (and vice versa), using the spatial specific information and the gradient in the
spatial-specific information. Variations in spatial mutual information and spatial specific information
measures over the domain are measured by computing estimates over a set of local spatial regions. Spatial
mutual information and spatial specific information are shown to be complementary to spatial entropy.

Spatial mutual information, and related spatial specific information measures, provide new tools to
answer questions regarding the presence of spatial dependencies in attribute values; and their strength,
degree of directionality, whether specific attribute values dominate the dependency, and where in the
domain such dependencies exist. These new information measures can be applied to spatially indexed
vessel data for the detection of spatial boundaries between regions having different vessel movement
patterns, where such patterns are characterised by different distributions of vessel attribute values. Their
utility for detecting vessel traffic boundaries in areas of complex traffic patterns is demonstrated using
simulated and collected AIS vessel reporting data.
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