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independent of the Reynolds number?
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This paper examines the Reynolds number (Re) dependence of a zero-pressure-
gradient (ZPG) turbulent boundary layer (TBL) which develops over a two-
dimensional rough wall with a view to ascertaining whether this type of boundary
layer can become independent of Re. Measurements are made using hot-wire
anemometry over a rough wall that consists of a periodic arrangement of cylindrical
rods with a streamwise spacing of eight times the rod diameter. The present results,
together with those obtained over a sand-grain roughness at high Reynolds number,
indicate that a Re-independent state can be achieved at a moderate Re. However, it is
also found that the mean velocity distributions over different roughness geometries do
not collapse when normalised by appropriate velocity and length scales. This lack of
collapse is attributed to the difference in the drag coefficient between these geometries.
We also show that the collapse of the Uτ -normalised mean velocity defect profiles
may not necessarily reflect Re-independence. A better indicator of the asymptotic
state of Re is the mean velocity defect profile normalised by the free-stream velocity
and plotted as a function of y/δ, where y is the vertical distance from the wall and
δ is the boundary layer thickness. This is well supported by the measurements.

Key words: turbulent boundary layers, turbulent flows

1. Introduction
The study of a turbulent boundary layer (hereafter denoted TBL) over a smooth

wall at an ever increasing Reynolds number (Re) is motivated by the expectation that
as Re increases, the boundary layer approaches an ‘asymptotic’ or Re-independent
state. This would correspond to the ideal situation, where the viscous-dominated
near-wall region is absent. Based on a self-preservation analysis (Townsend 1956,
1976), the mean velocity and Reynolds shear stress profiles can then be normalised
using one velocity scale and one length scale. However, this asymptotic state of
a smooth wall TBL is unlikely to be reached. First, it is impossible to achieve
extremely high Re in a laboratory, thus preventing the possibility of investigating a
Re-independent TBL, or a TBL with negligible viscous effects in the near-wall region
(such that the viscous term in the equations of motion can be neglected in comparison

† Email address for correspondence: Lyazid.djenidi@newcastle.edu.au
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to the other terms). Second, from an experimental point of view, if one increases
Re to very large values, the TBL is unlikely to develop over a hydrodynamically
smooth wall. This is because the thickness of viscosity-dominated near-wall layer
decreases as Re increases. While no smooth wall TBL study has been carried out
with an indefinitely increasing Reynolds number, it is expected that at some critical
value of Re, this layer would become so thin that any imperfections of the surface
would act as roughness. It should be noted that we are considering the case where
Re is increased by increasing the free stream velocity and/or decreasing the kinematic
viscosity. If one keeps these parameters constant and moves along the wall, Re
increases but also the viscous scale. Consequently, a TBL over a nominally smooth
wall will experience a continuous change in the wall roughness (inner-normalised
roughness) as Re increases and will evolve from a smooth regime to a fully rough
regime.

It is generally accepted (Hinze 1975) that for the fully rough regime, the effect of
viscosity in the near-wall region becomes negligible (on a spatially averaged basis) and
the coefficient of friction becomes independent of Re. This could present an interest
if such a fully rough TBL can be interpreted as a surrogate to a smooth wall TBL
with no viscous sublayer. Such a comparison may be possible if Townsend’s wall
similarity hypothesis or Townsend’s Reynolds number similarity hypothesis (Townsend
1956, 1976) is valid. This hypothesis states that ‘outside the viscous layer (region
close to the surface) lies a region of fully turbulent flow, where the viscous stresses
are small compared with the Reynolds stresses’ and the outer flow is in a state of
self-similarity. This outer region is thus thought to be nearly independent of viscosity
of the fluid and determined by the wall shear stress and the channel width, pipe
diameter or boundary layer thickness. Accordingly, if, at a moderate Re, the effect of
viscosity in the near-wall region of the boundary layer is removed or made negligible
on a spatially averaged basis (Talluru et al. 2016), then, according to the Reynolds
number similarity, the boundary layer behaviour at that Re can be expected to be
similar to that of a smooth wall boundary layer in the asymptotic state of Re.

There are numerous studies on rough wall flows reported in the literature which
tested the validity of Townsend’s hypothesis regarding the universal behaviour of the
outer region of smooth and rough wall turbulent boundary layers. In the context of
three-dimensional roughness, Flack, Schultz & Shapiro (2005), Volino, Schultz &
Flack (2007), Squire et al. (2016) and references therein provide clear support to that
hypothesis, at least when the ratio of roughness height (k) to boundary layer thickness
(δ) is small. Similar observations are made in turbulent flows over two-dimensional
roughness (Krogstad & Efros 2012, spanwise square bars) and three-dimensional
roughness (Raupach 1981; Amir & Castro 2011). In contrast, there are other studies
that reported differences in the outer layer region of smooth and rough wall flows
(for example, Krogstad, Antonia & Browne 1992; Tachie, Bergstrom & Balachandar
2000; Leonardi et al. 2003; Bhaganagar, Kim & Coleman 2004; Lee & Sung 2007),
raising a possible outer layer controversy as discussed by Antonia & Djenidi (2010).
While this issue is not yet fully addressed, it is argued that the conflicting findings
are often attributed to the large ratio k/δ (Jiménez 2004) used in some studies,
wherein, a significant region of the boundary layer is directly influenced by the
roughness. Jiménez (2004) suggests that there is a need for additional experiments
in fully rough flows with large equivalent sand-grain roughness (k+s > 100) and small
relative roughness height (δ/k > 40) in order to properly test Townsend’s hypothesis.
For a relatively recent account on wall-bounded turbulent flows over rough walls, the
interested reader can consult Nickels (2010).
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Can a turbulent boundary layer become independent of the Reynolds number? 3

A common point that is conspicuously absent in all rough wall turbulent flow
studies is a discussion on how different roughnesses can have different effects on the
near-wall viscous region. In particular, it is not clear how the effects of viscosity in
the near-wall region are altered (increased or dampened) by the roughness and how
this alteration, which may be different for different roughness geometries, affects the
flow dynamics. Further, there are no previous studies that report the effects of the
removal (or weakening) of the near-wall viscosity-dominated layer on the development
of the TBL and how such a TBL behaves with increasing Re. Thus, the novelty of
the present study relates to the idea that by changing the boundary condition one
can essentially get rid of the dampening effects of the viscosity in the near-wall
region, which allows the boundary layer to grow faster than on a smooth wall, thus
providing a method of ‘simulating’ high Reynolds number TBL, particularly in a
low speed wind tunnel. Further, the ability to generate a TBL where the near-wall
viscous effects are negligible, if not removed, provides the ideal conditions required
to investigate Townsend’s Reynolds number similarity hypothesis.

A practical and relatively simple method for removing or significantly reducing the
viscosity effect in the near-wall region of a TBL at a moderate Re is to introduce
roughness elements. In particular, a roughness consisting of transverse rods attached to
the wall is quite effective for achieving a fully rough regime where the viscous drag is
negligible or zero at relatively low Re. Leonardi et al. (2003) showed that a channel
flow with a surface roughness made of periodic two-dimensional (2-D) transverse
square bars has practically no (global) viscous drag when the spacing between two
consecutive roughness elements is varied between 8 and 16 times the roughness
height; the drag is almost entirely made up of form drag. Similar observations
were made in the numerical simulation of a channel flow with 2-D circular rods
as the roughness elements (Leonardi et al. 2015). In a recent experimental study,
Kamruzzaman et al. (2015) measured the form drag directly using the static pressure
distribution around a single circular rod on a 2-D rough wall (same as the current
study) and found that the coefficient of friction becomes independent of Re. Similar
results were reported by Bakken et al. (2005) in a rod-roughened turbulent channel
flow. All these experimental and numerical results indicate that the spatially averaged
viscous friction becomes zero, or at least negligible in comparison to form drag. In
other words, the flow becomes fully rough. Interestingly, the Re-independence of the
friction coefficient (Cf ) is consistent with the Reynolds number similarity hypothesis
and suggests that this hypothesis can be satisfied everywhere within a self-preserving
turbulent boundary layer for which Cf is constant. This possibility is investigated
here.

The present paper reports measurements made in a TBL which develops over a
rough wall. The aim of the study is to assess the behaviour of the (rough wall) TBL
as Re increases with the view to determining whether a Re-independent state can be
achieved at a moderate Re. This objective is of great interest from both fundamental
and practical viewpoints because it should help to address the following issues:

(i) Is there a universal asymptotic or Re-independent state for a TBL? If so, does
this lead to a collapse of all normalised mean velocity profiles, for example?

(ii) Is the Reynolds number similarity valid or possible at moderate Reynolds
numbers?

(iii) Can a fully rough wall TBL be used as a surrogate to a smooth wall TBL at
extremely large Re.

(iv) What is the dynamical behaviour of an asymptotic TBL?
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Evidently, care has to be exercised when extrapolating results obtained in a rough
wall TBL at moderate Re to a smooth wall TBL in the asymptotic state of Re.
Indeed, the physical mechanism which helps remove the effect of viscosity in the
near-wall region of a rough wall TBL is most likely different to that over a smooth
wall when the state of Re-independency is achieved. Issue (i) has an important
implication for the prediction/estimation of some quantities. Indeed, the existence
of a universal state can be exploited for developing models, such as the Clauser
chart to estimate the friction coefficient, or the spectral chart developed by Djenidi
& Antonia (2012) for estimating the turbulent kinetic energy dissipation rate. Issue
(iv) is relevant for TBL control; in this context, it is important to ascertain how a
Re-independent TBL responds to perturbations, e.g. wall suction, wall blowing, large
eddy break up devices (LEBUs), wall roughness and whether a control strategy can
be Re independent.

Finally, the idea that different asymptotic states may be associated with different
boundary and/or initial conditions is not new. For example, George (1989) discussed
the effect of initial conditions and coherent structures on the self-preservation states
in various turbulent free shear flows (e.g. jets, wakes). Krogstad & Antonia (1999)
discussed the effects of surface roughness on a TBL by comparing measurements from
two different rough surfaces (a woven stainless steel mesh screen and transverse rods)
with measurements in a smooth wall TBL (Reθ = 12 570). Unfortunately, only one
Reynolds number was considered in each case (Reθ = 12 800 for the mesh screen
surface, 4806 for the rod-roughened wall and 12 570 for the smooth wall; Reθ is
the Reynolds number based on the momentum thickness). Also, no study has been
reported, where the roughness geometry and the Reynolds number are systematically
varied. The present study, which complements and extends the investigation begun by
Krogstad & Antonia (1999), is aimed at filling this knowledge gap.

2. Experimental details
Experiments are conducted in a boundary layer wind tunnel which was described

in detail in Krogstad et al. (1992) and Kamruzzaman et al. (2015). Only the main
features of the test section are described here. The test section is 5.4 m long and
0.9 m wide. At the exit of the contraction (6 : 1), the test section has a height of
0.15 m. It is tripped at the contraction exit by a 4 mm diameter rod followed by
170 mm long strip of No. 40 grit sandpaper. Following the contraction, the roof of the
test section is adjusted in order to compensate for the growth of the boundary layers
and to maintain a zero pressure gradient along the entire working section of the wind
tunnel. The pressure gradient is maintained to be within ±0.1 % of the free-stream
dynamic pressure. The boundary layer develops over a rough wall, which consists of a
periodic arrangement of cylindrical rods mounted on the wall and spanning across the
full width of the test section (see figure 1). The diameter (k) of the rods is nominally
1.6 mm and the spacing (p) between the rods is set to p/k= 8. In all the experiments,
the friction velocity (Uτ ) is obtained by integrating the pressure distribution around
the roughness element (see Kamruzzaman et al. 2015, for full details). For the virtual
origin (d0), we adopted the methodology put forth by Jackson (1981), who associated
d0 (as measured from the base of roughness) with the centroid of moments of forces
acting on the roughness elements. Following this approach, moments were computed
using the static pressure information around a single roughness element which resulted
in a value of d0/k ≈ 0.48 for the present study. This is found to be consistent with
the value of d0/k reported in the numerical studies of Leonardi et al. (2003) and Lee
& Sung (2007).
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Can a turbulent boundary layer become independent of the Reynolds number? 5

x

k

y

Flow Traversing hot-wire

FIGURE 1. A schematic of the experimental set-up used in this investigation. The inset
shows the coordinate system and the displacement height d0.

x Sym. Reτ Reθ U∞ ν/Uτ Uτ δ99 δ∗ θ l+ k+s δ/k δ/ks 1U+

(m) (m s−1) (µm) (m s−1) (m) (m) (m)

Fixed x

2.54 © 629 1 760 2.07 142 0.108 0.089 0.022 0.013 3.5 47 56 13.4 5.7
2.54 6 1020 2 750 3.03 92.8 0.166 0.094 0.024 0.014 5.4 103 59 9.9 7.7
2.54 A 1516 3 922 4.17 64.6 0.238 0.098 0.026 0.015 7.7 220 61 6.9 9.6
2.54 @ 2340 6 045 6.43 41.0 0.381 0.096 0.026 0.015 12.2 299 62 7.8 10.4
2.54 D 3945 9 925 10.40 25.1 0.623 0.099 0.026 0.015 19.8 450 62 8.7 11.5
2.54 B 5766 14 305 15.00 17.4 0.900 0.100 0.025 0.015 28.7 625 63 9.2 12.3
2.54 C 7170 17 780 18.80 14.0 1.127 0.101 0.025 0.015 35.6 767 63 9.3 12.8

Different x

1.94 u 5130 12 870 16.11 16.0 0.966 0.082 0.022 0.012 31 650 52 7.9 12.4
2.24 f 5652 13 810 16.02 16.2 0.961 0.091 0.023 0.013 30.8 651 57 8.7 12.4
2.54 q 6250 15 130 15.90 16.2 0.948 0.102 0.025 0.015 30.6 651 63 9.6 12.4
2.84 p 6588 15 880 15.57 16.6 0.934 0.109 0.026 0.016 30.1 651 68 10.1 12.4
3.14 s 7140 16 310 15.85 16.2 0.951 0.116 0.026 0.016 30.7 651 73 10.9 12.4

TABLE 1. Experimental parameters over the 2-D rough wall. Note that the open symbols
refer to data at a fixed location while the filled symbols represent data at different
streamwise locations.

Two sets of experiments are carried out. For the first, measurements are made
at 2.54 m downstream of the tripped inlet of the working section. The free-stream
velocity, U∞, is varied between 2 and 19 m s−1. The boundary layer thickness (δ99),
is found to be nominally 0.1 m (approximately 63k). The Kármán Reynolds number,
Reτ = δ99Uτ/ν = δ

+

99 (where ν is the kinematic viscosity) ranges between 620 and
7200. For the second set of experiments, measurements are made at five streamwise
locations between x = 1.94 and x = 3.14 m at U∞ ' 16 m s−1. The boundary layer
properties for both sets of experiments are summarised in table 1, where δ∗ and θ

represent the displacement and momentum thicknesses, respectively. Throughout this
paper, x and y refer to the streamwise and wall-normal directions, while u denotes
the streamwise fluctuating velocity component. Further, (+) represents normalisation
using viscous scales, for instance, l+ = lUτ/ν and U+ =U/Uτ .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

46
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.460


6 L. Djenidi, K. M. Talluru and R. A. Antonia

Note that all the measurements are taken at the mid-point of two adjacently spaced
roughness elements, as shown by the vertical dashed line in figure 1. The near-wall
part of the ‘local’ mean velocity profile varies with x, particularly in the region
within and between two adjacent roughness elements. However, it was verified that
the normalised velocity profiles measured at different longitudinal locations but with
the same relative position with respect to the roughness elements collapsed onto a
single profile. Thus, if one considers only the time-averaged equations of motion,
it will result in x-dependence of mean momentum equation in the near-wall region.
But, if one considers the double-averaged equations with respect to time and x as
elaborated in Finnigan (2000), then the local x-variation (between the roughness
elements) is eliminated.

Results from the present rough wall experiments are compared, when possible,
with the smooth wall measurements of Marusic et al. (2015), the rough wall data of
Squire et al. (2016) and the 2-D rough wall data of Krogstad & Efros (2012). The
smooth wall measurements are performed using hot-wire anemometry in the large
Melbourne boundary layer wind tunnel over a streamwise distance, 3.75 6 x 6 18 m
(Marusic et al. 2015). The Reynolds number at these measurement stations ranges
between 33706 δ+99 6 9830. In all the smooth wall measurements, the friction velocity,
Uτ , is obtained by fitting the logarithmic mean velocity profile to the constants
κ = 0.384 and B = 4.17 (Chauhan, Nagib & Monkewitz 2009). For the rough wall
measurements of Squire et al. (2016), only measurements at x= 21.7 m at different
free-stream velocities are considered here. The primary reason for this is that Squire
et al. (2016) measured Uτ at this particular streamwise location using a large drag
balance, as described in Baars et al. (2016). This enables us to compare our results
with those of Squire et al. (2016) without any ambiguity about Uτ . The 2-D rough
wall measurements of Krogstad & Efros (2012) were made with using laser Doppler
velocimetry (LDV) on a rough wall consisting of spanwise square bars (cross-section
of 1.7 mm × 1.7 mm) arranged periodically with a spacing of p/k= 8, similar to the
present study. A floating element balance was used to determine Uτ (see Krogstad &
Efros 2010, for full details). The Kármán Reynolds number (δ+) at x= 6.2 m on this
rough wall is approximately 13 300 and k+s is approximately 320, suggesting that the
flow is fully rough since k+s > 100 (Jiménez 2004).

2.1. Hot-wire anemometry
Hot-wire anemometry is used to measure streamwise velocity fluctuations. The single-
wire probe is a Dantec 55P15 sensor; a 2.5 µm diameter Wollaston Pt -10%Rh wire
is soldered between the prongs (separated by of 1.5 mm). The etched sensor length
of the hot-wire is 0.5 mm giving a length to diameter ratio of 200, in keeping with
the recommendations of Ligrani & Bradshaw (1987) and Hutchins et al. (2009). The
inner-normalised sensor length (l+) in these experiments varied between 3.5 and 35.6.
The single-wire probe is operated using an in-house constant temperature anemometer
at an overheat ratio of 1.8. A y-axis measuring device with a resolution of 1 µm is
used in positioning the hot-wire probe close to the wall. The instrument comprises
of a high magnification microscope 200× (Celestron digital microscope) mounted on
a fine threaded traversing system. The measurement is accomplished using a digital
indicator with a resolution of 0.001 mm. The indicator is set and zeroed on the top
of the microscope and the displacement is recorded as the focusing is done from the
wall to the hot-wire probe. A total of 36 logarithmically spaced measurement points
between 0.2 and 136 mm are taken using the Mitutoyo height gauge with a resolution
of 0.01 mm.
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FIGURE 2. Present rough wall mean velocity profiles at several Reynolds numbers, 6306
δ+99 6 7200. See table 1 for symbols. The dot-dashed line represents the slope of the log
region in a smooth wall turbulent boundary layer. Inset: variation of U+

∞
with δ+99 (open

symbols represent the corresponding δ+ values).

A BAT-10 thermocouple (Physitemp) with a resolution of 0.1 ◦C was used to
monitor the mean temperature in the free stream for the entire duration of the
experiment. The hot-wire is calibrated in situ against the Pitot-static tube positioned
in the undisturbed free-stream flow before and after every experiment at 16 different
speeds ranging between 0 and 22 m s−1. A linear interpolation in time between pre-
and post-calibrations (see Talluru et al. 2014, for details) is used to account for any
drift in the hot-wire voltage that occurs during the course of an experiment.

3. Results
3.1. Mean velocity

Figure 2 shows mean velocity profiles normalised using inner scaling parameters, i.e.
U+ versus y+, at a fixed x location as Reτ = δ+99 increases from 630 to 7200. It is
clearly evident that the mean velocity profile shifts downward and towards larger y+
as Reτ increases, which is due to Uτ increasing with Reτ . However, the rate of the
downward shift decreases and eventually becomes zero, i.e. the mean velocity profile
ceases to move downwards once Reτ reaches a value of approximately 4000. Beyond
this value, the profile simply shifts to larger y+, while its shape remains unchanged.
The inset plot in figure 2 shows the variation of U+

∞
as a function of Reτ (or δ+99).

The trend is clear: as Reτ increases, U+
∞
(≡[

√
Cf /2]−1) first decreases before reaching

a constant value for Reτ > 4000. This indicates that the downward shift ceases at
the same time as the coefficient of friction becomes constant and the TBL can be
considered fully rough; in this fully rough regime, the drag is solely made of the form
drag of the roughness elements. The continuous shift of the entire profile to larger
values of y+ suggests that the length scale ν/Uτ is not an appropriate length scale.
The profile continues to shift horizontally because Uτ increases with Reτ (see table 1),
thus resulting in y+ increasing for a fixed value of y, but maintaining its shape.

To verify the fixed form of the shape, we plot in figure 3 the three velocity profiles
in figure 2 for which U+

∞
is constant as a function of y/k. There is a clear collapse
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FIGURE 3. (Colour online) Mean velocity profiles in the present rough wall (black
symbols) at several Reynolds numbers, 3940 6 Reτ 6 7200, sand-grain roughness (red
symbols, Reτ = 20 160, 25 020 and 29 900, Squire et al. 2016) and square bar roughness
(blue symbols, Reτ = 13 300, Krogstad & Efros 2012) as a function of y/k.

of the profiles across the entire boundary layer onto a single curve of the form:

U+ = F(y/k), (3.1)

where F is a function, which appears to be independent of Reynolds number. A similar
behaviour (U+

∞
= const) can be observed in the sand-grain rough wall profiles of

Squire et al. (2016) (3970 6 Reτ 6 29 900). However, it is achieved at a much higher
Reτ than in the present rough wall, illustrating the fact that a sand-grain rough wall
TBL requires a larger Reτ than a 2-D rod rough wall TBL before it can become fully
rough. For comparison, we also report in figure 3, the rough wall mean velocity profile
of Krogstad & Efros (2012) (2-D transverse square bars with p = 8k). Considering
that δ+= 13 300 and ks' 325, one expects the profile to be in the fully rough regime.
Despite the large difference in Reτ between our data and those of Krogstad & Efros
(2012), the latter profile is not too different from the present distributions, although
its value of U+max is slightly larger, reflecting a lower Cf in comparison to the present
study; Cf ' 0.0072, and 0.0068, for the present 2-D rough wall and that of Krogstad
& Efros (2012), respectively.

Figure 4 shows a clear collapse of the mean velocity profiles over the present rough
wall, when plotted as a function of y/δ99. The same trend is observed in the sand-grain
roughness data of Squire et al. (2016), however, the latter collapse onto a different
curve. This difference is due to the difference in Cf between the two rough wall TBLs.
It is well known that there is no such collapse for smooth wall TBL profiles because
of Reτ -dependence of Cf . This is well illustrated in figure 4, where we plot the high
Reynolds number smooth wall data of Marusic et al. (2015) (33706Reτ 6 9830) and
the direct numerical simulation (DNS) data of Schlatter & Örlü (2010) (Reτ = 674).
Of particular interest, is the rough wall velocity profile of Krogstad & Efros (2012),
also reported in the figure for comparison. This profile collapses relatively well onto
the present 2-D rough wall profiles, as it could have been anticipated from figure 3
and the similar values of Cf , suggesting that both TBLs share similarities. This may
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24
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10010–110–210–3

FIGURE 4. (Colour online) Mean velocity profiles over the present 2-D rough wall (back
symbols) as a function of y/δ. Symbols as in table 1. Red symbols: (Squire et al. 2016,
Reτ = 20 160, 25 020, and 29 900); blue symbols: (Krogstad & Efros 2012, Reτ = 13 300);
dashed lines: smooth wall data (Marusic et al. 2015, Reτ = 3370, 4760, 6450 and 9830)
and solid line: smooth wall DNS data (Schlatter & Örlü 2010, Reτ = 674). Only the
profiles for which U∞/Uτ is constant in the present rough wall and sand-grain roughness
(Squire et al. 2016) TBLs are shown.

not be too surprising considering the rough walls share almost the same roughness
geometry, cylindrical rods and square bars with the same k and p, although δ/k for
the square bar rough wall is approximately twice the present value.

Altogether, the results presented in figures 2–4 are consistent with a Re independence
of the normalised mean velocity profile, which would suggest that the Reynolds
number similarity is well achieved in a rough wall TBL, at least in the context of
the mean velocity. Note that unlike a smooth wall TBL, where one must exclude the
viscous-dominated near-wall region if such similarity is to be observed, the Reynolds
number similarity is observed across practically the entire boundary layer for a fully
rough TBL. This is possible because the spatially averaged viscosity effects in the
near-wall region are either zero or negligible. The sand-grain rough wall data of
Squire et al. (2016) also show that when Re is large enough the normalised velocity
profiles collapse onto a single distribution. However, that distribution differs from that
of the present data due to a difference in the value of the form drag coefficient. To
illustrate this, we employ the so-called diagnostic plot (Alfredsson 2010; Alfredsson,
Segalini & Örlü 2011; Örlü et al. 2016), which consists of plotting u′ as a function
of U, thus removing any ambiguity associated with knowing y and Uτ accurately.
Figure 5 shows such plots, where u′ and U are normalised by U and U∞, respectively.
While for each surface there is a clear collapse of the distributions across the entire
boundary layer, the collapse is different between the two surfaces, in conformity with
two distinct drag coefficients (Cf ' 0.0072 and 0.0032 for the present data and the
sand-grain roughness, respectively). Further, the trend shown by the data indicates
that the distributions for the two rough walls will remain distinct, regardless of the
Reynolds number, hence suggesting two distinct Re-independent profiles. It appears
thus that a Re-independent normalised mean velocity profile for the complete TBL
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Squire et al. (2016)

Present study

Krogstad and Efros (2012)
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FIGURE 5. (Colour online) Diagnostic plot for the present rough wall (black symbols),
sand-grain roughness (red symbols, Reτ = 20 160, 25 020, and 29 900, Squire et al. 2016)
and the square bar roughness (blue symbols, Reτ = 13 300, Krogstad & Efros 2012).

is possible for fully rough wall TBLs. However, the profile cannot be universal since
it is controlled by the rough wall drag coefficient which varies between roughness
geometries as evidenced in figure 4.

Another parameter that is also likely to control the Re-independent profile of a
rough wall TBL, for a given roughness geometry, is the ratio δ/k. It is expected
that for a given roughness geometry, Cf will change with δ/k; δ/k = 63 and 200
for the present profiles and those of Squire et al. (2016), respectively, shown in
figures 4 and 5. This raises the following question: can the Re-independent profiles
for both rough walls collapse if one varies δ/k? (Such collapse would result in both
rough walls yielding the same diagnostic distribution.) The above results show that
simply invoking Townsend’s Reynolds number similarity to address the question is not
enough. The answer requires one to carry out a series of parametric measurements for
both rough wall TBLs in the fully rough regime by systematically changing the value
of δ/k. However, one expects to observe the same result as presented here. Indeed,
consider for example the 2-D rough wall where one changes k, while maintaining
p/k constant and equal to 8. Regardless of k and as long as δ/k is large enough (at
least larger than 40 (Jiménez 2004)), the fully rough regime will yield the same Cf

as for the present case, and thus the same normalised velocity profiles as shown in
figure 2 will be obtained. This appears to be confirmed by the data of Krogstad &
Efros (2012) reported in figure 5. Despite the difference in the cross-sectional shape
between the present roughness and that of Krogstad & Efros (2012) (circular rods
versus square bars), the distributions are practically identical. Of course, the critical
Re at which the fully rough regime will be achieved will vary with k. This implies
that two distinct roughness geometries, as for example in the present work, will lead
to two distinct Re-independent normalised mean velocity profiles in the fully rough
regime. These differences can be further elucidated by comparing the turbulence
intensity profiles in the outer region of the smooth and rough wall TBLs based on
a modified diagnostic plot proposed by Castro, Segalini & Alfredsson (2013) and
reported in figure 6. This modified diagnostic plot produces a better collapse of all
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FIGURE 6. (Colour online) Comparison of turbulence intensities in the outer layer of
smooth (dotted line, Reτ = 9830, Marusic et al. 2015) and rough wall turbulent boundary
layers (data from figure 5) using the modified diagnostic plot (Castro et al. 2013). Here,
U′ =U +1U and U′

∞
=U∞ +1U and 1U is the velocity defect. The solid line is the

smooth wall outer layer straight line from Alfredsson, Örlü & Segalini (2012).

curves than the original one. It seems that by introducing the velocity deficit (1U),
the difference between smooth, and different types of rough walls is dramatically
reduced. Note though that the collapse is not perfect. While the non-collapse for
U′/U′

∞
6 0.7 can be explained in terms of the differences in turbulence levels in the

near-wall region of different types of TBLs, the reason for the variation in the region
U′/U′

∞
> 0.8 between the 2-D bars and the sand-grain roughness is not clear; this

may reflect a real difference associated with the roughness geometry or the possibility
that the sand-grain paper data of Squire et al. (2016) are not fully rough (albeit Cf
appears to be constant in the experimental data of Squire et al. (2016)).

It is common to test the universality of TBL velocity profiles by plotting the
velocity profiles in the deficit form, (Townsend 1956):

U∞ −U
uo

= f (y/η), (3.2)

where uo and η are velocity and length scales, respectively, and have been the subject
of many investigations (i.e. Townsend (1976), George & Castillo (1997), Zagarola &
Smits (1998), Jones, Nickels & Marusic (2008), Talluru et al. (2016)). Here, we use
Uτ , U∞ and δ because Talluru et al. (2016) showed that these are correct scaling
variables for rough wall TBLs (use of the length scale δ∗[2/Cf ]

1/2 (Rotta 1962),
where δ∗ is the displacement thickness, does not change the results). Figure 7(a,b)
shows the velocity defect profiles for the rough wall data and the same smooth wall
data as reported in figure 4 normalised by Uτ and U∞, respectively. Universality is
thought to be reflected in the collapse of the normalised velocity defect profiles. For
the rough wall data, the use of either Uτ or U∞ as a scaling velocity results in a
good collapse. In particular, the collapse is perfect for the profiles for which U+

∞
is

constant, confirming that a Re-independent normalised velocity distribution is achieved.
The smooth wall data present an interesting paradox: the velocity defect profiles
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FIGURE 7. (Colour online) Comparison of velocity defect profiles in smooth wall
(black dashed lines, Reτ = 3370, 4760, 6450 and 9830, Marusic et al. 2015), sand-grain
roughness (red symbols, Reτ = 20 160, 25 020 and 29 900, Squire et al. 2016), square
bar (blue symbols, Reτ = 13 300, Krogstad & Efros 2012) and the present rough wall
data (black symbols) normalised by (a) Uτ and (b) U∞. Refer to caption of figure 4 for
symbols used for smooth wall, sand-grain and square bar rough wall TBLs.

collapse when normalised with Uτ , but not when normalised with U∞. In order
to solve this paradox we write the left-hand side of (3.2) as follows,

U∞ −U
Uτ

=

[
2
Cf

]1/2 (U∞ −U
U∞

)
. (3.3)

For the smooth wall, Cf is function of Re; Cf decreases with increasing Re, thus
compensating for the Re dependence of (U∞ − U)/U∞ which leads to the collapse
of the profiles. We note though that they collapse relatively well with the rough
wall profiles when normalised with Uτ . The collapse of (U∞ − U)/Uτ between the
rough wall and the smooth wall data is often used to demonstrate the universality of
the velocity profiles in TBLs and validate Townsend’s Reynolds number similarity.
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Can a turbulent boundary layer become independent of the Reynolds number? 13

Interestingly, Townsend (1956) states that ‘if, as must be assumed, Reynolds number
similarity of self-preserving flow exists, the form of the self-preserving functions is
universal for any one type of flow’. This implies that (U∞−U)/Uτ and (U∞−U)/U∞
must be similar in form for any Re, if both Uτ and U∞ are proper scaling velocities
compliant with self-preservation analysis (Talluru et al. 2016).

For the rough wall, Cf is constant in the fully rough regime. Thus, using either
Uτ or U∞ leads to the same collapse which is consistent with the Reynolds number
similarity. The data of Squire et al. (2016) show the same result. Regardless of the
choice of uo, the normalised velocity defect profiles collapse. However, while the
sand-grain rough wall data collapse with the present velocity defect profiles when
normalised by Uτ , they collapse onto a different curve than the present rough wall
one when normalised by U∞. The data of Krogstad & Efros (2012) differ slightly
from the present data when normalised by U∞, certainly reflecting the slightly smaller
value of Cf .

For the smooth wall, equation (3.3) indicates that (U∞−U)/Uτ and (U∞−U)/U∞
cannot both be Re-independent, as shown in figure 7(a,b), since Cf is Re-dependent.
George & Castillo (1997) argued, based on the asymptotic invariance principle, that
the velocity deficit in the outer layer scales as (U∞ −U)/U∞ in the Re-independent
regime. Note that even if the smooth wall profiles (U∞ −U)/U∞ collapse (in the outer
part of the layer); figure 7(b) shows that they will certainly collapse onto a different
curve than that for the rough walls. Notice how the trend shown by the distributions
altogether in figure 7(b) reflects that of the profiles in figure 4; as the distributions
in figure 4 shift downwards, they shift upwards in figure 7(b). This can be explained
if we write 1 − U/U∞ = 1 − (U/Uτ )(Cf /2)1/2. It appears then that (U/Uτ )(Cf /2)1/2
is larger for a smooth wall TBL than a rough wall TBL; further, while it is constant
(i.e. independent of Re) for a given fully rough wall TBL, it increases with Re for
a smooth wall TBL. This result shows that the distribution (1 − U/U∞) or simply
(U/U∞) should be used for assessing a Re-independence state. Indeed, when such
state is reached, the profiles, U/U∞, must collapse onto a single curve; this curve
varies with the roughness geometry or the coefficient of drag.

It is remarkable that while the profiles (U∞ − U)/U∞ differ between smooth and
rough walls, the profiles for (U∞ −U)/Uτ collapse relatively well onto each other. We
saw above that the compensational effect of Cf on (U∞−U)/U∞ leads to a collapse
of the profiles (U∞ − U)/Uτ for the smooth wall. However, the collapse of (U∞ −
U)/Uτ between the rough and smooth wall data may not in fact be too surprising.
To see this, let us first note that the downward shift of the rough wall mean velocity
profiles, 1U+, can be expressed across most of the boundary layer, as

1U+ =U+
∞
|smooth −U+

∞
|rough =

(
2
Cf

)1/2

smooth

−

(
2
Cf

)1/2

rough

. (3.4)

We can then write

U+smooth =U+rough +1U+ =U+rough +

(
2
Cf

)1/2

smooth

−

(
2
Cf

)1/2

rough

. (3.5)

Using (3.5), we can express the normalised defect profile (U∞ −U)/Uτ as,(
U∞ −U

Uτ

)
smooth

=

(
2
Cf

)1/2

smooth

−U+rough −

(
2
Cf

)1/2

smooth

+

(
2
Cf

)1/2

rough

. (3.6)
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Thus, we have (
U∞ −U

Uτ

)
smooth

=

(
U∞ −U

Uτ

)
rough

. (3.7)

This explains the collapse of Uτ -normalised velocity defect profiles between rough
wall and smooth wall TBLs. A similar equality can be established for velocity profiles
over two different rough wall TBLs. Accordingly, one can expect that all smooth and
rough wall (ZPG) TBL velocity defect profiles normalised by Uτ will collapse onto a
single curve. Of course, equation (3.7) implies that the mean velocity (U+) profiles in
the rough wall TBLs are shifted downward by the same amount, 1U+, across most
of the layer (e.g. y/δ99 > 0.1) with respect to the smooth wall TBL profiles when δ+99
is the same for both TBLs. This seems a reasonable assumption according to figure 4
and the agreement observed in figure 7, which means that the rough wall mean
velocity profiles are, apart from a downward shift, similar to the smooth wall mean
velocity profiles. These results show that while the normalised mean velocity profiles
do not collapse between different walls because of the change in drag coefficient, the
shape of the distributions is the same. This is precisely Townsend’s Reynolds number
similarity applied to the outer region of TBLs. It is important to remember though
that Uτ is not a scaling velocity compliant with self-preservation for the smooth wall
TBL, at least for the outer part of the layer. This last remark should be discussed
in the context of scaling of a ZPG TBL at a moderate Reynolds number. It can
be shown (see, e.g. Townsend 1976; Talluru et al. 2016) for a ZPG TBL that the
scaling velocity, uo, which complies with self-preservation, must satisfy the following
condition uo

U∞
=C, (3.8)

where C is a constant. We can write (3.8) as

uo =CU∞ =CUτ

[
2
Cf

]1/2

. (3.9)

For a fully rough ZPG TBL, where Cf is constant (independent of Re and x), both U∞
and Uτ can be used as appropriate scaling velocities leading to normalised velocity
profiles, to conform with self-preservation and Re-independence. For a smooth wall
ZPG TBL, the use of uo=U∞ (or Uτ [2/Cf ]

1/2) appears correct for a given U∞, which
implies that Uτ alone cannot be a scaling velocity since Cf is not constant (either with
x or Re). Further, for a smooth wall, self-preservation (see Talluru et al. 2016) requires

η∼
ν

uo
, (3.10)

while uo still obeys (3.9). Accordingly, we have

η∼
ν

U∞
=

ν

Uτ

[
2
Cf

]1/2 . (3.11)

In the case of a fully rough wall TBL, this constraint does not exist since the viscous
term in the mean equation of motion is removed (Talluru et al. 2016), thus discarding
both ν/U∞ and ν/Uτ as appropriate length scales. We already saw (figure 2) that
ν/Uτ does not scale the velocity profiles. For a rough wall, since U∞∼Uτ then ν/U∞
cannot scale the velocity profiles either.
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Can a turbulent boundary layer become independent of the Reynolds number? 15

3.2. Streamwise Reynolds normal stress
The previous section strongly suggests that a rough wall TBL reaches a Re-
independent state at a moderate Re in a fully rough regime in which the mean
velocity profile remains unchanged when normalised by length and velocity which
comply with self-preservation. It is then of interest to assess how the normalised
Reynolds stresses, and in particular the streamwise Reynolds stress, behave as the
rough wall TBL approaches its Re-independent state.

There is strong experimental evidence in the literature showing that the profile of u2

in a smooth wall TBL is considerably altered when Re increases (see Metzger et al.
2001; Hutchins & Marusic 2007; Marusic et al. 2010; Smits, McKeon & Marusic
2011, for example). This behaviour is illustrated in figure 8(a), which shows viscous-
scale-normalised distributions of u2 in a smooth wall TBL as Re increases (DNS
data of Schlatter & Örlü (2010), Reτ = 674; wind tunnel measurements of Marusic
et al. (2015), 3370 6 Reτ 6 9830). At low Reynolds number, the turbulence intensity
profile presents a characteristic peak at y+ ' 15. Some relatively recent studies show
that the near-wall peak exhibits a weak Re dependence when scaled on Uτ (see, e.g.
Klewicki & Falco 1990; De Graaff & Eaton 2000; Metzger et al. 2001; Hoyas &
Jiménez 2006; Hutchins & Marusic 2007; Vincenti et al. 2013). However, Monkewitz
& Nagib (2015) argue that this inner peak cannot increase indefinitely with Re. In
any case, the inner peak does not disappear with increasing Re. The data of Marusic
et al. (2015) on a smooth wall turbulent boundary layer show convincingly that the
inner peak remains even though the magnitude of u+2 increases in the outer layer,
possibly leading to an outer peak which may eventually exceed the near-wall peak
value. A similar behaviour is observed for the high Re ZPG TBL data of Fernholz
& Finley (1996), Vincenti et al. (2013) and the high Reynolds number smooth wall
pipe data of Morrison et al. (2004) and Hultmark et al. (2012). These latter authors
attributed the occurrence of the outer peak to a shift in the production away from the
wall when Re increases, supposedly resulting from an increasing separation between
large and small scales.

The continuous evolution (in shape and magnitude) of the u+2 distribution with an
ever increasing Reynolds number may be interpreted as reflecting the transient nature
of the smooth wall TBL, and contrasts with that of a rough wall TBL. This can be
seen in figure 8(a), where we have reported profiles of u+2 for the present 2-D rough
wall at different Reτ ranging from 620 to 7200, smooth wall data of Marusic et al.
(2015) and the rough wall data of Squire et al. (2016). The data of Krogstad & Efros
(2012) at Reτ = 13 300 have also been included. Our measurements are consistent with
those of Krogstad & Efros (2012) and Squire et al. (2016).

At low Re, profiles of u+2 on both the 2-D rod and sand-grain rough wall TBLs
present a near-wall peak. Lee & Sung (2007), Lee et al. (2009) and Volino, Schultz &
Flack (2011) respectively reported a similar inner peak in the low Reynolds number
DNS, particle image velocimetry (PIV) and LDV measurements of a turbulent
boundary layer over 2-D rough walls with a similar spacing p= 8k as in the present
case. As Re increases, this peak subsides while an outer layer peak appears. A
similar behaviour of a decreasing inner peak was reported by Monty et al. (2010),
who compared the turbulence statistics (obtained with matched l+ values) over a
range of Re in a turbulent boundary layer over a regular braille-type roughness. This
behaviour is clearly evident in the Squire et al. (2016) data. These results confirm
that the near-wall peak attenuation is not due to spatial resolution issues usually
associated with hot-wire anemometry (see also the study of Hutchins et al. (2009)).
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FIGURE 8. (Colour online) Profiles of u+2 in smooth and rough wall TBLs at several
Reτ as a function of (a) y+; (b) y/k; and (c) y/δ. Smooth wall DNS (solid black line,
Reτ = 674 Schlatter & Örlü 2010), smooth wall TBL (black dashed lines, Reτ = 3370,
4760, 6450 and 9830, Marusic et al. 2015), sand-grain roughness (red symbols, Reτ =
20 160, 25 020 and 29 900, Squire et al. 2016), square bar (blue symbols, Reτ = 13 300,
Krogstad & Efros 2012) and the present rough wall data (black symbols). Refer to caption
of figure 4 for symbols used for smooth wall, sand-grain and square bar rough wall TBLs.
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Can a turbulent boundary layer become independent of the Reynolds number? 17

The first five (Reτ 6 4000) of our 2-D rod rough wall turbulence intensity profiles
have l+ values smaller than 20 (see table 1 for details). Looking at those five profiles,
one can easily discern that the reduction in the magnitude of the inner peak as Re
increases is due to roughness and not due to insufficient spatial resolution in our
hot-wire measurements. Nonetheless, we realise that there is some spatial attenuation
in our results particularly at high Re but emphasise that this does not affect the main
conclusions of the paper. Squire et al. (2016) reached similar conclusions on the
influence of l+ on the inner peak. As the inner peak decreases, it also shifts towards
larger y+. Whilst it is not clear whether or not the inner peak is ‘removed’ or simply
‘hidden’ due to the large values of u+2 in the outer layer, the former scenario is
expected because the near-wall region of the flow is entirely altered by the roughness
at least when Re is sufficiently large and 4 6 p/k 6 16 (e.g. Wang, Hejcik & Sunden
2007; Djenidi et al. 2008; Lee et al. 2009).

The horizontal shift is not limited to the inner peak. There is a clear systematic
shift of the entire distribution of u+2, similar to that observed in the U+ profiles, as
Reτ increases. However, the shape of the distributions seems to suggest a possible
independence on Re of the u+2 profiles with increasing Re. This indicates that, like the
mean velocity field, the fluctuating velocity field on the rough walls may comply with
the Reynolds number similarity hypothesis. To ascertain this, we report in figure 8(b,c)
some of the rough wall distributions of u+2 as functions of y/k and y/δ, respectively;
these distributions correspond to the mean velocity profiles reported in figure 3. There
is generally a good collapse for both sand-grain and 2-D rough wall boundary layers.
For the present 2-D rough wall, the distribution for Reτ = 3945 deviates from the
other two in the region y/k6 10, possibly reflecting a persistence of the transient state,
which would indicate that the fluctuating velocity field is not yet ‘fully’ independent
of Re. Just as in the case of normalised mean velocity profiles, the 2-D rough wall
and the sand-grain rough wall have distinct Re-independent distributions of u+2.

4. Discussion and conclusions
Hot-wire measurements in a ZPG TBL layer over a 2-D rough wall with a

separation between elements equal to 8k (k is the roughness element height) have
been made to assess the behaviour of the TBL as the Reynolds number increases.
The present results and those of Squire et al. (2016) on a sand-grain roughness are
compared with those over a smooth wall. The comparison led to the following new
observations:

(i) The downward shift on the mean velocity profile 1U+ on a rough wall reaches
a limit as Re increases.

(ii) The limit for 1U+ depends on the roughness form drag.
(iii) The collapse of velocity defect profiles when normalised by the friction velocity

between different surface conditions (smooth, 2-D roughness and sand-grain
paper) does not indicate a Re-independent state.

(iv) The true indicator of Re-independent state is the collapse of the velocity defect
profile when normalised by the friction velocity as Re increases.

(v) The scaling of the velocity defect with the free-stream velocity does not show
a collapse between smooth and rough walls but also between rough walls with
different roughness geometries.

The above observations lead to the following conclusions:
(i) A rough wall boundary layer quickly approaches a Re-independent state as

indicated by the constancy of the ratio U∞/Uτ (or Cf ) with respect to Reynolds
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number and the collapse of the normalised mean velocity and velocity variance
profiles.

(ii) Different roughness geometries with different drag coefficients lead to different
normalised mean velocity and velocity variance distributions. In each case, the
distributions are Re-independent.

The above discussion suggests that a rough wall TBL can reach a Re-independent
state at moderate Reynolds numbers when the roughness elements are such that the
viscous drag is practically negligible in comparison to the form drag. This state
is characterised by Re-independent normalised distributions for the mean velocity
and the longitudinal Reynolds stress. However, these profiles are determined by
the roughness geometry (i.e. Cf and/or the ratio δ/k) and thus, despite being Re
independent, cannot in principle be universal in the sense that they all collapse
onto the same distribution. However, a collapse should be observed for rough walls
with identical Cf values. The existence of Re-independent state is intimately linked
to self-preservation (Townsend 1956, 1976), which assumes that all normalised (or
scaled) distributions of mean quantities (e.g. mean velocity and Reynolds stresses)
have similar shape at all stages of development of the flow. Self-preservation requires
only one set of velocity and length scales (all scaling velocities compliant with
self-preservation must be proportional to each other; likewise for the scaling lengths).

Townsend (1956) showed that a TBL cannot be self-preserving over a smooth
wall at finite Re because of the presence of a viscous dominated near-wall region,
although the outer part of the boundary layer can evolve in a self-preserving manner.
On the other hand, Talluru et al. (2016) showed that self-preservation can be
achieved on a rough wall when k varies like x for any given (large enough) Re.
This merits some discussion given that, for the present roughness, k is constant.
Strictly, self-preservation cannot be achieved over the present rough wall, which
consists of constant diameter rods. Yet, figure 9, which shows mean velocity profiles
at several x positions in the smooth wall TBL (Marusic et al. 2015) and the present
rough wall boundary layers, normalised by wall units, shows that there is relatively
good collapse for the rough wall boundary layer over the streamwise fetch used in
this study (see table 1). This indicates that Uτ remains approximately constant over
that fetch. As expected, there is no collapse of the mean velocity profiles for the
smooth wall boundary layer because Uτ continually varies with x (both U+max and δ+
increases with x). These results are consistent with the self-preservation analysis of
Talluru et al. (2016), who showed that one of the conditions for self-preservation is
that Uτ must be constant along x. They also suggest that self-preservation can be
achieved over a limited streamwise distance over which Cf remains approximately
constant, even when the roughness height is not constant. The measurements of
Squire et al. (2016) also confirm this. Indeed, their measurements cover a larger
streamwise fetch, between 1.6 and 21.7 m at U∞' 20.4 m s−1 (see table 2 of Squire
et al. (2016)). In their study, Uτ decreases from x ' 1.6 m to x ' 12 m and then
remains approximately constant for x > 15 m.

The reason why self-preservation is well approximated is associated with the
fact that the spatially averaged mean velocity is not zero at the virtual origin,
thus removing the no-slip condition and accordingly weakening significantly, if not
removing, the viscous drag (the rough wall velocity profiles shown in figure 9 support
this). This is also the condition for achieving a Re-independent flow, which is well
observed in a fully rough wall TBL. A further comment is required regarding the
removal of the no-slip condition. In the absence of this condition, there should be
no boundary layer and no drag on a smooth wall. The classical laminar boundary
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FIGURE 9. Mean velocity profiles at several streamwise locations on smooth and rough
walls. Symbols: present rough wall measurements at U∞ ' 16 m s−1 (see table 1 for
symbols); dashed lines: smooth wall data at different x (cf. table 2 of Marusic et al. 2015,
Reτ = 2800, 3600, 4300, 6000, 8400, 10 500 and 13 000) and solid line: smooth wall DNS
data (Schlatter & Örlü 2010, Reτ = 674).

layer theory was developed by Prandtl aimed at accounting for the no-slip condition
(which also causes a momentum deficit). On the rough wall, where the (spatially
averaged) no-slip condition is removed, the roughness elements are the source
of the drag and the momentum deficit, thus leading to the development of the
boundary layer. In a fully rough regime, this boundary condition becomes consistent
with self-preservation which vindicates Townsend’s (1976) statement that ‘if the
motion around the roughness elements allows mean velocities and stresses of the
self-preserving forms, self-preserving flow may be possible over the fully turbulent
part of the flow’.
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