
TLP 14 (6): 909–937, 2014. C© Cambridge University Press 2013

doi:10.1017/S1471068413000562 First published online 4 November 2013

909

Infinite probability computation by cyclic
explanation graphs

TAISUKE SATO

Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo, Japan

(e-mail: sato@mi.cs.titech.ac.jp)

PHILIPP MEYER

Technical University Munich, Munich, Germany

(e-mail: meyerphi@in.tum.de)

submitted 13 October 2012; revised 22 February 2013; accepted 22 August 2013

Abstract

Tabling in logic programming has been used to eliminate redundant computation and also to

stop infinite loop. In this paper1 we investigate another possibility of tabling, i.e. to compute

an infinite sum of probabilities for probabilistic logic programs. Using PRISM, a logic-based

probabilistic modeling language with a tabling mechanism, we generalize prefix probability

computation for probabilistic context-free grammars (PCFGs) to probabilistic logic programs.

Given a top-goal, we search for all proofs with tabling and obtain an explanation graph

which compresses them and may be cyclic. We then convert the explanation graph to a set

of linear probability equations and solve them by matrix operation. The solution gives us the

probability of the top-goal, which, in nature, is an infinite sum of probabilities. Our general

approach to prefix probability computation through tabling not only allows to deal with

non-probabilistic context-free grammars such as probabilistic left-corner grammars but has

applications such as plan recognition and probabilistic model checking and makes it possible

to compute probability for probabilistic models describing cyclic relations.

KEYWORDS: tabling, probability computation, prefix, probability equation

1 Introduction

Combining logic and probability in a logic programming language provides us with

a powerful modeling tool for machine learning. The resulting language allows us

to build complex yet comprehensible probabilistic models in a declarative way.

PRISM Sato and Kameya (1997, 2001, 2008) is one of the earliest attempts to

develop such a language. It covers a large class of known models, including Bayesian

1 This paper is based on Sato and Meyer (2012) (Sato, T. and Meyer, P. 2012. Tabling for infinite
probability computation. In Technical Communications of the 28th International Conference on Logic
Programming (ICLP12), Budapest, Hungary, Leibniz International Proceedings in Informatics, vol. 17.
Kluwer, Boston, MA, 348–358) and extended with a theorem for prefix PCFGs, a detailed explanation
for tabling, the addition of probabilistic left-corner grammars, experiments with a real corpus and two
non-linguistic applications: plan recognition and probabilistic model checking.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

910 T. Sato and P. Meyer

networks (BNs), hidden Markov models (HMMs) and probabilistic context-free

grammars (PCFGs), and computes probabilities with the same time complexity

as their standard algorithms2 as well as unknown models such as probabilistic

context-free graph grammars (Sato 2008).

The efficiency of probability computation in PRISM is attributed to the use of

tabling (Tamaki and Sato 1986; Warren 1992; Rocha et al. 2005; Zhou et al. 2008;

Zhou et al. 2010)3 that eliminates redundant computation. Given a top-goal G, we

search for all proofs of G4 while tabling probabilistic goals and recording their

logical dependencies as a set expl (G) of propositional formulas with a graphical

structure, which we call an explanation graph for G (Sato and Kameya 2001). By

applying dynamic programming to expl (G) when it is acyclic and partially ordered,

we can efficiently compute the probability of G in time linear in the size of the graph.

The use of tabling also gives us another advantage over non-tabled computation; it

stops infinite loop by detecting recurrence patterns of goals. Tabled logic programs

thus can directly use left recursive rules in CFGs without the need of converting

them to right recursive ones.

In this paper we investigate another possibility of tabling that has gone unnoticed

in the non-probabilistic setting; we apply tabling to compute an infinite sum of

probabilities that typically appears in the context of prefix probability computation

for PCFGs (Jelinek and Lafferty 1991; Stolcke 1995; Nederhof and Satta 2011a).

PCFGs are a probabilistic extension of CFGs in which CFG rules are assigned

probabilities and the probability of a sentence is computed as a sum-product of

probabilities assigned to the rules used to derive the sentence (Baker 1979; Manning

and Schütze 1999). A prefix u is an initial substring of a sentence. The probability

of the prefix u is a sum of probabilities of infinitely many sentences of the form

uv for some string v. Prefix probability is useful in speech recognition as discussed

in Jelinek and Lafferty (1991). We generalize this prefix probability computation

for PCFGs to probability computation on cyclic explanation graphs generated by

PRISM programs using tabled search. Since we can use arbitrary programs, our

approach not only allows us to deal with non-PCFGs, such as probabilistic left-

corner grammars (PLCGs) in addition to PCFGs, but also opens a way to practical

applications such as planning and model checking, as will be demonstrated in

Sections 5 and 6 respectively.

PRISM constructs an explanation graph for a top-goal G by collecting clauses

used in a proof of G while checking if there is a loop, i.e. if there is a proved

goal that calls itself as one of its descendent goals. Loops easily occur, for example,

in programs for prefix of PCFGs and in ones for the Markov chain containing

self-loops. By default whenever PRISM detects a loop during the construction of

the explanation graph, it fails with an error message but by setting error on cycle

2 They are the junction tree algorithm for BNs, the forward–backward algorithm for HMMs and the
inside–outside (IO) algorithm for PCFGs.

3 Tabling is also employed by other probabilistic logic programming languages such as
ProbLog (Mantadelis and Janssens 2010) and PITA (Riguzzi and Swift 2011).

4 In this paper, we mean by a proof of a goal G an SLD-refutation of ⇐G.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

Infinite probability computation by cyclic explanation graphs 911

flag to off using set prism flag/2, we can let PRISM skip loop checking, and as

a result can obtain a cyclic explanation graph. So constructing cyclic explanation

graphs requires no extra cost in PRISM.

However, while computing probability from such cyclic graphs is possible (Etes-

sami and Yannakakis 2009), efficient computation is difficult except for the case of

linear cyclic explanation graphs that can be turned into a set of linear probability

equations straightforwardly solvable by matrix operation. So the practical issue is

to guarantee the linearity of cyclic explanation graphs. We specifically examine a

PRISM program for prefix probability computation for PCFGs and prove that the

program always generates linear cyclic explanation graphs. We also prove that the

probability equations obtained from the linear cyclic explanation graphs are solvable

by matrix operation under some mild assumptions on PCFGs.

To empirically test our approach, we conduct experiments of computing prefix

probability for a PCFG and also for a PLCG using a real corpus of moderate size.

To our knowledge, prefix probability computation for PLCGs is new and has not

been attempted so far. As applications, we apply prefix probability computation to

plan recognition in which action sequences are derived from plans using a PCFG.

Our task is to infer, given an action sequence, the plan underlying it. Note that we

do not require the action sequence to be complete as a sentence unlike previous

approaches (Bobick and Ivanov 1998; Amft et al. 2007; Lymberopoulos et al. 2007;

Geib and Goldman 2011) as we are able to deal with prefix action sequences. We

also apply our approach to the reachability probability problem in probabilistic

model checking (Hinton et al. 2006; Gorlin et al. 2012). This class of problems needs

to describe Markov chains and to compute the reachability probability between two

states. The experiment suggests that our approach is reasonably fast.

In what follows, we first review probability computation in PRISM in Section 2.

In Section 3 we explain how prefix probability is computed for PCFGs in PRISM

together with some formal proofs. Then we tackle the problem of prefix probability

computation for PLCGs in Section 4. We apply prefix probability computation

to plan recognition in Section 5, and to the reachability probability problem in

probabilistic model checking in Section 6. Section 7 contains related work and

Section 8 is the conclusion. We assume the reader has a basic familiarity with

PRISM (Sato and Kameya 2001; Sato and Kameya 2008).

2 Probability computation in PRISM

We review probability computation in PRISM for self-containedness. PRISM5 is a

probabilistic extension of Prolog with built-in predicates for machine learning tasks

such as parameter learning and Bayesian inference (Sato and Kameya 2001; Sato

and Kameya 2008). Theoretically a PRISM program DB is a union R ∪ F of a set

of definite clauses R and and a set F of ground probabilistic atoms of the form

msw(id,v) that represent simple probabilistic choices, where id and v are ground

5 http://sato-www.cs.titech.ac.jp/prism/

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

912 T. Sato and P. Meyer

terms.6 Using probabilities assigned to msw atoms, DB uniquely defines a probability

measure PDB (·) over possible Herbrand interpretations from which the probability

of an arbitrary closed formula is calculated. Practically however PRISM programs

are just Prolog programs that use msw atoms introduced by values/2 declarations7

as probabilistic primitives8 as shown in Figure 1 of Section 3.1.

In PRISM, the probability PDB (G) of a ground atom G w.r.t. a program DB

is basically computed as a sum of probabilities of all explanations for G, where

an explanation for G is a conjunction E = msw1 ∧ · · · ∧ mswk of ground msw

atoms such that msw, . . . , mswk, comp(R) � G.9 However, naively computing PDB (G)

is computationally expensive because of exponentially many explanations. Instead

we compute PDB (G) in three steps. In the first step, we perform tabled search for

all proofs of G while recording clause instantiations used in a proof in the external

memory area (through some C-interface predicates). In the second step, we construct

an explanation graph expl (G) for G from recorded clause instantiations. It compactly

represents all possible explanations for G by sub-formula sharing. In the third step,

we convert expl (G) to a set of probability equations and obtain PDB (G) by solving

it using dynamic programming. In the following we discuss each of them in detail.

2.1 Tabled search and explanation graphs

In general, there are exponentially many proofs of G and so are explanations.

Fortunately, we can often compress them to an equivalent but much smaller rep-

resentation by factoring out common sub-conjunctions as intermediate goals (Sato

and Kameya 2001; Zhou et al. 2008). We can express the set of all explanations

as a set of defining formulas that take the form H ⇔ α1 ∨ · · · ∨ αM . Here H is the

top-goal G or an intermediate goal. Hereafter the top-goal and intermediate goals

are collectively called defined goals. We call each H ⇐ αi (1 � i � M) a defining

clause for H , where αi is a conjunction C1 ∧ · · · ∧ Cm ∧ msw1 ∧ · · · ∧ mswn (0 � m, n)

of defined goals {C1, . . . , Cm} and msw atoms {msw1, . . . , mswn}.
We say that H is a parent of Cj (1 � j � m) and call the transitive closure of

this parent–child relation the ancestor relation. The whole set of defining formulas

is denoted by expl (G) and called an explanation graph for G as is called so far. In

expl (G) each defined goal has only one defining formula and possibly is referred to

by other defined goals.

6 We use lower case strings to represent ground terms, atoms etc. in this paper.
7 A declaration values(id,[v1 , . . . , vN]) introduces a set of ground probabilistic atoms msw(id,vi)(1 �
i � N). They represent as a group a discrete random variable on a sample space Vid = {v1, . . . , vN}. So
only one of them becomes probabilistically true and others are false. To specify their distribution we use
a PRISM command set sw(id,[θ1, . . . , θN]) that sets PDB (msw(id,vi)), the probability of msw(id,vi)
being true, to θi (1 � i � N), where

∑
v∈Vid

θv = 1.
8 Procedurally, executing msw(id,X) as a PRISM goal returns X = vi with probability θi. On the other

hand, a ground goal msw(id,v) is equivalent to msw(id,X),X=v and fails if the value returned in X
differs from v. We assume that different occurrences of msw/2 atom in a program or in a proof are
independent and if they have the same id, they represent samples from independent and identically
distributed random variables (Sato and Kameya 2001).

9 comp(R) is the completion of R. It is a union of the if-and-only-if form of R and the so-called Clark’s
equational theory.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

Infinite probability computation by cyclic explanation graphs 913

An n-ary predicate p/n is said to be probabilistic if the predicate symbol p is msw or

recursively, there is a clause in DB such that the head contains the predicate symbol

p and a probabilistic predicate occurs in the body. Likewise, an atom p(t1, . . . , tn) is

probabilistic if p/n is probabilistic. Then roughly expl (G) is obtained from exhaustive

tabled search for all proofs of G while tabling probabilistic predicates in DB . What

we actually use however is not DB but another non-probabilistic Prolog program

DB ′ translated from DB that has a mechanism of recording instantiated clauses used

in a proof of G. We construct expl (G) by tabled search for all proofs of G w.r.t.

DB ′ while tabling probabilistic predicates and collect instantiated clauses used in a

proof as defining clauses constituting expl (G) (Kameya and Sato 2000; Zhou and

Sato 2003).

DB ′ is obtained by translating each clause in DB as follows (Zhou and Sato

2003).10 Suppose, for example, p(X,f(V)):-msw(X,V),q(g(X,V)),r(V) is a clause

in DB and also suppose p/2 and q/1 are probabilistic but r/1 is not (generalization is

easy). We replace msw(X,V) with (get values(X,Vs),member(V,Vs))11 and further

add a special goal to store a defining clause in the external memory area. So the

translated clause is

p(X,f(V)):- get values(X,Vs),member(V,Vs),q(g(X,V)),r(V),

add to db(path(p(X,f(V)),[q(g(X,V))],[msw(X,V)])).

Here member(V,Vs) is a backtrackable predicate and returns an element V in a list

Vs. The combined goal (get values(X,Vs),member(V,Vs)) thus succeeds with

some value V in the outcome space Vs for msw(X,·).
When all goals in (get values(X,Vs),member(V,Vs),q(g(X,V)),r(V)) suc-

ceed, add to db/1 is invoked. add to db(path(a,b,c)) is a special goal that always

succeeds and stores a defining clause a <= b & c for a in the external memory area,

where b is a list (conjunction) of probabilistic atoms and c is a list (conjunction) of

msw atoms.

The translated program DB ′ is a usual Prolog program and runs isomorphically to

DB as far as tabled search is concerned. We mean by tabled goals goals containing a

tabled predicate, by answers goals proved successfully and by tabled answers tabled

goals proved successfully. Then in tabled search if a call to a tabled goal H occurs,

H is unfolded by a clause in the program and tabled search continues, or unified

with a tabled answer stored in the table and returns with success. In the former

case, if the search succeeds and Hθ is proved, where θ is an answer substitution, the

answer Hθ is added to the table. In the latter case, the tabling strategy determines

when tabled answers are consumed. More details are given in Section 3.2. In the

rest of the paper, since DB and DB ′ behave identically, when the context is clear,

we use DB and DB ′ interchangeably for simplicity and say, for example, “all proofs

of G w.r.t. DB” instead of “all proofs of G w.r.t. DB ′”.

10 The actual implementation is slightly different. Also, another translation is possible which stores
defining clauses in the table (Kameya and Sato 2000).

11 For X = id, get values(X,Vs) returns the list of possible values Vs for msw(id,·).

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

914 T. Sato and P. Meyer

2.2 From explanation graphs to probability computation

The probability PDB (G) of a given goal G is precisely defined in terms of the

distribution semantics of PRISM. But the problem is that the semantics is so

abstractly defined that we cannot know the actual value of PDB (G) easily. Here we

describe how to compute it from expl (G) under some assumptions.

To compute PDB (G), we convert each defining formula H ⇔ α1 ∨ · · · ∨ αM in

expl (G) to a set of probability equations for H:

P (H) = P (α1) + · · · + P (αM) (1)

where

P (αi) = P (C1) · · ·P (Cm)PDB (msw1) · · ·PDB (mswn) (1 � i � M)

for αi = C1 ∧ · · · ∧ Cm ∧ msw1 ∧ · · · ∧ mswn.

We denote by eq(G) the entire set of probability equations thus obtained. Note that

the conversion assumes exclusiveness among disjuncts {α1, . . . , αM} and independence

among conjuncts {C1, . . . , Cm, msw1, . . . , mswn}.12 We consider the P (H)’s in eq(G) as

numerical variables representing unknown probabilities and refer to them as P -

variables. Then the right-hand side of (1) is a multivariate polynomial in P -variables

with non-negative coefficients which are products of PDB (msw)s.

We say that expl (G) is acyclic if the ancestor relation in expl (G) is acyclic. When

expl (G) is acyclic as is the case with standard generative models such as BNs,

HMMs and PCFGs, defined goals in expl (G) are hierarchically ordered by the

ancestor relation (with G as top-most element) and the P-variables in eq(G) are

also hierarchically ordered. As a result eq(G) is uniquely and efficiently solved in a

bottom-up manner by dynamic programming using the generalized inside–outside

algorithm (Sato and Kameya 2001) in time linear in the size of eq(G) and the unique

solution gives P (G) = PDB (G).

There are however cases where expl (G) is cyclic and so is eq(G), and hence it is

impossible to apply dynamic programming to eq(G), or even worse eq(G) may not

have a unique solution when eq(G) is a system of polynomial equations of second

degree or higher. Nonetheless, no matter whether it is cyclic or not, we can prove at

least the existence of a solution for eq(G), thanks to the special form and properties

of eq(G) under the generative exclusiveness condition; at any choice point in any

execution path of the top-goal, a choice of alternative path is made by the value

of X sampled from msw(id,X). We quickly remark that this condition is naturally

satisfied by PRISM programs for generative models in general and BNs, HMMs

and PCFGs in particular, because in a generative model an outcome is generated

by a sequence of probabilistic choices and the process is simulated by msw atoms.

The generative exclusiveness condition implies that every disjunction in a defining

formula is exclusive and originated from a probabilistic choice made by some msw.

So a defining formula H ⇔ α1 ∨ · · · ∨αM iswritten as H ⇔ (msw(idH,v1)∧β1) ∨ · · · ∨

12 In this paper we assume these conditions are always satisfied. In particular, we assume the generative
exclusiveness condition stated later which implies the exclusiveness among disjuncts.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

Infinite probability computation by cyclic explanation graphs 915

(msw(idH,vM) ∧ βM) for some msw(idH,·) that has a sample space VidH such that

VidH ⊇ {v1, . . . , vM}. Denote the vector of P-variables in expl (G) by XG and write a

component P (H) as XH . Then the probability equation about P (H) is represented

as XH = TH (XG) =
∑M

i=1 PDB (msw(idH,vi))ϕH
i (XG), where ϕH

i (XG) is a product of

some PDB (msw)’s and variables in XG. We represent eq(G) as XG = T (XG). Now

define a vector sequence
{
XG

k

}∞
k=0

by XG
0 = 013 and XG

k+1 = T (XG
k) for k � 1. Then

XG
k = T (k)(0) (k � 1). First we prove two lemmas.

Lemma 1

T (·) is monotonic, i.e. XG � YG implies T (XG) � T (YG).14

Proof

It is enough to prove that XG � YG implies TH (XG) � TH (YG) for an arbi-

trary component TH (XG) of T (XG). Suppose XG � YG and write TH (XG) =∑M
i=1 PDB (msw(idH,vi))ϕH

i (XG). Since every ϕH
i (XG) is a product of some PDB (msw)s

and variables in XG, XG � YG implies ϕH
i (XG) � ϕH

i (YG) for every i. Hence,

TH (XG) =

M∑
i=1

PDB (msw(idH,vi))ϕ
H
i (XG)

�
M∑
i=1

PDB (msw(idH,vi))ϕ
H
i (YG) = TH (YG).

�

Lemma 2

Suppose the generative exclusiveness condition is satisfied.
{
XG

k

}∞
k=0

is bounded from

above; XG
k � 1 for every k � 0.

Proof

For k = 0, XG
0 = 0 � 1 holds. Suppose k > 0 and inductively assume XG

k � 1 holds.

Let XH
k+1 = TH (XG

k) be a probability equation in XG = T (XG). We see

XH
K+1 =TH (XG

k) =

M∑
i=1

PDB (msw(idH,vi))ϕ
H
i (XG

k)

�
M∑
i=1

PDB (msw(idH,vi)) �
∑

v∈VidH

PDB (msw(idH,v)) = 1.

Here we use the fact that since ϕH
i (XG) is a product of some PDB (msw)s and variables

in XG, XG
k � 1 implies ϕH

i (XG
k) � 1. �

13 We use 0 (resp. 1) to denote a vector of 0s (resp. a vector of 1s).
14 For N dimensional vectors X = (x1, . . . , xN) and Y = (y1, . . . , yN), we write X � Y (resp. X < Y) if

xi � yi (resp. xi < yi) for every i (1 � i � N).

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

916 T. Sato and P. Meyer

Theorem 1

Under the generative exclusiveness condition,
{
XG

k

}∞
k=0

monotonically converges to

the least fixed point XG
∞ = T (XG

∞) which gives a solution for eq(G).

Proof{
XG

k

}∞
k=0

is a monotonically increasing sequence 0 = XG
0 � XG

1 � · · · by Lemma 1

which is bounded from above by Lemma 2. Consequently,
{
XG

k

}∞
k=0

converges to a

limit XG
∞. Furthermore, because T is continuous, we have T (XG

∞) = T (limk→∞ XG
k) =

limk→∞ T (XG
k) = limk→∞ XG

k+1 = XG
∞. So we have XG

∞ = T (XG
∞). Let X′G � 0 be

another fixed point of T . XG
k � X′G for all k � 0 is inductively proved. Therefore,

XG
∞ = limk→∞ XG

k � X′G. Hence, XG
∞ is the least fixed point of T . �

3 Prefix probability computation for PCFGs in PRISM

In this section, using a concrete example, we have a close look at how cyclic

explanation graphs are constructed and investigate their properties. The reader is

assumed to have a basic knowledge of CFG parsing.

3.1 A prefix parser

Before proceeding we introduce some terminology about CFGs for later use. Let X

be a nonterminal in a CFG, α, β a mixed sequence of terminals and nonterminals.

A rule for X is a production rule of the form X → α. If there is a rule of the

form X → Y β, we say X and Y are in the direct left-corner relation. The transitive

closure of the direct left-corner relation is called left-corner relation and we write

X →L Y if X and Y are in the left-corner relation. The left-corner relation is cyclic

if X →L X holds for some nonterminal X. We say that a rule is useless if it does

not occur in any sentence derivation. A nonterminal is useless if every rule for it

is useless. Otherwise it is useful. In this paper we assume that CFGs have “s” as a

default start symbol and have no epsilon rule and no useless nonterminal.

Finally, let X → α1 : θ1, . . . , X → αn : θn be the set of rules for X in a PCFG with

selection probabilities θ1, . . . , θn where
∑n

i=1 θi = 1. We assume that every rule has a

positive selection probability. If the sum of probabilities of sentences derived from

the start symbol is 1, the PCFG is said to be consistent (Wetherell 1980). We also

assume that PCFGs are consistent.

Now we look at a concrete example of prefix probability computation based on

cyclic explanation graphs. Consider a CFG, G0 = { s → s s , s → a , s → b }
and its PCFG version, PG0 = { s → s s : 0.4, s → a : 0.3, s → b : 0.3 }. Here

“s” is a start symbol in G0 and “a” and “b” are terminals. s → s s : 0.4 says that

the rule s → s s is selected with probability 0.4 when “s” is expanded in a sentence

derivation.

A PRISM program DB0 in Figure 1 is a prefix parser for PG0. It is a slight

modification of a standard top-down CFG parser and parses prefixes accepted by

G0 such as “a” (as list [a]). The only difference is that it can have pseudo success

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

Infinite probability computation by cyclic explanation graphs 917

values(s,[[s,s],[a],[b]]).

:- set_sw(s,[0.4,0.3,0.3]).

pre_pcfg(L):- pre_pcfg([s],L,[]). --(1) % L is a prefix

pre_pcfg([A|R],L0,L2):- --(2) % L0 is ground when called

(values(A,_)-> msw(A,RHS), --(3) % if A is a nonterminal

pre_pcfg(RHS,L0,L1) --(4) % select rule A->RHS

; L0=[A|L1]), --(5) % else consume A in L0

(L1=[] -> L2=[] --(6) % (pseudo) success

; pre_pcfg(R,L1,L2)). --(7) % recursion

pre_pcfg([],L1,L1). --(8) % termination

Fig. 1. Prefix PCFG parser DB 0.

at line (6), i.e. it immediately terminates with success as soon as the input prefix is

consumed even when there remain some nonterminals in R at line (2).15

A values/2 declaration values(s,[[s,s],[a],[b]]) in the program introduces

three msw atoms: msw(s,[s,s]), msw(s,[a]) and msw(s,[b]). The next command

:- set sw(s,[0.4,0.3,0.3]) sets θs→ss = PDB0
(msw(s, [s, s])) = 0.4, θs→a =

PDB0
(msw(s, [a])) = 0.3 and θs→b = PDB0

(msw(s, [b])) = 0.3 respectively when the

program is loaded. Thus, PG0 is encoded. We point out that DB0 is general,

applicable to any PCFG just by replacing the values/2 declaration and set sw

command with appropriate ones that encode a given PCFG.

3.2 Tracing linear-tabling

Once a program DB and a top-goal G are given for which the probability is

computed, the next task is to construct an explanation graph for G by searching for

all proofs while tabling answers and recording their defining clauses in the external

memory area. Using a simple example, we illustrate how tabled search for all proofs

is done by linear-tabling with the lazy strategy in B-Prolog (Zhou et al. 2008), which

has been a standard platform for PRISM.

One of the unique features of linear-tabling is to iterate exhaustive tabled search

to obtain all answers when there are looping subgoals.16 More precisely, if a call

:-(A,...) on a path of an SLD-tree has a sub-path containing sub-derivation

:-A ⇒ · · · ⇒ :-(A’,...) such that A and A’ are variants, A and A’ are called

interdependent looping subgoals. Interdependent looping subgoals constitute a cluster.

The first looping subgoal A in the cluster that appears in the SLD-tree is said to be

a top-most looping subgoal (Zhou et al. 2008).

Although a looping subgoal causes an infinite loop, it can be proved by non-

looping paths in the SLD-tree. We preserve answers from such non-looping paths

15 This is justifiable because as we assume that every nonterminal is useful, we can prove that every
nonterminal derives a terminal string with probability 1.

16 In this section, the terms “subgoal” and “goal” are used synonymously.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

918 T. Sato and P. Meyer

in the table and make them available as tabled answers when looping subgoals are

called. Linear-tabling with the lazy strategy tries to collect all answers for looping

subgoals by iterating rounds for a top-most looping subgoal. In a round exhaustive

search by backtracking is performed to generate all proofs of the top-most looping

subgoal while consuming tabled answers and adding newly found answers to the

table. The lazy strategy does not allow other subgoals outside the looping path

to consume tabled answers of the top-most looping subgoal until no more round

generates new answers for the looping subgoals (Zhou et al. 2008).

Figure 2 sketches tabled search for all proofs of a top-goal G0 = pre pcfg([a])

w.r.t. DB0 while tabling pre pcfg/1 and pre pcfg/3. Here (1),(2),... correspond

to line numbers in Figure 1.17 Although Figure 2 is self-explanatory, we add some

comments. The top-call to G0 = pre_pcfg([a]) leads to a call to a subgoal

TG = pre_pcfg([s,s],[a],L1) via a call to pre_pcfg([s],[a],[]) in which

values(s,) is tested true and msw(s,RHS1) is executed at line (3). Since TG is a

top-most looping subgoal, exhaustive tabled search is iterated on TG until no new

answer is obtained.

In the first round, a proof by a branch in the SLD-tree specified by RHS2 =

[a] succeeds with L1 = [] and gives a tabled answer pre pcfg([s,s],[a],[])

for which a defining clause is recorded in the external memory area. In the

second round a branch specified by RHS2 = [s,s] succeeds as well using the

previously tabled answer, giving a new defining clause pre pcfg([s,s],[a],[])

<= pre pcfg([s,s],[a],[]) & msw(s,[s,s]). The third round generates no new

answer and the call to TG terminates successfully. TG now exports its tabled answer

pre_pcfg([s,s],[a],[]) which leads to the success of the top-call.

After all proof search is done, PRISM constructs an explanation graph expl (G0)

by tracing tabled answers starting from G0 while collecting defining clauses recorded

in the external memory area. When PRISM encounters looping subgoals in the

body of a defining clause, it looks at the PRISM-flag error on cycle and if the

value is “off,” these goals are treated as succeeded normally and as a result a cyclic

explanation graph is obtained.

3.3 Computing prefix probability: an example

In this section, using the continuing example, we describe probability computation

in cyclic explanation graphs.

An explanation graph for G0 = pre_pcfg([a]) is obtained by executing a com-

mand ?- probf(pre_pcfg([a]))18 w.r.t. DB0. The command initiates exhaustive

tabled search described in Section 3.2 and generates an explanation graph shown in

Figure 3 consisting of defining clauses in Figure 2.

17 Recall that as we explained in Section 2.1, the program we actually use in the tabled search is a
translated program DB ′

0, but as it behaves exactly the same way as the original one except that
defining clauses are recorded in the external memory area, we explain the tabled search in terms of
DB0 for intuitiveness and conciseness.

18 probf/1 is a built-in predicate in PRISM and probf(G) displays the explanation graph of G.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

Infinite probability computation by cyclic explanation graphs 919

:- pre_pcfg([a])

:- pre_pcfg([s],[a],[])

:- msw(s,RHS1),pre_pcfg(RHS1,[a],L1)..

(first round)

:- pre_pcfg([s,s],[a],L1).. % RHS1=[s,s], top-most looping subgoal TG

:- msw(s,RHS2),pre_pcfg(RHS2,[a],L1)..

:- pre_pcfg([s,s],[a],L1)..

% RHS2=[s,s], fails at (4) as no anwser available in the table

% for :- pre_pcfg([s,s],[a],L1) yet.

:- pre_pcfg([a],[a],L1)..

% RHS2=[a], executes (5) and succeeds at (6) with L1=[], resulting

% in tabled answers pre_pcfg([a],[a],[]) and pre_pcfg([s,s],[a],[])

% with defining clauses

% pre_pcfg([a],[a],[]) and

% pre_pcfg([s,s],[a],[]) <= pre_pcfg([a],[a],[]) & msw(s,[a])

:- pre_pcfg([b],[a],L1)..

% RHS2=[b], fails at (5)

(second round)

:- pre_pcfg([s,s],[a],L1).. % RHS1=[s,s], top-most looping subgoal TG

:- msw(s,RHS2),pre_pcfg(RHS2,[a],L1)..

:- pre_pcfg([s,s],[a],L1)..

% RHS2=[s,s], this time can consume the tabled answer

% pre_pcfg([s,s],[a],[]) in the previous round and

% succeeds with L1=[], giving pseudo success at (6) and

% a defining clause

% pre_pcfg([s,s],[a],[]) <= pre_pcfg([s,s],[a],[]) & msw(s,[s,s])

% no further answer generated

:- pre_pcfg([a],[a],L1).. % RHS2=[a], succeeds with L1=[]

:- pre_pcfg([b],[a],L1).. % RHS2=[b], fails at (5)

(third round)

:- pre_pcfg([s,s],[a],L1)..

% yields no new answer, so :- pre_pcfg([s,s],[a],L1)

% is completely evaluated with one answer pre_pcfg([s,s],[a],[])

% which results in the success of :- pre_pcfg([s],[a],[])

% giving a defining clause

% pre_pcfg([s],[a],[]) <= pre_pcfg([s,s],[a],[]) & msw(s,[s,s])

:- pre_pcfg([a],[a],L1)..

% RHS1=[a], succeeds with L1=[], results in the success of

% :- pre_pcfg([s],[a],[]) giving a defining clause

% pre_pcfg([s],[a],[]) <= pre_pcfg([a],[a],[]) & msw(s,[a])

:- pre_pcfg([b],[a],L1).. % RHS1=[b], fails at (5)

...

Fig. 2. A sketch of SLD-tree(s) for :- pre pcfg([a]).

As can be seen, the top-most looping subgoal pre pcfg([s,s],[a],[]) calls

itself. We convert the cyclic explanation graph in Figure 3 to the corresponding set

of probability equations shown in Figure 4. Here we used abbreviations: θs→ss =

PDB0
(msw(s, [s, s])) and θs→a = PDB0

(msw(s, [a])).

Although we know that the set of probability equations in Figure 4 has a solution

(see Theorem 1), we do not know their actual values. To know their actual values,

we need to compute them by solving the equations. Fortunately, equations are linear

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

920 T. Sato and P. Meyer

pre_pcfg([a]) <=> pre_pcfg([s],[a],[])

pre_pcfg([s],[a],[]) <=>

pre_pcfg([s,s],[a],[]) & msw(s,[s,s]) v pre_pcfg([a],[a],[]) & msw(s,[a])

pre_pcfg([s,s],[a],[]) <=>

pre_pcfg([a],[a],[]) & msw(s,[a]) v pre_pcfg([s,s],[a],[]) & msw(s,[s,s])

pre_pcfg([a],[a],[])

Fig. 3. Explanation graph for prefix “a”.

P(pre pcfg([a])) = X = Y

P(pre pcfg([s], [a], [])) = Y = Z · θs→ss + W · θs→a

P(pre pcfg([s, s], [a], [])) = Z = W · θs→a + Z · θs→ss

P(pre pcfg([a], [a], [])) = W = 1

Fig. 4. Probability equations for prefix “a”.

in the P-variables X, Y, Z and W and easily solvable. By substituting θs→ss = 0.4 and

θs→a = 0.3 for the equations and solving them, we obtain X = Y = Z = 0.5, and W =

119 respectively. Hence, the prefix probability of “a”, P (pre pcfg([a])), is 0.5. Note

that this prefix probability is greater than the probability of “a” as a sentence which

is 0.3. This is because the prefix probability of “a” is the sum of the probability of

sentence “a” and the probabilities of infinitely many sentences extending “a”.

By looking at the set of probability equations in Figure 4 more closely, we

can understand the way our approach computes prefix probability in PCFGs. For

example, consider Z = P (pre pcfg([s, s], [a], [])) and the equation Z = W · θs→a + Z ·
θs→ss. We can expand the solution Z into an infinite series:

Z=
1

1 − θs→ss

W · θs→a = (1 + θs→ss + θ2
s→ss + · · ·)W · θs→a

It is easy to see that this series represents the probability of infinitely many leftmost

derivations of prefix “a” from nonterminals “s s” by partitioning the derivations

based on the number of applications of rule s → s s to derive “a”, i.e. 1 for no

application (s s⇒s→a a s), θs→ss for one (s s⇒s→ss s s s ⇒s→a a s s) and so on.20

3.4 Properties of explanation graphs generated by a prefix parser

We here examine properties of cyclic explanation graphs. Let PG be a PCFG

and G’ its underlying CFG, i.e. the CFG obtained by removing probabilities from

PG. Throughout this section we use DBPG for a prefix parser for PG obtained by

replacing the values/2 declaration in DB0 in Figure 1 with an appropriate set of

19 W = 1 because pre pcfg([a],[a],[]) is logically proved without involving msws.
20 Here we use α⇒β (resp. α

∗⇒ β) to indicate β is derived from α by one step derivation (resp. zero or
more steps derivation) using CFG rules. Also, recall here that it is assumed that PCFGs are consistent.
So the sum of probabilities of sentences derived from “s” is 1. Consequently, for example, we may
safely ignore s in “a s” when computing the probability of prefix “a” derived from “a s”.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

Infinite probability computation by cyclic explanation graphs 921

values/2 declarations encoding PG. In what follows, we first prove a necessary and

sufficient condition under which a prefix parser DBPG generates cyclic explanation

graphs. We then prove that DBPG always generates a system of linear equations for

prefix probabilities. Finally we prove that the linear system is solvable by matrix

operation under our assumptions on PCFGs.

Theorem 2

Let G� = pre pcfg(�) be a goal for a prefix � = [w1, . . . , wN] in G’ and expl (G�)

an explanation graph for G� generated by DBPG. Suppose there is no useless

nonterminal in G’. Then there exists a cyclic explanation graph expl (G�) if-and-

only-if the left-corner relation of G’ is cyclic.

Proof

Suppose expl (G�) is cyclic. Then some defined goal pre pcfg([a|β],�0,�2) with

a nonterminal “a” must have itself as a descendant in expl (G�), where �0 and �2

are sublists of �. So an SLD-derivation exists from :-pre pcfg([a|β],�0,L2),K

to its descendant :-pre pcfg([a|β],�0,L2’),K’ in which the list �0 is preserved.

Consequently, there is a corresponding leftmost derivation s
∗⇒ aδ

∗⇒ aδ′ by G’, the

underlying CFG of PG. So the left-corner relation is cyclic.

Conversely, suppose the left-corner relation of G’ is cyclic. Then there is a

nonterminal “a” such that a →L a. As there is no useless nonterminal by our

assumption, there is a leftmost derivation starting from “s” such that s
∗⇒ γaδ

∗⇒
γaδ′ ∗⇒ w1 · · ·wN for some sentence w1, . . . , wN . In what follows, for simplicity we

assume that γ is empty (but the generalization is straightforward). Let �0 = w1, . . . , wj

(j � N) be a prefix derived from a whose partial parse tree21 has a as the root and

no a occurs below the root a. Then it is easy to see that the tabled search for all

proofs of G�0
generates expl (G�0

) containing a goal pre pcfg([a|β],�0,[]) which

is an ancestor of itself. So expl (G�0
) is cyclic. �

Let expl (G) be an explanation graph for G�. We introduce an equivalence relation

A ≡ B over defined goals appearing in expl (G): A ≡ B if-and-only-if A = B or

A is an ancestor of B and vice versa. We partition the set of defined goals into

equivalence classes [A]≡. Each [A]≡ is called a strongly connected component (SCC).

We say that a defining formula H ⇔ α1 ∨ · · · ∨ αM is linear if there is no αi =

C1 ∧ · · · ∧ Cm ∧ msw1 ∧ · · · ∧ mswn (1 � i � h, 0 � m, n) that has two defined goals, Cj

and Ck (j �= k), belonging to the same SCC. Also, we say expl (G) is linear if every

defining formula in expl (G) is linear.

Lemma 3

No two defined goals in the body of a defining formula in expl (G�) belong to the

same SCC.

Proof

Let H ⇔ α1 ∨ · · · ∨ αM be a defining formula in expl (G�). Suppose some αi contains

two defined goals belonging to the same SCC. Looking at DB0 in Figure 1, we know

21 A partial parse tree is an incomplete parse tree whose leaves may contain nonterminals.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

922 T. Sato and P. Meyer

that the only possibility is such that H ⇔ α1 ∨ · · · ∨ αM is a ground instantiation of

the first (compound) clause about pre pcfg/3:

pre pcfg([a|β],�0,�2):-

msw(a,α),pre pcfg(α,�0,�1),pre pcfg(β,�1,�2) (2)

and the two defined goals, pre pcfg(α,�0,�1) and pre pcfg(β,�1,�2), are in the

same SCC. However, since pre pcfg(α,�0,�1) is a proved goal, �1 is shorter than �0.

On the other hand, since pre pcfg(β,�1,�2) is an ancestor of pre pcfg(α,�0,�1)

in expl (G�) because they belong to the same SCC by assumption, �0 is identical to

or a part of �1, and hence �0 is equal to or shorter than �1. Contradiction. Therefore,

there is no such defining formula. Hence, expl (G�) is linear. �

Theorem 3

Let expl (G�) be an explanation graph for a prefix � parsed by DBPG. expl (G�) is

linear.

Proof

Immediate from Lemma 3. �

We next introduce a partial ordering [A]≡ � [B]≡ over SCCs by [A]≡ � [B]≡
if-and-only-if A is an ancestor of B but not vice versa in expl (G). We then extend this

partial ordering to a total ordering [A]≡ � [B]≡ over SCCs. Likewise, we partition

P-variables by the equivalence relation: P (A)≡P (B) if-and-only-if [A]≡ = [B]≡.

We denote by [P (A)]≡ the equivalence class of P-variables corresponding to [A]≡.

By construction [P (A)]≡’s are totally ordered isomorphically to SCCs; [P (A)]≡ �
[P (B)]≡ if-and-only-if [A]≡ � [B]≡. In the following we treat SCCs and P-variables

as isomorphically stratified by this total ordering. We use eq([P (A)]≡) to stand for

the union of sets of probability equations for defined goals in [A]≡. Notice that in

the case of PCFGs, eq([P (A)]≡) is a system of linear equations by Theorem 3 if

we consider P-variables in the lower strata as constants. Hence, eq(G�) is solvable

inductively from lower strata to upper strata.

Now we show that eq([P (A)]≡) is always solvable by matrix operation under our

assumptions on PCFGs. Let “a” be a nonterminal in the underlying CFG G’ and

A be a defined goal in expl (G�). Write A = pre pcfg([a|β],�0,�2). Since A is

a proved goal, A successfully calls some ground goals Bj = pre pcfg(αj,�0,�1j)

and Cj = pre pcfg(β,�1j,�2) in the clause body shown in (2) where a → αj
is a CFG rule in G’. By repeating a similar proof for Lemma 3, we can prove

that the third goal Cj does not belong to [A]≡, the SCC containing A. Thus,

[A]≡ � [pre pcfg(β,�1j,�2)]≡. So only some Bj ’s can possibly belong to [A]≡.

Let P (A1), . . . , P (AK) be an enumeration of P-variables in [P (A)]≡. Introduce a

column vector XA = (P (A1), . . . , P (AK))T . It follows from what we discussed before

that we can write eq([P (A)]≡) as a system of linear equations XA = MXA + YA,

where M is a K × K non-negative matrix and YA is a non-negative vector whose

component is a sum of P-variables in the lower strata multiplied by constants. M is

irreducible because every goal in [A]≡ directly or indirectly calls every goal in [A]≡

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

Infinite probability computation by cyclic explanation graphs 923

with positive probability. YA is non-zero because some Ai must have a proof tree

that only contains defined goals in the lower strata.

Theorem 4

Let PG be a consistent PCFG such that there is no epsilon rule and every production

rule has a positive selection probability. Also, let DBPG be a prefix parser for PG and

expl (G�) be an explanation graph for a prefix �. Suppose eq([P (A)]≡) is a system of

linear equations for a defined goal A in expl (G�). Put [P (A)]≡ = {P (Ai) | 1 � i � K}
and write eq([P (A)]≡) as XA = MXA + YA, where XA = (P (A1), . . . , P (AK))T . It has

a unique solution XA = (I − M)−1YA.

Proof

We prove that I − M has an inverse matrix. To prove it, we assume hereafter that

P-variables in [P (A)]≡ are assigned as their values probabilities from XG
∞, a solution

for eq(G) whose existence is guaranteed by Theorem 1 and hence all equations in

eq([P (A)]≡) are true.

By applying XA = MXA + YA k times repeatedly to itself, we have XA = MkXA +

(Mk−1 + · · · + I)YA for k = 1, 2, . . . Since M, XA and YA are all non-negative, we

have XA � MkXA and XA � (Mk−1 + · · · + I)YA for every k. On the other hand,

since {(Mk−1 + · · · + I)YA}k is a monotonically increasing sequence of non-negative

vectors bounded by XA, it converges and so does {MkXA}k .
Let ρ(M) be the spectral radius of M.22 Suppose ρ(M) > 1. In general, ρ(M) �

‖ Mk ‖
1
k

∞ holds for every k, where ‖ · ‖∞ is the matrix norm induced from the ∞ vector

norm. It follows from ρ(M)k � ‖ Mk ‖∞ that limk→∞ ‖ Mk ‖∞ = +∞. Consequently,

since XA > 0 holds because every proved goal has a positive probability from our

assumption, some element of MkXA goes to +∞, which contradicts the convergence

of {MkXA}k . So ρ(M) � 1.

Suppose now ρ(M) = 1. Then in this case, we note that {Mk−1+···+I
k

}k converges

to a positive matrix (Meyer 2000, Example 8.3.2) and hence (Mk−1 + · · · + I)YA =

(M
k−1+···+I

k
)·kYA diverges as k goes to infinity, which contradicts again the convergence

of {(Mk−1 + · · · + I)YA}k . Therefore, ρ(M) < 1. So (I − M)−1 exists. �

Note that XA = (I − M)−1YA = (I + M + M2 + · · ·)YA. By further analyzing

the matrix M, we understand that multiplying M by YA, for example, corre-

sponds to growing partial parse trees by one step application of production

rules (reduce operation in bottom-up parsing). Hence, P (Ai), a component of XA,

becomes an infinite sum of probabilities and so is the probability of the top-goal

P (pre pcfg(�)).

We sum up our discussion so far and state in Figure 5 a general procedure to

compute probability on cyclic explanation graphs. In the case of PCFGs, DB is the

prefix parser in Figure 1 with appropriate values/2 declarations encoding a given

PCFG and G = pre pcfg(�) is a goal for a prefix �. Under our assumptions on

PCFGs, eq(G) in [Step 2] is guaranteed to be linear by Theorem 3 and [Step 3] is

always possible by Theorem 4.

22 ρ(M)
def
= argmax

i
|λi|, where the λi’s are the eigenvalues of M.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

924 T. Sato and P. Meyer

[Step 1]: Given a program DB and a goal G, construct an explanation graph expl(G).
[Step 2]: Convert expl(G) to a set of probability equations eq(G).
[Step 3]: Solve eq(G) inductively from lower strata by matrix operation and obtain

PDB(G).

Fig. 5. Probability computation on cyclic explanation graphs.

We emphasize that the procedure is general and applicable to arbitrary programs

that generate linear explanation graphs,23 not restricted to those generated by

a prefix PCFG parser. Also, we add that even if eq(G) is nonlinear, it is still

solvable (Theorem 1). This fact is applied to the computation of infix probability for

PCFGs (Nederhof and Satta 2011a), although it is beyond the scope of this paper

and we do not discuss it.

3.5 Prefix probability computation for a real PCFG

Here we apply our approach to real data to show the effectiveness of our approach.

We use the ATR corpus and its PCFG (Uratani et al. 1994).24 The corpus

contains labeled parse trees for 10,995 Japanese sentences whose average length

is about 10. The associated manually developed CFG comprises 861 CFG rules

(168 nonterminals and 446 terminals25) and yields 958 parses/sentences on average.

A PCFG is prepared by assigning probabilities (parameters) to CFG rules and

is encoded as a PRISM program just like the one in Figure 1 with appropriate

values/2 declarations. Using this PCFG, we computed the average probability

of sentence and that of prefix in the ATR corpus for comparison. We randomly

sampled 100 sentences of a given length from the ATR corpus and computed their

average probability. We then deleted their last word and created 100 prefixes for

which we also computed the average probability.

Figure 6 contains results of plotting the (minus) logarithm of average prefix

probability and that of average sentence probability for a length varying from 2

to 22. We used two parameter sets for the PCFG. For Figure 6(a), parameters are

uniform, i.e. if a nonterminal X has n rules {X → αi | 1 � i � n}, each rule is selected

with probability 1/n. For Figure 6(b), parameters are learned from the entire ATR

corpus by the built-in EM algorithm in PRISM.

Seeing these figures we first note that the average prefix probability is always

greater than the average sentence probability at each length in both Figures 6(a)

and (b) as expected, and second that the curves in Figure 6(b) are much smoother

than the ones in Figure 6(a) and shifted downward considerably (the y-axis is

scaled with minus logarithm) due to the effect of parameters learned by maximum

23 Currently the PRISM system returns an error message when eq(G) is not linear.
24 All experiments in this paper are done on a single machine with Core i7 Quad 2.67 GHz ×2 CPU

and 72-GB RAM running OpenSUSE 11.2.
25 In this paper, we use part-of-speech (POS) tag sequences derived from the sentences instead of

sentences themselves. So terminals in the grammar are POS tags.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

Infinite probability computation by cyclic explanation graphs 925

−70

−60

−50

−40

−30

−20

−10

 0
 2 4 6 8 10 12 14 16 18 20 22

Lo
g

av
g.

 p
ro

ba
bi

lit
y

Sentence length

Prefix
Sentence

−70

−60

−50

−40

−30

−20

−10

 0
 2 4 6 8 10 12 14 16 18 20 22

Lo
g

av
g.

 p
ro

ba
bi

lit
y

Sentence length

Prefix
Sentence

(a) Uniform parameters (b) Learned parameters

Fig. 6. (Colour online) Prefix and sentence probability for the ATR corpus.

likelihood estimation. It is also observed that the difference between the two curves

in Figure 6(b) is smaller than the one in Figure 6(a), which is statistically confirmed

by t-test at 0.05 significance level.26

One potential explanation for this phenomenon is as follows. Let uw be a sentence

in the ATR corpus, where w is the last word. The difference between the probability of

prefix u and the probability of sentence uw is the sum of infinitely many probabilities

of the sentences D extending u except uw. Since most members of D do not appear

in the corpus, their total probability computed from the parameters learned from the

corpus by maximum likelihood estimation considerably decreases compared with

the case of using uniform parameters where any one of D receives non-negligible

probability mass. Since this happens to every prefix used in the experiment, we

see the narrowing difference between the average sentence probability curve in

Figure 6(a) and the average prefix probability curve in Figure 6(b).

One of the usage of prefix probability computation is to predict the most likely

next word of a prefix u. Let Pcfg(·) be a distribution over sentences by a PCFG.

Then the conditional prefix probability Pprefix(w | u) of a word w given u is computed

as Pprefix(w | u) def
=

Pprefix(uw)

Pprefix(u)
, where Pprefix(u) =

∑
uv:sentence

Pcfg(uv).

Since we found the prefix probability computation is computationally burden-

some for long prefixes, we tested short prefixes. For example, for a prefix u =

[t interj hesit, t interj pre, t daimeisi domo] of length three and a word w =

t myoji first, we calculated Pprefix(w | u), assuming equiprobable rule selection, as

Pprefix(w | u) = 0.00103. Thus, by computing Pprefix(w | u) for all possible ws, we can

predict the most likely next word of a given prefix as argmax
w

Pprefix(w | u).

26 In Figure 6(a), the average difference between the two curves is 6.57 whereas in Figure 6(b) the average
difference is 3.59.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

926 T. Sato and P. Meyer

values(lc(s,s),[rule(s,[s,s])]). values(lc(s,a),[rule(s,[a])]).

values(lc(s,b),[rule(s,[b])]). values(first(s),[a,b]).

values(att(s),[att,pro]).

pre_plcg(L):- g_call([s],L,[]). % L is a prefix

g_call([],L,L).

g_call([G|R],[Wd|L],L2):-

(G = Wd -> L1 = L % shift operation

; msw(first(G),Wd),lc_call(G,Wd,L,L1)),

(L1 == [] -> L2 = [] % (pseudo) success

; g_call(R,L1,L2)).

lc_call(G,B,L,L2):- % B-tree is completed

msw(lc(G,B),rule(A,[B|RHS2])),

(G == A -> true ; values(lc(G,A),_)),

(L == [] -> L1 = [] % (pseudo) success

; g_call(RHS2,L,L1)),

(G == A -> att_or_pro(A,Op), % attach or project

(Op == att -> L2 = L1 ; lc_call(G,A,L1,L2))

; lc_call(G,A,L1,L2)).

att_or_pro(A,Op):- (values(lc(A,A),_) -> msw(att(A),Op) ; Op=att).

Fig. 7. Prefix PLCG parser DB 1.

4 Prefix probability computation for PLCGs

In this section, we deal with PLCGs and their prefix probability computation to test

the generality of our approach.

PLCGs are a probabilistic version of left-corner grammars (LCGs), which in turn

are a generative version of left-corner (LC) parsing (Manning 1997; Roark and

Johnson 1999; Van Uytsel et al. 2001) that performs bottom-up parsing using three

parsing operations, i.e. shift, attach and project. Although PLCGs and PCFGs may

share a common CFG, they assign probability differently. PCFGs assign probability

to the expansion of nonterminals by CFG rules in top-down parsing whereas PLCGs

assign probability to the three operations in bottom-up parsing. As a result they

define different classes of distribution.

Since prefix probability computation for PLCGs does not seem to be attempted

before, we detail how a prefix PLCG parser DB1 in Figure 7 works. It is a serial parser

and specialized for a PLCG whose underlying CFG is G0 = { s→ s s, s→ a, s→b},
the same as the one for DB0 in Section 3.1. In the program values(lc(g,b),r)

introduces msw atoms to choose a CFG rule g → bβ from r, where g and

b are in the left-corner relation of G0. So values(lc(s,s),[rule(s,[s,s])])

introduces just one msw atom msw(lc(s,s),[rule(s,[s,s])]).27 On the other

hand, values(first(s),[a,b]) that encodes the first set of “s” in G0
28 introduces

27 Consequently, executing msw(lc(s,s),X) returns X = rule(s, [s, s]) with probability 1.
28 The first set of a nonterminal A is the set of terminals in the left-corner relation with A.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

Infinite probability computation by cyclic explanation graphs 927

pre_plcg([a,b]) <=> g_call([s],[a,b],[])

g_call([s],[a,b],[]) <=> lc_call(s,a,[b],[]) & msw(first(s),a)

lc_call(s,a,[b],[])

<=> g_call([],[b],[b]) & att_or_pro(s,pro)

& lc_call(s,s,[b],[]) & msw(lc(s,a),rule(s,[a]))

g_call([],[b],[b])

lc_call(s,s,[b],[])

<=> g_call([s],[b],[]) & att_or_pro(s,att) --(1)

& msw(lc(s,s),rule(s,[s,s]))

v g_call([s],[b],[]) & att_or_pro(s,pro) --(2)

& lc_call(s,s,[],[]) & msw(lc(s,s),rule(s,[s,s]))

g_call([s],[b],[]) <=> lc_call(s,b,[],[]) & msw(first(s),b) --(3)

lc_call(s,b,[],[])

<=> att_or_pro(s,att) & msw(lc(s,b),rule(s,[b]))

v att_or_pro(s,pro) & lc_call(s,s,[],[])

& msw(lc(s,b),rule(s,[b]))

lc_call(s,s,[],[])

<=> att_or_pro(s,att) & msw(lc(s,s),rule(s,[s,s]))

v att_or_pro(s,pro) & lc_call(s,s,[],[])

& msw(lc(s,s),rule(s,[s,s]))

att_or_pro(s,att) <=> msw(att(s),att)

att_or_pro(s,pro) <=> msw(att(s),pro)

Fig. 8. Explanation graph for pre plcg([a,b]).

{msw(first(s),a), msw(first(s),b)}. Similarly, values(att(s),[att,pro]) in-

troduces {msw(att(s),att), msw(att(s),pro)} to make a probabilistic choice

between attach and project. All probabilistic choices are equiprobable by default.

Suppose pre plcg(�) is given as a top-goal, where � is a prefix. To parse �, the

parser repeatedly performs shift by g call/3 and attach and project by lc call/4

just as in LC parsing. The role of g call(α,�,L2) is to construct a partial parse

tree whose leaves are a substring �-L2 (as d-list) spanned by α while instantiating

L2 to a sublist of �. Let G be the left-most symbol of α and Wd the left-most word

of �. When G is a terminal and coincides with Wd, shift is performed and Wd is read

from � as an initial partial parse tree consisting of Wd. Otherwise Wd is considered

as a word randomly selected from the first set of G using msw(first(G),Wd) as an

initial partial parse tree.

A call to lc call(G,B,L,L2) occurs when a B-tree (partial parse tree whose root

node is B) is constructed and G is in the left-corner relation with B. It grows the

B-tree probabilistically either by attach or by project using a CFG rule of the form

A→Bβ until a G-tree is constructed while consuming words in L, leaving L2. When

the input is a prefix, the parser returns with pseudo success as soon as the prefix is

consumed as indicated by the comment “(pseudo) success.”

When pre plcg([a,b]) is given as a top-goal, for example, a linear explanation

graph shown in Figure 8 is constructed in which lc call(s,s,[],[]) calls itself

as a top-most looping subgoal. Now we analyze Figure 8 to confirm that our

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

928 T. Sato and P. Meyer

P(pre plcg([a, b])) = X1 = X2

P(g call([s], [a, b], [])) = X2 = X3 · 0.5
P(lc call(s, a, [b], [])) = X3 = X4 · X10 · X5 · 1

P(g call([], [b], [b])) = X4 = 1
P(lc call(s, s, [b], [])) = X5 = X6 · X9 · 1 + X6 · X10 · X8 · 1

P(g call([s], [b], [])) = X6 = X7 · 0.5
P(lc call(s, b, [], [])) = X7 = X9 · 1 + X10 · X8 · 1
P(lc call(s, s, [], [])) = X8 = X9 · 1 + X10 · X8 · 1

P(att or pro(s, att)) = X9 = 0.5
P(att or pro(s, pro)) = X10 = 0.5

Fig. 9. Probability equations for prefix “ab”.

PLCG program correctly recognizes all partial parse trees for prefix “ab”. Figure 8

compactly represents a form of propositional PRISM program of all computation

paths (sequences of probabilistic choices made by msw atoms) that generate prefix

“ab”. Each path corresponds to a partial parse tree for “ab”. We write partial parse

trees like s(s(s(a),s(b)),s). We denote by Ti (i = 1, 2, 3) a set of partial parse

trees generated by computation paths corresponding to line (i) in Figure 8.

Then observe, for example, that computation paths going through (1) yield

partial parse trees by combining ones generated by g call([s],[b],[]) and ones

obtained by s-trees grown by attach operation using rule s → s s. This observation

leads to an equation T1 = s(s(a),T3), where s(s(a),T3) stands for the set

{s(s(a),τ) | τ ∈ T3}. In this way we obtain three equations below.

Eq 1: T1 = s(s(a),T3)

Eq 2: T2 = s(T1, s) ∪ s(T2, s)

Eq 3: T3 = {s(b)} ∪ s(T3, s)

By solving them we know that T3 = {
m︷ ︸︸ ︷

s(· · · s(s(b),
m︷ ︸︸ ︷

s) · · · s) | m � 0} and so on.

Also, recall that all computation paths for “ab” have to prove lc call(s,s,[b],[])

and hence have to go through (1) or (2) in Figure 8. Consequently, the set of

partial parse trees for prefix “ab” generated by DB1 is represented as T1 ∪ T2,

where T1 ∪T2 = {
n︷ ︸︸ ︷

s(· · · s(s(s(a),
m︷ ︸︸ ︷

s(· · · s(s(b),
m︷ ︸︸ ︷

s) · · · s))

n︷ ︸︸ ︷
s) · · · s) | m � 0, n � 0}, which

certainly represents all partial parse trees for prefix “ab”.

The probability equations derived from Figure 8 are shown in Figure 9. We have

P (g call([],[b],[b])) = 1 as g call([],[b],[b]) is logically proved. Suppose

the probabilities of msw(att(s),att), msw(att(s),pro), msw(first(s),a) and

msw(first(s),b) are all set to 0.5. Then the solution becomes X1 = X2 = 0.125,

X3 = 0.25, X4 = 1, X5 = X6 = 0.5, X7 = X8 = 1 and X9 = X10 = 0.5. So the

probability of pre plcg([a,b]) is computed as X1 = 0.125.

Finally, we test prefix probability computation for PLCGs with real data. We

prepared a prefix PLCG parser like the one in Figure 7 adapted for the ATR

corpus and conducted prefix probability computation. Since the prefix PLCG parser

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

Infinite probability computation by cyclic explanation graphs 929

S → Pl : 0.1 | St : 0.4 | Cl : 0.3 | Mo : 0.2
Pl → play : 0.5 | play Pl : 0.3 | Cl : 0.1 | Mo : 0.1
St → study : 0.1 | study St : 0.3 | Pl St : 0.2 | Cl St : 0.4
Cl → clean : 0.4 | clean Cl : 0.5 | Pl Cl : 0.1
Mo → mow : 0.3 | mow Mo : 0.1 | Pl Mo : 0.4 | Cl Mo : 0.2

Fig. 10. PCFG for plan recognition.

is much larger than the corresponding prefix PCFG parser, containing over 20,000

values/2 declarations, learning time and computation time are expected to be much

longer than the PCFG case. Indeed, we measured CPU time for the PCFG and the

PLCG respectively used to compute the probabilities of 100 prefixes created from

100 sentences in the ATR corpus by deleting their last word. The PCFG case took

12.3 ms/prefix whereas the PLCG case took 5.9 s/prefix, 48 times slower than the

PCFG case. We also computed conditional probability Pprefix(w | u) for PLCG pre-

fixes. For a pair of the prefix u = [t interj hesit, t interj pre, t daimeisi domo]

and the word w = t myoji first used in Section 3, for example, Pprefix(w | u)

is computed as 0.00032, which is considerably smaller compared with 0.00103

computed for the PCFG case.

5 Plan recognition

Prefix probability computation has practical applications. In this section we apply

it to plan recognition using artificial data. Plan recognition is a task of inferring

a plan (intension) from a sequence of observed actions and has been pursued,

for example, in robotics to interpret video scene data and sensor data. One way

to perform plan recognition is to use a formal grammar to describe the relation

between plans and action sequences by equating sentences with action sequences

and nonterminals with plans. However, to cope with noisy observations, it is natural

to use probabilistic grammars such as PCFGs (Bobick and Ivanov 1998; Amft et al.

2007; Lymberopoulos et al. 2007; Geib and Goldman 2011; Pomponio et al. 2011).

Consider a simple PCFG in Figure 10 where S is a start symbol. It describes

how four plans, i.e. { Pl(playing), St(studying), Cl(cleaning), Mo(mowing) } generate

sequences of observable actions, i.e. { play, study, clean, mow }.
This PCFG generates action sequences such as “play clean”, “play study study”

and so on. Note that although “play clean” is a sentence derivable from Pl and

Cl, it is also derivable from Cl and Mo as a prefix. Our task is to predict, given

such a sequence x of actions which may be a prefix, the most likely plan y∗ =

argmax
y

Pprefix(S → y, y
∗⇒ x), where y ranges over { Pl, St, Cl, Mo } as a recognized

plan for x. For example, for x = “play clean”, y∗ = St is the recognized plan giving

the highest probability 0.0272 for Pprefix(S → y, y
∗⇒ x).

To evaluate the accuracy of our prediction method, we take a random sample of

100 prefixes (action sequences) together with their plans and evaluate the accuracy

of prediction by predicting the plan for each sampled action sequence. Prefixes are

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

930 T. Sato and P. Meyer

 60

 65

 70

 75

 80

 85

 90

 95

 100

 2 4 6 8 10 12 14

A
vg

. a
cc

ur
ac

y

Minimum length

Prefix observation
Full observation

Fig. 11. (Colour online) Plan recognition.

sampled so that they are not shorter than a threshold, referred to hereafter as

“minlen” (minimum length). Finally, we compute the average accuracy of prediction

over 10 runs. We tested two cases. One is full observation, i.e. prefixes are restricted

to sentences. The other case is no restriction. Figure 11 shows the average accuracy

w.r.t. minlen varying from 1 to 15. The blue curve corresponds to full observation

(sentence) whereas the red one corresponds to prefix observation.29

We first notice that full observation always gives a better accuracy than prefix

observation. This may be attributed to the fact that ambiguity measured by the

average number of possible plans for an action sequence, termed “amb” here, in

the case of full observation is less than the amb in the case of prefix observation

at all minlen values (1 to 15). We also observe that the average accuracy (almost)

monotonically increases as minlen increases in both cases. This is intuitively obvious

because longer action sequences should give more clue to prediction and reduce the

ambiguity about possible plans. Actually amb monotonically decreases w.r.t. minlen.

On the other hand, however, this explanation conflicts with the initial drop in both

curves w.r.t minlen, so we still need a coherent explanation.

6 Reachability probability

Computing probability through cyclic explanation graphs has applications beyond

prefix probability computation. In this section, inspired by Gorlin et al. (2012),

we take up the problem of computing reachability probability in discrete Markov

chains. Figure 12 illustrates an example of Markov chain (the left-hand side (a))

29 We measured the CPU time for plan recognition with randomly generated 100 action sequences whose
average length is 4.18 (with std. 3.02). We obtained 1.79 ms/action sequence as the average time for
plan recognition.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

Infinite probability computation by cyclic explanation graphs 931

S3

S2

S4

S1

S0

0.5

0.3 0.2

0.1 0.5

1

0.4

(a) (b)

Fig. 12. (a) Markov chain, and (b) a program.

and its PRISM program (the right-hand side (b)), both borrowed from Gorlin et al.

(2012) with a slight modification of the program.

A state transition in a Markov chain is made by a probabilistic choice of next

state. Since the choice is exclusive and independent at each state, PRISM can

simulate Markov chains, except when there is a self-loop, or more generally there

is a set of state transitions forming a loop. In this case probability computation

requires an infinite sum of probabilities which PRISM has been unable to deal with.

However, by applying the general procedure described in Figure 5, we are now able to

compute an infinite sum of probabilities, in particular for the reachability probability

problem. For example, the reachable probability from s0 to s3 is represented as

P(reach(s0,s3)) and is computed by the program as 0.6.

In the following we tackle a more complicated problem and verify the Syn-

chronous Leader Election Protocol as described in a web page30 for the PRISM

model checker (Kwiatkowska et al. 2011) as one of the case studies. The protocol

probabilistically elects a leader among processors distributed over a ring network

communicating by synchronous message passing. It has two parameters, N, the

number of processors, and K, the number of candidate ids used for election. Our

task is to show that a leader will be elected with probability one. We use a PRISM

program faithfully translated from the one shown in the web page with one exception.

That is, we separate probabilistic transition from deterministic transition and only

the predicate representing the former is tabled using PRISM’s p table declaration.31

Figure 13 shows CPU time taken for verification, varying N and K. As we see,

the plotted curves for N = 5 and N = 6 look alike and the CPU time is almost

30 http://www.prismmodelchecker.org/casestudies/synchronous leader.php
31 :- p table q/n implies that the probabilistic predicate q/n is tabled and all other probabilistic

predicates not declared by p table will not be tabled. By default, all probabilistic predicates are
tabled in PRISM, which sometimes makes explanation graphs unnecessarily large in view of probability
computation due to the introduction of defining clauses without msws in the body. Selective tabling
by p table declarations prevents this.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

932 T. Sato and P. Meyer

 0.01

 0.1

 1

 10

 2 3 4 5 6

T
im

e
(s

)

K

N = 5
N = 6

Fig. 13. (Colour online) CPU time for checking the Synchronous Leader Election Protocol.

exponential in K. We note that they are similar in shape to the ones (PIP-full)

obtained by Gorlin et al. (2012) who conducted the same experiment to compare

their approach with the PRISM model checker. However, an exact comparison with

our approach would be difficult because of the difference in CPU processors and

more seriously because of the difference in coding.32

7 Related works and future work

Tabling in logic programming has traditionally been used to eliminate redundant

computation and to avoid infinite loop, but the use of loop detected by tabling for

infinite probability computation seems new, although tabling for (finite) probability

computation is well known and implemented in some probabilistic logic program-

ming languages such as PRISM (Sato and Kameya 2001), ProbLog (Mantadelis

and Janssens 2010) and PITA (Riguzzi and Swift 2011). This is probably because

looping goals have long been considered useless despite the fact that they make

sense if probabilities are involved and the loop computes converging probabilities

like prefix probability computation.

Technically, our approach is closely related to Gorlin et al. (2012) in which the

authors proposed probabilistic inference plus (PIP) that computes the probability of

infinitely many explanations, and applied PIP to model checking. In PIP, to compute

the probability of a query Q w.r.t. a probabilistic logic program P, a residual program

is first constructed using XSB Prolog (Swift and Warren 2012) from P and Q. Then it

is converted to a DCG called equation generator that generates possible explanations

for Q as strings, from which a factored explanation diagram (FED) is derived. It is a

compressed representation of the set of (possibly infinitely many) explanations for Q

32 In Gorlin et al. (2012) the authors used a 2.5-GHz processor and encoded the Synchronous Leader
Election Protocol problem via a PCTL model checker whereas we used a 2.67-GHz processor and
directly encoded the problem as a PRISM program.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

Infinite probability computation by cyclic explanation graphs 933

w.r.t. P and further converted to a system of polynomial equations. The probability

of Q is obtained by solving the equations.

The basic idea of PIP is similar to our approach: probability computation by

solving a set of equations derived from a symbolic diagram constructed from a

program and a query. Nonetheless, there are substantial differences between PIP and

our approach. First, PIP uses msw/3 that has three arguments in which the second

argument (trial-id) (Sato and Kameya 2001) is a term (clock) indicating when the

msw is executed in the computing process. To ensure statistically correct treatment

of the second argument for probability computation, PIP requires programs to be

“temporally well-formed” and places three syntactic conditions on the occurrences

of “instance arguments”, i.e. arguments that work as a clock. These conditions look

restrictive but how they affect the class of definable probabilistic models or how they

are related to PRISM programs is unclear and not discussed in Gorlin et al. (2012).

PRISM, on the other hand, uses msw/2 that omits the second argment from msw/3

for computational efficiency and allows arbitrary programs but instead assumes that

every occurrence of msw/2 in a proof for the query is independent (independence

condition) which guarantees the correctness of probability computation in PRISM.

Also, PIP constructs an FED, BDD-like graphical structure representing a set

of explanations via a DCG (equation generator) whereas PRISM constructs an

explanation graph without using a DCG. FEDs are powerful; they enable PIP to

deal with programs that violate the exclusiveness condition required by PRISM while

capturing common patterns in the set of explanations. However, when programs

satisfy the exclusiveness condition (and the independence condition as well) as is

often the case in probabilistic modeling by generative models such as BNs, HMMs,

PCFGs and PLCGs, the construction of FEDs is unnecessary. A simpler structure,

explanation graphs, is enough. As we have demonstrated, the sum of probabilities

of infinitely many explanations can be efficiently computed by cyclic explanation

graphs in such cases.

In addition, although it is not clearly stated in Gorlin et al. (2012), the authors

seem to solve the set of equations by an iterative method described in Etessami

and Yannakakis (2009) that is applicable to nonlinear cases. PRISM contrastingly

assumes the linearity of equations and efficiently solves hierarchally ordered sets of

system of linear equations, corresponding to SCCs, by matrix operation in cubic time

in the number of variables. Considering the fact that nonlinearity occurs even in

the case of PCFGs when we compute infix probability (Nederhof and Satta 2011a),

however, it is an important future work to enhance PRISM’s equation solving ability

for nonlinear cases.

Current tabling in PRISM employs linear tabling in B-Prolog and it is straightfor-

ward to construct cyclic explanation graphs from defining clauses for tabled answers

stored in the memory. Constructing cyclic explanation graphs in other Prolog systems

such as XSB (Swift and Warren 2012) that employ a suspend–resume mechanism

for tabling also seems possible.

Approximate computation of prefix probability seems possible, for example, by

the iterative deepening algorithm used in ProbLog (De Raedt et al. 2007). To develop

such an approximation algorithm remains a future work.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

934 T. Sato and P. Meyer

Prefix probability computation is mostly studied about PCFGs (Jelinek and

Lafferty 1991; Stolcke 1995; Nederhof and Satta 2011a). Jelinek and Lafferty (1991)

proposed a CKY-like algorithm for prefix probability computation in PCFGs in

the Chomsky normal form. Their algorithm does not perform parsing but instead

uses a single monolithic matrix whose dimension is the number of nonterminals

which is constructed from a given PCFG. It runs in O(N3), where N is the length

of an input prefix. Stolcke (1995) applied the Earley-style parsing to compute

prefix probabilities. His algorithm uses a matrix of “probabilistic reflexive, tran-

sitive left-corner relation” computed from a given PCFG, independent of input

sentences, similar to Jelinek and Lafferty (1991). Our approach differs from their

approach, first in that it is general and works for arbitrary PRISM programs,

and second in that it constructs an explanation graph for each input prefix and

probabilities are computed on the basis of the SCCs derived from the explanation

graph.

Nederhof and Satta (2011a) generalized prefix probability computation for PCFGs

to infix probability computation for PCFGs. They also studied prefix probability

computation for a variant of PCFGs (Nederhof and Satta 2011b). They proposed

prefix probability computation for stochastic tree adjoining grammars (Nederhof

et al. 1998). However, prefix probability computation for PLCGs has been unknown

and our example in Section 4 is the first one to our knowledge.

Applying prefix probability computation to plan recognition in Section 5 is not

new but our approach generalizes previous grammar-based approaches (Bobick and

Ivanov 1998; Amft et al. 2007; Lymberopoulos et al. 2007; Geib and Goldman 2011;

Pomponio et al. 2011) in that it allows for incomplete action sequences (prefixes) as

observations. In relation to plan recognition, it is possible to apply prefix probability

computation to predict the most likely action (word) that follows an observed

action sequences (prefix) (Jelinek and Lafferty 1991), though we do not discuss it

here.

We eliminated in this paper one of the restrictive assumptions on PRISM that the

number of explanations for a goal is finite. However, there still remain restrictive

assumptions, the exclusiveness assumption and the independence assumption (Sato

and Kameya 2001). Their elimination by introducing BDDs (De Raedt et al. 2007;

Riguzzi and Swift 2011) or FEDs (Gorlin et al. 2012) remains a future work.

8 Conclusions

We have proposed an innovative use of tabling: infinite probability computa-

tion based on cyclic explanation graphs generated by tabled search in PRISM.

It generalizes prefix probability computation for PCFGs and is applicable to

probabilistic models described by PRISM programs in general and to non-PCFG

probabilistic grammars such as PLCGs in particular as we demonstrated. We applied

our approach to plan recognition and to the reachability probability problem in

probabilistic model checking. We expect that our approach provides a declarative

way of logic-based probabilistic modeling of cyclic relations.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

Infinite probability computation by cyclic explanation graphs 935

References

Amft, O., Kusserow, M. and Troster, G. 2007. Probabilistic parsing of dietary activity

events. In Proceedings of the International Workshop on Wearable and Implantable Body

Sensor Networks, Aachen, Germany, 2007, Springer IFMBE Proceedings, vol. 13, 242–247.

Baker, J. K. 1979. Trainable grammars for speech recognition. In Proceedings of Spring

Conference of the Acoustical Society of America, 547–550.

Bobick, A. and Ivanov, Y. 1998. Action recognition using probabilistic parsing. In Proceedings

of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR’98), 196–202.

De Raedt, L., Kimmig, A. and Toivonen, H. 2007. ProbLog: A probabilistic Prolog and its

application in link discovery. In Proceedings of the 20th International Joint Conference on

Artificial Intelligence (IJCAI’07), 2468–2473.

Etessami, K. and Yannakakis, M. 2009. Recursive Markov chains, stochastic grammars, and

monotone systems of nonlinear equations. Journal of ACM 56, 1.

Geib, C. and Goldman, R. 2011. Reorgnizing plans with loops represented in a lexicalized

grammar. In Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence

(AAAI’11), 958–963.

Gorlin, A., Ramakrishnan, C. and Smolka, S. 2012. Model checking with probabilistic

tabled logic programming. Theory and Practice of Logic Programming (TPLP) 12, 4–5,

681–700.

Hinton, A., Kwiatkowska, M., Norman, G. and Parker, D. 2006. PRISM: A

tool for automatic verification of probabilistic systems. In Proceedings of the 12th

International Conference on Tools and Algorithms for the Construction and Analysis of

Systems (TACAS’06), LNCS, vol. 3920. Springer, New York, 441–444.

Jelinek, F. and Lafferty, J. 1991. Computation of the probability of initial substring

generation by stochastic context-free grammars. Computational Linguistics 17, 3, 315–323.

Kameya, Y. and Sato, T. 2000. Efficient EM learning for parameterized logic programs.

In Proceedings of the 1st Conference on Computational Logic (CL’00), Lecture Notes in

Artificial Intelligence, vol. 1861. Springer, New York, 269–294.

Kwiatkowska, M., Norman, G. and Parker, D. 2011. PRISM 4.0: Verification of

probabilistic real-time systems. In Proceeding of the 23rd International Conference on

Computer Aided Verification (CAV’11), G. Gopalakrishnan and S. Qadeer, Eds., LNCS,

vol. 6806. Springer, New York, 585–591.

Lymberopoulos, D., Teixeira, T. and Savvides, A. 2007. Detecting patterns for assisted living

using sensor networks: A case study. In Proceedings of the 2007 International Conference

on Sensor Technologies and Applications (SENSORCOMM ’07), 590–596.

Manning, C. 1997. Probabilistic parsing using left corner language models. In Proceedings

of the 5th International Conference on Parsing Technologies (IWPT-97). MIT Press,

Cambridge, MA, 147–158.

Manning, C. D. and Schütze, H. 1999. Foundations of Statistical Natural Language

Processing. MIT Press, Cambridge, MA, USA.

Mantadelis, T. and Janssens, G. 2010. Dedicated tabling for a probabilistic setting.

In Proceedings of the 26th International Conference on Logic Programming (ICLP’10)

(Technical Communications), 124–133.

Meyer, C., Ed. 2000. Matrix Analysis and Applied Linear Algebra. Society for Industrial and

Applied Mathematics, Philadelphia, PA.

Nederhof, M., Anoop Sarkar, A. and Satta, G. 1998. Prefix probabilities from stochastic

tree adjoining grammars. In Proceedings of the 36th Annual Meeting of the Association for

Computational Linguistics (ACL’98), 953–959.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

936 T. Sato and P. Meyer

Nederhof, M. and Satta, G. 2011a. Computation of infix probabilities for probabilistic

context-free grammars. In Proceedings of the 2011 Conference on Empirical Methods in

Natural Language Processing (EMNLP’11), 1213–1221.

Nederhof, M. and Satta, G. 2011b. Prefix probability for probabilistic synchronous

context-free grammars. In Proceedings of the 48th Annual Meeting of the Association for

Computational Linguistics (ACL’11), 460–469.

Pomponio, L., Le Goc, M., Eric, P. and Alain, A. 2011. Combining timed data and expert’s

knowledge to model human behavior. In Proceedings of the Health Ambient Information

Systems Workshop (HamIS’11), http://ceur-ws.org/Vol-729/, vol. 729.

Riguzzi, F. and Swift, T. 2011. The PITA system: Tabling and answer subsumption for

reasoning under uncertainty. Theory and Practice of Logic Programming (TPLP) 11, 4–5,

433–449.

Roark, B. and Johnson, M. 1999. Efficient probabilistic top-down and left-corner parsing.

In Proceedings of the 37th Annual Meeting of the Association for Computational Linguistics,

421–428.

Rocha, R., Silva, F. and Costa, V. 2005. On applying or-parallelism and tabling to logic

programs. Theory and Practice of Logic Programming (TPLP) 5, 1–2, 161–205.

Sato, T. 2008. A glimpse of symbolic-statistical modeling by PRISM. Journal of Intelligent

Information Systems 31, 2, 161–176.

Sato, T. and Kameya, Y. 1997. PRISM: A language for symbolic-statistical modeling. In

Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI’97),

1330–1335.

Sato, T. and Kameya, Y. 2001. Parameter learning of logic programs for symbolic-statistical

modeling. Journal of Artificial Intelligence Research 15, 391–454.

Sato, T. and Kameya, Y. 2008. New advances in logic-based probabilistic modeling by PRISM.

In Probabilistic Inductive Logic Programming, L. De Raedt, P. Frasconi, K. Kersting and

S. Muggleton, Eds., LNAI, vol. 4911. Springer, New York, 118–155.

Sato, T. and Meyer, P. 2012. Tabling for infinite probability computation. In Technical

Communications of the 28th International Conference on Logic Programming (ICLP’12),

Budapest, Hungary, Leibniz International Proceedings in Informatics, vol. 17. Kluwer,

Boston, MA, 348–358.

Stolcke, A. 1995. An efficient probabilistic context-free parsing algorithm that computes

prefix probabilities. Computational Linguistics 21, 2, 165–201.

Swift, T. and Warren, D. 2012. XSB: Extending prolog with tabled logic programming.

Theory and Practice of Logic Programming (TPLP) 12, 1–2, 157–187.

Tamaki, H. and Sato, T. 1986. OLD resolution with tabulation. In Proceedings of the 3rd

International Conference on Logic Programming (ICLP’86), Lecture Notes in Computer

Science, vol. 225. Springer, New York, 84–98.

Uratani, N., Takezawa, T., Matsuo, H. and Morita, C. 1994. ATR integrated speech

and language database. Tech. Rep., TR-IT-0056, ATR Interpreting Telecommunications

Research Laboratories, Kyoto, Japan.

Van Uytsel, D., Van Compernolle, D. and Wambacq, P. 2001. Maximum-likelihood

training of the PLCG-based language model. In Proceedings of the IEEE Automatic Speech

Recognition and Understanding Workshop 2001 (ASRU’01).

Warren, D. S. 1992. Memoing for logic programs. Communications of the ACM 35, 3, 93–111.

Wetherell, C. S. 1980. Probabilistic languages: A review and some open questions. Computing

Surveys 12, 4, 361–379.

Zhou, N.-F., Kameya, Y. and Sato, T. 2010. Mode-directed tabling for dynamic programming,

machine learning, and constraint solving. In Proceedings of the 22nd International

Conference on Tools with Artificial Intelligence (ICTAI-2010).

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

Infinite probability computation by cyclic explanation graphs 937

Zhou, N.-F. and Sato, T. 2003. Toward a high-performance system for symbolic and statistical

modeling. In Proceedings of IJCAI-03 Workshop on Learning Statistical Models from Re-

lational Data (SRL’03), http://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1163

&context=cs faculty pubs, 133–140.

Zhou, N.-F., Sato, T. and Shen, Y.-D. 2008. Linear tabling strategies and optimization.

Theory and Practice of Logic Programming (TPLP) 8, 1, 81–109.

https://doi.org/10.1017/S1471068413000562 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068413000562

