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Abstract

Programmers currently enjoy access to a very high number of code repositories and libraries

of ever increasing size. The ensuing potential for reuse is however hampered by the fact

that searching within all this code becomes an increasingly difficult task. Most code search

engines are based on syntactic techniques such as signature matching or keyword extraction.

However, these techniques are inaccurate (because they basically rely on documentation) and

at the same time do not offer very expressive code query languages. We propose a novel

approach that focuses on querying for semantic characteristics of code obtained automatically

from the code itself. Program units are pre-processed using static analysis techniques, based

on abstract interpretation, obtaining safe semantic approximations. A novel, assertion-based

code query language is used to express desired semantic characteristics of the code as partial

specifications. Relevant code is found by comparing such partial specifications with the

inferred semantics for program elements. Our approach is fully automatic and does not

rely on user annotations or documentation. It is more powerful and flexible than signature

matching because it is parametric on the abstract domain and properties, and does not require

type definitions. Also, it reasons with relations between properties, such as implication and

abstraction, rather than just equality. It is also more resilient to syntactic code differences.

We describe the approach and report on a prototype implementation within the Ciao system.

KEYWORDS: Semantic Code Search, Abstract Interpretation, Assertions.

1 Introduction

The code sizes of current software systems and libraries grow continuously. The

open-source revolution implies that programmers now enjoy access to many repos-

itories which are very often large. While this abundance brings great potential for

code reuse, with the ensuing promise of coding time savings, it also brings about a

new problem: searching within these code bases is becoming an increasingly difficult

task. Most code search engines have so far addressed this problem through syntactic

techniques such as keyword extraction and signature matching. (Maarek et al. 1991)

� This research has received funding from the EU FP7 agreement no 318337, ENTRA, Spanish
MINECO TIN2012-39391 StrongSoft and TIN2015-67522-C3-1-R TRACES projects, and the Madrid
M141047003 N-GREENS program.
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is an early example of the work based on information retrieval techniques. It used

keywords extracted from man pages written in natural language. More recent code

search engines like Black Duck Open Hub (http://code.openhub.net) use the

same techniques but including also keyword extraction from variable names in

the code itself. They combine those keywords with relatively simple characteristics

of the kind of code the user is looking for (e.g., whether it is classes, methods,

or interfaces). Other recent work has used a similar approach combined with

ranking techniques. For example, (McMillan et al. 2012) use annotations in code

instead of man pages in order to cluster features from Java packages. They also

incorporate the idea that multiple users will rank over time how packages match

searches. Google code search (https://github.com/google/codesearch) is based

on regular expressions. While keyword and regular expression search is obviously

useful, the fact that these techniques rely on documentation (including the names

of identifiers in the code) means that they also have shortcomings. They are clearly

of limited use if the code has no comments, existing comments are wrong, they are

written in a different (natural) language, or other elements like variable, module, or

procedure names are not representative and/or not easy to match against.

An alternative to keyword search is to query instead the signatures present in

code, an approach already proposed in (Rollins and Wing 1991) for finding code

written in a functional language. The solver within λProlog was used to match

the signatures in code against some pre- and post-condition specifications used as

search keys. The Haskell code browser, Hoogle (Mitchell 2008), combines signature

matching with keyword matching. In the same line (Reiss 2009) combines these two

techniques with test cases as a means for specification. Signature matching is a more

formal approach than keyword matching, but it is still essentially syntactic, relies

on the presence of signatures in the program, and is limited to the properties of the

language of the signatures, i.e., generally types.

We propose a new approach that focuses on querying for semantic characteristics

of code that are inferred automatically from the code itself. Instead of relying

on user-provided signatures, comments, or identifier names, the code bases are

pre-analyzed using static analysis techniques based on abstract interpretation,

obtaining safe approximations of the semantics of the program. The use of different

abstract domains allows generating a wide (and user extensible) variety of properties

(generalized types, instantiation modes, variable sharing, constraints on values, etc.)

that can be queried. To this end we also propose a flexible code query language based

on assertions that expresses specifications composed of these very general properties.

These abstract query specifications are used to reason against the abstract semantics

inferred for the code, in order to select code elements that comply with the queries.

Our approach is fully automatic and does not rely on user annotations or

documentation. Although assertions in the code can also help the analysis, they

are not needed, i.e., the approach works even if the code contains no assertions

or signatures, since the program semantics is inferred by the abstract interpreter.

It is thus more powerful than signature matching methods (which it subsumes),

which require such signatures and/or type definitions. The proposed approach also

reasons with relations between properties, such as implication and abstraction,
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rather than just matching, which allows much more expressive search and more

accurate results. Our approach is also much more flexible, since it is parametric

on the abstract domain and properties, i.e., the inference and the search can be

based on any property for which an abstract domain is available and not just

syntactic match of the properties in the signature language (generally types). It

can also be tailored through new abstract domains to fit particular applications.

Our approach can be more powerful than (and in any case is complementary to)

keyword-based information-retrieval systems because its is based on a semantic

analysis of the code, and is thus independent of documentation. It is also more

resilient to syntactic differences (including code obfuscation techniques) such as, e.g.,

non descriptive names of functions/variables. Given their complementary nature,

our implementation actually combines the two approaches of semantic and keyword-

based search. Since the combination is straightforward, it is not described herein.

2 Preliminaries, abstract interpretation, and assertions

We denote by VS, FS, and PS the set of variable, function, and predicate symbols,

respectively. Variables start with a capital letter. Each p ∈ PS is associated with

a natural number called its arity, written ar(p) or ar(f). The set of terms TS

is inductively defined as follows:1 VS ⊂ TS, if f ∈ FS and t1, . . . , tn ∈ TS then

f(t1, . . . , tn) ∈ TS where ar(f) = n. An atom has the form p(t1, ..., tn) where p is a

predicate symbol and ti are terms. A predicate descriptor is an atom p(X1, . . . , Xn)

where X1, . . . , Xn are distinct variables. A clause is of the form H:-B1, . . . , Bn where

H , the head, is an atom and B1, . . . , Bn, the body, is a possibly empty finite conjunction

of atoms. We assume that all clause heads are normalized, i.e., H is of the form of

a predicate descriptor. Furthermore, we require that each clause head of a predicate

p have identical sequence of variables Xp1
, ..., Xpn . We call this the base form of

p. This is not restrictive since programs can always be put in this form, and it

simplifies the presentation. However, in the examples and in the implementation we

handle non-normalized programs. A definite (constraint) logic program, or program,

is a finite sequence of clauses. The concrete semantics used for reasoning about

goal-dependent compile-time semantics of logic programs will use the notion of

generalized and trees (Bruynooghe 1991). A generalized and tree represents the

execution of a query to a Prolog predicate. Basically, every node of a generalized

and tree contains a call to a predicate, adorned on the left with the call substitution

to that predicate, and on the right with the corresponding success substitution. The

concrete semantics of a program P for a given set of queries Q, �P �Q, is the set

of generalized and trees that represent the execution of the queries in Q for the

program P . We will denote a node in a generalized and tree with 〈L, θc, θs〉, where L

is the call to a predicate p in P , and θc, θs are the call and success substitutions over

vars(L) adorning the node, respectively. The calling context(L, P , Q) of a predicate

1 We limit for simplicity the presentation to the Herbrand domain, but the approach and results apply
to constraint domains as well. In the rest of the paper we will refer interchangeably to substitutions or
constraints, and to the current substitution or the constraint store.
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given by the predicate descriptor L defined in P for a set of queries Q is the set

{θc|∃T ∈ �P �Q s.t. ∃〈L′, θc, θs〉 in T ∧ ∃σ ∈ ren Lσ = L′}, where ren is a set of

renaming substitutions over variables in the program. We denote by answers(P ,Q)

the set of answers (success substitutions) computed by P for query Q.

Inferring the Program Semantics by Abstract interpretation. As mentioned in the

introduction, our approach for finding predicates semantically is based on pre-

processing program units using static analysis techniques, in order to obtain safe

approximations of the semantics of the predicates in these units. Our basic technique

for this purpose is abstract interpretation (Cousot and Cousot 1977), an approach

for static program analysis in which execution of the program is simulated on an

abstract domain (Dα) which is simpler than the actual, concrete domain (D). Although

not strictly required, we assume Dα has a lattice structure with meet (
), join (�),

and less than (�) operators. Abstract values and sets of concrete values are related

via a pair of monotonic mappings 〈α, γ〉: abstraction α : D → Dα, and concretization

γ : Dα → D. Concrete operations on D values are approximated by corresponding

abstract operations on Dα values. The key result for abstract interpretation is that

it guarantees that the analysis terminates, provided that Dα meets some conditions

(such as finite ascending chains) and that the results are safe approximations of

the concrete semantics (provided Dα safely approximates the concrete values and

operations).

Goal-dependent abstract interpretation: While our approach is valid for any analysis,

we will be using for concreteness goal-dependent abstract interpretation, in particular

the PLAI algorithm (Muthukumar and Hermenegildo 1992), available within the

Ciao/CiaoPP system (Hermenegildo et al. 2005; Hermenegildo et al. 2012). PLAI

takes as input a program P , an abstract domain Dα,
2 and an abstract initial call

pattern3 Qα = L:λ, where L is an atom, and λ is a restriction of the run-time

bindings of L expressed as an abstract substitution λ ∈ Dα. The algorithm computes

a set of triples analysis(P , L:λ, Dα) = {〈L1, λ
c
1, λ

s
1〉, . . . , 〈Ln, λ

c
n, λ

s
n〉}. In each 〈Li, λ

c
i , λ

s
i 〉

triple, Li is an atom, and λci and λsi are, respectively, the abstract call and success

substitutions, elements of Dα. Let Q be the set of concrete queries described by

L:λ, i.e., Q = {Lθ | θ ∈ γ(λ)}. In addition to termination, correctness of abstract

interpretation provides the following guarantees:

• The abstract call substitutions cover all the concrete calls which appear

during execution of the initial queries in Q. Formally, ∀p′ in P ∀θc ∈
calling context(p′, P , Q) ∃〈L′, λc, λs〉 ∈ analysis(P , L:λ) s.t. θc ∈ γ(λc), where

L′ is a base form of p′.

• The abstract success substitutions cover all the concrete success substitutions

which appear during execution, i.e., ∀i = 1 . . . n ∀θc ∈ γ(λci ) (which, as we saw

before, cover all the calling contexts) if Liθc succeeds in P with computed

answer θs then θs ∈ γ(λsi ).

2 Also, a set of abstract domains.
3 We use sets of calls patterns in subsequent sections –the extension is straightforward.
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The abstract interpretation process is monotonic, in the sense that more specific

initial call patterns yield more precise analysis results. As usual, ⊥ denotes the

abstract substitution such that γ(⊥) = ∅. A tuple 〈Pj, λ
c
j ,⊥〉 indicates that all calls to

predicate pj with substitution θ ∈ γ(λcj) either fail or loop, i.e., they do not produce

any success substitutions.

Multivariance: The analysis (as well as the assertion language presented later) is

designed to discern among the various usages of a predicate. Thus, multiple usages

of (types of calls to) a procedure can result in multiple descriptions in the analysis

output, i.e., for a given predicate P multiple 〈P , λc, λs〉 triples may be inferred and

queried. This will allow finding code more accurately. More precisely, the analysis

is said to be multivariant on calls if more than one triple 〈P , λc1, λ
s
1〉, . . . , 〈P , λcn, λ

s
n〉

n � 0 with λci �= λcj for some i, j may be computed for the same predicate. In this

paper we use analyses that are multivariant on calls.

Analysis target: We will look for predicates in a predefined set of programs or

modules. Each of them will be analyzed independently and we will denote with

analysis(m,Dα,Qα) the analysis of a module m with respect to the set of call patterns

Qα in domain Dα. The reason for this kind of analysis is that normally users are

looking for independent libraries to reuse. We assume for concreteness the Ciao

module system (Cabeza and Hermenegildo 2000). It is a strict module system, i.e.,

a system in which modules can only communicate via their interface. The interface

of a module contains the names of the exported predicates and the names of the

imported modules. When performing the analysis, only the exported predicates will

be considered for the initial calls. We will use exported(m) to express the set of

predicate names exported by module m.

An issue in the computation performed by analysis(m,Dα,Qα) is that, from the

point of view of analysis, the code of the module m to be analyzed taken in

isolation is incomplete, in the sense that the code for procedures imported from

other modules is not available to analysis. The direct consequence is that, during

the analysis of a module m, there may be calls P : CP such that the procedure

P is not defined in m but instead it is imported from another module m′. A

number of alternatives are available (and implemented in the system in which

we conduct our experiments, Ciao) in order to deal with these inter-modular

connections (Puebla et al. 2004). We assume, without loss of generality, that for

these external calls, we will trust the assertions present in the imported modules

for the predicates they export, and use their information in the individual module

analysis.

Traditional Assertions. Assertions are linguistic constructions for expressing abstrac-

tions of the meaning and behavior of programs. Herein, we will use for concreteness

the pred assertions of (Puebla et al. 2000a) Such pred assertions allow stating sets

of preconditions and conditional postconditions on the state (current substitution or

constraint store) that hold or must hold for a given predicate. These assertions are

instrumental for many purposes ranging from expressing the results of analysis to

providing partial specifications which are then very useful for detecting deviations
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of behavior (symptoms) with respect to such assertions, or to ensure that no such

deviations exist (correctness) (Puebla et al. 2000a). A pred assertion is of the form:

:- pred Head : Pre => Post.

where Head is a normalized atom that denotes the predicate that the assertion

applies to, and the Pre and Post are conjunctions of “prop” atoms, i.e., of atoms

whose corresponding predicates are declared to be properties (Puebla et al. 2000a;

Puebla et al. 2000b). Both Pre and Post can be empty conjunctions (meaning true),

and in that case they can be omitted. The following example illustrates the basic

concepts involved:

Example 1

These assertions describe different modes for calling a length predicate: either for

(1) generating a list of length N, (2) to obtain the length of a list L, or (3) to check

the length of a list:

�
1 :- pred length(L,N) : (var(L), int(N)) => list(L). %(1)
2 :- pred length(L,N) : (var(N), list(L)) => int(N). %(2)
3 :- pred length(L,N) : (list(L), int(N)). %(3)
4

5 :- prop list /1. list ([]). list([_|T]) :- list(T).
� �

Note also the definition of the list/1 property (in this case a regular type) in line 5.

Other properties (int/1, a base regular type, and var/1, a mode) are assumed to

be loaded from the libraries (native props in Ciao for these properties). �

The following definition relates a set of assertions for a predicate to the nodes

which correspond to that predicate in the generalized and tree for the current

program P and initial set of queries Q:

Definition 1 (The Set of Assertion Conditions for a Predicate)

Given a predicate represented by a normalized atom Head, and a corresponding set

of assertions A = {A1 . . . An}, with Ai = “:- pred Head : Prei => Posti.” the set

of assertion conditions for Head determined by A is {C0, C1, . . . , Cn}, with:

Ci =

{
calls(Head,

∨n
j=1 Prej) i = 0

success(Head, P rei, Posti) i = 1..n

where calls (Head,Pre) states conditions on θc in all nodes 〈L, θc, θs〉 where L ∧
Head holds, and success (Head,Pre,Post) refers to conditions on θs in all nodes

〈L, θc, θs〉where L ∧ Head and Pre ∧ θc hold.
The assertion conditions for the assertions in the example above are:
⎧⎨
⎩

calls( length(L,N), ((var(L) ∧ int(N)) ∨ (var(N) ∧ list(L)) ∨ (list(L) ∧ int(N))),

success( length(L,N), (var(L) ∧ int(N)), list(L)),

success( length(L,N), (var(N) ∧ int(L)), int(N)),

⎫⎬
⎭

https://doi.org/10.1017/S1471068416000417 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000417


Semantic code browsing 727

3 Abstract code search

In this section we propose the mechanism for defining abstract searches for

predicates. Our objective now is not describing concrete predicates as before, but

rather to state some desired semantic characteristics and perform a search over the set

of predicates in some code P (our set of modules) looking for a subset of predicates

meeting those characteristics. To this end we define the concept of query assertions,

inspired by the anonymous assertions of (Stulova et al. 2014). This requires extending

our syntax so that in the normalized atoms that appear in the Head positions of

these assertions, the predicate symbol can be a variable from VS.

Definition 2 (Query assertion)

A query assertion is an expression of the form: :- pred L : Pre => Post. where

L is of the form X(V1, . . . , Vn) and Pre and Post are (optional) DNF formulas of

prop literals.

We will use this concept to express conditions on the search. The intuition is that

a query assertion is an assertion where the variable X ∈ VS in the predicate symbol

location of L will be instantiated during the search for code to predicate symbols

from PS that comply with some query assertions. The following predicate defines

the search:

Definition 3 (Predicate query)

A predicate query is of the form:

?- findp({ As }, M:Pred/A, Residue, Status).

where:

• As is a set of query assertions, with the same arity and the same variable

Pred as main functor of the different assertion Heads. This set can also

include definitions of properties (e.g., regtypes (Gallagher and de Waal 1994;

Vaucheret and Bueno 2002) or other properties) used in the query assertions.

• M:Pred/A is a predicate descriptor, referring to a predicate Pred with arity

A and defined in module M that corresponds to the information in the other

arguments.

• Residue is a set of pairs of type (condition, list(domain, status)) which express the

result of the proof of each condition in each domain. The status will be checked

for those conditions that were proved to hold in domain, false if they were

proved not to hold, and check for conditions for which nothing could be proved.

• Status is the overall result of the proof for the whole set of conditions in the

query assertion. It will be checked if all conditions are proved to be checked.

false if one condition is false, and check if neither checked nor false can be

proved. If Status is instantiated to e.g., checked in the query, only matching

predicates are returned.

Predicate queries are our main means for conducting the semantic search for

predicates. The query assertions and property definitions in As induce a series of

calls and success assertion conditions (as per Def. 1) which are used to perform the
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filtering of candidate predicates. I.e., the calls conditions encode that the admissible

calls of the matching predicates should be within the set of Pre conditions. The

success conditions encode that, if Pre holds at the time of calling the matching

predicate, and the execution succeeds, then the Post conditions hold.

Example 2

Given code P , the predicate query:

�
?- findp({ :- pred X(A,B) : (list(A), var(B)) => int(B). }, M:X/2, Residue ,

checked).
� �

indicates that the user is looking for predicates p ∈ P with ar(p) = 2, which allow

calls in which the first argument is instantiated to a list and the second is a free

variable, and that, when called in this way, if p succeeds, their second argument will

be instantiated to an integer. A predicate that matches this query is, for example,

the length/2 predicate of Ex. 1, which we assume defined in module lists. The

call to findp would then unify M:X to lists:length. Residue would contain

the explanation of why the predicate matches (all conditions would be checked in

this case; these conditions are illustrated later in other examples). Other possible

matching predicates would be returned via backtracking. �

We now address how a predicate matches the conditions in a predicate query in

the form of Def. 3. To this end we provide some definitions (adapted from (Puebla

and Hermenegildo 1999; Puebla et al. 2000b)) which will be instrumental in order

to connect the literals in query assertions to the results of analysis.

Definition 4 (Trivial Success Set of a Property Formula)

Given a conjunction L of properties and the definitions for each of these properties

in P , we define the trivial success set of L in P as:

TS(L, P ) = {∃̄Lθ |∃θ′ ∈ answers(P , (L, θ)) s.t. θ |= θ′}.

where ∃̄Lθ denotes the projection of θ onto the variables of L. Intuitively, it is the

set of constraints θ for which the literal Lθ succeeds without adding new “relevant”

constraints to θ (i.e., without constraining it further).

For example, given the following program P :

�
1 list ([]).
2 list([_|T]) :- list(T).
� �

and L = list(X), both θ1 = {X = [1, 2]} and θ2 = {X = [1, A]} are in the trivial

success set of L in P , but θ = {X = [1| ]} is not, since a call to (X = [1| ],

list(X)) will instantiate the second argument of [1| ]. We now define abstract

counterparts for Def. 4:

Definition 5 (Abstract Trivial Success Subset of a Property Formula)

Given a conjunction L of properties, the definitions for each of these properties in

P , and an abstract domain Dα, an abstract constraint or substitution λ−
TS (L,P ) ∈ Dα

is an abstract trivial success subset of L in P iff γ(λ−
TS (L,P )) ⊆ TS(L, P ).
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Definition 6 (Abstract Trivial Success Superset of a Property Formula)

Under the same conditions of Def. 5 above, an abstract constraint or substitution

λ+
TS (L,P ) is an abstract trivial success superset of L in P iff γ(λ+

TS (L,P )) ⊇ TS(L, P ).

I.e., λ−
TS (L,P ) and λ+

TS (L,P ) are, respectively, a safe under-approximation and a safe

over-approximation of the trivial success set for the property formula L with

definitions P .

We assume that the code P under consideration has been analyzed for an abstract

domain Dα, for a set of queries Q. Let Qα be the representation of those queries, i.e.,

it is the minimal element of Dα so that γ(Qα) ⊇ Q. We derive Qα from the code by

including in it queries for all exported predicates, affected by the calls conditions of

any assertions that appear in the code itself affecting such predicates (this is safe

because if analysis is not able to prove them, they will be checked in any case via

run-time checks). If no assertions appear in the code for a given exported predicate,

the analyzer will assume � for the corresponding query.

We now relate, using the concepts above, the abstract semantics inferred by

analysis for this set of queries with the search process. As stated in Def. 1, a set of

assertions denotes different types of conditions (calls and success). We provide the

definitions for each type.

Definition 7 (Checked Predicate Matches for a ‘calls’ Condition)

A calls condition calls(X(V1, . . . , Vn), P re) is abstractly ‘checked’ for a predicate

p ∈ P w.r.t. Qα in Dα iff ∀〈L, λc, λs〉 ∈ analysis(P ,Dα,Qα) s.t. ∃σ ∈ ren, L =

p(V ′
1, . . . , V

′
n) = X(V1, . . . , Vn)σ, λ

c � λ−
TS (Pre σ,P ).

Definition 8 (False Predicate Matches for a ‘calls’ Condition)

A calls condition calls(X(V1, . . . , Vn), P re) is abstractly ‘false’ for a predicate p ∈ P

w.r.t. Qα in Dα iff ∀〈L, λc, λs〉 ∈ analysis(P ,Dα,Qα) s.t. ∃σ ∈ ren, L = p(V ′
1, . . . , V

′
n) =

X(V1, . . . , Vn)σ, λ
c 
 λ+

TS (Pre σ,P ) = ⊥.

Note that in these definitions we do not use directly the Pre and Post conditions,

although they already are abstract substitutions. This is because the properties in the

conditions stated by the user in assertions might not exist as such in Dα. However, it

is possible to compute safe approximations (λ−
TS (Pre,P ) and λ+

TS (Pre,P )) by running the

analysis on the code of the property definitions using Dα (or using the available trust

assertions, for built-ins). The fact that the resulting approximations are safe ensures

correctness of the procedure both when checking calls and success conditions.

Example 3

Several checks against a ‘calls’ condition. Consider the program in Fig. 1 and the

classic sharing and freeness (shfr) abstract domain (Muthukumar and Hermenegildo

1991). Concentrating for now on calls only, this analysis will infer the calls abstract

states that are shown also in Fig. 1, as “true” pred assertions. There, var/1

and ground/1 have the usual meaning and mshare/1 describes variable sharing

(intuitively, two variables are in the same list if they may share, singletons mean

that there may also be other non-shared variables). Note that, while the var/1

property is understood natively by the shfr analyzer, other properties that appear
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Fig. 1. Program with assertions stating different calls and (partial) analyzer output.

in the assertions (list/1, int/1, etc.) are not. However, they imply groundness

and freeness information. The analysis approximates this information to the shfr

domain. In the case of built-ins such as int/1 this is done using the associated

assertions in the libraries. Thus, if an argument is stated to have the property

integer on calls (i.e., it is bound to an integer at call time, as in the second case of

my length and check length) it is expressed as a ground term in the shfr domain.

In the case of properties that are defined by programs, such as list/1, the property

definition itself is analyzed with the target domain (shfr). However, shfr cannot

infer too much about list/1 since it does not have a representation for “definitely

non-var.” Other modes domains may be able to infer “non-var but not necessarily

ground.”

Assume now that we would like to find predicates that generate tuples of lists and

their size, i.e., the predicate has to accept a usage in which both of the arguments

are free variables. This search can be expressed with the following predicate query:

�
?- findp({:- pred P(L, Size) : (var(L), var(Size)).}, M:P/A, Residue ,

Status).
� �

The corresponding calls condition is: calls(X(L, Size), (var(L), var(Size))). We dis-

cuss some interesting aspects of the search results:

• gen list/2: This is obviously a predicate of interest in the context of the

predicate query because it expects both of its arguments to be variables (plus,

they will be bound during the execution to what we might want –a list and

an integer). Formally, the conditions are proved to hold for this predicate,

because:

(λ−
TS ((var(L),var(Size)),P ) = {var(L), var(Size)}) � (λc = var(L), var(Size)).

• check length/2: This is not a predicate of interest because its calling modes

require both arguments to be instantiated. Formally, the condition is abstractly
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false for check length because:

(λ+
TS ((var(L),var(Size)),P ) = {var(L), var(Size)}) 
 ({mshare(L), ground(Size)} = ⊥).

• Both my length/2 and get length/2 are predicates which do not match

what we are looking for, because they require at least one argument to be

instantiated. However, using only the shfr domain this cannot be proved

(it would if the domain could represent nonvar/1, which would then be

incompatible with var/1). The status for this condition for these predicates

will be check, meaning that (using the shfr domain only) the finder could not

infer information regarding those conditions for the predicate, but still the

user might be interested in it. �

The point of filtering by calling modes is to avoid mixing behaviors. This can

be interesting for example with predicates that, depending on the call, on success

return in an argument either a free variable or an instantiated term. Consider

an (admittedly not very nice) predicate read line(Line, Size) such that if a

line is correctly read, its size will be Size and if not, Size will be a free

variable. Assume that we would like instead an error to be displayed if the line

is not correctly read. Then, we need a predicate that requires Size to be an

integer. check length is a relevant predicate then (and can be combined with

read line/2 as: read line(Line, Size), check length(Line, Size).). In this

case my length is not useful, since it accepts the second argument as a free

variable.

Similarly to what we did for calls conditions, we provide definitions for stating

whether a predicate matches for a given success condition and when it does not:

Definition 9 (Checked Predicate Matches for a ‘success’ Condition)

A success condition success(X(V1, . . . , Vn), P re, Post) is abstractly ‘checked’ for

predicate p ∈ P w.r.t. Qα in Dα iff ∀〈L, λc, λs〉 ∈ analysis(P ,Qα) s.t. ∃σ ∈ ren, L =

p(V ′
1, . . . , V

′
n) = X(V1, . . . , Vn)σ, λ

c � λ+
TS (Pre σ,P ) → λs � λ−

TS (Post σ,P ).

Definition 10 (False Predicate Matches for a ‘success’ Condition)

A success condition success(X(V1, . . . , Vn), P re, Post) is abstractly ‘false’ for p ∈ P

w.r.t. Qα in Dα iff ∀〈L, λc, λs〉 ∈ analysis(P ,Qα) s.t. ∃σ ∈ ren, L = p(V ′
1, . . . , V

′
n) =

X(V1, . . . , Vn)σ, λ
c � λ−

TS (Pre σ,P ) ∧ (λs 
 λ+
TS (Post σ,P ) = ⊥).

Example 4

Several checks against a ‘success’ condition. Assume that we analyze the module

in Fig. 2 with a shape abstract domain Dα —in particular eterms (Vaucheret

and Bueno 2002) (regular types). Originally, the code had no assertions, so the

analysis was performed for any possible entry. As before, the inferred information

is provided by the analyzer as “true” pred assertions (we omit the calls conditions

for simplicity). The relation among these inferred abstract elements is shown in

lattice form in Fig. 2a. The regular type b was included in the program and

t1 and t2 were inferred by the analyzer. Suppose that we execute the query:�

�

�

�
?- findp({:- pred P(V) : term(V) => b(V).}, M:P/A, Residue, St). The success
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Fig. 2. Another simple program with analysis information on success conditions.

condition of this query is C = success(X(V ), term(V ), b(V )). We discuss how

the predicates match this condition:

• perfect/1. This predicate behaves exactly as specified in the predicate query,

because on success it produces an output of the same type as specified. For-

mally, the analysis infers 〈perfect(V ),�(V ), b(V )〉 and λ−
TS (b,P ) = b (trivially).

Then, λs � λ−
TS (b,P ), because b � b.

• reduced/1. Intuitively, this predicate does not match as well as perfect but

all possible outputs are within γ(b), therefore, it is a valid predicate. Formally,

the analysis infers 〈reduced(V ),�(V ), t1(V )〉, and λ−
TS (b,P ) = b (trivially). As

t1 � b, i.e., t1 ⇒ b, this predicate meets the condition of Def. 9 to be checked.

• outb/1. This predicate is of no use, because its output (z) is completely different

(disjoint) from that specified in the query (b). Formally, the analysis infers

〈outb(V ),�(V ), t2(V )〉 and λ−
TS (b,P ) = b so the conditions of the definition hold:

λc � λ−
TS (Pre,P ) holds because (λc = �) � (λ−

TS (term,P ) = �) and (λs
λ+
TS (Post,P ) =

⊥) holds because (λs = t2) 
 (λ+
TS (b,P ) = b) = ⊥.

Finally, we again have predicates (mixed/1 and hard/1) that are not checked or

false. As discussed before, this can be due to two reasons. The first is that the

predicate may actually behave in such a way that the conditions in the query are

really not checked or false. The second one is that the abstract domain may not

provide accurate enough information to prove whether the conditions hold or not.

In the case of predicate mixed/1, it is the former: it is not what we are looking for

because, although its possible outputs can be of type b, it can also produce type t2.

Formally, the condition cannot be proved to hold or not, since the analysis inferred

〈mixed(V ),�(V ),�(V )〉:

• It cannot be checked, because the output type is more general than specified,

and therefore it does not satisfy the condition in Def. 9: (λc = �) �
(λ+

TS (Pre,P )) → (λs = �) � (λ−
TS (b,P ) = b) (true → false).

• It is also not false because some of the outputs are the ones required in the

specification. Formally, it does not satisfy the second condition of Def. 10:

(λs = �) 
 (λ+
TS (b,P ) = b) = b �= ⊥.

Predicate hard/1 illustrates the latter case: that an abstract domain may not be

precise enough to find all matching predicates. Intuitively, the success condition
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of the example should hold because its output shape is more restrictive than

specified. However, the analyzer cannot infer that its output will be always b1

because functor/3 can produce any atom, and thus the inferred tuple will be

〈hard(V ),�(V ),�(V )〉. The reasoning to set the status of proof of this condition as

check is the same as with mixed/1. �

Combining information from different domains: Sometimes the information inferred

using an abstract domain is not accurate enough to prove whether a condition holds

or not but the information in another domain is. It depends on how the user expresses

the query, and how accurately the abstract properties of the query can be approx-

imated in each domain. For example, in :- pred X(A,B) : (list(A), var(B)),

the property var(X) cannot be represented in the (standard) regular types domain

(eterms), so it will assume � for B which will lead to not being able to check it.

Combining domains is a useful technique to increase accuracy. An assertion

condition is proved to hold (status checked) or not (status false) if the result can

be proved in any analysis domain. The reason for this is the correctness of the

analysis, which always computes safe approximations. This ensures that properties

proved in each domain separately for the same set of queries cannot be contradictory.

At most, if a property can be proved in a domain, other domains may not be accurate

enough to decide that the property holds. Summarizing, the status of a condition

given its proof status for a set of domains will be:

Status =

⎧⎨
⎩

false if proved false in at least one domain

checked if proved checked in at least one domain

check otherwise

Example 5

Assume the program in Fig. 1 and the analysis in Ex. 3, but that the eterms shape

analysis is also performed:
Predicate λc (eterms) λc (shfr)

gen list(L,N) (term(L), term(N)) (mshare([[L], [L,N], [N]]), var(L), var(N))

get length(L,N) (list(L), term(N)) (mshare([[L], [L,N], [N]]), var(N))

check length(L,N) (list(L), int(N)) (mshare(L), ground([N]))

my length(L,N) (list(L), term(N)) (mshare(L), ground(N))

my length(L,N) (list(L), int(N)) (mshare([[L], [L,N], [N]]), var(N))

The combination of both domains is really useful for proving certain conditions

because they complement each other. Assume that we want to find a predicate that

checks the length of a list. The condition to be satisfied is calls(X(L, Size), (list(L),

num(Size))). According to the definitions of matching, the results in each domain

will be:
PredName/A eterms proof shfr proof combined proof (Sum)

gen list/2 check false false

get length/2 check false false

check length/2 checked check checked

my length/2 check check check
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The intuitive explanation of these results is:

• gen list/2: In the eterms domain this condition cannot be proved because

the domain has no information about var. However, in the shfr domain it can

be proved that the condition does not hold because it requires both arguments

to be non-free variables, and the calling mode does the opposite. Then, that

condition is false for this predicate.

• get length/2: This case is similar to gen list/2: It cannot be proved in

the types domain because one argument was specified with instantiation

information but it can be proved in the modes domain that it is false.

• check length/2: Matches the condition in the eterms domain, because the

shapes are exactly the ones we were looking for. For this predicate, the shfr

domain is not necessary.

• my length/2: At first sight this predicate matches the query because there

is a calling mode that matches exactly as stated in the condition. However,

according to the definition of calls condition, all admissible calling modes must

be within the condition, and there is one calling mode that does not comply:

the mode for calculating the length of the list. �

4 Prototype and evaluation

We have developed and evaluated a prototype implementation on top of the

Ciao/CiaoPP system. The system implements both the pre-analysis of the code

base and the user-level predicate matching search facilities, against the analysis

results. As mentioned in Section 2, by default modules are analyzed individually

and the analysis trusts the assertions for imported predicates and the calls for

exported predicates. However, modular analysis can also be used, as discussed later.

The analysis results are cached on disk (as CiaoPP dump files) and reused while

searching. Each time the search is performed in a module, its corresponding analysis

dump is restored or it is reanalyzed with the abstractions of the constraints in

the query, and conditions are checked. The algorithms that implement condition

checking are described in the supplementary material.4

Searching with the prototype. To demonstrate some of the potential of our approach,

consider looking in the Ciao libraries for code that operates with graphs. First, we

need to guess how graphs may be represented, i.e., their shape. Two possible guesses

are:
�

1 :- regtype math_graph(Graph). :- regtype al_graph(_).
2 math_graph(graph(Vertices ,Edges)):- al_graph(A) :-

list(A,al_graph_elem).
3 list(Vertices), list(Edges , pair).
4 :- regtype al_graph_elem /1.
5 :- regtype pair /1. al_graph_elem(Vertex -Neighbors)

:-
6 pair((_,_)). list(Neighbors).
� �

4 We refer to the supplementary material provided on-line for this paper at the TPLP archives.
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where math graph is based on the mathematical definition: an ordered pair (V,

E) comprising a set V of vertices, together with a set E of edges, which are 2-

element subsets of V. The al graph property captures an alternative adjacency

list graph representation, as a list of vertices and their corresponding neighbors.

A query assertion for finding code that uses the first representation could be

:- pred P(X,Y) => math graph(Y).5 The prototype finds complete graph/2 and

cycle graph/2 in module named graphs.pl (see Fig. A 1 in the supplementary

material) by matching this query against the analysis results for the module. Note

that this code is found although this named graphs.pl module has no assertions

or shape/regtype definitions, i.e., it only contains plain Prolog code. Searching for

the second representation, assume we look for code for modifying a graph, i.e., that

takes as input a graph and a list of elements and produces a new graph:

:- pred P(A,B,C) : (al graph(A), list(B), var(C)) => al graph(C). I.e.:

C1 = calls(P (A,B, C), (al graph(A), list(B), var(C))) and

C2 = success(P (A,B, C), (al graph(A), list(B), var(C)), al graph(C)),

No code is found for which both conditions hold, because calls can be checked

only if the code has assertions (hand-written or inferred modularly). Therefore, we

focus on finding predicates for which C2 holds. Since the conditions on the calls

substitution are very specific, we assume they were not considered by the default

pre-analysis. We can refine the predicate matching by reanalyzing the predicates

starting from the calls values in the success conditions. To ensure greater precision,

we perform inter-modular analysis. Under these conditions the prototype finds that

in add vertices/3, del vertices/3, add edges/3, and del edges/3 the success

condition does hold (see Fig. A 2 in the supplementary material).

Performance results. To measure the effectiveness and performance of the approach,

we have set up an experiment that consists in analyzing part of the Ciao libraries

and finding matching predicates of arity 1 to 4 for several assertion conditions. The

experiments were run on a Linux server (Intel Xeon CPU E7450, 2.40GHz) with

16GB of RAM. As in the previous examples, we used the shfr and eterms domains

(the Ciao system includes however a large number of other domains than can also

be used in this application). We selected 63 modules from the Ciao libraries all of

which can be analyzed within 1 minute for these abstract domains. The detailed

analysis statistics can be found in the supplementary material. The selection includes

modules that are relatively costly for the analyses and others where analysis is trivial

(e.g., non-analyzable foreign code with trusted assertions) but useful for the search.

The pre-analysis of all the modules took 45s (660ms on average), and the analysis

dumps required 3.5MB of disk space (55.5KB on average). Restoring the analysis

results (for the 63 modules) takes 21.5s (343ms on average). In the experiments

this was done for each query, but note that since the size of the cached analysis

is small it can be kept in memory for subsequent queries. The performance of

matching, once the analysis results are available, depends on the arity, the number

5 As mentioned before, the user-defined shapes (or any other properties), in this case the regtypes above,
must be included within the predicate queries. However, we just show the query assertion for brevity.
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Table 1. Predicate query matching times (μs)

Ar\Cnds 1 1 (AVG) 2 2 (AVG) 3 3 (AVG) 4 4 (AVG)

1 (85 pr) 19,064 224 53,530 630 180,246 2,121 298,292 3,509

2 (74 pr) 110,092 1,488 207,871 2,809 221,061 2,987 477,440 6,452

3 (47 pr) 294,962 6,276 3,757,208 79,941 3,806,917 80,998 6,127,015 130,362

4 (12 pr) 5,116 426 12,939 1,078 22,508 1,876 30,300 2,525

of predicates available with that arity, and the conditions specified in the query.

Summarized timing results are shown in Table 1. Columns represent the number of

assertion conditions in each predicate query and rows their arity (the parentheses

show the number of predicates present in the code with that arity). Cells represent the

execution time needed to exhaustively check the predicates in the 63 modules. The

(AVG) columns represent the average time per predicate: from 224μs (1 condition,

1 argument) to 130ms (4 conditions, 3 arguments). Summarizing, it takes on average

25s to execute a query, looking in all 63 modules, most of which (21.5s) is spent

loading the pre-analysis.

5 Conclusions

We have proposed a novel approach to the code search problem based on querying

for semantic characteristics of the programs against a safe approximation of its

semantics obtained via analysis. We have also discussed the advantages of our

proposal over other approaches such as keyword search or signature matching. We

have provided evidence that both the analysis and the search are sufficiently efficient,

despite the relatively naive implementation, for practical use. Our implementation

actually combines semantic code search with keyword-based and other types of

search. A number of other extensions are also in progress, such as allowing

permutations or extra arguments, and applying other program transformations.

We believe the proposed approach has a number of additional applications, such as,

for example, detection of duplicated code. While prototyped within the Ciao system,

the techniques proposed, based on abstract interpretation theory, are general and

directly applicable to other languages.

Supplementary material

For supplementary material for this article, please visit http://dx.doi.org/10.1017/

S1471068416000417
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