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SUMMARY
This paper contains the result of a computer simulation of
the dynamic performance of a manipulator. Provision is
made in the program developed to represent the manipulator
in either a redundant or non-redundant form. The models
derived are used in simulation studies to evaluate the
dynamic behaviour of the process when subjected to
different control strategies for a range of operational tasks.
The dynamic manipulator model presented is derived from
the laws of Newtonian and Lagrangian Mechanics.
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1. MODEL FOR MANIPULATOR DYNAMICS
The general equation of motion for an open chain
manipulator can be conveniently expressed through the
application of Lagrangian equations. The Denavit-Harten-
berg matrix representation can be utilized to describe the
displacement between the neighbouring link coordinate
frames to obtain the link kinematic information. The
algorithm which describes the manipulator motion is the
Lagrange Equation1 which is normally written

Ti =
­

­t F­L

­q̇i
G2

­L
­qi

(1)

where L is known as Lagrangian and is the difference
between the kinetic and potential energies of the manip-
ulator. The Term Ti represents the torque generated by the
ith actuator. The use of the Lagrange Equation will yield
directly as many equations of motion as the number of
degrees of freedom of the system when the basic energy
expressions for the system are known. For a manipulator,
the Lagrangian can be defined as2–4

L=On

i=1
Oi

j=1
Ol

k=1

Tr(UijJiU
T
ik)q̇iq̇k +On

i=1

mig(Tiri) (2)

For i=1,2,...,n Equation 1 can be expressed as

Ti =On

k=1

Dik q̈k +On

j=1
On

k=1

hijkq̇q̇k +Ci (3)

and in a matrix form as

T=D(q)q̈+h(q,q̇)+C(q) (4)

The remaining parameter contained within the first term of
Equation 4 is Ji. Thus an inertia matrix which can be written
as:-

2 Ixx +Iyy +Izz
2

Ixy Ixz mixi

Ji =
Ixy

2 Ixx +Iyy +Izz

2
Iyz miyi

Ixz Iyz

2 Ixx +Iyy +Izz

2
mizi

mixi miyi miyi mi

(5)

and the elements of this matrix are the inertia tensor where
the indices, x, y and z indicate the axes of the coordinate
frame. The terms x, y and z are the centre of mass vector of
a link measured from the link coordinate frame.

2. DYNAMIC EQUATIONS FOR THE
MANIPULATOR
The dynamic equations relate torque to position, velocity
and acceleration and the solution of these equations allows
the motions of the manipulator to be found. These dynamic
equations are normally expressed in a matrix form in order
to obtain the necessary information for control. The analysis
of the dynamics and the design of an appropriate controller
for the six-degree-of-freedom manipulator requires analytic
expressions for the manipulator’s dynamic coefficients
previously defined. The dynbamic coefficients for a six
DOF manipulator are complex and expressions become
rapidly unmanageable unless assumptions are made about
the dynamics of the manipulators.5

The restriction made in this study is that for dynamic
analysis purposes joints 5 and 6 will be assumed fixed in
Figure 1. These links will be kept in a known configuration,
thus allowing for the derivation of relatively simple analytic
expressions for the dynamic coefficients. If the algorithm
given by Equation 3 is expanded in general terms for the
non-redundant manipulator, the following equations of
motion are obtained:

T1 =D11q̈1 +D12q̈2 +D13q̈3 +D14q̈4 +h111q̈
2
1

+h122q̇
2
2 +h133q̇

2
3 +h144q̇

2
4 +h112q̇1q̇2 +h113q̇1q̇3

+h114q̇1q̇4 +h123q̇2q̇3 +h124q̇2q̇4 +h134q̇3q̇4 +C1 (6)

T2 =D12q̈1 +D22q̈2 +D23q̈3 +D24q̈4 +h211q̈
2
1

+h222q̇
2
2 +h233q̇

2
3 +h244q̇

2
4 +h212q̇1q̇2 +h213q̇1q̇3

+h214q̇1q̇4 +h223q̇2q̇3 +h224q̇2q̇4 +h234q̇3q̇4 +C2 (7)
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T3 =D13q̈1 +D23q̈2 +D33q̈3 +D34q̈4 +h311q̈
2
1

+h322q̇
2
2 +h333q̇

2
4 +h344q̇

2
4 +h312q̇1q̇2 +h313q̇1q̇3

+h314q̇1q̇4 +h323q̇2q̇3 +h324q̇2q̇4 +h334q̇3q̇4 +C3 (8)

T3 =D14q̈1 +D24q̈2 +D34q̈3 +D44q̈4 +h411q̈
2
1

+h422q̇
2
2 +h433q̇

2
3 +h444q̇

2
4 +h412q̇1q̇2 +h413q̇1q̇3

+h414q̇1q̇4 +h423q̇2q̇3 +h424q̇2q̇4 +h434q̇3q̇4 +C4 (9)

The coefficients Ci, Dij hijk in Equations 6 to 9 are functions
of both the joint variables and inertial parameters of the
manipulator, and can be called “the dynamic coefficients of
the manipulator”. The physical meaning and functional
properties of these three dynamic coefficients can be
identified from the defining expression, Equation 3.

The gravity field is parallel to the z direction of the base
coordinate

G=[0 0 -g 0] (10)

where g is acceleration due to gravity. For the first four
manipulator joints, the coefficients defined by Equation 3,
are:

C1 =2 (m1GU11r1 +m2GU21r2 +m3GU31r3 +m4GU41r4) (11)

C2 =2 (m2GU22r2 +m3GU32r3 +m4GU42r4 (12)

C3 =2 (m3GU33r3 +m4GU4344) (13)

C4 =2 (m4GU44r4) (14)

Fig. 1. Six Degree of manipulator

Fig. 2. Shape of Link

Fig. 3. The Path in The XY Plane

Fig. 4. The Path For Obstacle Avoidance

Fig. 5. Reaching Around an Obstacle With Redundant Manip-
ulator

Fig. 6. Joint 1 Torque
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2.1 Acceleration Related Coefficients
Due to the symmetry of the D(q) matrix shown in Equation
4 only ten dynamic coefficients are evaluated, four diagonal
and six off-diagonal coefficients. The dynamic coefficients
Dii relate the total inertia at joint ‘i’ to the acceleration of the
same joint. The off-diagonal coefficients Dij relate to the
dynamic interaction at joint ‘i’ due to an acceleration at ‘j’.
From Equation 4 these are:-

D11 =Tr(U11J1U
T
11)+Tr(U21J2U

T
21)+Tr(U31J3U

T
31)

+Tr(U41J4U
T
41)

D12Tr(U22J2U
T
21)+Tr(U32J3U

T
31 +Tr(U42J4U

T
41)

D13 =+Tr(U33J3U
T
31)+Tr(U43J4U

T
41)

D14 +Tr(U44J4U
T
41)

D22 =Tr(U22J2U
T
22)+Tr(U32J3U

T
32)+Tr(U42J4U

T
42

D23 =Tr(U33J3U
T
32)+Tr(U43J4U

T
42)

D24 =Tr(U44J4U
T
42)

D33 =Tr(U33J3U
T
33)+Tr(U43J4U

T
43)

D33 =Tr(U44J4U
T
43)

D44 =Tr(U44J4U
T
44) (15)

3. DYNAMIC EQUATION FOR REDUNDANT
MANIPULATOR
As mentioned in Section 2, dynamic coupling between
motions of different joints exists only when links are
moving relative to each other. For this reason, only the first
four joints are of interest and of these, joint 2 is assumed to
be locked for obstacle avoidance. Therefore, only joints 1, 3
and 4 will be discussed in this section.

To distinguish between the dynamic coefficients of the
redundant and non-redundant manipulator the ‘*’ symbol is
introduced, ie C*i, Di and hijk.

3.1 Gravity terms
In the evaluation of the gravity terms, the field of gravity is
known to be parallel to the z direction of the base coordinate
frame. The coefficients defined by Equation 4, are:-

C*1 =2 (m*1GU*11r1 +m3GU*31r3 +m4GU*11r4) (16)

C*1 =0

C*3 =2 (m3GU*33r3 +m4GU*43r4) (17)

Fig. 7. Joint 2 Torque

Fig. 8. Joint 3 Torque

Fig. 9. Joint 4 Torque

Fig. 10. Joint 5 Torque

Fig. 11. D24 Relates Acceleration Torque at Joint 2
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C*3 =
1
2

m3gl3c3 +
1
2

m3gl4c44

C*4 =2 (m4GU*44r4)

C*4 =
1
2

m4gl4c34 (18)

It is apparent from an inspection of Figure 1, the axis of
rotation of joint 1 is always parallel to the field of gravity,
hence joint 1 will not experience a torque due to gravity.

This circumstance corresponds to zero values for the
elements GU11, GU12 and GU31 defined by Equation 16,
since the third row terms U11, U21 and U31 are all of zero
value. Equation 17 gives the gravity term as a function of q3

and q4 incident at joint 3 and the gravity torque at joint 4 is
a function of the joint angles q3 and q4.

3.2 Acceleration related dynamic coefficients
Due to the symmetry of the matrix, only six acceleration-
related dynamic terms are evaluated for the model; three
diagonal and three off-diagonal coefficients. The diagonal
coefficients are

D*11 =Tr(U11J1U
T
11)+Tr(U21J2U

T
21)+Tr(U31J3U

T
31)

D*22 =Tr(U22J2U
T
22)+Tr(U32J3U

T
32)

D*33 =Tr(U33J3U
T
33) (19)

and the off-diagonal coefficients are

D*12 =Tr(U22J2U
T
21)+Tr(U32J3U

T
31)

D*13 =Tr(U33J3U
T
31)

D*23 =Tr(U33J3J
T
32) (20)

After some algebra and trigonometric manipulation the
following expression can be derived from Equations 19 and
20

D*11 =m2l
2
2S1

2
2c2 +c2

2D+m1l
2
2c

2
2 +

1
3

m3l
2
3c

2
3 +m2l2l3c2c3

+m3l
2
2c

2
2 +

1
3

m4l
2
4c

2
34 +m4l3l4c2c34 +m4l2l4c2c34

+m4l
2
3c

2
3 +m4l

3
2c

2
2 (21)

D*22 =
1
3

(m3l
2
3 +m4l

2
4)+m4l3(l4c4 + l3) (22)

D*33 =
1
3

m4l
2
4 (23)

D*12 =0 (24)

D*13 =0 (25)

D*23 =m4l4S1
3

l4 +
1
2

l3c4D (26)

3.3 Coriolis and centrifugal terms
The velocity related coefficients of the Coriolis and
Centrifugal terms, are derived below for i=3

Fig. 12. D32 Relates Acceleration Torque at Joint 3

Fig. 13. D34 Relates Acceleration Torque at Joint 3

Fig. 14. D42 Relates Acceleration Torque at Joint 4

Fig. 15. D43 Relates Acceleration Torque at Joint 4
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h*1 =h122q̇1q̇2 +h121q̇1q̇2 +h133q̇1q̇3 +h131q̇1q̇33 (27)

h*3 =h311q̇
2
1 +h333q̇

2
3 +2h334q̇3q̇4 +h344q̇

2
4 (28)

h*4 =h411q̇
2
1 +h433q̇

2
3 (29)

Finally, the Lagrange-Euler equations for the joints 1, 3 and
4, can be obtained:

T*1 =D11q̈1 +D12q̈2 +D13q̈3 +2h112q̇1q̇2 +2h113q̇1q̇3 +C1 (30)

T*3 =D31q̈1 +D33q̈3 +D34q̈4 +h311q̇
2
1 +h333q̇

2
3 +h344q̇

2
4 h334q̇3q̇4 +C3

(31)

T*4 =D41q̈1 +D42q̈2 +D44q̈4 +h411q̇
2
1 +h422q̇

2
2 +C4 (32)

The torque components acting at the different manipulator
joints are essential parameters in a dynamic simulation and
control system design study. The transient and steady state
performance is dictated by how well these torque parameter
values can be controlled, information being available to the
engineer from a dynamic simulation.

4. MOMENT OF INERTIA
The evaluation of the inertia matrix elements is always a
major problem facing the practitioner. The shape, size and
material used in a link will dictate the actual value. Consider
a link as shown in Figure 2 with the individual reference
frame located at the centre and parallel to the sides of the
link section, so that it is symmetrical with respect to the y
and z axes. Equation 5 the terms, Ixx, Iyy and Izz are the
moments of inertia about the xi, yi, zi axes, respectively, and

Iij (i≠ j) are the products of inertia. When two axes of a
reference frame form a plane of symmetry for the mass of
the body, the product of inertia terms in the matrix Equation
5 is zero.3,6,7 The term Ji is the inertia matrix of link i about
the ith coordinate frame and this can be written as:-

1

3
mil

2
i 0 0 2

1
2

mili

0 0 0 0

Ji = 0 0 0 0

2
1
2

mil
2
i 0 0 mi

(33)

The procedure for calculating the inertia matrix element of
Iij can be found in several textbooks,8–10 where a detailed
explanation is given.

5. RESULT OF COMPUTER SIMULATION
The dynamic analysis for the manipulator joint torques has
been undertaken for two different cases using the computer
program developed in both cases where the initial con-
figurations of the manipulator are the same. The path
followed in each case is different because of obstacles. In
this work, the manipulator is assumed to move in the xy
plane, as shown in Figure 3.11 In Figure 4 the direct motion
of the end-effector from point 7 to 9 will result in a collision

Fig. 16. Joint 1 Torque

Fig. 17. Joint 2 Torque

Fig. 18. Joint 3 Torque

Fig. 19. Joint 4 Torque

Robot dynamics 619

https://doi.org/10.1017/S0263574798000617 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574798000617


at link 2, as shown in Figure 5. There are two possible ways
to avoid this collision. The first is to find a route which
prevents link 2 from striking the object. A route can be
found for the end-effector along the path 7-P-9 shown in
Figure 4 to avoid a collision. The second is to lock joint 2
which will enable the end-effector to move directly from
point 7 to point 9.

5.1 Case I (non-redundant configuration)
In this case, the path followed by the end-effector is
identified in Figure 4. When the end-effector arrives at point
7, the route followed in this case will be 7-P-9. The results
available from the dynamic simulation permit the required
actuator torques to be predicted and these are shown in
Figures 6 to 9 for the constraints imposed and the end-
effector path chosen. The reaction torques occurring at other
joints are given in Figures 10 to 15.

The simulation results show the impact of the motion of
one joint on another and indicates the extent to which a joint
controller must compensate for joint interactions. When
designing a manipulator the following factors should be
noted: that a significant amount of actuator power can be
expended in overcoming gravitational force, leaving little
energy for overcoming external factors; the lighter the
material from which the links are constructed the lower the
load on the actuators.

5.2 Case II (redundant configuration)
The manipulator’s initial configuration remains the same as
Case I but the path is that shown in Figure 3. When the end-

effector reaches the point 7, link 2 is locked and remains so
until point 9 is reached, at which point link 2 is released. For
this situation the joint torque are given in Figures 16 to 19.

The acceleration-related coefficient (Dij)j values of which
are not zero, are given in Figures 20 to 23 and the gravity
forces are given in Figures 24 to 27.

The results of this dynamic simulation show that for most
of the motion the gravity terms are larger than the inertia
terms. The manipulator simulation presented can readily be
extended to include a control system. This extended
program would be available to study controller behaviour to
ensure transient and steady state performance.

The evaluation of the joint torques based on the complete
L-E equations of motion is complex and computationally
expensive. As a result, approximations must be made when
this model is incorporated into a real-time digital control
loop. The simplifications that can be made, with confidence,
are identifiable from results similar to those presented in this
chapter. For instance, the extent to which a controller must
compensate for joint interactions; that is, when can the off-
diagonal elements of D(q) be equated to zero? In what
circumstances can the robot motion be considered to be
slow and the whole of the D(q) matrix neglected?

This operational information is readily available from the
computer simulation developed in this project for use by the
industrial practitioner.

6. DISCUSSION
The torque components acting at the different manipulator
joints are essential parameters in deciding if specific tasks
can be performed by the robots available. The dynamic

Fig. 20. D11 Relates Acceleration Torque at Joint 1

Fig. 21. D22 Relates Acceleration Torque at Joint 2

Fig. 22. D33 Relates Acceleration Torque at Joint 3

Fig. 23. D11 Relates Acceleration Torque at Joint 4
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analysis software developed can be directly used by an
industrial engineer to select a suitable actuators if modifica-
tion of an existing robot is a cost-effective solution for a new
application.

A number of design considerations arise from the result
of the dynamic study. The further an object is from a joint
and the larger its mass, the greater will be the resulting

inertial torques. Such torques are transferred inwards
towards the base of the robot resulting in increased joint
torques. Reducing the mass of a link and shifting this mass
towards the base by relocating the actuators at the base, will
reduce the torques required to overcome inertia.

A less complex robot link design can lead to a diagonal
inertia tensor, eliminating the products of inertia, and this
will considerably reduce the complexity of the dynamic
equations. A second reason for using physically simple-
shaped links is that they are more readily modelled and
hence, the estimates of the moments of inertia will be more
accurate. Link stiffness is important and flexibility will
cause errors in a following trajectory. Modelling of flexible
link structures is a subject of continuing research and
beyond the scope of this project.
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Fig. 24. Gravity Force at Joint 1

Fig. 25. Gravity Force at Joint 2

Fig. 26. Gravity Force at Joint 3

Fig. 27. Gravity Force at Joint 4
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