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The robustness of in-line raw milk analysis with near-infrared spectroscopy (NIRS) was tested with
respect to the prediction of the raw milk contents fat, protein and lactose. Near-infrared (NIR) spectra
of raw milk (n=3119) were acquired on three different farms during the milking process of 354
milkings over a period of six months. Calibration models were calculated for: a random data set of
each farm (fully random internal calibration); first two thirds of the visits per farm (internal calibration);
whole datasets of two of the three farms (external calibration), and combinations of external and
internal datasets. Validationwas done either on the remaining data set per farm (internal validation) or
on data of the remaining farms (external validation). Excellent calibration results were obtained when
fully randomised internal calibration sets were used for milk analysis. In this case, RPD values of
around ten, five and three for the prediction of fat, protein and lactose content, respectively, were
achieved. Farm internal calibrations achieved much poorer prediction results especially for the
prediction of protein and lactose with RPD values of around two and one respectively. The prediction
accuracy improved when validation was done on spectra of an external farm, mainly due to the
higher sample variation in external calibration sets in terms of feeding diets and individual cow
effects. The results showed that further improvements were achieved when additional farm
information was added to the calibration set. One of the main requirements towards a robust
calibration model is the ability to predict milk constituents in unknown future milk samples. The
robustness and quality of prediction increases with increasing variation of, e.g., feeding and cow
individual milk composition in the calibration model.

Keywords: On-line milk analysis, raw milk quality control, diffuse reflectance NIRS, calibration model
robustness.

Introduction

Milk composition and its variation during lactation of cows
can indicate imbalances in health or nutrition. Particularly
changes of fat to protein ratio, milk urea nitrogen content,
and concentration of ketone bodies provide suitable
information on energy, protein and crude fibre supply, and
on metabolic imbalances in dairy cows. Likewise, somatic
cell count (SCC) and e.g. concentration of minerals and
lactose in raw milk are indicators for udder diseases and
helpful tools for monitoring of udder health (Friggens et al.
2007; Brandt et al. 2010). Since monitoring of animal health
and metabolic indicators are increasingly part of herd
management in dairy production, the knowledge of daily
milk composition changes can assist this process. An
analytical tool based on near-infrared spectroscopy (NIRS)

with the possibility to analyse milk during daily milking
routine could provide that information. The robustness of the
near-infrared (NIR) equipment makes this technology in
general suitable for in-line application in milking parlours,
with the aim to analyse individual cow’s milk during
milking. Analysing raw milk with NIRS was the topic in
several studies either in a static measurement setup
(Tsenkova et al. 1999, 2001, 2006, Schmilovitch et al.
2000; Chen et al. 2002; Saranwong & Kawano, 2008;
Aernouts et al. 2011) or in an in-line application (Kawasaki
et al. 2005, 2008). Our own investigations resulted in a good
accuracy in predicting fat, protein, lactose and urea content
as well as SCC in milk with NIRS both in a static
measurement setup (Melfsen et al. 2012a) and in an in-line
application (Melfsen et al. 2012b). These and results in the
literature of the last decade suggest that NIRS is a promising
tool to predict concentration of some milk constituents.
However, in most studies on the use of NIRS in milk the
prediction was done on randomised test sets closely*For correspondence; e-mail: amelfsen@ilv.uni-kiel.de
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connected with the calibration set. In practical farm
application, the calibration model has to be applied to
samples from farms, cows or seasonal circumstances that are
either not part of the calibration or meanwhile have changed
(independent test set). Chemometric models should possess
a high robustness towards external variations to achieve
sufficient prediction accuracy (Wang et al. 1991; Naes et al.
2004). In contrast to manufactured products, it is rather
difficult to include all future variability in calibrations for
natural animal products. The composition of raw milk is
influenced by within-cow variability (cow age, lactation
number, lactation state, breed, health status, oestrus and
gestation status), within-nutrition variability (cows diet
rationing, energy and protein supply, feeding time, pasture
management), within-farm variability (number of milkings
per day) as well as climatic and seasonal variability, such as
temperature and daylight hours (Neitz & Robertson, 1991).
Additional influences of the individual animal on NIR
spectra are based to a large extent on scattering effects of
fat globules (Tsenkova et al. 2000, 2009; Cattaneo et al.
2009). Furthermore, variations in measuring instruments and
environment must be included in calibration models to
achieve accurate prediction results. This is of particular
importance when the spectroscopic signal from the com-
pound of interest in milk is rather small (Thomas & Ge,
2000). Most of these effects are missing in the multivariate
calibration models on milk composition analysis described
in literature. Robust calibration models with the inclusion of
large amounts of biological variability exist in literature
mainly for herbal products such as wheat (Delwiche &
Norris, 1993), kiwi fruits (McGlone & Kawano, 1998) and
apples (Peirs et al. 2001, 2003).

The aim of this study is to evaluate and compare the
robustness and prediction accuracy of raw milk constituents
with NIRS by means of different multivariate models
comprising internal and external effects.

Material and Methods

NIR spectra of raw cow milk were acquired during the
milking process. At the same time, corresponding sub-
samples of each milking were taken during the milking
process intended for reference analysis in the laboratory.
Measurements were done on three different farms, each
applying a different feeding diet, over a time period of six
month.

NIR spectra acquisition

An experimental measuring setup has been designed,
consisting of a commercially available milk meter
(LactoCorder,WMBAG, Balgach, Switzerland), a measuring
cell, designed as a flow-through chamber, a sample bottle, a
contact reflection sensor head (PSS-H-B01) and a diode
array spectrometer system with an InGaAs (Indium Gallium
Arsenide) detector (PSS-1720; both Polytec GmbH,

Waldbronn Germany). The setup was installed in the long
milk tube of one milking place per farm.
The measuring cell and thereupon the designed bypass

systemwere attached to the sampling valve of the milk meter
as described in Melfsen et al. (2012b). The valve diverted a
representative sample of 6·25% of the raw milk during the
milking process to the measuring cell, which was designed
in such a way that the milk flow after the cell can be directed
either into a sample bottle or back to the milk tube. The
contact reflection sensor headwas attached to themeasuring
cell and connected to the spectrometer. Near-infrared
spectra were acquired in the measuring cell in diffuse
reflection mode in the wavelength region of 851–1649 nm
during the milking process every 500ms while the milk was
flowing through the cell. Each 2 kg of milking, spectra were
averaged and subsamples of raw milk in the bypass system
were collected in a sample bottle for reference analysis after
passing the measuring cell. In a final step, spectra of
complete milkings per cow were additionally averaged to
predict constituents in composite milk samples.

Milk sampling

Bypassed milk was taken for reference analysis at each time
2 kg of milk had passed the milk meter. An aliquot of 45 ml
from all milk samples was conserved with bronopol after
sampling and sent to laboratory for reference analysis of fat,
protein and lactose (Milkoscan FT+; Foss-Electric A/S,
Hillerød, Denmark). The rest of the bypassed milk was
collected and summed up with all subsamples of one
complete cow milking to gather a milk sample of the total
cowmilking. This samplewas also sent for reference analysis
to the laboratory.

Dairy farms and measurement frequency

In-line measurements were done on three different farms
located in the federal state of Schleswig-Holstein, Germany:
one commercial dairy farm (ME); one research dairy farm
(Max-Rubner-Institute Kiel, in Schaedtbek; SB); and one
education and research dairy farm (Chamber of Agriculture
Schleswig-Holstein, in Futterkamp; FK). Farm ME has been
visited six times for measurements and milk sampling, farms
SB and FK three times each. An overview on measurement
sequence, total number of milk samples and feeding ratios is
provided in Fig. 1. Each visit to farm ME comprised three
consecutive milkings (two evening and one morning
milking). The data sets of two consecutive visits were
summarised in one data set (MEa1+a2; MEb1+b2; MEc1+c2),
referred to as visit a, b, and c, respectively. Milk samples
were taken during 154 cow milkings of 95 different cows
(total 1313 samples). The cows were in their first to eleventh
lactation and 22–490 d in milk (x̄ ¼ 2�6 lactations and 217
DIM). Each visit (a, b, and c) to farms SB and FK comprised
four consecutive milkings (two evening and two morning
milkings). Milk samples at farm SB were taken during 116
cow milkings of 51 different cows (total 937 samples). The
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cows were in their first to ninth lactation and 39–467 d in
milk (x̄ ¼ 2�4 lactations and 189 DIM).

Milk samples at farm FK were taken during 84 cow
milkings of 72 different cows (total 869 samples). The cows
were in their first to fifth lactation and 7–312 d in milk
(x̄ ¼ 2�3 lactations and 165 DIM).

The amount of analysed cow milkings depended on the
number of visits, the total number of cows and the type of
milking parlour. The number of cows that appeared at more
than one milking in the analysis was incidental due to
randomised appearance of cows at the milking place at
which the measuring setup was installed. All farms had the

Fig. 1. Chronological sequence of milk sampling dates (a, b, c) at the three dairy farms (ME, SB, FK), total number of milk samples (n) per farm
and diets fed during the experiment on the farms. (ME: metabolisable energy; XP: crude protein; DM: dry matter)
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same cow breed (German Holstein) with a high lactation
performance (9·500–10·600 l/305d).

Calibration and validation sets

A total of 3119 NIR spectra and milk samples were acquired
(spectra taken during parts of the milking process (n=2765)
and averaged spectra (n=354)). In a first step, spectra were
merged into one dataset per visit per farm in farms SB and FK
(SBa–SBc; FKa–FKc), and per two consecutive visits per farm,
respectively, in farmME (MEa–MEc) (Fig. 1.). Additional farm
datasets contained all spectra and results of reference milk
samples of the respective farm (MEtotal, SBtotal, FKtotal). In a
second step, datasets were combined in different calibration
and validation sets (CV-set) (Table 1). The nomenclature of
the CV-sets is based on the farm in the validation set on the
one hand and on the status of the calibration set (random
internal (RDM), internal (INT), external (EXT), combined
(EXT+1/3 & EXT+2/3)) on the other hand.

Fully random internal calibration models (RDM): NIR spectra
of the complete dataset per farm were subdivided into two
random sample sets: a calibration set containing two-thirds
of all samples and a test set containing the remaining
samples.
Internal calibration models (INT): NIR spectra of the visits a
and b were summarised in one calibration set per farm.
Validation was done on visit c to the same farm (MEc; SBc;
FKc, Table 1).
External calibration models (EXT): The whole spectral
information of two farms was summarised in one calibration
set. Validation was done on the milk samples of visit c to the
respective remaining farm, i.e. on the equal validation set
like the validation in INT (Table 1). The aim of the external
calibration sets was to evaluate their robustness to predict
milk constituents in milk samples of an unknown third farm.

In a further step, the external calibration sets were
complemented with spectral information of either visit a
(EXT+1/3) or visits a and b (EXT+2/3) of the remaining
validated farm. The validation set remained equal to the
validation set in EXT and INT (Table 1).

Preprocessing of NIR data

Chemometric tools (SL Calibration Wizard v.1.1.0;
SensoLogic GmbH, Norderstedt, Germany) were used for
preprocessing of spectra, calibration of different milk
constituents, and validation of results. Spectra normalisation
was done to NIR reflectance spectra in order to reduce
scattering effects. The applied normalisation of spectra
scales the measured reflection to an ordinate between 0
and 1, where theminimum andmaximum reflection value of
each spectrum corresponds to none (i.e. 0) and total (i.e. 1)
reflection, respectively, in the normalised spectra. The
statistical PLS-1 method (partial least squares) was used for
calibration of each constituent. Cross-validation (20 cross-
validation segments) was used in the calibration process to
estimate the number of principal components for the
calibration. Validation was based on the previously created
test set. Validation criteria for each PLS model were
coefficient of determination (R2), Root Mean Square Error
of Prediction (RMSEP) and Ratio of Prediction to Deviation
(RPD). In general the RPD is defined as ratio of SD of the
validation set to Standard Error of Prediction (SEP) when no
or only small bias is existing (Williams, 2001). Since the
RMSEP is independent of appearances of high bias values,
RPD is calculated as ratio of SD of the validation set to RMSEP
in this study.
Statistical significance of differences between the varying

CV-sets was tested by comparing absolute values of the
residuals of NIR predicted and laboratory analysed milk
contents (IBM SPSS Statistics, Version 19).

Results

An overview of the range, mean and SD of the fat, protein and
lactose contents in the reference milk samples of each visit
per farm is shown in Table 2. Since reference milk samples
were taken every 2 kg of total milking, large ranges of the
single milk contents were covered.
The data of all three milk contents in the calibration and

validation sets of all created datasets were normally
distributed.

Statistical calibration performance

The statistical performances of fat, protein and lactose
prediction for the fully random internal CV-sets (ME-RDM;
SB-RDM; FK-RDM) are shown in Table 3. Excellent
calibration results were achieved with respect to RPD values
in all three farms for predicting fat content in milk. Very good
RPD values up to 6·36 were achieved when protein content
in milk was predicted. RPD of lactose prediction showed

Table 1. Overview of the different calibration sets and
corresponding validation set

Name Cal set
n cal
set

Val
set

n val
set

ME-RDM ME2/3 875 ME1/3 438
ME-INT MEa+b 879 MEc 434
ME-EXT SBtotal+FKtotal 1806 MEc 434
ME-EXT+1/3 SBtotal+FKtotal+MEa 2290 MEc 434
ME-EXT+2/3 SBtotal+FKtotal +MEa+b 2685 MEc 434
SB-RDM SB2/3 624 SB1/3 313
SB-INT SBa+b 661 SBc 276
SB-EXT MEtotal+FKtotal 2182 SBc 276
SB-EXT+1/3 MEtotal+FKtotal+SBa 2520 SBc 276
SB-EXT+2/3 MEtotal+FKtotal+SBa+b 2843 SBc 276
FK-RDM FK2/3 579 FK1/3 290
FK-INT FKa+b 588 FKc 281
FK-EXT MEtotal+SBtotal 2250 FKc 281
FK-EXT+1/3 MEtotal+SBtotal+FKa 2529 FKc 281
FK-EXT+2/3 MEtotal+SBtotal+FKa+b 2838 FKc 281

Cal set: calibration set; val set: validation set
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useful results for the farmsME and SB and a good accuracy in
farm FK. Comparable RMSEP were achieved in all three
farms for the prediction of fat and protein content. RMSEP for
the prediction of lactose content was considerably lower at
FK compared with the other farms. The bias was rather small
for all milk constituents with regard to the range of data.

In Table 4 the model performances of farm internal
CV-sets are shown (ME-INT; SB-INT; FK-INT). Compared
with the results in Table 3, considerably higher bias can be
observed for fat, protein and lactose prediction. Especially
absolute values of protein and lactose bias were rather high
with up to 0·0955 and �0·0701%, respectively. Excellent
calibration results were still achieved regarding RPD values
of fat prediction for all three farms. Slightly higher RMSEP
than in RDM can be observed for predicting fat content
(Tables 3 & 4).

The prediction of protein content in the internal CV-set
INT achieved a much lower accuracy than in RDM, with

RPD values around 2·0. An insufficient accuracy was
achieved for all three farms when lactose content in milk
was predicted. NIR prediction results in INT for protein and
lactose showed a significantly higher deviation from the
laboratory values compared with validation of randomised
selected samples in RDM (Kruskal–Wallis-Test (P40·001)).
Model results of CV-sets with external validation spectra

(ME-EXT; SB-EXT; FK-EXT) are shown in Table 4. According
to RPD classification by Williams (2001), excellent pre-
diction accuracywas achievedwith regard to the fat content.
Suitable RPD values for analytical purposes in most NIR
applications in agricultural products with low SD were
achieved for protein calibration. RPD values for lactose
prediction in raw milk samples were rather small and
classified as not recommended for analytical purposes.
Even though results in EXT did not achieve the same

accuracy as in RDM, the prediction of protein content in raw
milk in EXT was realised with a significantly higher accuracy
than in INT (Kruskal–Wallis-Test (P40·001); Table 4). In
addition, bias was smaller in EXT compared with the high
bias levels in INT.
In the extended external calibration sets the previous

external data sets were amended with farm information of
that farm from which spectra were taken for validation.
The statistical performances of calibration and validation
for the extended external calibration sets EXT+1/3 and
EXT+2/3, with different amounts of additional farm
information, are shown in Table 5. The prediction of the
fat content in raw milk was done with an accuracy classified
as excellent regarding the high RPD values in all six
calibration sets. Suitable up to good calibrations were
developed for predicting protein content in milk. The RPD
values of lactose prediction were rather small in all
calibration sets.
Comparing EXT+1/3 and EXT+2/3 (Table 5) with results

from EXT (Table 4), slightly improved calibration results were
observed the more farm information was added. RMSEP of
fat prediction was comparable with EXT. RMSEP was
improved significantly with regard to lactose content in
milk (Kruskal–Wallis-Test (P40·05)). Moderate bias values
existed for CV-sets FK-EXT+1/3 and FK-EXT+2/3. The bias
for prediction of fat and lactose in milk was rather high in
FK-EXT+1/3.

Discussion

The variation in the content of the milk ingredients, shown in
Table 2, was in accordance with typical ranges of
subsamples from total milkings (Nielsen et al. 2005). The
changes of milk contents during milking time of cows have a
positive effect on the performance of the calibration since
they have a strong influence on spectra variability. Including
subsamples of cow milkings in the calibration sets is
particularly important for predicting the whole range of
milk contents during the course of milking with sufficient
accuracy in a practical in-line application.

Table 2. Overview on the contents of milk constituents in the
reference milk samples per visit per farm

Fat(%) Protein(%) Lactose(%)

ME a Range 0·7–10·3 2·7–4·2 3·5–5·3
n=484 Mean 4·1 3·3 4·8

SD 1·55 0·30 0·25
b Range 0·7–14·8 2·4–3·9 3·8–5·3
n=395 Mean 4·1 3·2 4·8

SD 1·85 0·28 0·19
c Range 0·4–11·1 2·3–4·2 4·2–5·2
n=434 Mean 4·1 3·2 4·8

SD 1·72 0·35 0·17
total Range 0·4–14·8 2·3–4·2 3·5–5·3
n=1313 Mean 4·1 3·3 4·8

SD 1·70 0·32 0·21

SB a Range 0·8–7·8 2·7–4·0 3·5–5·1
n=338 Mean 3·8 3·2 4·7

SD 1·49 0·23 0·22
b Range 0·7–10·3 2·6–3·8 3·7–5·3
n=323 Mean 3·9 3·2 4·7

SD 1·70 0·30 0·28
c Range 0·8–11·0 2·4–4·0 3·9–5·3
n=276 Mean 4·2 3·2 4·7

SD 1·81 0·30 0·25
total Range 0·7–11·0 2·4–4·0 3·5–5·3
n=937 Mean 3·9 3·2 4·7

SD 1·67 0·28 0·25

FK a Range 0·7–10·6 2·6–3·9 3·9–5·1
n=279 Mean 3·5 3·1 4·7

SD 1·76 0·30 0·26
b Range 0·8–12·3 2·4– 3·7 4·0–5·2
n=309 Mean 3·8 3·1 4·8

SD 2·00 0·28 0·19
c Range 0·7–8·6 2·6–4·0 4·1–5·2
n=281 Mean 3·5 3·1 4·7

SD 1·58 0·32 0·19
total Range 0·7–12·3 2·4–4·0 3·9–5·2
n=869 Mean 3·6 3·1 4·7

SD 1·80 0·30 0·22
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Comparing the prediction results of RDM data sets with
calibration results from other randomised data sets in
literature (Tsenkova et al. 1999, 2001, 2006; Schmilovitch
et al. 2000; Chen et al. 2002; Kawasaki et al. 2008;
Saranwong & Kawano, 2008) considerably improved or
comparable prediction accuracy was achieved for all three
farms with regard to the protein and lactose content. An
important problem of fully randomised data sets is that the
consideration of variability in future milk samples and of
samples from different origin is missing in general. Naturally,
accuracy of validation results from such fully randomised
models is over-optimistic with regard to future samples (Peirs
et al. 2003), a fact that is ignored in the RDM data set as well
as in most literature calibration models of raw milk contents.
The milk samples in a calibration set should span the natural
range of variability of influences on the milk spectra in order
to be able to predict milk constituents in future unknown
milk samples with a sufficient accuracy (Naes et al. 2004).
The distributions of milk content variation in randomised
calibration and validation sets are nearly identical, which
leads to advanced prediction accuracy compared with most
independent validation sets. Nevertheless, additional instru-
mental and environmental variations must be included in
calibration models to achieve accurate prediction results
with high robustness in commercial farm applications,
especially when the spectroscopic signal from the com-
pound of interest is rather small (Thomas & Ge, 2000;
Williams & Norris, 2001). Since spectroscopic signals in raw
milk spectra in the selected wavelength range are dominated
by absorption bands of O–H and C–H bonds this is of
particular importance for the milk ingredients protein and
lactose.

Thomas & Ge (2000) suggest two different ways of
including sufficient sample information variability in the
calibration set to gain robust calibration models. The variant
of controlled calibration with selection or preparation of
concentration series including the designated concen-
trations of the ingredient is useful for manufactured products.
Due to high variability of agricultural products this method
seems insufficient for creating robust calibration models for
the prediction of future samples (Dhanoa et al. 1999; Peirs
et al. 2003; Sileoni et al. 2011). The approach of passive or
natural calibration, with a global calibration includes most
part of biological variability over a sufficient period of time
with samples from different origin. Despite the effort of time
consuming development of natural calibrations (Thomas &
Ge, 2000) and continuous efforts of updating or replace-
ments with the introduction of new varieties to the model
(Guthrie et al. 1998) this approach is preferable for reaching
an adequate prediction accuracy in agricultural products
(Peirs et al. 2003; Naes et al. 2004). Since variability in NIR
spectra of raw milk is in addition to the milk constituent also
influenced by external disturbances such as season, farm or
cow (see above) it requires a large data set of calibration
spectra to cover this variation and to achieve a sufficient
robustness.
The approach of an internal calibration set (ME-INT;

SB-INT; FK-INT) or the procedure of an external calibration
set with calibration data of different origin (ME-EXT; SB-EXT;
FK-EXT) is a more adequate solution for independent
validation. As expected, the results were much poorer for
these internal CV-sets compared with fully randomised
CV-sets. Both calibration sets include the intra-farm variance
of different cows with different lactation state and number

Table 3. Statistical performances of random calibration and validation for the calibration sets ME-RDM; SB-RDM; FK-RDMwith each having
randomised spectra selection from the datasets ME, SB and FK respectively

ME-RDM Calibration (n=875) Validation (n=438)

SEC RMSECV R2 cal RMSEP R2 val Bias RPD

Fat [%] 0·19 0·19 0·99 0·17 0·99 0·0069 10·09
Protein [%] 0·06 0·07 0·97 0·06 0·96 0·0064 5·27
Lactose [%] 0·08 0·09 0·87 0·10 0·78 0·0084 2·12

SB-RDM Calibration (n=624) Validation (n=313)

SEC RMSECV R2 cal RMSEP R2 val Bias RPD
Fat [%] 0·16 0·16 0·99 0·16 0·99 �0·0064 10·77
Protein [%] 0·04 0·06 0·98 0·06 0·95 �0·002 4·61
Lactose [%] 0·07 0·11 0·93 0·09 0·89 0·005 2·99

FK-RDM Calibration (n=579) Validation (n=290)

SEC RMSECV R2 cal RMSEP R2 val Bias RPD
Fat [%] 0·15 0·16 0·99 0·16 0·99 �0·0013 11·05
Protein [%] 0·04 0·05 0·99 0·05 0·98 0·0018 6·36
Lactose [%] 0·05 0·06 0·95 0·05 0·95 �0·0013 4·35

SEC: standard error of calibration; RMSECV: root mean square error of cross validation; RMSEP: root mean square error of prediction; RPD: ratio of SD of the
validation set to RMSEP
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and health status. Nevertheless, lack of robustness of the
calibration model can be observed, which made it difficult
to predict milk contents in future raw milk samples with
satisfying accuracy. According to Tsenkova et al. (2000,
2009), Cattaneo et al. (2009) and Melfsen et al. (2012c),
spectral information of individual cows is dominant in raw
milk spectra, a factor that was underrepresented in the
calibration sets in INT and EXT. Only, a few of the cowswere
represented both in the calibration and in the validation sets
in INT. Since the spectra variability from these cows was
already included in calibration creation, better prediction
results for the milk contents can be expected. As expected,
the RMSEP for the milk samples from these cows were
significantly smaller (Mann–Whitney U-Test (P<0·001))
than the RMSEP for milk samples from cows that were new

in the validation set (results not plotted). This was apparent
for the ingredients protein and lactose of all three farms.
The objective of the analysis was to investigate whether a

large external data set for calibration, with or without
additional information from the validated farms and cows,
avoids these effects and hence improves the robustness of
the calibration models.
Even though no information of the farm, the cows or the

feeding were existent in the form of raw milk spectra in the
model development of external calibrations, these sets
provided equal or even better prediction accuracy results
compared with internal CV-sets. Since sample numbers
were considerably higher in the external CV-set, improved
prediction accuracy might have been caused by that fact.
However, additional model developments with randomly

Table 4. Statistical performances of internal (ME-INT; SB-INT; FK-INT) and external calibration and validation (ME-EXT; SB-EXT; FK-EXT) with
independent validation set consisting the last visit of the farms ME, SB and FK respectively (MEc, SBc, FKc)

ME-INT Calibration (n=879) Validation (n=434)

SEC RMSECV R2 cal RMSEP R2 val Bias RPD

Fat [%] 0·16 0·17 0·99 0·20 0·99 0·0197 8·45
Protein [%] 0·06 0·07 0·96 0·16 0·88 0·0955 2·22
Lactose [%] 0·15 0·16 0·55 0·18 0·18 0·0615 0·96

SB-INT Calibration (n=661) Validation (n=276)

SEC RMSECV R2 cal RMSEP R2 val Bias RPD
Fat [%] 0·13 0·14 0·99 0·19 0·99 �0·0116 9·44
Protein [%] 0·07 0·07 0·94 0·16 0·77 0·0556 1·94
Lactose [%] 0·09 0·10 0·89 0·16 0·67 �0·0498 1·56

FK-INT Calibration (n=588) Validation (n=281)

SEC RMSECV R2 cal RMSEP R2 val Bias RPD
Fat [%] 0·14 0·16 0·99 0·17 0·99 0·038 9·15
Protein [%] 0·05 0·06 0·97 0·18 0·74 0·0733 1·77
Lactose [%] 0·12 0·13 0·73 0·15 0·55 �0·0701 1·28

ME-EXT Calibration (n=434) (n=1806) Validation (n=434)

SEC RMSECV R2 cal RMSEP R2 val Bias RPD
Fat [%] 0·15 0·15 0·99 0·19 0·99 �0·0073 8·94
Protein [%] 0·09 0·09 0·90 0·12 0·90 0·0425 2·95
Lactose [%] 0·10 0·12 0·81 0·17 0·29 �0·0554 1·02

SB-EXT Calibration (n=2182) Validation (n=276)

SEC RMSECV R2 cal RMSEP R2 val Bias RPD
Fat [%] 0·17 0·17 0·99 0·19 0·99 �0·0105 9·39
Protein [%] 0·08 0·09 0·94 0·12 0·85 0·0323 2·48
Lactose [%] 0·15 0·15 0·53 0·18 0·55 0·0494 1·41

FK-EXT Calibration (n=2250) Validation (n=281)

SEC RMSECV R2 cal RMSEP R2 val Bias RPD
Fat [%] 0·17 0·17 0·99 0·16 0·99 0·0565 9·64
Protein [%] 0·10 0·10 0·90 0·10 0·92 0·0296 3·14
Lactose [%] 0·12 0·13 0·72 0·15 0·53 –0·0649 1·27

SEC: standard error of calibration; RMSECV: root mean square error of cross validation; RMSEP: root mean square error of prediction; RPD: ratio of SD of the
validation set to RMSEP
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reduced sample numbers at a level equal to the internal
CV-sets still showed improved prediction results (results not
plotted). Most likely, the occurrence of additional variability
when more than one farm was used to build up the
calibration sets represented feeding and seasonal changes
better than INT and hence was responsible for a more robust
calibration. The calibration sets included milk samples
from a larger quantity of cows, a higher variability of
lactation characteristics, multiple different diet layouts,
as well as a higher variability of instrumental and environ-
mental conditions.

Further improvements were observed when external
calibration sets were provided with additional spectral
information from that farm at which the validation was
done. In this case, clear improvements for RMSEP of

prediction of lactose content in milk and smaller bias values
for protein and lactose prediction were observed. An
increase in the amount of farm information in the external
calibration sets led to an increased accuracy for predicting
lactose content in milk and a further reduction of bias values
for all milk constituents. Unexpectedly large bias values
were still observed, however, when fat content in test set FKc

was predicted with the calibration sets in FK-EXT+1/3 and
FK-EXT+2/3.

Conclusion

In this study the robustness and prediction accuracy of raw
milk constituents with NIRS by means of different multi-
variate models comprising internal and external effects were

Table 5. Statistical performances of extended external calibration and validation for the calibration sets ME-EXT+1/3; SB-EXT+1/3;
FK-EXT+1/3 and ME-EXT+2/3; SB-EXT+2/3; FK-EXT+2/3 with calibration sets containing total datasets of two farms amended with visits
from the remained farm and validation sets containing the last third of the visits of the remained farm (MEc, SBc, FKc)

ME-EXT+1/3 Calibration (n=2290) Validation (n=434)

SEC RMSECV R2 cal RMSEP R2 val Bias RPD

Fat [%] 0·16 0·16 0·99 0·19 0·99 �0·0193 8·89
Protein [%] 0·09 0·09 0·92 0·11 0·91 0·0131 3·17
Lactose [%] 0·12 0·13 0·76 0·15 0·38 �0·0387 1·12

ME-EXT+2/3 Calibration (n=2685) Validation (n=434)

SEC RMSECV R2 cal RMSEP R2 val Bias RPD
Fat [%] 0·16 0·16 0·99 0·19 0·99 0·0054 8·96
Protein [%] 0·09 0·09 0·91 0·11 0·91 0·0143 3·27
Lactose [%] 0·12 0·13 0·74 0·14 0·38 �0·02 1·18

SB-EXT+1/3 Calibration (n=2520) Validation (n=276)

SEC RMSECV R2 cal RMSEP R2 val Bias RPD
Fat [%] 0·16 0·17 0·99 0·19 0·99 �0·0124 9·40
Protein [%] 0·09 0·09 0·92 0·12 0·84 0·0222 2·46
Lactose [%] 0·10 0·11 0·78 0·16 0·62 0·0365 1·58

SB-EXT+2/3 Calibration (n=2843) Validation (n=276)

SEC RMSECV R2 cal RMSEP R2 val Bias RPD
Fat [%] 0·16 0·16 0·99 0·19 0·99 0·0019 9·50
Protein [%] 0·10 0·10 0·89 0·12 0·85 0·023 2·52
Lactose [%] 0·11 0·12 0·75 0·14 0·67 �0·0093 1·74

FK-EXT+1/3 Calibration (n=2529) Validation (n=281)

SEC RMSECV R2 cal RMSEP R2 val Bias RPD
Fat [%] 0·17 0·17 0·99 0·16 0·99 0·0551 9·64
Protein [%] 0·09 0·10 0·91 0·10 0·92 0·0312 3·18
Lactose [%] 0·13 0·14 0·71 0·14 0·56 �0·0673 1·32

FK-EXT+2/3 Calibration (n=2838) Validation (n=281)

SEC RMSECV R2 cal RMSEP R2 val Bias RPD
Fat [%] 0·17 0·17 0·99 0·17 0·99 0·0526 9·51
Protein [%] 0·10 0·10 0·90 0·11 0·90 0·0163 2·99
Lactose [%] 0·15 0·16 0·58 0·13 0·53 �0·0326 1·42

SEC: standard error of calibration; RMSECV: root mean square error of cross validation; RMSEP: root mean square error of prediction; RPD: ratio of SD of the
validation set to RMSEP
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evaluated and compared. The analysed results in this study
underlined that excellent to good accuracy was achieved for
predicting fat, protein and lactose content in milk in fully
randomised calibration and validation sets. In most cases,
the variability of future milk samples is missing in
randomised test sets, which causes an insufficient robustness
towards independent spectra of future measurements. In
consequence, validation on temporally independent spectra
achieved much poorer prediction results, especially for the
prediction of protein and lactose content. Prediction was
improved when calibration was done on external spectra of
other farms, which was probably due to the superior amount
of sample variation in terms of feeding diets and cows in
external calibration sets. Further improvements were
achieved when additional information of the farm at which
the validation was done was added to the calibration set. In
summary, randomised created calibration and validation
sets reflect the accuracy of raw milk content analysis only in
a minor way. A robust calibration that covers up most of the
variability of raw milk samples is more suitable and
beneficial than calibration sets of single farms. For the
creation of robust calibrations, it is recommended to include
as much cow, feeding and seasonal variation as possible.
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