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Abstract

The phylum Platyhelminthes shares a unique population of undifferentiated cells responsible
for the proliferation capacity needed for cell renewal, growth, tissue repair and regeneration.
These cells have been extensively studied in free-living flatworms, whereas in cestodes the
presence of a set of undifferentiated cells, known as germinative cells, has been demonstrated
in classical morphology studies, but poorly characterized with molecular biology approaches.
Furthermore, several genes have been identified as neoblast markers in free-living flatworms
that deserve study in cestode models. Here, different cell types of the model cestode
Mesocestoides corti were characterized, identifying differentiated and germinative cells.
Muscle cells, tegumental cells, calcareous corpuscle precursor cells and excretory system
cells were identified, all of which are non-proliferative, differentiated cell types. Besides
those, germinative cells were identified as a population of small cells with proliferative capacity
in vivo. Primary cell culture experiments in Dulbecco’s Modified Eagle Medium (DMEM),
Echinococcus hydatid fluid and hepatocyte conditioned media in non-reductive or reductive
conditions confirmed that the germinative cells were the only ones with proliferative capacity.
Since several genes have been identified as markers of undifferentiated neoblast cells in free-
living flatworms, the expression of pumilio and pL10 genes was analysed by qPCR and in situ
hybridization, showing that the expression of these genes was stronger in germinative cells but
not restricted to this cell type. This study provides the first tools to analyse and further char-
acterise undifferentiated cells in a model cestode.

Introduction

The phylum Platyhelminthes includes diverse animals in terms of development, morphology
and life cycles, with both parasitic and free-living species (Garcia et al., 2007; Egger et al.,
2015). These organisms share a unique population of undifferentiated cells with proliferation
capacity that is responsible for cell renewal, growth, tissue repair and regeneration (Gustafsson,
1990; Peter et al., 2004; Reuter and Kreshchenko, 2004; Koziol and Castillo, 2011).

The mechanism of cell renewal, morphological characterization and distribution of neo-
blasts is well studied in free-living Platyhelminthes, particularly in planarias (Morita et al.,
1969; Hay and Coward, 1975; Rossi et al., 2008; Rink, 2013). In cestodes, the presence of a
set of undifferentiated cells, denominated germinative cells, has also been demonstrated and
characterized in classical morphology studies (Gustafsson, 1990; Reuter and Kreshchenko,
2004; Koziol and Castillo, 2011). They were described at the ultrastructural level in onco-
spheres, metacestodes and adult cestodes, showing characteristics similar to that of planarian
neoblasts, except for the absence in cestodes of chromatoid bodies (large, cytoplasmic
electron-dense ribonucleoprotein particles) (Douglas, 1961; Bolla and Roberts, 1971;
Wikgren and Gustafsson, 1971; Sulgostowska, 1972; Gustafsson, 1976; Loehr and Mead,
1979; Koziol et al., 2010, 2014). However, molecular approaches to characterize these cells
in cestodes are still too scarce.

Several genes involved in cell cycle and developmental regulation have been identified as
planarian neoblast markers (Aboobaker, 2011). RNAi studies revealed the function of these
marker genes, relating them with maintenance, proliferation and differentiation of neoblasts
(Ogawa et al., 2002; Reddien, 2005; Juliano et al., 2010; Rouhana et al., 2010; Önal et al.,
2012; Wagner et al., 2012; Rink, 2013). More recently, several single-cell RNAseq analyses
allowed the identification of diverse marker genes characteristic of different neoblast popula-
tions and precursors of differentiated cells (Fincher et al., 2018; Plass et al., 2018; Swapna et al.,
2018; Zeng et al., 2018).

Gene-expression analyses of cestode germinative cells are more recent and include the
study of homologous genes of planarian neoblast markers in Echinococcus multilocularis
(Em-nos-1, Em-nos-2, Em-ago-2, Em-h2b, Em-sox2, Em-fgfr3), as well as a transcriptomic
study of irradiated Hymenolepis diminuta (Koziol et al., 2014, 2015; Cheng et al., 2017;
Förster et al., 2019; Rozario et al., 2019). Genomic analyses have shown that trematodes
and cestodes have lost important germline multipotency programme (GMP) components,
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such as P-element Induced WImpy testis (PIWI), VASA and
group 9 TUDOR proteins (Tsai et al., 2013; Fontenla et al.,
2017, 2021). The loss of these genes and the absence of chroma-
toid bodies highlight differences between proliferative cells from
parasitic flatworms and the neoblasts of free-living planarias.
However, it has been proposed that paralogues to GMP compo-
nents in the genomes of cestodes and trematodes might have
replaced the original functions. This might be the case for pL10,
a DEAD-box helicase paralogue of vasa, involved in ATP-ase
and helicase activity and their regulation (Gorbalenya and
Koonin, 1993; Cordin et al., 2006; Linder, 2010; Linder and
Jankowsky, 2011). Eukaryotic DEAD-box helicases are involved
in developmental regulation (Lasko and Ashburner, 1988). In par-
ticular, vasa and related genes are expressed in germinal cells
(Ikenishi and Tanaka, 1997; Kuznicki et al., 2000; Johnstone
et al., 2005). At least 3 copies of pL10 genes exist in cestode gen-
omes and it is proposed that they might have replaced the original
vasa function in neoblasts (Tsai et al., 2013; Fontenla et al., 2017,
2021). Pumilio genes are also planarian neoblast markers. These
RNA binding proteins repress target gene translation and play a
central role in post-transcriptional regulation. Several organisms
show specific pumilio gene expression in germinal cells and
other stem cell types, and also in the nervous system (Moore
et al., 2003; Guo et al., 2006; Kurisaki et al., 2007). This is consist-
ent with an ancestral function in maintaining proliferation ability
and pluripotency of metazoan stem cells (Curtis et al., 1997;
Wickens et al., 2002).

In this work the focus was on the characterization of germina-
tive cells of the cestode Mesocestoides corti (syn vogae) (Etges,
1991). This species has been adopted as a model species to study
the biology and development of cestodes (Britos et al., 2000;
Costábile et al., 2017, 2018; Camargo de Lima et al., 2018) due
to their low risk of infection to humans, the ease of obtaining
large amounts of parasites thanks to the asexual amplification in
the rodent host and the possibility to induce strobilar development
in vitro (Specht and Voge, 1965; Voge and Seidel, 1968; Barrett
et al., 1982; Thompson et al., 1982; Ong and Smyth, 1986).

It was previously shown that M. corti germinative cells are
localized only in the inner parenchyma, particularly in close prox-
imity to the inner muscle layer, but not in the cortical paren-
chyma nor in the sub-tegumental tissue, with a spatial
distribution similar to that observed in free-living platyhelminths.
It was also demonstrated that cellular renewal and growth
depends on these cells (Hess, 1980, 1981; Koziol et al., 2010).
Additionally, an optimized protocol to isolate proliferative cells
by flow cytometry was developed (Domínguez et al., 2014).
Here we deepen the characterization of M. corti germinative
cells, analysing their morphology in cell suspensions, evaluating
the ability to proliferate in vitro and the expression of 3 post-
transcriptional regulators considered as markers of undifferenti-
ated cells in other flatworms.

Materials and methods

Parasite material

Mice infected with M. corti tetrathyridia were kindly provided by
Jenny Saldaña and Laura Dominguez (Laboratorio de
Experimentación Animal, Facultad de Química, UdelaR). This is
the same strain isolated by Specht and Voge (1965), with the spe-
cies originally identified as M. corti, and has been proposed that it
might be another species of Mesocestoides by Etges (1991),
although there is no consensus in the literature on its nomencla-
ture. Parasite removal, culture and induction of strobilization were
performed as previously described (Britos et al., 2000; Koziol
et al., 2010).

Fixed cell suspensions

Tissue maceration was performed according to David (1973) with
some modifications. Briefly, M. corti tetrathyridia were cultured for
6 days in modified RPMI-1640 media [RPMI 1640 media, HEPES
modified (Sigma-Aldrich, Germany) with 4.3 g L−1 glucose
(Sigma-Aldrich, Germany), 4.8 g L−1 yeast extract (Sigma-Aldrich,
Germany) and 50 μgmL−1 gentamicin (Sigma-Aldric, Germany)
added] supplemented with 10% bovine fetal serum (Biochrom,
Germany), washed 3 times in phosphate-buffered saline (PBS) and
placed in maceration solution (1:1:13 distilled water:glacial acetic
acid:glycerol; 15mL per 200 μL of tetrathyridia). Samples were
pipetted up and down, and incubated overnight at 4°C. The next
day, they were disaggregated again by pipetting, diluted 1:10 in
maceration solution and spotted on Silane-prep slides
(Sigma-Aldrich, USA) or SuperFrost slides (Thermo Scientific,
Germany). Slides were air dried overnight at room temperature.

EdU labelling

5-Ethynyl-2´-deoxyuridine (EdU, Thermo Scientific, Germany) is a
thymidine analogue used as a proliferation marker in cell type
characterization and cell culture. M. corti tetrathyridia were incu-
bated with EdU 20 μM for 4 h in RPMI-1640 modified media with-
out yeast extract and with 10% bovine fetal serum. Detection was
performed with the Click-iT® EdU Alexa Fluor® 594 Imaging Kit
(Thermo Scientific, Germany) as described by the manufacturer.

Cell type identification using different dyes

Slides with cell suspensions were stained by one of the following
procedures (Koziol et al., 2014).

1) EdU detection and whole cell stain (WCS): EdU was detected
first, followed by Cellomics™ WCS Green (Thermo
Scientific) staining as instructed by the manufacturer.

2) Propidium iodide (PI): Slides were treated with 0.05% Triton
X-100 (Sigma-Aldrich), and stained with PI (Sigma-Aldrich,
2.5 μg mL−1 in PBS) for 15 min.

3) Nile red (NR): After washing with PBS, slides were stained with
NR (Greenspan et al., 1985) (Sigma-Aldrich, 100 ng mL−1 in
PBS from a 4.2 mgmL−1 stock in acetone).

Finally, for all the preparations, 4′,6-diamidino-2-phenylindole
(DAPI) staining (Sigma-Aldrich, 1 μg mL−1 in PBS) was per-
formed. After staining, slides were washed with PBS and mounted
with Fluoprep mounting (bioMérieux). Imaging was performed
with Zeiss Axio Imager Z1 microscope (Zeiss).

Acetylated tubulin immunohistochemistry

Cell suspension samples were fixed in 4% paraformaldehyde
(PFA, Sigma-Aldrich) for 15 min, washed 3 times in PBS and
treated twice with 0.05% Triton X-100. Whole specimens were
fixed by embedding in Paraplast (Oxford Labware) as described
by the manufacturer and cut in 10 μm thick sections. After dewax-
ing and rehydration, the slides were boiled for 20 min in a solu-
tion of 10 mM sodium citrate, pH 6.0 with 0.1% Triton X-100
in a microwave, washed 5 min in PBS and treated twice with
0.05% Triton X-100 for 5 min. Cell suspension or sections were
then incubated in blocking solution [3% bovine serum albumin
(BSA, Sigma-Aldrich) plus 5% sheep serum (Sigma-Aldrich) in
PBS] for 1 h and incubated overnight at 4°C with anti-acetylated
tubulin antibody (mouse monoclonal, clone 6-11B-1, Santa Cruz
Biotechnology), diluted 1:50 in PBS with 3% BSA. Then, samples
were washed 4 times for 10 min with PBS and incubated for 2 h
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with Fluorescein Isothiocyanate (FITC) conjugated antibody
(donkey anti-mouse, Jackson Immunoresearch) diluted in 1:100
in PBS with 3% BSA. Finally, samples were washed 4 times for
10 min with PBS, and co-stained with DAPI (1 μg mL−1 in PBS).

In vitro culture of primary cell preparations

Cell suspensions were obtained starting with 2.5 mL of tetrathyr-
idia following previously described protocols with minor modifi-
cations (Domínguez et al., 2014). After parasite fragmentation,
samples were incubated in 0.1% Trypsin (Sigma-Aldrich) solution
for 20 min, dissociated by gentle pipetting, and filtered through a
30 μm mesh. Samples were then centrifuged at 1000 rpm for 1
min to eliminate calcareous corpuscles, resuspended at the appro-
priate cellular density, and filtered through a 40 μm mesh Easy
strainer (Greiner).

Primary cell culture experiments followed the protocols devel-
oped for E. multilocularis (Spiliotis et al., 2004, 2008; Brehm and
Spiliotis, 2008). Culture media tested were DMEM (Life
Technologies), E. multilocularis hydatid fluid and hepatocyte con-
ditioned media in non-reductive or reductive (0.01% L-cysteine,
100 μM β-mercaptoethanol and 10 μM bathocuproine disulphonic
acid) conditions (Spiliotis et al., 2008). Culture dishes were placed
in sealed plastic bags, the gas phase was replaced with nitrogen
and incubated in 5% CO2 at 37°C. For proliferative cell labelling,
EdU was incorporated 4 h before the end of the cell culture, and
detected as described above. Cell cultures were monitored by
optical microscopy. Imaging was performed with Zeiss Axio
Imager Z1 microscope (Zeiss).

Determination of mRNA expression levels during in vitro
strobilar development by qPCR

Strobilization was induced as previously described (Britos et al.,
2000), retrieving samples every 2 days during strobilar develop-
ment. RNA extraction, DNase treatment, retrotranscription and
qPCR were performed as described previously (Costábile et al.,
2017). Primers used to amplify and quantify McpL10, McPum1
and McPum2 genes from M. corti are shown in Table 1.
Amplification efficiency and primer specificity were determined
as described previously (Costábile et al., 2017).

In situ hybridization

Probe labelling
Digoxigenin-labelled probes were synthesized by in vitro tran-
scription with SP6 polymerase (New England Biolabs), using
the DIG RNA labelling mix (Roche) as described by the manufac-
turer. A fragment of the target genes was amplified using degen-
erate primers [FwVasa: 5´-ATGGCNTGYGCNCARACNGGN-3´
and RvVasa: 5´-NCCCATRTCNARCATNCKRTC-3´ for McpL10
gene, and primers described in Koziol et al. (2008) for pumilio

genes] and cloned in pGEM-T Easy (Promega). The McpL10
gene was cloned using the primers indicated above, prior to the
sequencing and publication of the M. corti genome (Coghlan
et al., 2019). These plasmids were used as template for probe syn-
thesis. Probes were checked by agarose gel electrophoresis and
quantified by comparison of serial dilutions in a dot blot with
the DIG-labelled Control RNA (Roche).

In situ hybridization in sections
Worms cultured for 6 days were fixed in 4% PFA in PBS for
90 min at room temperature, washed 5 times with PBS and incu-
bated in 30% sucrose for 48 h at 4–8°C. Worms were embedded in
inclusion resin, snap frozen in liquid nitrogen and sliced in 10 μm
sections onto SilanePrep (Sigma-Aldrich) slides. Slides were
stored at −80°C until use. Sections were thawed for 30 min at
room temperature, re-fixed with 4% PFA in PBS for 15 min at
room temperature and washed 3 times in PBS (5 min each).
Permeabilization was performed for 30 min at room temperature
with 0.5% Triton X-100 in PBS, followed by 0.2 N HCl treatment
for 10 min. Sections were incubated 10 min at 60°C in pre-
hybridization buffer [5× saline sodium citrate buffer (SSC:
750 mM NaCl, 75 mM trisodium citrate, pH7, all components
from Sigma-Aldrich), 50% formamide (Sigma-Aldrich), 10% dex-
tran sulphate (Sigma-Aldrich), 1 mg mL−1 Torula yeast RNA
(Sigma-Aldrich), 1× Denhardt’s solution (Fluka)] and pre-
hybridized for 120 min at 53°C in fresh pre-hybridization buffer.
Probes were denatured by heating at 80°C for 2 min, chilled
immediately on ice and added to the slides at a concentration
of 0.1 ng μL−1 in pre-hybridization buffer. Hybridization was per-
formed in a humidity chamber at 53°C overnight with slides cov-
ered with Parafilm. After hybridization, samples were incubated
with pre-heated 2× SSC buffer at 53°C until the Parafilm detached
from the slide, washed with 1× SSC buffer plus 50% formamide
and 0.1% Tween-20 (Sigma-Aldrich) for 20 min at 53°C, and
with 1× SSC buffer plus 50% formamide for 20 min at 53°C.
Samples were then transferred to room temperature, washed
twice (30 min each) with maleic acid buffer (MAB: 100 mM maleic
acid, 150 mM NaCl, all components from Sigma-Aldrich) and
blocked for 2 h at room temperature with blocking buffer [0.5%
w/v blocking reagent for nucleic acid hybridization and detection
(Roche), 1% BSA and 5% v/v heat-inactivated sheep serum
(Sigma-Aldrich) in MAB]. Then they were incubated in a wet
chamber for 90min at 37°C with anti-digoxigenin antibody conju-
gated to alkaline phosphatase (Roche) diluted 1:500 in blocking
buffer without sheep serum. Finally, samples were washed 6
times (15min each) with MAB plus 0.1% Tween-20 and colour
development was performed by equilibrating samples in Alkaline
Phosphatase (AP) buffer (100mM Tris buffer, 25mM MgCl2, 150
mM NaCl, pH 9.5, all components from Sigma-Aldrich) before
adding NBT/BCIP (330 μgmL−1 of NBT, 167 μg mL−1 of BCIP,
Roche) in AP buffer. Once colour development was achieved, the
reaction was stopped with PBS-Tw (PBS plus 0.1% Tween-20)
and fixed with 4% PFA in PBS for 20min. Samples were washed
with PBS and mounted with 80% glycerol (Sigma-Aldrich).

In situ hybridization in cell suspensions
Fixed cell suspensions were re-fixed with 4% PFA in PBS for 15
min and washed 3 times with PBS (5 min each). Samples were
incubated for 1 min in solutions with increasing concentration
of ethanol diluted in PBS (25, 50 and 75%) up to absolute ethanol.
Pre-hybridization was performed for 5 min at 56°C in pre-
hybridization solution [100 ngmL−1 heparin (Sigma-Aldrich), 3×
SSC, 100mM Dithiothreitol (DTT) (Amresco)]. Before hybridiza-
tion, the probe was denatured at 80°C for 5 min and incubated in
ice. Hybridization was performed overnight at 50°C in pre-
hybridization solution containing 2 ngmL−1 of probe. Samples

Table 1. Primers for qPCR

Name Sequence WBPS codea

qMcPUM1_fw ACCACGTTGTTCAGAAGTGC MCOS_0000894701

qMcPUM1_Rv TTGAATGTACGTGCCCCTTG

qMcPUM2_Fw ATGGCTGTAGAGTGATCCAACG MCOS_0000745201

qMcPUM2_Rv AGGTTGTCAACGCCTTTGTG

qMcPL10_Fw GATGAAGCTCGCAAATTCGC MCOS_0000374401

qMcPL10_Rv ACTTCGAGGAGTTGTTTGCG

aWormBase ParaSite v13 accession code.
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were washed twice with pre-heated 2× SSC for 20min at 50°C and
twice with MABT (MAB plus 0.1% Tween-20) for 10min at room
temperature. Blocking was performed for 2 h at room temperature
in blocking solution [2% w/v blocking reagent for nucleic acid
hybridization and detection (Roche) and 5% v/v heat-inactivated
sheep serum (Sigma-Aldrich) inMABT]. Then, they were incubated
with anti-digoxigenin antibody conjugated to peroxidase (Roche)
diluted 1:50 in blocking solution for 1 h. Finally, the slides were
washed 3 times with MABT (5min each) and incubated for 10min
in imidazole buffer [0.1 M imidazole (Sigma-Aldrich), pH 7.6 in
PBS] at room temperature. Tyramide solution was used for detection,
prepared andusedasdescribedbyHopman et al. (1998) (diluted1/100
in imidazole buffer with 0.001% hydrogen peroxide). Samples were
incubated with detection solution for 5min in the dark and washed
5 times in PBS (5min each). Nuclei were stained with DAPI.
Imaging was performed with Olympus epifluorescence microscope.

Results

Characterization of cell types

To identify different cell types in M. corti, several cell biology and
immunohistochemical techniques were applied to M. corti fixed
cell suspensions.

Germinative cells were identified by their morphological char-
acteristics (containing a large nucleus with finely granular chro-
matin, a large prominent nucleolus, rounded undifferentiated
shape and cytoplasm strongly stained with PI). These cells are
the only ones with proliferative capacity identified by differential
incorporation of the thymidine analogue EdU. In addition these
cells have a nucleus intensely stained with DAPI, cytosol intensely
stained with WCS and PI and they rarely present lipid inclusion
(detected with NR) (Fig. 1)

Muscle cells were identified as small cells with a
heterochromatin-rich nucleus, and frequent cell projections
(Fig. 1). Tegumental cells had an irregular shape, with a cyto-
plasm brightly stained with PI or WCS and uniformly stained
with NR (Fig. 1). Calcareous corpuscle precursor cells had a
small nucleus localized in the cellular periphery, a big cytoplasm
with little PI, WCS or NR staining (Fig. 1). Excretory system cells
(flame cells) were identified based on their characteristic shape
(Fig. 1).

As a complementary strategy to identify nervous cells and cells
from the excretory system, immunofluorescence analyses were
performed using an antibody that recognizes acetylated tubulin
(Koziol et al., 2013). In sections, the main nerve cords could be
identified based on their intense reactivity with the antibody

Fig. 1. Mesocestoides corti cell types identified in cell suspensions stained with different dyes. The cell types are identified on top of each panel. The stain methods
used are identified in the left part of the image. WCS, whole cell staining; PI, propidium iodide; NR, Nile red. The bar represents 10 μm.
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(Fig. 2A and B; continuous arrow). Beside the cords, the presence
of neurons in the region of the cortical parenchyma (Fig. 2A–C,
discontinue arrows) was observed. Similarly, in cell suspensions,
nerve cells presented a very small nucleus with extensions and
projections of the cell soma that may correspond to neurites
(Fig. 2D–F, discontinuous arrows). This antibody can also recog-
nize flame cell cilia, which allows the identification of flame cells
corresponding to the excretory system by their characteristic
shape (Fig. 2G).

Mesocestoides corti cell culture

To figure out if any of the different M. corti cell types identified
could survive and proliferate in vitro, a culture of live cell suspen-
sions based on E. multilocularis primary cell culture protocols
(Spiliotis et al., 2004, 2008; Brehm and Spiliotis, 2008) was
assayed. The development of a cell culture system is important
to advance in the understanding of the cellular biology of
M. corti. Different growth conditions were tested for primary
cell preparations obtained from tetrathyridia, using diverse
media (DMEM, hydatid fluid and hepatocyte conditioned
media), under non-reducing and reducing conditions, in a N2

and CO2-containing atmosphere.
Noadherence to the substrateorbetween cellswasobservedunder

all culture conditions after 1 day in culture, with the dissociated M.
corti cells remaining free in suspension (Supplementary Fig. 1).

To determine if cells can proliferate after 20 h in vitro, the pri-
mary cultures were tested for EdU incorporation. In all conditions
analysed, a subpopulation of cells in the culture incorporated the
nucleotide analogue, indicative of their proliferative status (Fig. 3,
continue arrow, red nuclei). Since the primary cultures were
started with all the cells dissociated from whole worms, it is
expected that most cells would not represent proliferative cells
(Fig. 3, discontinuous arrow, blue nuclei).

The proliferative capacity is maintained after 72 h in culture in
rich media (DMEM with or without reductive conditions) and in
hydatid fluid in non-reducing conditions (Fig. 3).

Expression of pumilio and pL10 genes

Two previously isolated M. corti pumilio genes [McPum1 and
McPum2 (Koziol et al., 2008)], as well as the vasa homologue
McpL10 were evaluated as putative markers of germinative
cells in M. corti. First, the levels of mRNA expression for
these marker genes were evaluated by quantitative reverse
transcription polymerase chain reaction during strobilar
development.

McpL10 gene was slightly downregulated (Fig. 4A) with
25% less expression in segmented worms (10 days) compared
to the larval stage (2 days). A similar trend was observed for
McPum1 (Fig. 4B), which was downregulated at the beginning
of development, with expression levels reduced more than
50% in worms at 8 days of culture, but increasing again in seg-
mented worms (10 days). No significant changes were seen in
McPum2 gene expression during strobilar development
(Fig. 4C).

Then, the expression location of these putative marker genes
was evaluated by in situ hybridization. The expression pattern
of both pumilio genes in sections of worms starting the segmen-
tation process was very similar (although a stronger signal is
observed for McPum1) (Fig. 5A and B). In tetrathyridia beginning
segmentation, their expression is ubiquitous in all tissues but the
observed signal is stronger in cells located in the periphery of the
medullary parenchyma and some cells in the cortical paren-
chyma. A strong signal is also detected in testes primordia
(Fig. 5C and D) and in cells of the genital primordia (Fig. 5D).
The results obtained for pumilio genes suggest that they are higher
expressed in cells with morphology and distribution consistent
with germinative cells, but their expression is not restricted to
this cell type alone.

The expression of the vasa homologue McpL10 was studied
using in situ hybridization on cell suspensions. While this gene
was expressed in cells with germinative morphology (Fig. 6, con-
tinuous arrows), it was also detected in other cell types with dif-
ferentiated morphology, indicating that McpL10 is not exclusively
expressed in germinative cells.

Fig. 2. Acetylated tubulin immunofluorescence of the ner-
vous and excretory system. (A) Mesocestoides corti transver-
sal section; (B) detail of the nerve cord and genital
primordium (10 μm width); (C) transversal section detail;
(D–G) M. corti cell suspensions; solid arrows: main nerve
cords; dashed arrows: nerve cells; dotted arrows: flame
cells. Blue: DAPI, green: acetylated tubulin. Bars represent
100 μm (A), 50 μm (B–C) and 20 μm (D–G).
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Discussion

Studies on cestode cell types and their characteristics are sparse,
and generally older than 50 years, preceding all modern molecular
and cellular biology tools. This paucity might be related to the
small size of the cells, which makes it hard to identify different
cell types based on their morphology using routine techniques
(Sakamoto and Sugimura, 1970; Gustafsson, 1976). The character-
ization of M. corti cell suspensions with diverse fluorescent stains
allowed to identify different cell types and compare them to those
described in classical histological reports of cestodes (Sakamoto
and Sugimura, 1970; Lascano et al., 1975; Gustafsson, 1976;
Loehr and Mead, 1979; Koziol et al., 2014).

While differentiated cells show varied morphologies and were
negative for the incorporation of the nucleotide analogue EdU, a
group of small cells (5–12 μm across the longest axis) were the
only ones EdU positive. These pear-shaped to fusiform cells are
strongly stained with PI and WCS. They have large and round
nuclei, with 1–3 prominent nucleoli and granular chromatin, giv-
ing very bright staining with DAPI (Fig. 1). Cytoplasmic lipid
droplets were rare. All of these characteristics are consistent to
previous descriptions of germinative cells (Douglas, 1961; Bolla

and Roberts, 1971; Wikgren and Gustafsson, 1971; Loehr and
Mead, 1979; Koziol et al., 2010) and those observed in whole
mount larvae (Koziol et al., 2010) and the ones obtained for
E. multilocularis (Koziol et al., 2014).

Immunofluorescence using acetylated tubulin was consistent
with early descriptions of the M. corti nervous system (Hart,
1967), but also allowed to recognize less abundant cell types,
such as nervous and flame cells, which complement morphologic
analysis and stains.

Cells with proliferation capacity were also observed when cul-
turing primary cell preparations of macerated M. corti for 20 or
72 h. These cells remain free in suspension, without adherence
to the substratum or interacting with each other after 1 day in cul-
ture. This was an interesting difference to E. multilocularis pri-
mary cultures, where cells begin to associate after 24 h in
culture (Spiliotis et al., 2008).

The ability to proliferate in microaerobic anoxic conditions is
consistent with what would be the natural environment within the
host. Reducing conditions are not necessary nor beneficial to
these cells, as this condition does not seem to increase prolifer-
ation. Supplements reported to improve cell proliferation in cul-
ture like insulin (Hemer et al., 2014) also resulted in no major

Fig. 3. Proliferation assays on isolated M. corti cells cultured
in vitro for 20 and 72 h in different culture media. Nuclei are
stained with DAPI (blue), and proliferation is indicated by
the incorporation of EdU (red). EdU-positive nuclei are indi-
cated by solid arrows while negative nuclei are marked by
dashed arrows. The bar represents 20 μm
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changes in the cell culture conditions tested (not shown). The
ability to survive and proliferate in all media tested, including
hydatid cyst fluid, showed that requirements for cell maintenance
and proliferation might be simple. Future work will be done to
obtain a deep culture characterization, like the proportion of pro-
liferating cells at different time points and comparisons among
culture conditions.

To further characterize the proliferative cells, the expression
localization of pL10 (homologue to vasa) and pumilio genes,

characterized as markers of neoblasts in planarians (Shibata
et al., 1999; Salvetti et al., 2005; Rouhana et al., 2010), was evaluated.
BothMcpL10 andMcPum1 show slight variations in the expression
duringM. corti strobilar development, while no significant changes
were observed forMcPum2 gene expression.

The pattern of expression of these genes, based on distribution
and morphology of the stained cells, is consistent with expression
in germinative cells, but not restricted to this cell type. This stres-
ses some differences between parasitic and free-living flatworms,

Fig. 4. Fold change of the mRNA level of McpL10 (A), McPum1 (B) and McPum2 (C) genes during strobilar development (2, 4, 6, 8 and 10 days of in vitro culture). Fold
change relative to worms with 2 days of culture. Median value with interquartile range was plotted. Significant differences are shown with asterisks (n = 4, Kruskal–
Wallis, Dunn’s post test, *P < 0.05). (D) Scheme showing the time points analysed during strobilar development.

Fig. 5. Expression localization of M. corti pumilio genes. (A)
In situ hybridization with antisense McPum1 probe in a lon-
gitudinal section of a worm starting segmentation. The
arrows show testes primordia. (B) In situ hybridization
with antisense McPum2 probe in a longitudinal section of
a worm starting segmentation. McPum2 is expressed in sev-
eral tissues, particularly in cells near the inner muscle layer
(shown with arrows). (C) McPum1 expression in testes prim-
ordia. (D) McPum1 expression in late genital primordia. (E)
McPum2 expression in testes primordia (arrow). iml, Inner
muscle layer; mp, medular parenchyma; st, subtegument;
t, tegument. The bar represents 100 μm (A and B), 20 μm
(C) and 50 μm (D and E).
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since pumilio gene expression in the planaria Dugesia japonicum
is restricted to neoblasts, where they play an essential role in stem
cell maintenance (Salvetti et al., 2005). Interestingly, in other
organisms pumilio genes show specific expression in germinal
cells and other stem cell types but are also expressed in differen-
tiated tissues like the nervous system (Moore et al., 2003; Guo
et al., 2006; Kurisaki et al., 2007).

The expression of vasa gene is related to germ line cells in dif-
ferent organisms, like Drosophila melanogaster, Caenorhabditis
elegans and Xenopus where their expression is involved in the for-
mation and maintenance of the cells of the germ line (Lasko and
Ashburner, 1988; Ikenishi and Tanaka, 1997; Olsen et al., 1997;
Kuznicki et al., 2000). Vasa genes are key components of the
Piwi silencing pathway, involved in the maintenance of genome
stability by silencing transposable elements (Weick and Miska,
2014).

In free-living flatworms like planarians, vasa and vasa-related
genes were shown to be expressed in germ line cells (Shibata et al.,
1999; Ohashi et al., 2007; Skinner et al., 2012, 2014). However,
parasitic flatworms like monogeneans, trematodes and cestodes
have lost most of the genes from the Piwi pathway including
true orthologues to vasa genes (Shibata et al., 1999; Ohashi
et al., 2007; Skinner et al., 2012, 2014; Fontenla et al., 2017,
2021). However, they have at least 3 paralogue vasa-like genes
(Belle, pL10), and it is proposed that they may have taken over
some of the function of vasa (Tsai et al., 2013; Fontenla et al.,
2017). While the expression of pl10-related genes in other organ-
isms, such as mouse and zebrafish (Olsen et al., 1997), was also
observed in a variety of tissues (Gururajan et al., 1991; Gee and
Conboy, 1994), 2 of these vasa-related genes were expressed in
germinal cells in the monogenean Neobenedenia girellae
(Ohashi et al., 2007).

The results show that Mc-pL10 is expressed in germinative
cells, but is not restricted to this cell type. This might be indi-
cative that it can partially take the role of vasa as had been pro-
posed, but it can also be playing other roles in other cell types.
Alternatively other pL10 genes not tested in this study might be
the ones that substitute the vasa function in M. corti germinative
cells.

Conclusions

Using different staining techniques and based on morphological
descriptions, diverse cell types were identified in M. corti cell sus-
pensions. Consistent with previous observations in other cestodes,
differentiated cells (muscle, tegumentary, calcareous corpuscle cell
precursors and flame cells) did not incorporate EdU, while a sub-
set of small fusiform cells with high nucleus/cytoplasm ratio were
positively stained (Koziol et al., 2010). These cells share the
morphology and histochemical characteristics of neoblasts and
proliferative cells in other flatworms (Douglas, 1961; Bolla and
Roberts, 1971; Wikgren and Gustafsson, 1971; Loehr and Mead,
1979; Koziol et al., 2010).

Furthermore, pumilio and pL10 (homologue to vasa) genes,
which are known markers of planarian neoblasts (Shibata et al.,
1999; Salvetti et al., 2005; Rouhana et al., 2010), are indeed expressed
inM. corti proliferative cells, although they are not restricted to this
cell type. Further candidate genes need to be analysed in order to
find an appropriate marker for proliferative cells inM. corti.

Besides this, the conditions for in vitro culture of M. corti cells
obtained from total cell suspensions were optimized, showing that
some cells can proliferate in culture for at least 72 h. These
advances contribute to the ongoing efforts to characterize and
understand the role of proliferative cells in cestode life cycles. In
vitro cell culture could improve the characterization of these
cells and allow the performance of functional studies.
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