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Abstract. We extend the classical notion of standardly stratified k-algebra (stated for
finite dimensional k-algebras) to the more general class of rings, possibly without 1, with
enough idempotents. We show that many of the fundamental results, which are known for
classical standardly stratified algebras, can be generalized to this context. Furthermore, new
classes of rings appear as: ideally standardly stratified and ideally quasi-hereditary. In the
classical theory, it is known that quasi-hereditary and ideally quasi-hereditary algebras are
equivalent notions, but in our general setting, this is no longer true. To develop the theory,
we use the well-known connection between rings with enough idempotents and skeletally
small categories (ringoids or rings with several objects).

2020 Mathematics Subject Classification. Primary: 18E10; Secondary: 16G99

1. Introduction. The notions of quasi-hereditary algebra and highest weight cate-
gory were introduced and studied by Cline, Parshall and Scott [9, 11, 47]. Highest weight
categories are a very special kind of abelian categories that arise in the representation
theory of Lie algebras and algebraic groups. The highest weight categories with a finite
number of simple objects are precisely the module categories of quasi-hereditary algebras.
It is worth mentioning that quasi-hereditary algebras were originally defined through a
special chain of ideals.

For the setting of finite dimensional algebras, quasi-hereditary algebras were amply
studied, among others, by Dlab and Ringel in [13, 16, 17, 46]. Dlab and Ringel introduced
the set of standard modules �� associated to a finite dimensional algebra �. Later on, M.
Ringel established a relationship between quasi-hereditary algebras and tilting theory [46],
which has been very fruitful for the study of quasi-hereditary algebras. For doing so, Ringel
studied the homological properties of the category F(��) of ��-filtered �-modules and
constructed the characteristic module �T (which turned out to be tilting) associated to
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F(��). Moreover, Ringel proved that the endomorphism ring End(�T) is again a quasi-
hereditary algebra. Since then, this tilting module is known as the Ringel’s characteristic
tilting module associated with a quasi-hereditary algebra.

Because of the success of the applications of the theory of quasi-hereditary algebras,
it was natural to find useful generalizations of the notion of quasi-hereditary algebra. One
step in this direction was given by Dlab, who introduced the concept of standardly stratified
algebra [14]. These finite dimensional algebras have been amply studied [1, 4, 20, 21, 22,
23, 35, 36, 38, 39, 40, 41, 48, 50] and have become an useful tool for different areas in
mathematics.

Once we have the notion of standardly stratified algebra [14], in the context of finite
dimensional algebras, a natural question is to find a more general class of algebras which
has sense to define the notion of standardly stratified algebra. These are precisely the rings
with enough idempotents. These kind of rings appear very naturally in different contexts,
for example, as a generalization of Ringel’s notion of species [45] or in connection with
the Galois covering in the sense of Bongartz-Gabriel [8] or De la Peña-Martinez [12].
More generally, this type of rings appears as “Gabriel functor rings” (see discussion after
proposition 1 on p. 346 in [24]) or “rings with several objects” in [42].

The context of rings with several objects (ringoids, in modern terminology) has
become very fruitful as a tool that allows us to understand more deeply certain branches
of mathematics. For example, motivated by the work on functor categories in [6, 7],
Martı́nez-Villa and Solberg studied the Auslander–Reiten components of finite dimen-
sional algebras. They did so, in order to stablish when the category of graded functors
is noetherian [32, 33, 34]. Recently, Martı́nez-Villa and Ortı́z studied in [31, 30] tilting
theory in arbitrary functor categories. They proved that most of the properties that are sat-
isfied by a tilting module over an Artin algebra also hold true for functor categories. To
mention some, Brenner–Butler’s Theorem and Happel’s Theorem are valid on this more
general context.

Inspired by the works mentioned above and the fact that in the theory of quasi-
hereditary algebras the notion of tilting module is relevant, Ortı́z introduced in [43] the
concept of quasi-hereditary category. He did so, in order to study the Auslander–Reiten
components of a finite dimensional algebra �. In a similar way, as the standard modules
appear in the theory of quasi-hereditary algebras, Ortı́z defined the concept of standard
functors, which turned out to be a generalization of the notion of standard modules [43].
In particular, he established a connection between highest weight categories and quasi-
hereditary categories. He did so by following the ideas introduced by Krause in [27], that
is, Ortı́z compared the notion of standard objects in an abelian length category and standard
subcategories of the category of C-modules over a quasi-hereditary category C.

In this paper, we define the notions of standardly stratified ringoid and quasi-hereditary
ringoid. These definitions generalize the notion of quasi-hereditary category given by Ortı́z
in [43]. To start with, we recall that for any class of objects B of a category C, ind B denotes
the class of iso-classes of local objects B ∈B, where B local means that EndC(B) is a local
endomorphism ring.

Let K be a commutative ring and � be a K-algebra (possibly without 1) such that
�2 = �. For such algebra �, we denote by Mod(�) the category of all the unitary left
�-modules M, where unitary means that �M = M . The finitely generated unitary left
�-modules form a full subcategory of Mod(�) and it is usually denoted by mod(�). The
class of finitely generated projective objects in Mod(�) is denoted by proj(�). We denote
by f .�(K) the class of all the K-modules of finite length. In this context, in the category
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Mod(�) usually there exist infinitely many finitely generated indecomposable projective
�-modules, in contrast to the case when � is an Artin R-algebra. In order to define a
right standardly stratified algebra, in the classical sense, we have to construct the family of
standard modules � = {�(i)}n

i=1, one standard module for each element in ind proj(�op) =
{P(i)}n

i=1. In the general case of a K-algebra without 1, it is not clear that ind proj(�op) is
even a set (at first glance) and we do not have a reasonable description of this class. In
order to fix this problem, we consider a family {ei}i∈I of orthogonal idempotents in �

satisfying mild conditions (sufficiency and Hom-finiteness). Using the family {ei}i∈I , we
produce partitions Ã of the set ind proj(�op) and each one of these partitions give us a sort
of stratification of the class of finitely generated projective �-modules. Having a partition
Ã, as above, we can define the set of standard modules � := {�(i)}i<α, where α is an
ordinal number giving the size of the partition Ã.

A K-algebra with enough idempotents (w.e.i K-algebra, for short) is a pair (�, {ei}i∈I),

where � is a K-algebra and {ei}i∈I is a family of orthogonal idempotents of � such that
� = ⊕i∈I ei� = ⊕i∈I�ei. In this case, we have that �2 = �. It is said that (�, {ei}i∈I) is
Hom-finite if {ej�ei}i,j∈I ⊆ f .�(K).

Let (�, {ei}i∈I) be a Hom-finite w.e.i. K-algebra. Then, by Corollary 6.5 (b), for each
i ∈ I, there exists a unique (up to permutations) family ei := {ek,i}ni

k=1 of primitive orthogo-
nal idempotents in � such that ei = ∑ni

k=1 ek,i. Denote by ind {ei}i∈I the quotient of the set
∪i∈I ei by the equivalence relation ∼, where f ∼ g if, and only if, f � � g�. Let [e] be the
equivalence class of e ∈ ∪i∈I ei. Then, by Corollary 6.6 (b), we have

ind proj(�op) = {e� : [e] ∈ ind {ei}i∈I}.

The set of standard modules can be constructed by choosing a partition Ã= {Ãi}i<α of the
set ind {ei}i∈I , where α is an ordinal number (the size of the partition Ã) and each ordinal
i < α is the ith level of the given partition. Define �op Pe(i) := e� for any [e] ∈ Ãi, and
let �op P := {�op P(i)}i<α, where �op P(i) := {�op Pe(i)}e∈Ãi

. The family of Ã-standard right
�-modules �op� = {�(i)}i<α, where �(i) := {�e(i)}e∈Ãi

, is defined as follows

�e(i) := �op Pe(i)

Tr⊕j<iP( j)(�op Pe(i))
,

where P( j) := ⊕
r∈Ãj �op Pr( j) and Tr⊕j<iP( j)(�op Pe(i)) is the trace of the �-module

⊕j<iP( j) in �op Pe(i). We say that the pair (�, Ã) is a right standardly stratified algebra
if Tr⊕j<iP( j)(�op Pe(i)) ∈Ff (

⋃
j<i �( j)), for any i < α and e ∈ Ãi. Here Ff (

⋃
j<i �( j)) is

the class of all the �-modules admitting a finite filtration in
⋃

j<i �( j). Moreover, we say

that (�, Ã) is right quasi-hereditary if it is standardly stratified and End(�e(i)) is a division
ring for any [e] ∈ Ãi and i < α.

Let � be a basic Artin K-algebra and let {ei}n
i=1 be a complete family of primitive

orthogonal idempotents of �. Then, we have that ind {ei}n
i=1 = {ei}n

i=1. The classical notion
of standardly stratified algebra for � corresponds to the given one for the very particular
pair (�, T̃), where T̃ is the one-point partition T̃ = {T̃i}i<n, defined as T̃i := {ei+1} for
i ∈ [0, n). Note that we can choose different partitions Ã of the set {ei}n

i=1, not only the
trivial one.

In this paper, we also define ideally standardly stratified and ideally quasi-hereditary
K-ringoids. We explain their meaning in terms of rings with enough idempotents. Let
(�, {ei}i∈S) be a w.e.i K-algebra. An ideal I �� is right stratifying if I2 = I and
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eI ∈ proj(�op) for any e ∈ {ei}i∈S. We say that I is right hereditary if it is right stratifying
and Irad(�)I = 0. A right stratifying (respectively, hereditary) chain in � is a chain {Ii}i<α

of ideals of � such that
∑

i<α Ii = � and Ii/I ′
i is right stratifying (respectively, hereditary)

in �/I ′
i , where I ′

i := ∑
j<i Ij.

Assume now that (�, {ei}i∈S) is Hom-finite. Let Ã= {Ãi}i<α be a partition of the
set ind {ei}i∈S. The partition Ã induces a chain {IAi}i<α of ideals in � satisfying that∑

i<α IAi = �, where IAi is the ideal generated by the set of idempotents {e : [e] ∈Ai}
and Ai := ⋃

j≤i Ãj (see Lemma 5.2). We say that (�, Ã) is right ideally standardly strat-
ified (respectively, right ideally quasi-hereditary) if the associated chain {IAi}i<α of ideals
in � is right stratifying (respectively, hereditary).

The following question arises naturally: Are the definitions of ideally standardly
stratified (respectively, ideally quasi-hereditary) and standardly stratified (respectively,
quasi-hereditary) equivalent? In the case of an Artin algebra � and the one-point parti-
tion T̃, defined above, it is well known that both notions are equivalent. For the general
case, we have the following results that are a consequence of Theorems 5.6 and 5.10. In
order to state the following two theorems, we recall (see in Section 5) the notion of right
noetherian partition. Let (�, {ei}i∈S) be a Hom-finite w.e.i K-algebra and Ã= {Ãi}i<α be
a partition of the set ind {ei}i∈S. We say that Ã is right noetherian if for any i < α and
[e] ∈ Ãi the following statement holds true: the set { j < α : eIAj/eI ′

Aj
�= 0} is finite and

there is some i0 < α such that eIAj = e� for any j ≥ i0.

THEOREM A. Let (�, {ei}i∈S) be a Hom-finite w.e.i K-algebra and Ã= {Ãi}i<α be a
partition of ind {ei}i∈S. Then, the following statements are equivalent.

(a) (�, Ã) is right standardly stratified.
(b) The partition Ã is right noetherian and for any i < α, [e] ∈ Ãi and t < α, we have that

eIAt/eI ′
At

is a finitely generated projective right �/I ′
At

-module.

As a consequence of the theorem above, it can be shown (see Corollary 5.9) the
following result.

COROLLARY B. Let (�, {ei}i∈S) be a Hom-finite w.e.i K-algebra and Ã be a partition
of ind {ei}i∈S. Then, the following statements are equivalent.

(a) (�, Ã) is right standardly stratified.
(b) The partition Ã is right noetherian and (�, Ã) is right ideally standardly stratified.

THEOREM C. Let (�, {ei}i∈S) be a Hom-finite w.e.i K-algebra and Ã= {Ãi}i<α be a
partition of ind {ei}i∈S. Then, the following statements are equivalent.

(a) (�, Ã) is right quasi-hereditary and Hom(�e(i), �e′(i)) = 0 for [e] �= [e′] in Ãi and
i < α.

(b) The partition Ã is right noetherian and (�, Ã) is right ideally quasi-hereditary.

Given a Hom-finite w.e.i K-algebra (�, {ei}i∈S) and a partition Ã= {Ãi}i<α of
ind {ei}i∈S, we have the family of standard modules � = {�(i)}i<α and the category Ff (�)

of all the right �-modules which has a finite filtration through the objects of �.

In this the paper, we also study some important properties of Ff (�). As in the classic
case, we prove (see Theorem 4.9) that if the standard modules �e(i) are finitely presented,
then Ff (�) is a Krull–Schmidt skeletally small category and all the objects in this cate-
gory are finitely presented. Furthermore, the multiplicity [M : �e(i)] of each �e(i), for a
module M ∈Ff (�), does not depend on any �-filtration of M . In order to prove that fact,
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we introduce an analogous of the trace filtration given by Dlab and Ringel [17, Lemma
1.4] and characterize the modules which belongs to Ff (�) in terms of this trace filtration
(see Theorem 4.7). It is worth mentioning that the proofs of these results use transfinite
induction, in contrast with the classic case, where the usual induction is enough to handle
the situation. As an application of the trace filtration, we show that Ff (�) is closed under
kernels of epimorphisms between its objects, a fact that is well known for the classical case.

2. Preliminaries. In this section, we introduce the notation and the basic results in
functor categories which will be used in the development of the paper.

FUNCTOR CATEGORIES AND RINGOIDS. Let K be a commutative ring with 1. A category
C is said to be a K-category if HomC(X , Y ) is a K-module for any (X , Y ) ∈ C2, and the
composition of morphisms in C is K-bilinear. We denote by [A,B] the category of additive
(covariant) functors between two K-categories A and B, where A is skeletally small. For
any F, G ∈ [A,B], we have that Hom[A,B](F, G) is the class Nat(F, G) of natural mor-
phisms from F to G. For the sake of simplicity, we write (−, ?) instead of Hom(−, ?)
wherever this Hom(−, ?) is defined. The term subcategory means full subcategory.

Let C be a K-category. We say that an object C ∈ C is local if EndC(C) is a local ring.
For any subclass B of objects in C, the class of iso-classes of local objects B ∈B will be
denoted by ind B. For any B ∈B, which is local, we write [B] for the corresponding iso-
class. That is, ind B := {[B] such that B ∈B is local}. For simplicity, sometimes we write
B instead of [B]. If C is an additive category, we denote by add (B) the class of all direct
summands of finite coproducts of copies of objects in B.

A very useful tool in the theory of categories is Yoneda’s Lemma. We state this lemma
for the case of K-categories since this is precisely the context where we are working. Let C
be a K-category. Yoneda’s Lemma states that Yoneda’s functor

Y = YC : C → [Cop, Ab], (a
f−→ b) �→ (HomC(−, a)

HomC(−,f )−−−−−−→ HomC(−, b))

is full and faithful. Moreover, for any c ∈ C, we have an isomorphism of abelian groups
Hom(Y (c), F) → F(c), α �→ αc(1c).

Following B. Mitchell in [42], we recall that a K-ringoid (or K-algebra with several
objects) is just a skeletally small K-category. A ringoid is just a Z-ringoid (or ring with
several objects). Note that any K-ringoid is in particular a ringoid.

Let S be a ringoid. A left S-module is an additive covariant functor F :S→ Ab,

where Ab is the category of abelian groups. The category of left S-modules is Mod (S) :=
[S, Ab]. Note that Mod (S) is abelian and bicomplete, since Ab is so. We also consider the
category of right S-modules Modρ(S) := Mod (Sop), where Sop is the opposite category
of S.

We denote by Proj (S) the class of projective left S-modules and proj (S) denotes the
class of finitely generated projective left S-modules. We also have the classes Projρ(S) :=
Proj (Sop) and projρ(S) := proj (Sop).

Let R be a ringoid. Using Yoneda’s functor Y :R→ Modρ(R), it can be proved that
M ∈ projρ(R) iff M is a direct summand of

∐
i∈I Y (ai) for some finite family {ai}i∈I of

objects in R. Thus, the ringoid R can be seen as a full subcategory of projρ(R).

Following Auslander [7], it is said that M ∈ Modρ(R) is finitely presented if there is
an exact sequence P1 → P0 → M → 0, where P1, P0 ∈ projρ(R). We denote by fin.pρ(R)

the full subcategory of Modρ(R) whose objects are all the finitely presented right
R-modules. A projective cover of M ∈ Modρ(R) is an essential epimorphism P → M in
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Modρ(R) with P ∈ Projρ(R). A projective presentation P1
g−→ P0

f−→ M → 0 is minimal if

the epimorphisms P0
f−→ M and P1 → Im (g) are projective covers.

Let R be an additive ringoid, that is, R is a skeletally small additive category. It is well
known (see [7], [19, Theorem 1.4] and [25]) that fin.pρ(R) is a full abelian subcategory of
Modρ(R) if and only if R has pseudo kernels.

We say that a ringoid R is thick if R is an additive category whose idempotents
split. In this case, Yoneda’s functor Y :R→ Modρ(R) induces an equivalence of cate-
gories R� projρ(R). A ringoid R is Krull–Schmidt (KS ringoid, for short) if it is a
Krull–Schmidt category (that is an additive category in which every nonzero object decom-
poses into a finite direct sum of objects having local endomorphism ring). It can be shown
[26, Corollary 4.4] that any ringoid is Krull–Schmidt if it is thick and the endomorphism
ring of every object is semiperfect.

LEMMA 2.1. Let R be a Krull–Schmidt K-ringoid. Then, any M ∈ fin.pρ(R) has a
minimal projective presentation in projρ(R).

Proof. For any C ∈R, we have that RC := EndR(C)op is a semi-perfect ring. Then, the
result follows from [7, Corollary 4.13].

Let R be a thick K-ringoid. For any additive full subcategory B of R, we consider
the class IB of all the morphisms in R which factor through objects of B. Note that IB is
an ideal of R, and it is known as the ideal associated with B. For M, N ∈ Modρ(R), we
denote by TrM(N) the trace of M in N .

We say that a K-ringoid R is Hom-finite if the K-module HomR(a, b) is of finite
length, for any (a, b) ∈R2. A locally finite K-ringoid is a K-ringoid which is Hom-finite
and Krull–Schmidt. A locally finite K-ringoid with pseudo kernels is called strong locally
finite K-ringoid.

LEMMA 2.2. For a Krull–Schmidt K-ringoid R, the following statements hold true.

(a) projρ(R) = {P = ⊕i∈I Y (ai) for a finite family {ai}i∈I in ind (R)}.
(b) ind (projρ(R)) = {Y (a) : a ∈ ind (R)}.
(c) For any a, b ∈R, we have that Y (a) � Y (b) iff a � b.

Proof. We start by proving (c). Let η : Y (a) → Y (b) be an isomorphism of functors.
Consider fa ∈ HomR(a, b) and gb ∈ HomR(b, a), where fa := ηa(1a) and ηb(gb) = 1b. By
using η : Y (a) → Y (b), it can be shown that fa ◦ gb = 1b and gb ◦ fa = 1a.

The proof of (a) and (b) follows from (c), since R is a Krull–Schmidt K-ringoid
and thus Yoneda’s functor Y :R→ Modρ(R) gives an equivalence between R and
projρ(R).

Let R be a K-ringoid and M ∈ Modρ(R). The support of M is the set Supp (M) :=
{e ∈ ind(R) : M(e) �= 0}. We say that R is right support finite if Supp (Y (e)) is finite for
any e ∈ ind(R), where Y (e) := HomR(−, e).

LEMMA 2.3. Let R be a locally finite K-ringoid and B be an additive full subcategory
of R. Then, the following statements hold true.

(a) Tr{Y (b)}b∈B (Y (e)) = IB(−, e), for any e ∈R.

(b) If R is right support finite, then Y (e)/IB(−, e) ∈ fin.pρ(R), for any e ∈ ind(R).
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Proof. (a) The proof of [43, Lemma 3.1] can be adapted to get (a).
(b) Let R be right support finite and e ∈ ind(R). By (a), we get

IB(−, e) = Tr{Y (b)}b∈B (Y (e)) = Tr⊕
b∈ind(B) Y (b) (Y (e)).

Since Hom(
⊕

b∈ind(B) Y (b), Y (e)) = ∏
b∈ind(B) Y (e)(b) and R is right support finite, there

are some b1, b2, . . . , bn in ind(B) and Q := ⊕n
i=1Y (bi) such that

Hom

⎛
⎝ ⊕

b∈ind(B)

Y (b), Y (e)

⎞
⎠ = Hom(Q, Y (e)).

Note that Hom(Q, Y (e)) is a K-module of finite length, since R is Hom-finite. Therefore,
IB(−, e) = TrQ(Y (e)) is a finitely generated right R-module. Finally, by [7, Proposition 4.2
(c)], we get (b).

PROPOSITION 2.4. Let R be a locally finite K-ringoid. Then fin.pρ(R) is a locally finite
K-ringoid.

Proof. First, we prove that fin.pρ(R) is Hom-finite. Indeed, let F, G ∈ fin.pρ(R). Then,

there are morphisms a
f→ b and a′ f ′

→ b′ in R and exact sequences in Modρ(R)

Y (a)
Y (f )−−→ Y (b)

λ−→ F → 0, (2.1)

Y (a′)
Y (f ′)−−→ Y (b′) λ′−→ G → 0. (2.2)

By (2.2) we get an epimorphism HomR(b, b′)
λ′

b−→ G(b) of K-modules, and since R is Hom-
finite, we get that G(b) is a K-module of finite length. By applying the functor (−, G) to the
sequence (2.1), we obtain a monomorphism (λ, G) : (F, G) → (Y (b), G) of K-modules.
Therefore, (F, G) is of finite length since (Y (b), G) � G(b). In particular, End(M) is a left
Artin ring for any M ∈ fin.pρ(R).

Now, we prove that fin.pρ(R) is a Krull–Schmidt K-category. By [7, Proposition 4.2
(d)], it follows that the idempotents in fin.pρ(R) split, and, moreover, it is an additive
category. Finally, from [26, Corollary 4.4], we get that fin.pρ(R) is a Krull–Schmidt K-
category since End(M) is a semi-perfect ring, for any M ∈ fin.pρ(R).

FILTRATIONS. Let A be an abelian category and X ⊆A. We denote by X⊕ the class of
all the objects of A which are a finite direct sum of objects in X .

We say that M ∈A is X -filtered if there exists a continuous chain {Mi}i<α of subobjects
of M, for some ordinal number α, such that Mi+1/Mi ∈X⊕ for i + 1 ≤ α. In case α < ℵ0,

we say that M has a finite X -filtration of length α. We denote by F(X ) the class of objects
which are X -filtered and by Ff (X ) the class of objects having a finite filtration. Note that,
for M ∈Ff (X ), the X -length of M can be defined as follows:

�X (M) := min {n ∈ N | M has an X -filtration of length n}.
By using the notion of X -length and induction, it can be proven the following useful

remark.

REMARK 2.5. Let X be a class of objects in an abelian category A. Then, the class
Ff (X ) is closed under extensions.
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3. Standardly stratified ringoids. In this section, we define the concept of stan-
dardly stratified algebra for the class of rings with several objects. We also prove some
main properties which generalize several well-known facts from the classical theory of
stardardly stratified algebras.

DEFINITION 3.1. Let R be a Krull–Schmidt K-ringoid and C ⊆R be a class of objects
of R such that add (C) = C. Let Ã := {Ãi}i<α be a partition of the set ind(C), where α is
an ordinal number (the size of the partition Ã). For each i ∈ [0, α), we set Ai := ⋃

j≤i Ãj

and Bi(A) := add (Ai). We say that B(A) := {Bi(A)}i<α is the family of subcategories of
C related to the partition Ã. We denote by ℘(C) the class of all the partitions of the set
ind (C).

DEFINITION 3.2. Let R be a Krull–Schmidt K-ringoid and C ⊆R be such that
add (C) = C. Let B := {Bi}i<α be a family of subcategories of C, where α is an ordinal num-
ber (the size of the family B). We say that B is admissible in C, if the following conditions
hold true:

(a) add (Bi) =Bi for any i < α;
(b) Bi ⊆Bj if i ≤ j < α;
(c) C = ⋃

i<α Bi;
(d) σi(B) := ind(Bi) − ⋃

j<i ind(Bi) �= ∅ for any i < α.

We call σi(B) the ith section of B. An admissible family B in C is said to be exhaustive
in R, if C =R. We set σ(B) := {σi(B)}i<α. The class of all the admissible families of
subcategories of C will be denoted by AF(C).

PROPOSITION 3.3. Let R be a Krull–Schmidt K-ringoid and C ⊆R be a class of
subobjects of R such that add (C) = C. Then, the correspondence σ : AF(C) → ℘(C),

B �→ σ(B), is bijective with inverse Ã �→B(A).

Proof. From admissible families to partitions: Let B = {Bi}i<α be an admissible family
in C. We prove that σ(B) is a partition of ind(C) and B(σ (B)) =B. By the definition of
admissible families, we have that σi(B) is not empty. Furthermore, by Definition 3.2 (b)
and (d), we get that

σi(B) = ⋂
j<i (ind(Bi) − ind(Bj)), for any i < α.

Let us check that ind (C) = ⋃
i<α σi(B). Consider X ∈ ind (C). Then, by

Definition 3.2 (c), there is some j < α such that X ∈ ind (Bj) and thus the set
S := { j < α : X ∈ ind (Bj)} is not empty. Now, for k := min S it follows that X ∈ ind (Bk)

and X �∈ ind (Bj) for any j < k, which means that X ∈ σk(B).

We show that σk(B) ∩ σl(B) = ∅ for k < l < α. Indeed, suppose that there is some X ∈
σk(B) ∩ σl(B). In particular, X ∈ σl(B) and thus for any j < l X ∈ ind (Bl) and X �∈ ind (Bj).

But, for j = k, the former conditions say that X �∈ ind (Bk), contradicting that X ∈ σk(B).

Let D :=B(σ (B)). We assert that D =B. Consider some i < α. By definition, we have

Di := add

⎛
⎝⋃

j≤i

σj(B)

⎞
⎠ = add

⎛
⎝⋃

j≤i

(
ind (Bj) −

⋃
k<j

ind (Bk)
)⎞⎠.

Therefore, in order to prove that Di =Bi, it is enough to show that

ind (Bi) =
⋃
j≤i

⎛
⎝ind (Bj) −

⋃
k<j

ind (Bk)

⎞
⎠ .
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Let X ∈ ind (Bi). Thus, the set SX := { j ≤ i < α : X ∈ ind (Bj)} is not empty. Then for k0 :=
min SX , we get that X ∈ ind (Bk0) and X �∈ ind (Bl) for any l < k0. Therefore, for k0 ≤ i,
we obtain that X ∈ ind (Bk0) and X �∈ ⋃

l<k0
ind (Bl). This says that X ∈ ⋃

j≤i

(
ind (Bj) −⋃

k<j ind (Bk)
)
, proving that Di =Bi.

From partitions to admissible families: Let Ã= {Ãi} be a partition of the set ind (C). Let
B(A) = {Bi(A)}i<α be the family of subcategories of C related to the partition Ã. Note
that 3.2 (a), (b), and (c) hold true by construction. In order to prove that B(A) ∈ AF(C) and
σ(B(A)) = Ã, it is enough to show that Ãi = σi(B(A)) for any i < α.

Let i < α. For any X ∈ ind (C), we assert that

(∗) X ∈ σi(B(A)) ⇔ ∀ j < i, ∃ k ∈ ( j, i] such that X ∈ Ãk .

Indeed, the assertion above follows from the following sequel of equivalences

X ∈ σi(B(A)) ⇔ X ∈
⋂
j<i

(
ind Bi(A) − ind Bj(A)

)

⇔ ∀ j < i X ∈
⋃
k≤i

Ãk and X �∈
⋃
l≤j

Ãk

⇔ ∀ j < i, ∃ k ∈ ( j, i] such that X ∈ Ãk .

By (∗), it is clear that Ãi ⊆ σi(B(A)). Let X ∈ σi(B(A)). Then by (∗) there is some k ∈
( j, i] such that X ∈ Ãk . Suppose that k < i. Then, again by (∗) there is some k′ ∈ (k, i] such
that X ∈ Ãk′ . Therefore, X ∈ Ãk ∩ Ãk′ , contradicting that Ã is a partition of ind (C). Then,
k = i and thus X ∈ Ãi.

Associated to a partition Ã of ind (C), as above, we can compute the (Ã, C)-standard
right R-modules. These modules play an important role in the definition of a right
standardly stratified ringoid. In order to define such modules, we consider the Yoneda’s
contravariant functor Y :R→ Modρ(R), where Y (e) := HomR(−, e).

DEFINITION 3.4. Let R be a Krull–Schmidt K-ringoid and C ⊆R be a class of objects
of R such that add (C) = C, and let Ã= {Ãi}i<α be a partition of the set ind (C). Consider
the projective right R-modules Pop

e (i) := Y (e) for e ∈ Ãi and i < α. Let Pop = Pop(Ã) :=
{Pop(i)}i<α where Pop(i) := {Pop

e (i)}e∈Ãi
. We say that Pop(Ã) is the family of projective

modules associated with the partition Ã. We define the family (Ã,C)� = {�(i)}i<α of

(Ã, C)-standard right R-modules, where �(i) := {�e(i)}e∈Ãi
is defined as follows:

�e(i) := Pop
e (i)

Tr⊕j<iP( j)(P
op
e (i))

,

where P( j) := ⊕
r∈Ãj

Pop
r ( j) and Tr⊕j<iP( j)(P

op
e (i)) is the trace of ⊕j<iP( j) in Pop

e (i). In
case R= C, we just write Ã� instead of (Ã,C)�, and we say that (Ã,C)� is the family of

Ã-standard right R-modules.

DEFINITION 3.5. Let R be a Krull–Schmidt K-ringoid and C ⊆R be a class of objects
of R such that add (C) = C. For any admissible family B = {Bi}i<α of subcategories of C,

we know by Proposition 3.3 that σ(B) is a partition of ind (C). Then, (B,C)� := (σ (B),C)� is
called the family of (B, C)-standard R-modules. In case R= C, we just write B� instead
of (B,C)�, and we say that B� is the family of B-standard right R-modules.
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Let R be a Krull–Schmidt K-ringoid and C ⊆R be a class of objects of R such that
add (C) = C. For any partition Ã of ind (C), we point out that by Proposition 3.3, it holds
that (B(Ã),C)� = (Ã,C)�.

DEFINITION 3.6. A right standardly stratified K-ringoid is a pair (R, Ã), where R is a
Krull–Schmidt K-ringoid and Ã is a partition of ind (R) such that the Ã-standard family
� = Ã� of right R-modules satisfies the following condition, for any i < α and e ∈ Ãi,

Tr⊕j<iP( j)(P
op
e (i)) ∈Ff

⎛
⎝⋃

j<i

�( j)

⎞
⎠.

DEFINITION 3.7. A right standardly stratified K-ringoid (R, Ã) is quasi-hereditary if
End(�e(i)) is a division ring, for any e ∈ Ãi and i < α.

Let � be a basic Artin K-algebra and let {ei}n
i=1 be a complete family of primitive

orthogonal idempotents of �. There is a K-ringoid R(�), associated to �, where the
objects are e1, e2, . . . , en and the morphisms are HomR(�)(ei, ej) := ej�ei for any 1 ≤
i, j ≤ n. The composition of morphism in R(�) is just the multiplication in �. Note that
ind R(�) = {e1, e2, . . . , en}. We have the canonical isomorphism of categories

δ : Modρ(R(�)) → Mod(�op), M �→ ⊕n
i=1M(ei).

For the Yoneda’s functor Y :R(�) → Modρ(R(�)), we have

δ(Y (ei)) = ⊕n
j=1HomR(�)(ej, ei) = ⊕n

j=1ei�ej = ei�.

Let Ãi := {ei}, P(i) := Y (ei), and P := {{P(i)}}n
i=1. Consider the standard modules

R(�)� := Ã�. Note that δ(R(�)�(i)) � ��(i) for any i ∈ [1, n]. Therefore, (R(�), Ã)

is a right standardly stratified K-ringoid if, and only if, � is a right standardly stratified
K-algebra as in the classical sense.

We recall that for a given abelian category A and X ⊆A, X⊕ denotes the class of all
the objects of A which are a finite direct sum of objects in X .

PROPOSITION 3.8. Let R be a Krull–Schmidt K-ringoid and C ⊆R be a class of objects
in R such that add (C) = C. For any admissible family B = {Bi}i<α of subcategories of C,

the following statements hold true.

(a) For any e ∈ σi(B), we have

(B,C)�e(i) = Y (e)

Tr{Y (t)}t∈⋃
j<i Bj

(Y (e))
.

Moreover, if R is locally finite, then

Tr{Y (t)}t∈⋃
j<i Bj

(Y (e)) = I∪j<iBj(−, e) and (B,C)�e(i) �= 0.

(b) If R is locally finite and right support finite, then (B,C)�
⊕ ⊆ fin.pρ(R).

Proof. (a) We have (B,C)� = (σ (B),C)� and σi(B) = ind(Bi) − ⋃
j<i ind(Bj). We assert

that

(∗) add

⎛
⎝⋃

j<i

σj(B)

⎞
⎠ =

⋃
j<i

Bj.
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Indeed, add(
⋃

j<i Bj) = ⋃
j<i Bj since Bj ⊆Bj′ if j ≤ j′ and add(Bj) =Bj for every j.

Now, using σj(B) ⊆Bj for every j, it follows that
⋃

j<i σj(B) ⊆ ⋃
j<i Bj. Then we have that

add
( ⋃

j<i σj(B)
) ⊆ add(

⋃
j<i Bj) = ⋃

j<i Bj. Now, let X ∈ ⋃
j<i Bj, then there exists j′ < i

such that X ∈Bj′ . Thus X = ⊕n
k=1 Xk with Xk ∈ Bj′ and local. For each Xk consider the

set S(Xk) := { j < i : Xk ∈Bj} which is not empty. For jk := min S(Xk), it follows that Xk ∈
(ind(Bjk ) − ⋃

j<jk
ind(Bj)) = σjk (B) and therefore X ∈ add

( ⋃
j<i σj(B)

); proving (∗).

Using (∗) and P( j) = ⊕
r∈σj(B) Pop

r ( j) = ⊕
r∈σj(B) Y (r), we obtain the following

sequence of equalities

Tr⊕
j<i

P( j)
(Pop

e (i)) = Tr{⊕
j<i

⊕
r∈σj(B)

Y (r)
} (Y (e))

= Tr{
Y (t)

}
t∈⋃

j<i
σj(B)

(Y (e))

= Tr{
Y (t)

}
t∈add(

⋃
j<i

σj (B))

(Y (e))

= Tr{
Y (t)

}
t∈⋃

j<i
Bj

(Y (e)).

Let R be locally finite. Then by Lemma 2.3 (a), Tr{Y (t)}t∈⋃
j<i Bj

Y (e) is equal to
I∪j<iBj(−, e). We assert that �e(i) �= 0. In order to prove this, it is enough to see that
�e(i)(e) �= 0.

Suppose that �e(i)(e) = 0. Then, I∪j<iBj(e, e) =R(e, e) and thus 1e ∈ I∪j<iBj(e, e).
Therefore, 1e factorizes through some X ∈Bj, where j < i. Then e is a direct summand
of X and so e ∈Bj, contradicting that e ∈ σi(B).

(b) Let R be locally finite and right support finite. By Lemma 2.3 (b), the item (a) and
[7, Proposition 4.2 (d)], we get B�⊕ ⊆ fin.pρ(R).

DEFINITION 3.9. Let B = {Bi}i<α be an admissible family of subcategories of C ⊆R,

for some Krull–Schmidt K-ringoid R. Let � = (B,C)� be the (B, C)-standard family of
right R-modules. We say that M ∈F ′

f (�) if there exists a filtration 0 = M0 ⊆ M1 ⊆ · · · ⊆
Mn−1 ⊆ Mn = M such that Mi/Mi−1 ∈ �(si)

⊕, for some si < α and i ∈ [1, n].
PROPOSITION 3.10. Let B = {Bi}i<α be an admissible family of subcategories of C ⊆R,

for some Krull–Schmidt K-ringoid R, and let � = (B,C)�. Then, Ff (�) =F ′
f (�).

Proof. It can be shown that F ′
f (�) is closed under extensions. Moreover, it is also clear

that F ′
f (�) ⊆Ff (�). Finally, the inclusion Ff (�) ⊆F ′

f (�) can be obtained by induction
on the �-length of objects in Ff (�).

LEMMA 3.11. Let R be a locally finite K-ringoid and B := {Bi}i<α be an admissible
family of subcategories of R. Then, the family B�, of B-standard modules, satisfies the
following conditions.

(a) If B� ⊆ fin.pρ(R) then �e(i) is local, for any i < α and e ∈ σi(B).

(b) Hom(�e(i), �e′(i)) � �e′(i)(e), for any e, e′ ∈ σi(B).

(c) Hom(�e(i), �e′(i′)) = 0 if i < i′ and e ∈ σi(B), e′ ∈ σi′(B).

(d) Ext1(�e(i), �e′(i′)) = 0 if i ≤ i′ and e ∈ σi(B), e′ ∈ σi′(B).
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Proof. Let e ∈ σi(B). By Proposition 3.8, 0 �= �e(i) = Y (e)/Ue(i), where Ue(i) :=
I∪j<iBj(−, e) = Tr⊕

a∈∪j<iBj
Y (a)(Y (e)).

(a) Let B� ⊆ fin.pρ(R). Since e is local in R and fin.pρ(R) is a Krull–Schmidt
category (see Proposition 2.4), the epimorphism Y (e) → �e(i) is a projective cover. Let
�e(i) = ⊕n

k=1Mk be a decomposition of �e(i), where each Mk is local. Consider the pro-
jective cover Pk → Mk, for k ∈ [1, n]. Using the fact that a finite coproduct of projective
covers is a projective cover, it follows that Y (e) = ⊕n

k=1Pk . Therefore, n = 1 since Y (e) is
local. Then we get that �e(i) = M1, proving that �e(i) is local.

(b), (c) and (d) Let i, i′ ∈ [0, α) and e ∈ σi(B), e′ ∈ σi′(B). Thus, we have the exact
sequences of right R-modules

0 → I∪t<iBt(−, e) → Y (e) → �e(i) → 0,⊕
a∈∪t<iBt

Y (a) → I∪t<iBt(−, e) → 0.

Then, by applying Hom(−, �e′(i′)) to the above exact sequences, we get the exact
sequence of abelian groups

0 → (�e(i), �e′(i′)) → (Y (e), �e′(i′)) → (I∪t<iBt(−, e), �e′(i′)),

an epimorphism Hom(I∪t<iBt(−, e), �e′(i′)) → Ext1(�e(i), �e′(i′)) and a monomorphism
Hom(I∪t<iBt(−, e), �e′(i′)) → Hom(

⊕
a∈∪t<iBt

Y (a), �e′(i′)).
By Yonedas’s Lemma, we have that

Hom

⎛
⎝ ⊕

a∈∪t<iBt

Y (a), �e′(i′)

⎞
⎠ �

∏
a∈∪t<iBt

�e′(i′)(a).

On the other hand, we know that

�e′(i′)(a) = R(a, e′)
I∪t<i′Bt(a, e′)

.

Let i ≤ i′. Then, we get ∪t<iBt ⊆ ∪t<i′Bt and hence �e′(i′)(a) = 0 for any a ∈ ∪t<iBt.

Therefore, we conclude that

Ext1(�e(i), �e′(i′)) = 0 and (�e(i), �e′(i′)) � (Y (e), �e′(i′)) � �e′(i′)(e).

If i < i′, it follows that e ∈ σi(B) ⊆Bi ⊆ ∪t<i′Bt and so �e′(i′)(e) = R(e,e′)
I∪t<i′Bt (e,e

′) = 0; proving

that (�e(i), �e′(i′)) = 0.

LEMMA 3.12. Let R be a locally finite K-ringoid, and let B := {Bi}i<α be an admissible
family of subcategories of R. Then, for the family B� of B-standard right R-modules and
any i < α, the following statements are equivalent.

(a) End(�e(i)) is a division ring, for any e ∈ σi(B).

(b) I∪t<iBt(e, e) = radR(e, e), for any e ∈ σi(B).

(c) End(�e(i)) � EndR(e)/rad EndR(e), for any e ∈ σi(B).

Proof. Let e ∈ σi(B). Then, by Lemma 3.11 (b), it follows that

(∗) End(�e(i)) � EndR(e)/I∪t<iBt(e, e).
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(a) ⇒ (b) Assume that End(�e(i)) is a division ring. Let f ∈ I∪t<iBt(e, e). Then, there are

morphisms e
v−→ b

u−→ e, with b ∈ ∪t<iBt and such that f = uv. Since b ∈ ∪t<iBt, we get that
f is not an isomorphism and hence f ∈ radR(e, e).

Let f ∈ radR(e, e). Suppose that f �∈ I∪t<iBt(e, e). Then, by (∗), the class f =
f + I∪t<iBt(e, e) is invertible in End(�e(i)) and there is g : e → e such that fg − 1e ∈
I∪t<iBt(e, e). Note that fg ∈ radR(e, e) and thus fg − 1e is invertible in EndR(e). As a
consequence, 1e ∈ I∪t<iBt(e, e) and so e ∈ ∪t<iBt, which is a contradiction. Therefore,
f ∈ I∪t<iBt(e, e).

The implications (b) ⇒ (c) ⇒ (a) follow from (∗) and the fact that e is local in R.

LEMMA 3.13. Let R be a locally finite K-ringoid, and let B := {Bi}i<α be an admissible
family of subcategories of R. Then, for the family B� of B-standard right R-modules and
any i < α, the following statements are equivalent.

(a) Hom(�e(i), �e′(i)) = 0, for any e �= e′ in σi(B).

(b) I∪t<iBt(e, e′) = radR(e, e′), for any e �= e′ in σi(B).

Proof. It is straightforward from Lemma 3.11 (b) and Proposition 3.8.

LEMMA 3.14. Let R be a locally finite K-ringoid, B := {Bi}i<α be an admissible family
of subcategories of R, and let � = B�. Then, the following statements hold true.

(a) Let L ⊆ M ⊆ N be a chain of right R-submodules, with M/L ∈ �(i′)⊕, N/M ∈ �(i)⊕
and i < i′. Then, there exists a chain of right R-submodules L ⊆ M ′ ⊆ N such that
M ′/L � N/M ∈ �(i)⊕ and N/M ′ � M/L ∈ �(i′)⊕.

(b) Let {ηi : 0 → Mi−1 → Mi → Xi → 0}n
i=1 be a family of exact sequences in Modρ(R),

where Xi ∈ �( j)⊕, for every i ∈ [1, n] and some j < α. Then, for each k ∈ [1, n],
there exists an exact sequence of the form ξk : 0 → M0 → Mk → Zk → 0, where
Zk = ⊕k

i=1 Xi ∈ �( j)⊕.

Proof. (a) From the chain of submodules L ⊆ M ⊆ N, we construct the following exact
and commutative diagram

0

��

0

��
L

i

��

L

i′i
��

0 �� M
i′ ��

d

��

N
d′

��

β

��

N
M

�� 0

0 �� M
L

α1 ��

��

A
α2 ��

��

N
M

�� 0

0 0.

By Lemma 3.11 (d), the bottom exact sequence, in the above diagram, splits. Thus, we

have the exact sequence ξ : 0 −→ N
M

β2−→ A
β1−→ M

L −→ 0. Then, we get the exact and
commutative diagram
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0

��

0

��
0 �� L �� M ′ ��

��

N
M

β2

��

�� 0

0 �� L
i′i �� N

β ��

π

��

A

β1

��

�� 0

M
L

��

M
L

��
0 0.

Finally, we conclude that L ⊆ M ′ ⊆ N and so M ′
L � N

M ∈ �(i)⊕ and N
M ′ � M

L ∈ �(i′)⊕.
(b) We proceed by induction on k. If k = 1, we set ξ1 := η1.

Let k ≥ 2. Then, by induction, we have defined ξk−1 satisfying (b). We construct the
following exact and commutative diagram

0

��

0

��
M0

��

M0

��
0 �� Mk−1

��

��

Mk
��

��

Xk
�� 0

0 �� ⊕k−1
s=1 Xs

��

��

Lk
��

��

Xk
�� 0

0 0

By Lemma 3.11 (d), we have that the bottom exact sequence splits. Then, we have that
Lk � ⊕k

s=1Xk . Therefore, the second column in the above diagram is the required exact
sequence.

In the following definition, we use that Ff (�) =F ′
f (�), see Proposition 3.10.

DEFINITION 3.15. Let R be a locally finite K-ringoid, B := {Bi}i<α be an admissible
family of subcategories of R, and let � = B�. For M ∈Ff (�), we consider a filtration

ξ : 0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mm−1 ⊆ Mm = M,

where Xk := Mk/Mk−1 ∈ �(ik)⊕. In this case, we have the set

�ξ(i) := {k ∈ [1, m] | 0 �= Xk ∈ �(i)⊕}.
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(a) The ξ -ladder filtration multiplicity [M : �(i)]ξ , of �(i) in M, is the cardinality of
�ξ(i). In general, the ladder filtration multiplicity [M : �(i)]ξ could be depending
on ξ.

(b) We define, the ξ -ladder �-length of M

�′
�,ξ (M) =

∑
�(i)∈�

[M : �(i)]ξ .

Observe that this sum is finite, since only a finite number of �(i) appears in ξ.

(c) For i < α and k ∈ �ξ(i), we consider a decomposition

Dk,i(ξ) : Xk =
⊕
e∈Jk

�e(i)
μe,k

of each Xk, where Jk ⊆ σi(B) is finite. Let Di(ξ) := {Dk,i(ξ)}k∈�ξ (i) be called the
family of decompositions associated with the set �ξ(i). We define the ξ -filtration
multiplicity of �e(i) in M as follows:

[M : �e(i)]ξ,Di(ξ) :=
⎧⎨
⎩

0 if [M : �(i)]ξ = 0,

∑
k∈�ξ (i)

μe,k if [M : �(i)]ξ �= 0.

REMARK 3.16. Note that [M : �e(i)]ξ,Di(ξ) depends not only on ξ but also on the chosen
family Di(ξ) of decompositions associated with the set �ξ(i). However, if �⊕ ⊆ fin.pρ(�),

then [M : �e(i)]ξ,Di(ξ) does not depend on Di(ξ), since by Lemma 3.11 (a) all the �e(i) are
local objects.

PROPOSITION 3.17. Let R be a locally finite K-ringoid, B := {Bi}i<α be an admissi-
ble family of subcategories of R, � = B� and M ∈Ff (�). Consider a finite �-filtration
ξ of M

ξ : 0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mm−1 ⊆ Mm = M,

such that Mk/Mk−1 ∈ �( jk)⊕, and fix a family Di(ξ) of decompositions associated with the
set �ξ(i) for each i.

Then, there exist �-filtrations η and ε of M, and decompositions Di(η), Di(ε), for
each i, satisfying the following conditions:

(a) [M : �e(i)]ξ,Di(ξ) = [M : �e(i)]η,Di(η), for any e ∈ σi(B).

(b) The filtration η is well ordered. That is, there is a family of exact sequences

η = {ηb : 0 �� Mb−1
�� Mb

�� X b
�� 0}m

b=1

with M0 := 0, i1 ≤ i2 ≤ · · · ≤ im and X b ∈ �(ib)⊕.
(c) If M �= 0, the filtration ε is strictly well ordered. That is, ε has the form ε : 0 =

M ′
0 � M ′

1 � M ′
2 � · · ·� M ′

a−1 � M ′
a = M where M ′

k/M ′
k−1 ∈ �(i′k)

⊕, for k ∈ [1, a],
a ≤ m and i′1 < i′2 < i′3 < · · · < i′a−1 < i′a. Moreover,

[M : �e(i)]ε,Di(ε) = [M : �e(i)]η,Di(η), for any e ∈ σi(B).

Proof. If M = 0, we have that (a) and (b) are trivial. Let M �= 0.

Let ξ be the given filtration of M . We may assume that

ξ : 0 = M0 � M1 � M2 � · · ·� Mm−1 � Mm = M,

where Xk := Mk/Mk−1 ∈ �(ik)⊕.
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We prove (a) and (b), by induction on the ξ -ladder length n := �′
�,ξ (M). If n = 1,

the filtration ξ is already well ordered and hence η := ξ and ε := ξ satisfy the required
properties.

Let n ≥ 2. Consider the family of exact sequences induced by the filtration ξ of M

{ξb : 0 �� Mb−1
�� Mb

�� Xb
�� 0}m

b=1.

Since ξ ′ := ξ − {ξm} is a filtration of Mm−1 and �′
�,ξ ′(Mm−1) = m − 1, by induction, there

is a well-ordered filtration

η′ = {η′
b : 0 �� M ′

b−1
�� M ′

b
�� Yb

�� 0}m−1
b=1

of Mm−1 with i′1 ≤ i′2 ≤ · · · ≤ i′m−1 and [Mm−1 : �e(i)]ξ ′,Di(ξ ′) = [Mm−1 : �e(i)]η′,Di(η′), for
any e ∈ σi(B). If i′m−1 ≤ jm, then η := η′ ∪ {ξm} satisfies the required conditions.

Suppose now that jm < i′m−1. Let l := max{n ∈ [1, m − 1] | jm < i′m−n}. Observe that the
filtration η′ ∪ {ξm} is almost the one we want, the only exact sequence that is not ordered is
precisely the ξm. This can be rearranged by applying l-times Lemma 3.14 (a) to η′ ∪ {ξm}.

In order to construct ε, we use the well-ordered filtration η from (b). We proceed as
follows. For each b, we group the ib that are the same and rename them by λa. So we get
λ1 < λ2 < · · · < λa and hence �(λ1), · · · , �(λa) are the different �( j) appearing in the
filtration η of M . Define s(i) := [M : �(λi)]η, α(i) := ∑i

j=1 s( j) and α(0) := 0.
We divide the filtration η into the following pieces

{ηb : 0 �� Mb−1
�� Mb

�� Yb
�� 0}α(l)

b=α(l−1)+1,

with l ∈ [1, a]. For each l ∈ [1, a], by Lemma 3.14 (b), we obtain the following exact
sequence

εl : 0 �� Mα(l−1)
�� Mα(l)

�� Zα(l)
�� 0

Hence, by setting M ′
0 = 0 and M ′

i := Mα(i) for i ∈ [1, a], we conclude that the filtration
ε = {εi}a

i=1 satisfies the required properties. Finally, we bring out that, in the construction
of η and ε, we have not added different factors as appearing in ξ. These factors have just
been reordered and regrouped to obtain η and ε.

4. Filtration multiplicities in ringoids. Let A be an abelian category. It is well
known that a pre-radical r of A is a subfunctor of the identity functor 1A :A−→A. A pre-
radical r of A is additive if it is an additive functor.

Let A be an abelian category with arbitrary coproducts. Given a set X of
objects in A and M ∈A, we recall that the trace of M, with respect to X , is
TrX (M) :=

∑
{f ∈Hom(X ,M) | X∈X }

Im(f ). Note that, for any morphism f : A → B in A, we have that

f (TrX (A)) ⊆ TrX (B). Thus, a pre-radical τX of A can be defined as follows: τX (Z) :=
TrX (Z) for any Z ∈A, and τX (f ) := f |τX (A) : τX (A) → τX (B), for any morphism f : A −→
B in A. Note that, the pre-radical τX is additive. In case X has just one element, say X , we
write τX instead of τX .
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LEMMA 4.1. Let A be an abelian category with arbitrary coproducts, and let
M = N ⊕ N ′ be a decomposition of M ∈A. Then, τN ◦ τM = τN and thus τN is a subfunctor
of τM .

Proof. Let X ∈A. Then TrM (X ) ⊆ X and hence TrN (TrM(X )) ⊆ TrN (X ).

Let g ∈ HomA(N, X ). Consider the factorization N
g′
−→ Im (g) → X of g through its

image. Define the matrix morphism f := (g 0) : M → X . Note that Im(f ) = Im(g) ⊆
TrM (X ). Let Im (f )

j−→ TrM (X ) be the natural inclusion. Then, for the composition N
g′
−→

Im (f )
j−→ TrM (X ), we have

Im (g) = Im (g′) = Im ( j ◦ g′) ⊆ TrN (TrM (X )).

Therefore, TrN (TrM(X )) = TrN (X ), proving the result.

In what follows, we consider the abelian category A := Modρ(R), where R is a K-
ringoid. Note that A has arbitrary coproducts and then τX is well defined, for any set X
of objects in A. We recall that fin.pρ(R) denotes the category of finitely presented right
R-modules.

DEFINITION 4.2. Let R be a locally finite K-ringoid, B := {Bi}i<α be an admissible
family of subcategories of R. For each i < α, we consider the additive pre-radicals

τi(−) := Tr⊕
j≤i P( j)(−) and τi(−) := Tr⊕

j<i P( j)(−),

where Pop = {Pop(i)}i<α is the family of projective right R-modules associated with the
partition σ(B), and P( j) := ⊕

e∈σj(B) Pop
e ( j).

Let M be a right R-module. The ith B-trace of M is τi(M) and τB,M := {τi(M)}i<α is
the B-trace filtrationof M, which is a chain of submodules of M .

LEMMA 4.3. Let R be a locally finite K-ringoid, and let B := {Bi}i<α be an admissible
family of subcategories of R. Then, for any i < α, the following statements hold true.

(a) τi is a subfunctor of τi and τi ◦ τi = τi.

(b) τi = ∑
j<i τj.

(c) τj ◦ τi = τk for k := min{i, j}.
Proof. (a) follows from Lemma 4.1. To prove (b), let us consider X ∈ Modρ(R). Then,

we have the following sequence of equalities
∑
j<i

τj(X ) =
∑
j<i

Tr⊕
k≤j P(i) (M)

= Tr⊕
j<i

( ⊕
k≤j P(i)

) (X )

= τi(X ).

Finally, for the proof of (c), let M ∈ Modρ(R). Note that τi(M) ⊆ M and thus τj(τi(M)) ⊆
τj(M). Let j < i. Then, τj(M) ⊆ τi(M) and therefore τ 2

j (M) = τj(M) ⊆ τj(τi(M)). Hence,
we conclude that τj(M) = τj(τi(M)) for every j < i. Similarly for j ≥ i, we can show that
τj(τi(M)) = τi(M).

LEMMA 4.4. Let R be a locally finite K-ringoid, B := {Bi}i<α be an admissible family

of subcategories of R, � = B� and let 0 → N
α−→ M

β−→ E → 0 be an exact sequence with
E ∈ �(i)⊕ and j < i. Then, for every f ∈ Hom(P( j), M), we have that Im (f ) ⊆ N.
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Proof. We assert that Hom(P( j), E) = 0. Indeed, let E = ⊕
e∈Ji

�e(i)de , where Ji ⊆
σi(B) is a finite subset. Since

Hom(P( j), E) =
∏
e∈Ji

Hom(P( j), �e(i))
de ,

it is enough to see that Hom(P( j), �e(i)) = 0 for every e ∈ Ji.
Let f : P( j) −→ �e(i) be a morphism. Note that P( j) is projective, and thus, there

exists a morphism g : P( j) −→ Pop
e (i) such that the following diagram commutes

P( j)
g

����
��
��
��

f

��
0 �� Ue(i)

γe(i) �� Pop
e (i)

δe(i) �� �e(i) �� 0,

where Ue(i) := Tr⊕j<iP( j)(P
op
e (i)). Then, there is g′ : P( j) −→ Ue(i) such that g = γe(i)g′,

and thus, we have that f = δe(i)g = δe(i)γe(i)g′ = 0. Proving that Hom(P( j), �e(i)) = 0.
Let f : P( j) −→ M be a morphism. Hence βf ∈ Hom(P( j), E) = 0 and therefore

Im (f ) ⊆ N .

PROPOSITION 4.5. Let R be a locally finite K-ringoid, B := {Bi}i<α be an admissible
family of subcategories of R, � = B�, and 0 �= M ∈Ff (�). Consider a strictly well-
ordered filtration

ξ : 0 = M0 � M1 � M2 � · · ·� Ma−1 � Ma = M,

where Mk/Mk−1 ∈ �(ik)⊕ and i1 < i2 < · · · < ia−1 < ia. Then, for any morphism f :
P( j) −→ M, with j ≤ ik and k ∈ [1, a], we have that Im (f ) ⊆ N where

N =
⎧⎨
⎩

Mk if j = ik,

Mk−1 if j < ik .

Proof. Let f : P( j) −→ M with j ≤ ik and k ∈ [1, a]. We consider the following
diagram

P( j)

��
0 �� Ma−1

ua �� Ma
πa �� Xa

�� 0,

where Xa ∈ �(ia)⊕. Since j ≤ ik < ia, by Lemma 4.4, there exists a morphism va : P( j) −→
Ma−1 such that f = uava.

Now, consider the diagram

P( j)

va

��
0 �� Ma−2

ua−1 �� Ma−1
πa−1 �� Xa−1

�� 0,
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where Xa−1 ∈ �(ia−1)
⊕. Since j ≤ ik < ia−1 < ia, by Lemma 4.4 there exists a morphism

va−1 : P( j) −→ Ma−2 such that va = ua−1va−1. By iterating the same argument, we get the
following diagram

P( j)

vk+2

��
0 �� Mk

uk+1�� Mk+1
πk+1 �� Xk+1

�� 0,

where Xk+1 ∈ �(ik+1)
⊕. Since j ≤ ik < ik+1, by Lemma 4.4, there exists vk+1 : P( j) −→ Mk

such that vk+2 = uk+1vk+1. Then, by taking f := vk+1, we have that f = uaua−1 . . . uk+1 f .
Therefore, Im( f ) ⊆ Mk .

Now if j < ik, we consider the diagram

P( j)

vk+1

��
0 �� Mk−1

uk �� Mk
πk �� Xk

�� 0,

where Xk ∈ �(ik)⊕. Since j < ik , there exists vk : P( j) −→ Mk−1 such that vk+1 = ukvk .
Then, by taking f := vk we have that f = uaua−1 . . . uk f . Therefore Im( f ) ⊆ Mk−1.

DEFINITION 4.6. Let R be a locally finite K-ringoid, and let B := {Bi}i<α be an admis-
sible family of subcategories of R. For any M ∈ Modρ(R), the ith τ -section of M is the
quotient τi/τ i(M). The support of the B-trace filtration of M is the set

Supp(τB,M ) := {i < α : τi/τ i(M) �= 0}.
THEOREM 4.7. Let R be a locally finite K-ringoid, B := {Bi}i<α be an admissible fam-

ily of subcategories of R, � = B�, and M ∈ Modρ(R). Then, the following statements
are equivalent.

(a) M has a finite �-filtration.
(b) There exist some i0 < α such that τj(M) = M for any j ≥ i0, Supp(τB,M ) is finite and

τi/τ i(M) ∈ �(i)⊕, for any i < α.

Proof. (a) ⇒ (b) Let 0 �= M ∈Ff (�). Consider a strictly well-ordered filtration

ξ : 0 = M0 � M1 � M2 � · · ·� Ma−1 � Ma = M,

where Mk/Mk−1 ∈ �(ik)⊕ and i1 < i2 < · · · < ia−1 < ia. We have the following filtration �,

which is composed of the following pieces

�0 : 0 = N0 = N1 = · · · = Ni′1 = M0 ∀ i′1 ∈ [0, i1),

�1 : � Ni1 = Ni1+1 = · · · = Ni′2 = M1 ∀ i′2 ∈ [i1, i2),

�2 : � Ni2 = Ni2+1 = · · · = Ni′3 = M2 ∀ i′3 ∈ [i2, i3),

. . . . . . . . . . . .

�a−2 : � Nia−2 = Nia−2+1 = · · · = Ni′a−1
= Ma−2 ∀ i′a−1 ∈ [ia−2, ia−1),

�a−1 : � Nia−1 = Nia−1+1 = · · · = Ni′a = Ma−1 ∀ i′a ∈ [ia−1, ia),

�a : � Nia := Ma.
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In order to prove the result, it is enough to see that � = τB,M and τj(M) = M for any j ≥ ia.
Note that, for j > ia, we have τj(M) = τia(M) + Tr⊕

ia<k≤j P(k)(M). Thus, we only need
to check that τia(M) = M and Ni = τi(M), for all 0 ≤ i ≤ ia. To perform that, we will follow
a series of steps as follows.

(i) τi′1(M) = M0 = 0 ∀ i′1 ∈ [0, i1).
Indeed, since τ0(M) ⊆ τi′1(M), it is enough to see that τi′1(M) = 0. Let f :

P( j) −→ M with j ≤ i′1 < i1. By Proposition 4.5, it follows that Im (f ) ⊆ M0 = 0,

proving that τi′1(M) = Tr⊕
j≤i′1 P( j) (M) = 0.

(ii) τi′2(M) = M1 ∈ �(i1)⊕ ∀ i′2 ∈ [i1, i2).
First, we assert that τi1(M) = M1. Indeed, note that M1 ∈ �(i1)⊕, since M1/M0 ∈

�(i1)⊕. Thus, M1 = ⊕
e∈Ji1

�e(i1)μe,1 for some finite subset Ji1 ⊆ σi1(B). Observe
now, that there exists an epimorphism

⊕
e∈Ji1

Pop
e (i1)

μe,1 −→
⊕
e∈Ji1

�e(i1)
μe,1 = M1 ⊆ M,

and therefore M1 ⊆ Tr⊕
j≤i1

P( j) (M) = τi1(M). On the other hand,

τi1(M) = TrP(i1)(M) + Tr⊕
j<i1

P( j) (M) = TrP(i1)(M)

since, by Proposition 4.5, we know that Tr{P( j)|j<i1}(M) = 0. Let f ∈
Hom(P(i1), M). Then, by Proposition 4.5, we have that Im (f ) ⊆ M1 and so
τi1(M) ⊆ M1; proving that τi1(M) = M1.

At this point, we have M1 = τi1(M) ⊆ τi′2(M). To finish the proof of (ii), we only
have to see that τi′2(M) ⊆ τi1(M). Let j ≤ i′2 < i2 and f ∈ Hom(P( j), M). Then, by
Proposition 4.5, it follows that Im (f ) ⊆ M1 = τi1(M) and thus τi′2(M) ⊆ τi1(M).

(iii) τi′3(M) = M2 ∀ i′3 ∈ [i2, i3).
First, we assert that τi2(M) = M2. Indeed, consider the exact sequence

0 �� M1
�� M2

�� X2
�� 0,

where X2 ∈ �(i2)⊕. By (ii), we know that M1 = TrQ1 (M), where Q1 := ⊕
j≤i1

P( j).

There exists an epimorphism f : Q(I1)
1 → M1, for the set I1 := Hom(Q1, M1). On the

other hand, since X2 ∈ �(i2), there exists an epimorphism h : P(i2)m2 −→ X2. Then,
we have the following exact and commutative diagram

0 �� Q(I1)

1
��

f

��

Q(I1)

1

⊕
P(i2)m2 ��

g

��

P(i2)m2 ��

h

��

0

0 �� M1
�� M2

�� X2
�� 0,

where g is an epimorphism. Therefore,

M2 ⊆ Tr⊕
j≤i2

P( j) (M) = τi2(M).

Now, let f : P( j) −→ M with j ≤ i2. Then, by Proposition 4.5, we get that Im (f ) ⊆
N, where N = M1 or N = M2. In any case, we conclude that Im (f ) ⊆ M2, since
M1 ⊆ M2. Hence, τi2(M) ⊆ M2 and so τi2(M) = M2. Now, by following the same
arguments as we did in (ii), we can show that τi′3(M) = τi2(M); proving (iii).
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Note that the above procedure can be repeated in order to get that Ni = τi(M), for
all 0 ≤ i ≤ ia. Finally, by following the process we did in (iii), we obtain an epimorphism
Q(Ia−1)

a−1

⊕
P(ia)ma → M and thus τia(M) = M .

(b) ⇒ (a) Assume the hypothesis of (b). If Supp(τB,M ) = ∅, by using transfinite
induction, it can be shown that M = 0 and thus M ∈Ff (�).

Let Supp(τB,M ) = {i1 < i2 < · · · < ia}. Consider M0 := τ0(M) and Mk := τik (M) for
k ∈ [1, a]. Note that, for any i �∈ Supp(τB,M ), Lemma 4.3 implies that τi(M) = ∑

j<i τj(M).

In the proofs of the following assertions, we use transfinite induction.

(0) τi′1(M) = M0 = 0 for any i′1 ∈ [0, i1).
Indeed, let Si1 = {i′1 ∈ [0, i1) : τi′1(M) = 0}. Note that 0 ∈ Si1 since τ0(M) =∑
j<0 τj(M) = 0. Let β + 1 ∈ [0, i1) and β ∈ Si1 . Since j < β + 1 implies that j ≤ β,

it follows that τβ+1(M) = ∑
j<β+1 τj(M) ⊆ τβ(M) = 0, and thus β + 1 ∈ Si1 .

Let γ ∈ [0, i1) be a limit ordinal and let δ ∈ Si1 for any δ < γ. Then, τγ (M) =∑
δ<γ τj(M) = 0. Thus, by transfinite induction, we get that (0) holds.

(1) τi′2(M) = M1 for any i′2 ∈ [i1, i2).
Indeed, let Si2 = {i′2 ∈ [i1, i2) : τi′2(M) = M1}. It is clear that i1 ∈ Si2 . Let i1 <

β + 1 < i2 and τβ(M) = M1. Then, M1 ⊆ τβ+1(M) = ∑
j<β+1 τj(M) ⊆ τβ(M) = M1

and hence β + 1 ∈ Si2 .

Let γ ∈ [i1, i2) be a limit ordinal and let δ ∈ Si2 for any δ ∈ [i1, γ ). Then, by
using (0), we can get the following equalities

τγ (M) =
∑
j<γ

τj(M)

=
∑
j<i1

τj(M) +
∑

i1≤δ<γ

τδ(M)

= M1.

Thus, by transfinite induction, we get that (1) holds.

Note that the above procedure in (0) and (1) can be repeated to obtain that τi′k (M) = Mk

for any i′k ∈ [ik−1, ik), and τj(M) = M for j ≥ ia. Thus, we have a finite chain of submod-
ules 0 ⊆ M0 ⊆ M1 ⊆ · · · ⊆ Ma = M such that Mt/Mt−1 = τit/τ it(M) ∈ �(it). Therefore,
M ∈Ff (�).

REMARK 4.8. Let R be a locally finite K-ringoid, B := {Bi}i<α be an admissible fam-
ily of subcategories of R, � = B�, and M ∈ Modρ(R) be such that Supp(τB,M ) = {i1 <

i2 < · · · < ia}, for some finite ordinal a. In the proof of Theorem 4.7, we have shown the
following:

(a) τj(M) = 0 for all j ∈ [0, i1);
(b) τj(M) = Mk := τik (M) for all j ∈ [ik, ik+1) and k ∈ [1, a);
(c) the finite chain of submodules 0 ⊆ M0 ⊆ M1 ⊆ · · · ⊆ Ma = M satisfies that Mt/Mt−1 =

τit/τ it(M).

THEOREM 4.9. Let R be a locally finite K-ringoid, B := {Bi}i<α be an admissible fam-
ily of subcategories of R and � = B�. If � ⊆ fin.pρ(R), then all the objects �e(i) are
local and the following statements hold true.

(a) For any M ∈Ff (�), the filtration multiplicity [M : �e(i)] does not depend on a given
�-filtration of M .

(b) Ff (�) ⊆ fin.pρ(R) and it is a locally finite K-ringoid.
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Proof. Let � ⊆ fin.pρ(R). By Proposition 2.4, we have that fin.pρ(R) is a locally finite
K-ringoid. Moreover, by [7, Proposition 4.2 (d)], we have that �⊕ ⊆ fin.pρ(R) and thus all
�e(i) are local objects (see Lemma 3.11 (a)).

(a) Let 0 �= M ∈Ff (�). Since �⊕ ⊆ fin.pρ(R) and all the objects �e(i) are local, the
proof of Theorem 4.7 implies that

[M : �e(i)]ξ = [M : �e(i)]ξ ′ = [M : �e(i)]τB,M ,

where ξ ′ is the strictly well-ordered filtration of M, constructed by the proof of
Propositions 3.10 and 3.17. Note that [M : �e(i)]τB,M does not depend on any given
filtration. Therefore, the proof of (a) is complete.

(b) Let M ∈Ff (�). Since Ff (�) is closed under extensions and �⊕ ⊆ fin.pρ(R),

by induction on the ξ -ladder length �′
�,ξ (M), we can show that M ∈ fin.pρ(R).

Therefore, Ff (�) ⊆ fin.pρ(R).

Assume now that M = L
⊕

N in Modρ(R). Since M ∈ fin.pρ(R), it follows that M =
L

⊕
N in fin.pρ(R). Consider the split exact sequence

ξ : 0 �� L
f �� M

g �� N �� 0,

given by the decomposition M = L
⊕

N . Thus, we have the following split exact sequence

εi(ξ) : 0 �� εi(L)
εi(f ) �� εi(M)

εi(g) �� εi(N) �� 0,

for εi = τi or εi = τi. Note that

(∗) τi/τi(M) = τi(L) ⊕ τi(N)

τ i(L) ⊕ τi(N)
= τi(L)

τ i(L)

⊕ τi(N)

τ i(N)
.

Since M ∈Ff (�), by Theorem 4.7, there exists i0 ∈ N such that τj(M) = M for any
j ≥ i0. Moreover, by (∗) we have τi/τi(M) ∈ �(i)⊕ for any i < α.

From the split-exact sequences of the form εi(ξ), for εi = τi or εi = τi, we get the
following commutative and exact diagram, where all the rows are split exact sequences

(∗∗)

0 0 0

0 �� τi/τ i(L) ��

��

τi/τ i(M) ��

��

τi/τ i(N) ��

��

0

0 �� τi(L)
τi(f ) ��

��

τi(M)
τi(g) ��

��

τi(N) ��

��

0

0 �� τ i(L)
τ i(f ) ��

��

τ i(M)
τ i(g) ��

��

τ i(N) ��

��

0

0

��

0

��

0

��

If τi/τ i(M) = 0, we conclude that τi/τ i(L) = 0 = τi/τ i(N). In particular, Supp(τB,L) ∪
Supp(τB,N ) ⊆ Supp(τB,M ).
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Let τi/τ i(M) �= 0. Since τi/τ i(M) ∈ �(i)⊕, it follows that

τi/τ i(L)
⊕

τi/τ i(N) ∈ �(i)⊕.

Since fin.pρ(R) is a Krull–Schmidt category, we get that τi/τ i(L) ∈ �(i)⊕ and τi/τ i(N) ∈
�(i)⊕. Furthermore, from (∗∗), Theorem 4.7 and the fact that τj(M) = M for every j ≥
i0, we get that M = τi0(L) ⊕ τi0(N) and τi0(L), τi0(N) ∈Ff (�). But M = L ⊕ N and thus
0 = (L/τi0(L)) ⊕ (N/τi0(N)). Therefore, L = τi0(L) and N = τi0(N), proving that Ff (�) is
closed under direct summands.

COROLLARY 4.10. Let R be a locally finite K-ringoid, which is right support finite,
B := {Bi}i<α be an admissible family of subcategories of R and � = B�. Then all the
objects �e(i) are local and the following statements hold true.

(a) For any M ∈Ff (�), the filtration multiplicity [M : �e(i)] does not depend on a given
�-filtration of M .

(b) Ff (�) ⊆ fin.pρ(R) and it is a locally finite K-ringoid.

Proof. It follows from Proposition 3.8 and Theorem 4.9.

We recall that a class X of objects, in an abelian category A, is pre-resolving if it is
closed under extensions and for any exact sequence 0 → A → B → C → 0, with B, C ∈X ,

it follows that A ∈X . We prove that Ff (�) is a pre-resolving class, and in order to do that,
we start with the following lemma.

LEMMA 4.11. Let R be a locally finite K-ringoid, B := {Bi}i<α be an admissible family
of subcategories of R, and � = B� ⊆ fin.pρ(R). Then, the following statements hold true.

(a) Let u : L −→ M be a monomorphism with M ∈ �(i)⊕. For e ∈ σi(B), we have that
Hom(Ue(i), L) = 0, where Ue(i) := Tr⊕j<iP( j)(P

op
e (i)).

(b) Let ξ : 0 �� L
u �� M

π �� N �� 0 be an exact sequence with M, N ∈
�(i)⊕. Then, L ∈ �(i)⊕.

Proof. (a) First, we show that Hom(Pop
e′ ( j), L) = 0 for j < i and e′ ∈ σj(B).

Indeed, we have that M = ⊕
e∈Ji

�e(i)μe with Ji ⊆ σi(B) a finite subset. Then,

Hom(Pop
e′ ( j), M) �

⊕
e∈Ji

Hom(Pop
e′ ( j), �e(i))

μe = 0

since Hom(Pop
e′ ( j), �e(i)) = 0 for j < i and for every e′ ∈ σj(B). Now, let α :

Pop
e′ ( j) −→ L be a morphism. Then, uα ∈ Hom(Pop

e′ ( j), M) = 0. Since u is a
monomorphism, we have that α = 0. This proves that Hom(Pop

e′ ( j), L) = 0 for j < i
and e′ ∈ σj(B).

Therefore, for j < i, it follows that

Hom(P( j), L) �
∏

e′∈σj(B)

Hom(Pop
e′ ( j), L) = 0

since P( j) :=
⊕

e′∈σj(B)

Pop
e′ ( j). Consider X := Hom

( ⊕
j<i P( j), Ue(i)

)
. From the

equality Ue(i) = Tr⊕j<iP( j)(Pe(i)), there exists an epimorphism

λ :
⎛
⎝⊕

j<i

P( j)

⎞
⎠

(X )

−→ Ue(i).
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Let γ ∈ Hom(Ue(i), L). Then, γ λ ∈ Hom

((⊕
j<i P( j)

)(X )

, L

)
. But

Hom

⎛
⎜⎝

⎛
⎝⊕

j<i

P( j)

⎞
⎠

(X )

, L

⎞
⎟⎠ �

∏
j<i

∏
x∈X

Hom(P( j), L) = 0.

Hence, γ λ = 0 and thus γ = 0, since λ is an epimorphism, proving that
Hom(Ue(i), L) = 0.

(b) Since N ∈ �(i)⊕, we have that N = ⊕
e∈Ki

�e(i)νe with Ki ⊆ σi(B) a finite subset.
For each e ∈ Ki, there is an exact sequence

0 �� Ue(i) �� Pe(i) �� �e(i) �� 0.

By applying Hom(−, L) to the above sequence, we obtain the exact sequence

Hom(Ue(i), L) �� Ext1(�e(i), L) �� Ext1(Pe(i), L).

Since Hom(Ue(i), L) = 0 by (a), and Ext1(Pe(i), L) = 0, it follows that
Ext1(�e(i), L) = 0 for each e ∈ Ki. Then,

Ext1(N, L) =
∏
e∈Ki

Ext1(�e(i), L)νe = 0.

We conclude that ξ splits and thus L ⊕ N = M ∈ �(i)⊕. Finally, from the fact that
fin.pρ(R) is a Krull–Schmidt category, we get that L ∈ �(i)⊕.

PROPOSITION 4.12. Let R be a locally finite K-ringoid, B := {Bi}i<α be an admissible
family of subcategories of R, and let � = B� ⊆ fin.pρ(R). Then, Ff (�) is a pre-resolving
class.

Proof. By Remark 2.5, we know that Ff (�) is closed under extensions. It remains to
show that Ff (�) is closed under kernels of epimorphisms between its objects.

Let ξ : 0 �� L
u �� M

π �� N �� 0 be an exact sequence with M, N ∈
Ff (�). Let {τi(M)}i<α and {τi(N)}i<α be the B-trace filtrations of M and N, respec-
tively. By Theorem 4.7, we have that Supp(τB,M ) is finite, that is, Supp(τB,M ) = {i1 <

i2 < · · · < ia}. Then, τj(M) = M for every j ≥ ia. Since π is an epimorphism, we have
that τj(N) = N for every j ≥ ia. Moreover, by using that π is an epimorphism and the
fact that

⊕
j≤i P( j) and

⊕
j<i P( j) are projectives, we conclude that π(εi(M)) = εi(N) for

every i < α, where εi = τi or εi = τ i (that is, εi(π) := π |εi(M) : εi(M) −→ εi(N) is an epi-
morphism). Let Li := Ker(τ i(π)) and Li := Ker(τi(π)). Then, for each i < α, we obtain the
following commutative and exact diagram

0 �� Li
��

ui

��

τ i(M)
τ i(π) ��

vi

��

τ i(N) ��

wi

��

0

0 �� Li
�� τi(M)

τi(π) �� τi(N) �� 0,
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where ui, vi, and wi are monomorphisms. By the Snake’s Lemma, there exists the following
exact sequence

0 �� Li

Li

�� τi(M)

τ i(M)
�� τi(N)

τ i(N)
�� 0.

Since M, N ∈Ff (�), by Theorem 4.7, we obtain that τi(M)

τ i(M)
, τi(N)

τ i(N)
∈ �(i)⊕. By Lemma 4.11,

it follows that Li

Li
∈ �(i)⊕.

Recall that Supp(τB,M ) = {i1 < i2 < · · · < ia}. Hence, by Remark 4.8, the following
statements hold true

(a) τj(M) = 0 for every j ∈ [0, i1),
(b) τj(M) = Mk := τik (M) = τ ik+1(M) for every j ∈ [ik, ik+1) and k ∈ [1, a − 1),

(c) the finite chain of submodules 0 ⊆ M0 ⊆ M1 ⊆ · · · ⊆ Ma = M satisfies that Mt/Mt−1 =
τit/τit−1(M) = τit/τit(M).

For i = ia, we have that τi(M) = M and hence τi(π) = π. Therefore, Lia = L. We set Lk :=
Lik for k ∈ [1, a]. Hence, we have the following filtration

0 = L0 ⊆ L1 ⊆ L2 ⊆ · · · ⊆ La−1 ⊆ La = L.

By the item (b) τik (M) = τ ik+1(M) for k ∈ [1, a − 1), and so τik (π) = τ ik+1(π). Therefore,

we conclude that Lik = Lik+1 for every k ∈ [1, a − 1). Then, Lk

Lk−1
= Lik

Lik−1
= Lik

Lik

∈ �(ik)⊕ for

k ∈ [1, a]. This give us a finite filtration of L proving that L ∈Ff (�).

5. Stratifying ideals in ringoids. In this section, we introduce and study the notion
of ideally standardly stratified ringoid. We prove that standardly stratified ringoids and ide-
ally standardly stratified ringoids are only equivalent notions under a specific condition. It
is also shown that certain equivalent characterizations of standardly stratified algebras and
quasi-hereditary algebras are not necessarily equivalent any more in the realm of ringoids.

DEFINITION 5.1. Let R be a ringoid. An ideal I �R is right stratifying if I2 = I and
I(−, a) ∈ projρ(R) for any a ∈R. We say that I is right hereditary if it is right stratifying
and IradR(−, ?)I = 0. A right stratifying (respectively, hereditary) chain in R is a chain
{Ii}i<α of ideals of R such that

∑
i<α Ii =R and Ii/I ′

i is right stratifying (respectively,
hereditary) in R/I ′

i , where I ′
i := ∑

j<i Ij.

LEMMA 5.2. Let R be a Krull–Schmidt K-ringoid, and let B := {Bi}i<α be an
exhaustive family of subcategories of R. Then, the following statements hold true.

(a)
∑

j<i IBj = I⋃
j<i Bj , where I∅(a, b) := {0} for a, b ∈R.

(b)
∑

j<α IBj =R.

Proof. (a) Let f ∈ I⋃
j<i Bj(x, y). Then, f factorizes through some b ∈ ⋃

j<i Bj.

Therefore, f ∈ IBj(x, y) for some j < i, and thus f ∈ ∑
j<i IBj(x, y), proving that

I⋃
j<i Bj ⊆

∑
j<i IBj .

Let f ∈ ∑
j<i IBj(x, y). Then, f = ∑n

k=1 fk for some fk ∈ IBjk
(x, y) with jk < i.

In particular, each fk is the composition of morphisms x
tk−→ bjk

hk−→ y, where bjk ∈
Bjk . Let b := ⊕n

k=1 bjk . Then, we have the matrix morphisms x
t−→ b

h−→ x such that
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f = ht. Since b ∈Bj for j := max{ j1, j2, . . . , jn} < i, it follows that f ∈ I⋃
j<i Bj(x, y),

proving that
∑

j<i IBj ⊆ I⋃
j<i Bj .

(b) It follows from (a), since
⋃

j<α Bj =R.

DEFINITION 5.3. Let R be a Krull–Schmidt K-ringoid. We say that R is a right ideally
standardly stratified (respectively, quasi-hereditary) K-ringoid, with respect to an exhaus-
tive family B := {Bi}i<α of subcategories of R, if the associated chain {IBi}i<α of ideals of
R is right stratifying (respectively, hereditary).

REMARK 5.4. A right ideally quasi-hereditary K-ringoid R, with respect to an exhaus-
tive family of subcategories B = {Bi}i<α of R such that α ≤ ℵ0, is called quasi-hereditary
category in [43].

LEMMA 5.5. Let R be a locally finite K-ringoid, and let B = {Bi}i<α be an exhaustive
family of subcategories of R such that

(IBj/I ′
Bj

) radR/I ′
Bj

(−, ?) (IBj/I ′
Bj

) = 0,

for any j < α. Then, the following statements hold true.

(a) radR(e, e′) = I ′
Bi

(e, e′) for any e, e′ ∈ σi(B) and i < α.

(b) Hom(�e(i), �e′(i)) = 0 for any e �= e′ in σi(B) and i < α.

(c) End (�e(i)) � EndR(e)
rad(EndR(e)) for any e ∈ σi(B) and i < α.

Proof. Let e, e′ in σi(B). Since I ′
Bi

:= ∑
j<i IBj = I⋃

j<i Bj , we can adapt some part of
the proof given in [43, Theorem 3.6 (i)] to get (a). Finally, (b) and (c) follow from (a),
Lemmas 3.12 and 3.13.

THEOREM 5.6. Let R be a locally finite K-ringoid and B = {Bi}i<α be an exhaustive
family of subcategories of R. Then, the following statements are equivalent, for i < α and
e ∈ σi(B).

(a) Tr⊕
j<i P( j) (Pe(i)) ∈Ff (

⋃
j<i �( j)).

(b) The set { j < α : IBj(−, e)/I ′
Bj

(−, e) �= 0} is finite, there is some i0 < α such that
IBj(−, e) =R(−, e) for j ≥ i0, and

IBt(−, e)/I ′
Bt

(−, e) ∈ projρ(R/I ′
Bt

)

for any t < α.

Proof. Let e ∈ σi(B) and t < α. By Lemma 5.2 and Proposition 3.8, we
have IBt(−, e) = τt(P

op
e (i)) and I ′

Bt
(−, e) = τ t(P

op
e (i)). In particular, τ i(P

op
e (i)) =

Tr⊕
j<i P( j) (Pop

e (i)) and Supp(τB,Pop
e (i)) = { j < α : IBj(−, e)/I ′

Bj
(−, e) �= 0}.

(a) ⇒ (b) By (a) and the following exact sequence

0 �� τ i(P
op
e (i)) �� Pop

e (i) �� �e(i) �� 0,

it follows that Pop
e (i) ∈Ff

( ⋃
j≤i �( j)

)
. Then, by Theorem 4.7, we get that

Supp(τB,Pop
e (i)) is finite, there is some i0 < α such that τj(P

op
e (i)) = Pop

e (i) for
j ≥ i0, and τk/τ k(P

op
e (i)) ∈ �(k)⊕ for any k < α.
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Let t < α. For each h ∈ σt(B), we have �h(t) =R(−, h)/I ′
Bt

(−, h) and thus
�h(t) ∈ projρ(R/I ′

Bt
). Then, τt/τ t(P

op
e (i)) ∈ �(t)⊕ implies that τt/τ t(P

op
e (i)) ∈

projρ(R/I ′
Bt

).

(b) ⇒ (a) Let (b) holds true. We need to show that τ i(P
op
e (i)) ∈Ff (

⋃
j<i �). We may

assume that τ i(P
op
e (i)) �= 0.

By hypothesis, there is some k0 < α such that IBk (−, e) = IBk0
(−, e) =R(−, e), for

any k ≥ k0. Consider the set S := {k ≤ k0 : IBk (−, e) = IBk0
(−, e)}. Since S �= ∅ there exists

k1 := min S. Therefore, IBk (−, e) = IBk1
(−, e) =R(−, e) for any k ≥ k1, and IBj(−, e)�

IBk1
(−, e) for j < k1.

We assert that i < k1. Indeed, suppose that k1 ≤ i. Then,

τ i(P
op
e (i)) =

∑
j<i

τj(P
op
e (i))

=
∑
j<k1

τj(P
op
e (i)) +

∑
k1≤j<i

τj(P
op
e (i))

=
∑
j<k1

τj(P
op
e (i)) + Pop

e (i)

= Pop
e (i),

and thus �e(i) = Pop
e (i)/τ i(P

op
e (i)) = 0, contradicting Proposition 3.8 (a); proving that

i < k1. Let Supp(τB,Pop
e (i)) = {i1 < i2 < · · · < ia}. Note that ia < k1.

We assert that τ i(P
op
e (i)) = IBik

(−, e) for some k ∈ [1, a] with ik < i.
Indeed, we have two cases to consider: (1) Let i = ik for some k ∈ [1, a]. Since τ i(P

op
e (i)) �=

0, we have that k ≥ 2. Then, by Remark 4.8, we obtain

τ i(P
op
e (i)) =

∑
j<ik

IBj(−, e)

=
∑

j<ik−1

IBj(−, e) +
∑

ik−1≤j<ik

IBj(−, e)

=
∑

j<ik−1

IBj(−, e) + IBik−1
(−, e)

= IBik−1
(−, e).

(2) Let i �= ik for any k ∈ [1, a]. In particular, τ i(P
op
e (i)) = τi(P

op
e (i)) = IBi(−.e). Moreover,

there is some k ∈ [1, a) such that i ∈ [ik, ik+1). Then, by Remark 4.8, we have that
IBi(−.e) = IBik

(−, e), proving our assertion in both cases.
Once we have that τ i(P

op
e (i)) = IBik

(−, e) for some k ∈ [1, a]. In order to see that

τ i(P
op
e (i)) ∈Ff (�), by Remark 4.8, it is enough to prove that

IBk (−,e)

I ′
Bk

(−,e) ∈ �(k)⊕ for any

k < α.

Let k < α. By hypothesis we have that

IBk (−, e)

I ′
Bk(−,e)

∈ projρ
( R

I ′
Bk

)
.

Then by [43, Lemma 3.5], there is some e′ ∈Bk such that
IBk (−,e)
I ′
Bk

(−,e) � R(−,e′)
I ′
Bk

(−,e′) . Moreover,

since e′ ∈Bk and R is locally finite, it follows that e′ = ⊕ne
i=1 t

mj

j , where t1, . . . , tne are
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locally and pairwise non-isomorphic objects in Bk . In case, some tj ∈Bl and l < k, we have
that R(−, tj) =Bl(−, tj). Thus, we may assume that tj ∈ σk(B), for any j ∈ [1, ne]. Then,

IBk (−, e)

I ′
Bk

(−, e)
�

ne⊕
i=1

( R(−, tj)

I ′
Bk

(−, tj)

)mj =
ne⊕

i=1

�tj(k)mj;

proving that τ i(P
op
e (i)) ∈Ff (

⋃
j<i �( j)).

COROLLARY 5.7. Let (R, Ã) be a right standardly stratified K-ringoid, with R locally
finite, and let � = Ã� be the Ã-standard family of right R-modules. Then, all the standard
modules �e(i) are local and the following statements hold true.

(a) For any M ∈Ff (�), the filtration multiplicity [M : �e(i)] does not depend on a given
�-filtration of M .

(b) Ff (�) ⊆ fin.pρ(R) and it is a locally finite K-ringoid.

Proof. Let Ã= {Ãi}i<α be the given partition of ind (R). By Proposition 3.3, we have
the exhaustive family B(A) := {Bi(A)}i<α of R. Then, Ã� = B(A)� since σ(B(A)) = Ã.

For simplicity, we write B =B(A) and Bi =Bi(A) for any i < α. Since (R, Ã) is a
standardly stratified K-ringoid, the conditions in Theorem 5.6 (b) hold.

We start by proving that � ⊆ fin.pρ(R). Let i < α and e ∈ σi(B). If τ i(P
op
e (i)) = 0,

then �e(i) is equal to Pop
e (i), which is finitely presented. Assume that τ i(P

op
e (i)) �= 0 and

let Supp(τB,Pop
e (i)) = {i1 < i2 < · · · < ia}.

We assert that IBik
(−, e) is finitely generated for any k ∈ [1, a].

Indeed, by Remark 4.8, we have I ′
Bi1

(−, e) = ∑
j<i1

IBj(−, e) = 0, and thus, by

hypothesis, IBi1
(−, e) ∈ projρ(R/I ′

Bi1
). Then, there is some e′ ∈R such that IBi1

(−, e) =
R(−, e′)/I ′

Bi1
(−, e′), proving that IBi1

(−, e) is a finitely generated right R-module. As

before, we have that I ′
Bi2

(−, e) = ∑
j<i2

IBj(−, e) = IBi1
(−, e) and IBi2

(−, e)/I ′
Bi2

(−, e) ∈
projρ(R/I ′

Bi2
). Therefore, we get that the quotient IBi2

(−, e)/IBi1
(−, e) is a finitely

generated right R-module. Then, the exact sequence 0 → IBi1
(−, e) → IBi2

(−, e) →
IBi2

(−, e)/IBi1
(−, e) → 0 implies that IBi2

(−, e) is finitely generated. It is clear, by
induction, that the assertion above holds.

In the proof of Theorem 5.6, we proved that τ i(P
op
e (i)) = IBik

(−, e) for some k ∈ [1, a].
Thus, τ i(P

op
e (i)) is finitely generated. Therefore from the exact sequence 0 → τ i(P

op
e (i)) →

Pe(i) → �e(i) → 0 and [7, Proposition 4.2 (c) i)], we conclude that �e(i) is finitely
presented, and thus � ⊆ fin.pρ(R). Hence, the result follows from Theorem 4.9.

DEFINITION 5.8. Let R be a locally finite K-ringoid and let B := {Bi}i<α be an exhaus-
tive family of subcategories of R. We say that B is right noetherian if for any i < α and
e ∈ σi(B) the following statement holds true: Supp(τB,Pop

e (i)) is finite and there is some
i0 < α such that IBj(−, e) = Pop

e (i) for any j ≥ i0.

COROLLARY 5.9. Let R be a locally finite K-ringoid and let B := {Bi}i<α be an
exhaustive family of subcategories of R. Then, the following statements are equivalent.

(a) B is right noetherian and R is right ideally standardly stratified with respect to B.

(b) For the partition σ(B) of ind (R), related with the family B, we have that (R, σ (B))

is a right standardly stratified K-ringoid.

Proof. (a) ⇒ (b) It follows directly from Theorem 5.6.
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(b) ⇒ (a) By hypothesis, we have that Theorem 5.6 (b) holds for any i < α and e ∈
σi(B). We need to show that

∀ t < α ∀ a ∈R IBt(−, a)/I ′
Bt

(−, a) ∈ projρ(R/I ′
Bt

).

Let t < α and a ∈R. We may assume that a ∈ ind (R). Since σ(B) is a partition
of ind (R), by Proposition 3.3, there is some i < α such that a ∈ σi(B). Then, by
Theorem 5.6 (b), we get that IBt(−, a)/I ′

Bt
(−, a) ∈ projρ(R/I ′

Bt
).

THEOREM 5.10. Let R be a locally finite K-ringoid and let B := {Bi}i<α be an
exhaustive family of subcategories of R. Then, the following statements are equivalent.

(a) B is right noetherian and (R,B) is a right ideally quasi-hereditary K-ringoid.
(b) For the partition σ(B) of ind (R), we have that (R, σ (B)) is a right quasi-hereditary

K-ringoid and Hom(�e(i), �e′(i)) = 0 for e �= e′ in σi(B).

Proof. (a) ⇒ (b) Since R is right ideally quasi-hereditary, it follows from Lemma 5.5
that I ′

Bi
(e, e′) = radR(e, e′) for any e, e′ ∈ σi(B) and i < α. Then, by Corollary 5.9, Lemmas

3.12 and 3.13, we get (b).
(b) ⇒ (a) Since (R, σ (B)) is a right quasi-hereditary K-ringoid and

Hom(�e(i), �e′(i)) = 0 for e, e′ ∈ σi(B)

for any i < α, it follows from Lemmas 3.12 and 3.13 that I ′
Bi

(e, e′) = radR(e, e′) for any
e, e′ ∈ σi(B) and i < α. We assert that

(∗) radR(e, e′) ⊆ I ′
Bi

(e, e′) ∀ e, e′ ∈ ind (Bi), ∀ i < α.

Indeed, let i < α and e, e′ ∈ ind (Bi). If e, e′ ∈ σi(B), then radR(e, e′) = I ′
Bi

(e, e′). Assume
that one of them, say e, belongs to Bj for some j < i. Thus, IBj(e, e′) =R(e, e′) and
therefore I ′

Bi
(e, e′) = ∑

k<i IBk (e, e′) =R(e, e′), proving that radR(e, e′) ⊆ I ′
Bi

(e, e′).
Let e, e′ ∈ ind (Bi) and x, y ∈R. Then, by (∗) we get

IBi(e
′, x) radR(e, e′) IBi(y, e) ⊆ IBi(e

′, x)I ′
Bi

(e, e′)IBi(y, e) ⊆ I ′
Bi

(y, x).

Therefore, we conclude that IBi radR IBi ⊆ I ′
Bi

for any i < α. Then, as in the proof of [43,
Theorem 3.6 (i)]) and using that I ′

Bi
= I⋃

j<i Bj , we obtain that IBi/I ′
Bi

radR IBi/I ′
Bi

= 0 for
any i < α. Then, by Corollary 5.9 we get (a).

6. Rings with enough idempotents. In this section, we define and study the terms
“standardly stratified” and “quasi-hereditary” for a K-algebra with enough idempotents
(w.e.i K-algebra, for short) which is a pair (�, {ei}i∈I), where � is a K-algebra and
{ei}i∈I is a family of orthogonal idempotents of � such that � = ⊕i∈I ei� = ⊕i∈I�ei. Note
that �2 = � and � = ⊕(i,j)∈I2 ei� ej. Moreover, it is said that (�, {ei}i∈I) is Hom-finite if
{ej�ei}i,j∈I ⊆ f .�(K).

Let (�, {ei}i∈I) be an w.e.i K-algebra. The K-ringoid R(�) associated with
(�, {ei}i∈I) is defined as follows: the objects of R(�) is the set {ei}i∈I , and the set of
morphisms from ei to ej is HomR(�)(ei, ej) := ej�ei. The composition of morphism in
R(�) is given by the multiplication of �. We recall that Y :R(�) → Modρ(R(�)) is the
Yoneda’s contravariant functor, where Y (e) := HomR(�)(−, e).

The following result is more or less known in the mathematical folklore, but for
completeness and the benefit or the reader, we state it and give a proof.
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PROPOSITION 6.1. Let (�, {ei}i∈I) be a w.e.i K-algebra. Then, the functor

δ : Modρ(R(�)) → Mod(�op), M �→ ⊕i∈I M(ei)

is an isomorphism of categories, and δ(Y (ei)) = ei� for any i ∈ I .

Proof. Let f : M → N in Modρ(R(�)). For each i ∈ I, we have fei : M(ei) → N(ei) and
thus δ(f ) := ⊕i∈I fei .

The structure of �-module on δ(M) :
Let λ ∈ � = ⊕i,j ej�ei and m ∈ δ(M) = ⊕i∈I M(ei). Then, we have that λ = ∑

i,j λi,j

and m = ∑
i mi, where λi,j ∈ ej�ei and mi ∈ M(ei). Since λi,j : ei → ej is a morphism in

R(�), we obtain M(λi,j) : M(ej) → M(ei). We set (m · λ)t := ∑
i M(λt,i)(mi). It is a rou-

tine calculation to show that δ(M) is a right �-module. Observe that m · ej = mj and thus
δ(M) · ej = M(ej), for any j ∈ I . Let us consider e := ∑

i∈Supp(m) ei, where Supp(m) := {i ∈
I : mi �= 0}. Since m · ej = mj, it follows that m · e = m and thus δ(M) · � = δ(M).

Consider the correspondence

ε : Mod(�op) → Modρ(R(�)), X �→ (ei �→ Xei).

Let g : X → Y in Mod(�op) and λi,j : ei → ej in R(�). Le X (λi,j) : Xej → Xei and εej(g) :
Xej → Yej be defined as X (λi,j)(xej) := xejλi,j and εej(g)(xej) := g(xej). It can be seen that
ε(g) : ε(X ) → ε(X ) is a morphism in Modρ(R(�)), and moreover, it is a functor.

Let M ∈ Modρ(R(�). We know that δ(M) · ej = M(ej). Therefore,

(εδ(M))(ej) = δ(M) · ej = M(ej).

Let X ∈ Mod(�op). Since X� = X and � = ⊕i∈I�ei, we get

εδ(X ) =
⊕
i∈I

εδ(X )ei =
⊕
i∈I

δ(X ) · ei = ⊕i∈I Xei = X .

Thus, δ is an isomorphism of categories with inverse ε. Finally, we have

δ(Y (ei)) =
⊕
j∈I

Y (ei)(ej) =
⊕
j∈I

ei�ej = ei�.

REMARK 6.2. Let (�, {ei}i∈I) be a Hom-finite w.e.i K-algebra. Let R(�) :=
projρ(R(�)). Then, R(�) is a locally finite K-ringoid. Moreover, it is well known [42]
that the restriction functor

� : Modρ(R(�)) → Modρ(R(�)), F �→ F|R(�)

is an equivalence of categories and �((−, Y (ei))) = Y (ei) for any i ∈ I . Therefore
�(projρ(R(�))) = projρ(R(�)). Thus, by using that R(�) is a locally finite K-ringoid,
we can translate in terms of R(�) (and also in terms of �) all the results that we have
proven for locally finite K-ringoids.

LEMMA 6.3. Let (�, {ei}i∈I) be a Hom-finite w.e.i. K-algebra and let f and g be
idempotents in �. Then, the following statements hold true:

(a) g�f ⊆ f .�(K);
(b) f � � g� ⇔ �f � �g.
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Proof. (a) We have the finite sums f = ∑
k,l ek,l and g = ∑

i,j ei,j, where ek,l ∈ ek�el

and ei,j ∈ ei�ej, and thus g�f = ∑
i.j,k,l ei,j�ek,l. Moreover, each ei,j�ek,l ⊆ ei�el and so

it has finite length as K-module. Therefore, g�f has finite length as K-module.
(b) It follows by applying the functor Hom(−�) to the given isomorphism and by

using that Hom(�e, �) � e� and Hom(e�, �) � �e, for any e2 = e ∈ �.

PROPOSITION 6.4. For a w.e.i K-algebra (�, {ei}i∈I), the following statements are
equivalent.

(a) (�, {ei}i∈I) is Hom-finite.
(b) proj(�op) is a locally finite K-ringoid.
(c) projρ(R(�)) is a locally finite K-ringoid.
(d) proj(�) is a locally finite K-ringoid.
(e) proj(R(�)) is a locally finite K-ringoid.

Proof. Let i, j ∈ I . Then, we have the isomorphisms of K-modules

ej�ei = HomR(�)(ei, ej) � Hom�(ei�, ej�).

Therefore, the fact that (b) (respectively, (d)) implies (a) follows easily, and the equivalence
between (b) (respectively, (d)) and (c) (respectively, (e)) can be obtained from Proposition
6.1. Let us prove that (a) implies (b).

Assume that (�, {ei}i∈I) is Hom-finite. Then, it is clear that proj(�op) is a Hom-finite
K-ringoid. In order to prove that proj(�op) is a Krull–Schmidt category, it is enough by
[49, 49.10] to see that e�e is a semiperfect ring for any e2 = e ∈ �. Indeed, let e2 = e ∈ �.

Then, by Lemma 6.3 (a), we get that e�e has finite length as K-module, and thus it is an
Artin ring. In particular, e�e is semiperfect. The fact that (a) implies (d) can be shown in
a similar way.

COROLLARY 6.5. For a Hom-finite w.e.i K-algebra (�, {ei}i∈I), the following state-
ments hold true.

(a) End(e�) and End(�e) are Artin rings, for any e2 = e ∈ �.

(b) For each i ∈ I, there exists a unique (up to permutations) family ei := {ek,i}ni
k=1 of

primitive orthogonal idempotents in � such that ei = ∑ni
k=1 ek,i.

Proof. (a) Let e2 = e ∈ �. Then, by Lemma 6.3 e�e ∈ f .�(K). Finally, since
End(e�) � e�e � End(�e) as K-modules, we get (a).

(b) Let i ∈ I . By Proposition 6.4 (b), there is a decomposition

(∗) ei� = ⊕ni
k=1Pk,i with Pk,i local, for all k, i.

Since ei = e2
i ∈ ei�, we get from (∗) the unique decomposition ei = ∑ni

k=1 ek,i of
ei. Therefore, the family {ek,i}ni

k=1 consists of orthogonal idempotents in �. Hence,
Pk,i = ek,i� for each k, i. But now, since each Pk,i is local, we get that ek,i�ek,i �
End(ek,i�) has only trivial idempotents. But the latest condition is equivalent that
ek,i be primitive.

COROLLARY 6.6. Let (�, {ei}i∈I) be a Hom-finite w.e.i K-algebra and ind {ei}i∈I be the
quotient of the set ∪i∈I ei (see Corollary 6.5) by the equivalence relation ∼, where f ∼ g if,
and only if, f � � g�. Denote by [e] the equivalence class of e ∈ ∪i∈I ei. Then, the following
statements hold true
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(a) ind R(�) = {δ−1(e�) : [e] ∈ ind {ei}i∈I};
(b) ind proj(�op) = {e� : [e] ∈ ind {ei}i∈I};
(c) ind proj(�) = {�e : [e] ∈ ind {ei}i∈I}.

Proof. By Proposition 6.1 proj(�op) = δ(R(�)). Then, by Remark 6.2, Proposition
6.4, Lemma 2.2 and Corollary 6.5, we get (a) and (b). In order to show (c), by Corollary 6.5,
we have that �ei = ⊕ni

k=1 �ek,i and �ek,i is local, for all i, k. Consider the relation on
∪i∈I ei given by: f ≈ g if and only if �f � �g. By Lemma 6.3 (b), we have that ≈ coincide
with ∼ . Thus, we obtain (c) in a similar way as we did for (b).

DEFINITION 6.7. Let (�, {ei}i∈I) be a Hom-finite w.e.i K-algebra. For M ∈ Mod(�op),

the support of M is

Supp (M) := {e ∈ ind {ei}i∈I : Me �= 0}.
We say that � is right support finite if Supp (e�) is finite for any e ∈ ind {ei}i∈I . Dually, �

is left support finite if Supp (�e) is finite for any e ∈ ind {ei}i∈I . Finally, � is support finite
if it is right and left support finite.

REMARK 6.8. Let (�, {ei}i∈I) be a Hom-finite w.e.i K-algebra.

(1) We say that (�, {ei}i∈I) is basic if ei is primitive for each i and ei� �� ej� for ei �= ej.

Note that (�, {ei}i∈I) is basic if, and only if, ind {ei}i∈I = {ei}i∈I .

(2) By Proposition 6.1, Remark 6.2 and Corollary 6.6, we can see that � is right (resp.
left) support finite if, and only if, the ringoid R(�) is right (resp. left) support finite.

In what follows, we show a natural way to construct basic Hom-finite w.e.i. K-algebras,
which are also support finite. By following Bongartz and Gabriel [8], let K be a field and
Q be a quiver (which may be infinite), Q0 is the set of vertices, and Q1 is the set of arrows.
A path γ in Q, of length n ≥ 1, is of the form γ = αnαn−1 · · · α1 for arrows αi ∈ Q1 and

can be visualised as a0
α1−→ a1 → · · · → an−1

αn−→ an. We say that γ starts at the vertex a0

and ends at the vertex an. The vertices in Q can be seen as paths of length 0, and for each
a ∈ Q0, its corresponding path of length zero will be denoted by εa. For each nonnegative
integer n, we denote by Qn the set of all paths of length n. Let KQn be the K-vector space
whose base is the set Qn.

The path K-algebra is the K-vector space KQ := ⊕
n≥0 KQn whose product of two

basis vectors is given by the concatenation of paths. Note that εQ := {εa}a∈Q0 is a family of
orthogonal idempotents in KQ, and εbQnεa is the set of all paths of length n, which start at
a and end at b. Moreover, the pair (KQ, εQ) is a K-algebra with enough idempotents. We
denote by JQ the ideal in KQ generated by the set Q1. An ideal I of KQ is admissible if I ⊆
J2

Q and for each x ∈ Q0 there is a natural number nx such that I contains each path of length
≥ nx which starts or ends at x. For any admissible ideal I of Q, we consider the quotient
path K-algebra K(Q, I) := KQ/I and the set of orthogonal idempotents eQ,I := {ea}a∈Q0 ,

where ea := εa + I . We recall that a quiver Q is locally finite if for each vertex x ∈ Q0 there
is a finite number of arrows in Q1, which start or end at x. The main properties, from our
point of view, of quotient path K-algebras can be summarized in the following proposition.

PROPOSITION 6.9. Let Q be a locally finite quiver (which may be infinite), K be a field,
and I be an admissible ideal of KQ. Then, the following statements hold true.

(a) The pair (K(Q, I), eQ,I) is a basic Hom-finite w.e.i K-algebra.
(b) K(Q, I) is support finite.
(c) proj (K(Q, I)) and proj (K(Q, I)op) are locally finite K-ringoids.
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(d) ind proj (K(Q, I)) = {K(Q, I) ea}a∈Q0 .

(e) ind proj (K(Q, I)op) = {ea K(Q, I)}a∈Q0 .

Proof. For a proof of (a) and (b), see [8, 2.1]. The items (c), (d), and (e) can be obtained
from Corollary 6.6.

By Corollary 6.6, we know that the rings with a nice setting, where we can define the
standard modules, are precisely the Hom-finite K-algebras with enough idempotents.

Let (�, {ei}i∈I) be a Hom-finite w.e.i K-algebra. Then, ind proj(�op) = {e� : [e] ∈
ind {ei}i∈I}. Choose a partition Ã= {Ãi}i<α of the set ind {ei}i∈I . Define �op Pe(i) := e�,

for any [e] ∈ Ãi. Let �op P := {�op P(i)}i≤α, where �op P(i) := {�op Pe(i)}e∈Ãi
. The family of

Ã-standard right �-modules �op� = {�(i)}i<α, where �(i) := {�e(i)}e∈Ãi
is defined as

follows:

�e(i) := �op Pe(i)

Tr⊕j<iP( j)(�op Pe(i))
,

where P( j) := ⊕
r∈Ãj �op Pr( j). Let P := δ−1(�op P), where δ : Modρ(R(�)) → Mod(�op)

is the isomorphism of Proposition 6.1. Then, by Corollary 6.6 (a), it can be shown that
δ(Ã�e(i)) = �op�e(i).

DEFINITION 6.10. Let (�, {ei}i∈I) be a Hom-finite w.e.i K-algebra. We say that the pair
(�, Ã) is a right standardly stratified K-algebra if Ã is a partition of ind {ei}i∈I such that
Tr⊕j<iP( j)(�op Pe(i)) ∈Ff (

⋃
j<i �( j)), for any i < α and e ∈ Ãi.

REMARK 6.11. Let (�, {ei}i∈I) be a Hom-finite w.e.i K-algebra. Consider R(�) :=
projρ(R(�)) as we did in Remark 6.2. Then, R(�) is a locally finite K-ringoid such that
the restriction functor

� : Modρ(R(�)) → Modρ(R(�)), F �→ F|R(�)

is an equivalence of categories and �((−, Y (ei))) = Y (ei), for any i ∈ I .
Let Ã= {Ãj}j<α be a partition of the set

ind (R(�)) = {Ee := δ−1(e�) : [e] ∈ ind {ei}i∈I} (see Corollary 6.6 (a)).

Then, �(Ã) is a partition of ind {ei}i∈I . Moreover, for E = δ−1(e�) ∈ Ãj, we have
�(Ã�E(i)) = �(Ã)�e(i). Therefore, by using that R(�) is a locally finite K-ringoid, we
can translate in terms of � all the results that we have proven for locally finite K-ringoids.

COROLLARY 6.12. Let (�, {ei}i∈I) be a Hom-finite w.e.i K-algebra, and let Ã be a
partition of ind {ei}i∈I such that (�, Ã) is a right standardly stratified K-algebra. Then, all
the standard modules �e(i) are local and the following statements hold true.

(a) For any M ∈Ff (�), the filtration multiplicity [M : �e(i)] does not depend on a given
�-filtration of M .

(b) Ff (�) ⊆ fin.p(�op) and it is a locally finite K-ringoid.

Proof. It follows from Remark 6.11 and Corollary 5.7.

COROLLARY 6.13. Let Q be a locally finite quiver (which may be infinite), K be a field,
and I be an admissible ideal of KQ. Then, for any partition Ã of eQ,I , each of the standard
module �e(i) is local and the following statements hold true.
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(a) For any M ∈Ff (�), the filtration multiplicity [M : �e(i)] does not depend on a given
�-filtration of M .

(b) Ff (�) ⊆ fin.p(K(Q, I)op) and it is a locally finite K-ringoid.

Proof. By Proposition 6.9, we have that (K(Q, I), eQ,I) is a basic Hom-finite w.e.i
K-algebra, which is also support finite. Then, the result follows from Remark 6.11 and
Corollary 4.10.

EXAMPLE 6.14. Let Q be the following locally finite quiver

0 1 2 · · ·β

α

β

α

β

α

Consider the quotient path K-algebra � := K(Q, I), where K is a field and I is the
admissible ideal < α2, β2, αβ, βα > . For each i ∈ Q0, we have the idempotent ei := εi + I
of �. In what follows, we choose different partitions of {ei}i∈Q0 , and we will see if � is
standardly stratified (or not) with respect to these partitions.

(1) Consider Ã= {Ãi}i∈<ℵ0 , where Ãi := {ei}. In this case, we have that �(i) = {�ei(i) =
�ei} and thus (�, Ã) is standardly stratified. However, it is not quasi-hereditary since
End(�e0(0)) � e0�e0 is not a division ring.

(2) Consider B̃ = {B̃0, B̃1, B̃2}, where B̃0 := {e1}, B̃1 := {e0} and B̃2 := {ei}i≥2. In this
case, we get �e1(0) = �e1, �e0(1) = �e0/S(1) and �ei(2) = �ei, for any i ≥ 2,

where S(1) = �e1/rad (�e1). Note that B̃ is finite; however, (�, B̃) is not standardly
stratified, since �e0 �∈Ff (�).

(3) Consider C̃ = {C̃i}i∈<ℵ0 , where C̃0 := {e1}, C̃1 := {e0} and C̃i := {ei}, for i ≥ 2. In this
case, we get �e1(0) = �e1, �e0(1) = �e0/S(1) and �ei(i) = �ei, for any i ≥ 2. Note
that C̃ is infinite; however (�, C̃) is not standardly stratified, since �e0 �∈Ff (�).
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