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Role of non-resonant interactions in the
evolution of nonlinear random water wave fields

By SERGEI YU. ANNENKOV† AND VICTOR I. SHRIRA
Department of Mathematics, Keele University, Keele ST5 5BG, UK

(Received 2 September 2005 and in revised form 11 January 2006)

We present the results of direct numerical simulations (DNS) of the evolution of
nonlinear random water wave fields. The aim of the work is to validate the hypotheses
underlying the statistical theory of nonlinear dispersive waves and to clarify the role
of exactly resonant, nearly resonant and non-resonant wave interactions. These basic
questions are addressed by examining relatively simple wave systems consisting of a
finite number of wave packets localized in Fourier space. For simulation of the long-
term evolution of random water wave fields we employ an efficient DNS approach
based on the integrodifferential Zakharov equation. The non-resonant cubic terms
in the Hamiltonian are excluded by the canonical transformation. The proposed
approach does not use a regular grid of harmonics in Fourier space. Instead, wave
packets are represented by clusters of discrete Fourier harmonics.

The simulations demonstrate the key importance of near-resonant interactions for
the nonlinear evolution of statistical characteristics of wave fields, and show that
simulations taking account of only exactly resonant interactions lead to physically
meaningless results. Moreover, exact resonances can be excluded without a noticeable
effect on the field evolution, provided that near-resonant interactions are retained. The
field evolution is shown to be robust with respect to the details of the account taken of
near-resonant interactions. For a wave system initially far from equilibrium, or driven
out of equilibrium by an abrupt change of external forcing, the evolution occurs on
the ‘dynamical’ time scale, that is with quadratic dependence on nonlinearity ε, not
on the O(ε−4) time scale predicted by the standard statistical theory. However, if a
wave system is initially close to equilibrium and evolves slowly in the presence of an
appropriate forcing, this evolution is in quantitative accordance with the predictions
of the kinetic equation. We suggest a modified version of the kinetic equation able to
describe all stages of evolution.

Although the dynamic time scale of quintet interactions ε−3 is smaller than the
kinetic time scale ε−4, they are not included in the existing statistical theory, and their
effect on the evolution of wave spectra is unknown. We show that these interactions
can significantly affect the spectrum evolution, although on a time scale much larger
than O(ε−4). However, for waves of high but still realistic steepness ε ∼ 0.25, the scales
of evolution are no longer separated. By tracing the evolution of high statistical
moments of the wave field, we directly verify one of the main assumptions used
in the derivation of the kinetic equation: the quasi-Gaussianity of the wave holds
throughout the evolution, both with and without accounting for quintet interactions.

The conclusions are not confined to water waves and are applicable to a generic
weakly nonlinear dispersive wave field with prohibited triad interactions.

† On leave from P. P. Shirshov Institute of Oceanology, Moscow 117997, Russia.
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1. Introduction
The adequate statistical description of ‘wave turbulence’, or more precisely, the

nonlinear evolution of random wave fields is one of the open fundamental problems
of fluid mechanics, and of physics in general, although the advances in understanding
over last few decades are quite considerable. The main advances are primarily confined
to weakly nonlinear strongly dispersive wave fields with an infinite number of degrees
of freedom, for which a closed equation for the evolution of the second-order statistical
moments has been derived, extensively studied and successfully applied to wave
turbulence of various physical origins from liquid helium to interstellar plasmas (e.g.
Zakharov, L’vov & Falkovich 1992). In the water wave context, this equation was first
derived by Hasselmann (1962). This equation is known in different branches of science
under different names as the spectral transfer, the Hasselmann, the Boltzmann, or
the kinetic equation (KE); we will use the latter term. In the present paper we, with
minimal loss of generality (which we discuss later), will confine our consideration of
the evolution of random wave fields to the water wave context, due to the fundamental
nature of this problem and to its central role in the important practical task of wind
wave forecasting.

The approach to the statistical description of the nonlinear evolution of random
wave fields resulting in the derivation of the KE exploits weak nonlinearity of the
wave fields and is based upon a number of hypotheses, which vary depending on the
specific derivation employed and will be briefly discussed below. It is important to
note that a next order approximation for the KE does not exist. Although this fact is
not exceptional for asymptotic results, since the range of validity of the equation has
not been established, the theory needs an independent corroboration.

The most obvious way to check both the assumptions underlying the derivation of
the KE and its range of validity is the direct numerical simulation (DNS) of statistical
ensembles of random wave fields. Although this task appears to be straightforward,
there are fundamental difficulties in applying DNS to this problem. Here, we will
mention just two of them. First, the hydrodynamic equations should be integrated
for a very large number of modes over quite large time intervals, much larger than
those required in simulations of classical turbulence. Since, by the definition of wave
turbulence, nonlinearity of the wave field is small, this smallness being characterized
by a small parameter, say, ε, the necessary times are at least O(ε−4) of characteristic
wave periods for the media with prevailing quartet interaction, as is the case for water
waves. In such simulations the ‘fast’ time dependence cannot be filtered out, and very
high accuracy of the simulations is required. Second, the KE describes continuous
wave fields and the δ-functions in frequency in the integrand of the KE are the result
of a limit process essentially based on the existence of a continuum of waves involved
in both resonant and non-resonant interactions. In this context it is not a priori clear
how to perform the unavoidable discretization of a continuous wave field.

The importance of the open problem of the verification and generalization of the KE
was realized quite early, and the idea that the DNS is the most promising way to tackle
it is well-established. Although there exists a large variety of algorithms developed to
simulate the evolution of water waves, none of them has proved to be particularly well
suited to the challenge (for the reasons discussed below). Nevertheless, many different
groups have attacked this problem by employing some modifications of the existing
algorithms, although with a limited success (Onorato et al. 2002; Tanaka 2001 a, b;
Willemsen 2001; Dyachenko, Korotkevich & Zakharov 2004; Yokoyama 2004). These
papers were much more modestly aimed at a verification that the KE predictions
are at least very roughly consistent with the DNS. The most robust predictions of
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the kinetic equation for all dispersive waves with prohibited triad interactions are:
(i) the existence of a Kolmogorov-type energy cascade towards small scales – the
‘direct cascade’, which in terms of energy frequency spectra E(ω) manifests itself as a
power-like spectrum (in the water wave context E(ω) ∼ ω−4); (ii) the scaling of energy
fluxes and evolution times as ∼ ε6 and ∼ ε−4 respectively. Based upon coarse mesh
simulations, a preliminary observation of the existence of the direct cascade for water
waves was reported by Willemsen (2001). Tanaka (2001 a, b), having simulated just
the very initial stage of wave field evolution (25 wave periods), found for typical water
wave spectra an agreement in energy fluxes between the DNS and KE, and confirmed
the ε6 scaling. In the recent works by Onorato et al. (2002), Dyachenko et al. (2004)
and Yokoyama (2004) the field evolution was simulated over sufficiently large time
scales (O(103) characteristic wave periods). It was demonstrated that there is indeed
a direct cascade resulting in the formation of stationary power-like spectra that are
in a reasonable agreement with the predictions of the KE. However, the same ω−4

stationary spectra could be also obtained from scaling-type arguments even without
invoking the concept of resonant interactions (Kitaigorodskii 1962) and therefore, in
itself, the finding of ω−4 spectra is not the decisive argument.

Thus, the issue of quantitative verification of the KE remained open. It also became
apparent that a specially designed numerical tool is needed. This led to a new set
of basic questions stemming from the necessity to discretize the wave field while
preserving the desired properties of continuous equations. The questions include:

(i) Is it possible in principle to develop an efficient numerical scheme employing a
discretization in Fourier space for an accurate simulation of the evolution of statistical
characteristics of wave ensembles, retaining the fundamental properties of continuous
wave fields?

(ii) What is the role of resonant, approximately resonant, and non-resonant
interactions?

(iii) What are the actual time scales of field evolution and their relation to the KE
characteristic evolution times?

(iv) What is the role of higher-order resonant interactions and what is required to
take them into account in DNS?

The present paper addresses this challenge. We put the strongest emphasis on the
control of accuracy and transparency of the simulations. To this end we focus upon a
‘laboratory type’ setting of simulations; that is, we investigate in detail the behaviour
of toy models of the wave field made up of a finite number of spectrally narrow wave
packets that are in resonance. In parallel, we clarify the answers to questions raised
in further refining the algorithm developed earlier for this type of simulation based
upon the Zakharov equation (Annenkov & Shrira 2001).

It is important to note that the KE is not only based on the key assumption
of quasi-Gaussianity, but in fact represents a large-time limit of the theory. In this
limit, the evolution time scales are proportional to ε−4 and only exactly resonant
interactions are believed to be important. Implicitly it is also presumed that the
evolution that occurs at shorter time scales, before the assumptions used in the
derivation of the KE become valid, is insignificant. However, this has never been
tested. Simulations of the short-term evolution of capillary wave spectra, performed
by Watson & Buchsbaum (1996) and Watson (1999), showed that taking account of
interactions that are not exactly resonant leads to significant corrections to the energy
transfer in the capillary wave field. We demonstrate the crucial role of near-resonant
interactions at all stages of evolution, and also show that due to near-resonant
interactions a considerable part of the field evolution does occur before the KE ‘turns
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184 S. Yu. Annenkov and V. I. Shrira

on’. This can lead either to effective modifications of the actual initial conditions for
the KE, or, more importantly, to an evolution that is significantly different from the
KE predictions.

The paper is organized as follows. In § 2 we begin with the basic equations and a
very brief discussion of assumptions leading to the KE, which are to be checked in
other sections. For the DNS, we use the algorithm for the numerical integration of
the Zakharov equation, previously derived by the authors and successfully used in a
number of physical problems related to surface wave evolution. The basics of this
algorithm are also briefly outlined.

In § 3, we choose, as the first meaningful example, one of the simplest wave systems
with non-trivial evolution of statistical characteristics: the single exactly resonant
quartet. It is demonstrated that in order to obtain, with DNS, an evolution that is at
least qualitatively similar to the KE solution for this system, it is essential to take into
account the neighbourhood of the exact resonances, i.e. to supplement the resonant
quartet with approximately resonant interactions. This is done, in a systematic and
robust (that is, without a significant dependence on any extra parameters) way
by introducing the concept of ‘clusters’. In physical terms, this corresponds to the
idea of considering numerically the interaction of wave packets, instead of the
interaction of discrete harmonics. It is demonstrated that this DNS approach is
able to model quantitatively the evolution of systems consisting of any number of
resonantly interacting wave packets.

In § 4, we perform a quantitative comparison of the DNS and KE simulations.
While the KE solutions have time scale proportional to ε−4 uniformly in time, the
results of DNS demonstrate ε−2 scaling at the initial stages of the evolution, which
usually means much faster evolution. This leads to important consequences for all
wave systems, especially for those adjusting to rapidly varying external forcing.

The role of the next-order (five-wave) nonlinear interactions, for which no analytical
theory exists, is studied in § 5. We show that these effects lead to a non-trivial evolution
of the spectra for large time scales. Moreover, for moderately (but realistically) steep
waves, these time scales are found to be not well separated from the four-wave
interaction time scale, and the evolution of a wave system can be significantly
affected by taking account of higher-order processes. Concluding remarks and a brief
discussion are in § 6.

2. The statement of the problem and the numerical method
In this section we briefly review the derivation of the Zakharov equation, which

is the starting point of our numerical analysis, the numerical algorithm itself, and
the assumptions usually made in the derivation of the KE which we will test in
subsequent sections. As we mentioned earlier, we have chosen water waves as the
most representative example of a wave field where the description of random field
evolution is important. Following the established paradigm, we consider potential
gravity waves on the free surface of a homogeneous, incompressible and inviscid
fluid of infinite depth and transform the original equations into an integrodifferential
equation, in terms of new appropriately chosen variables (Zakharov 1968). The
resulting equation is usually referred to as the Zakharov equation.

2.1. The Zakharov equation

We choose a coordinate system with the origin located at the undisturbed water
surface, the vertical axis z oriented upward and the horizontal axes x, y. Let
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z = ζ (x, t) specify the free surface, and let ϕ(x, z, t) be the velocity potential,
with ψ(x, t) =ϕ(x, ζ (x, t), t) being the potential at the surface. Then the governing
equations can be written in the Hamiltonian form

∂ζ (x, t)

∂t
=

δH

δψ(x, t)
,

∂ψ(x, t)

∂t
= − δH

δζ (x, t)
, (2.1a, b)

where δ denotes the operator of functional differentiation, and the Hamiltonian H is
the total energy of the system, namely

H =
1

2

∫ ζ

−∞

[
(∇ϕ)2 +

(
∂ϕ

∂z

)2
]

dz dx +
1

2
g

∫
ζ 2 dx, (2.2)

where integration with respect to x over the entire horizontal plane is implied. Here
and below, we retain only one integral sign in multiple integrations.

In order to obtain a closed system in ψ , ζ , one has to calculate H in terms of these
variables. An approximate solution can be obtained, by performing an expansion in
powers of wave steepness. Making the Fourier transformation

ζ (x) =
1

2π

∫
ζ (k) eik·x dk,

ψ(x) =
1

2π

∫
ψ(k)eik·x dk,

⎫⎪⎪⎬
⎪⎪⎭ (2.3)

where integration is performed over the entire k-plane, k = (kx, ky), and introducing
complex variables a(k),

ζ (k) = M(k)[a(k) + a∗(−k)], ψ(k) = −iN(k)[a(k) − a∗(−k)], (2.4)

where

M(k) =

[
q(k)

2ω(k)

]1/2

, N(k) =

[
ω(k)

2q(k)

]1/2

,

equations (2.1a, b) take the form

i
∂a(k)

∂t
=

δH

δa∗(k)
, (2.5)

where asterisk means complex conjugation, ω(k) = [gq(k)]1/2 is the linear dispersion
relation, q(k) = |k| = k for infinite depth. Without the loss of generality, g = 1, with
the corresponding change of length scale. In (2.5), the Hamiltonian H is a functional
of a(k), a∗(k), and, in the form of a series in powers of these variables, in the generic
case can be written as

H =

∫
ω0a

∗
0a0 dk0

+

∫
U

(1)
012(a

∗
0a1a2 + a0a

∗
1a

∗
2)δ0−1−2 dk012

+
1

3

∫
U

(3)
012(a

∗
0a

∗
1a

∗
2 + a0a1a2)δ0+1+2 dk012

+

∫
V

(1)
0123(a

∗
0a1a2a3 + a0a

∗
1a

∗
2a

∗
3)δ0−1−2−3 dk0123

+
1

2

∫
V

(2)
0123a

∗
0a

∗
1a2a3δ0+1−2−3 dk0123
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+
1

4

∫
V

(4)
0123(a

∗
0a

∗
1a

∗
2a

∗
3 + a0a1a2a3)δ0+1+2+3 dk0123

+

∫
W

(1)
01234(a

∗
0a1a2a3a4 + a0a

∗
1a

∗
2a

∗
3a

∗
4)δ0−1−2−3−4 dk01234

+
1

2

∫
W

(2)
01234(a

∗
0a

∗
1a2a3a4 + a0a1a

∗
2a

∗
3a

∗
4)δ0+1−2−3−4 dk01234

+
1

5

∫
W

(5)
01234(a

∗
0a

∗
1a

∗
2a

∗
3a

∗
4 + a0a1a2a3a4)δ0+1+2+3+4 dk01234

+ · · · . (2.6)

The real interaction coefficients U (n), V (n), W (n) are known functions of the
wavenumbers kj and frequencies ωj , given in Krasitskii (1994). We have used here
compact notation, replacing the arguments kj of all the corresponding functions by
the subscripts j , assigning the subscript zero to k. Thus, aj = a(kj , t), ωj = ω(kj ),

U
(n)
012 = U (n)(k0, k1, k2), δ0−1−2 = δ(k0 − k1 − k2), where δ is the Dirac delta function,

etc. In the same way, dk0 = dk, dk012 =dk0dk1dk2, etc, and the integration is again
performed over the entire k-plane.

It is well-known (Zakharov 1968; Krasitskii 1994) that the numerous terms in the
expansion (2.6) do not have equal significance; at each order m, only the processes
satisfying the resonant conditions

m∑
j=1

sj kj = 0,

m∑
j=1

sjωj = 0, (2.7)

where sj = ±1, are essential for the dynamics. If some combinations of signs sj are
prohibited by the dispersion relation, the corresponding terms can be removed from
expansion (2.6) by a special canonical transformation, allowing one to obtain the
so-called ‘effective Hamiltonian’ (Zakharov 1968). For the case of gravity waves,
considering the expansion up to ε5, only two resonant processes are permitted:

k1 + k2 − k3 − k4 = 0, ω1 + ω2 − ω3 − ω4 = 0, (2.8)

and

k1 + k2 − k3 − k4 − k5 = 0, ω1 + ω2 − ω3 − ω4 − ω5 = 0. (2.9)

Consider a canonical transformation from a(k) to a new variable b(k), postulating
it in the form of integral-power series (Zakharov 1968; Krasitskii 1994):

a0 = b0 +

∫
A

(1)
012b1b2δ0−1−2 dk12

+

∫
A

(2)
012b

∗
1b2δ0+1−2 dk12 +

∫
A

(3)
012b

∗
1b

∗
2δ0+1+2 dk12

+

∫
B

(1)
0123b1b2b3δ0−1−2−3 dk123 +

∫
B

(2)
0123b

∗
1b2b3δ0+1−2−3 dk123

+

∫
B

(3)
0123b

∗
1b

∗
2b3δ0+1+2−3 dk123 +

∫
B

(4)
0123b

∗
1b

∗
2b

∗
3δ0+1+2+3 dk123

+

∫
C

(1)
01234b1b2b3b4δ0−1−2−3−4 dk1234 +

∫
C

(2)
01234b

∗
1b2b3b4δ0+1−2−3−4 dk1234
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+

∫
C

(3)
01234b

∗
1b

∗
2b3b4δ0+1+2−3−4 dk1234 +

∫
C

(4)
01234b

∗
1b

∗
2b

∗
3b4δ0+1+2+3−4 dk1234

+

∫
C

(5)
01234b

∗
1b

∗
2b

∗
3b

∗
4δ0+1+2+3+4 dk1234 + · · · . (2.10)

The Hamiltonian system (2.5) under the transformation (2.10) has the form

i
∂b(k)

∂t
=

δH̃

δb∗(k)
, (2.11)

where H̃ = H̃ (b, b∗). The specific choice of the coefficients A(n), B (n), C(n) enables
reduction of the Hamiltonian, in other words, an important simplification of H̃ ,
which now contains resonant terms only. For the case of purely gravity waves, the
reduced Hamiltonian has the form

H̃ =

∫
ω0b0b

∗
0 dk0 +

1

2

∫
T0123b

∗
0b

∗
1b2b3δ0+1−2−3 dk123

+
1

2

∫
W̃

(2)
01234(b

∗
0b

∗
1b2b3b4 + b0b1b

∗
2b

∗
3b

∗
4)δ0+1−2−3−4 dk1234 + · · · , (2.12)

so that the corresponding reduced equation, to the fifth order in ε, is

i
∂b0

∂t
= ω0b0 +

∫
T0123b

∗
1b2b3δ0+1−2−3 dk123

+

∫
W̃

(2)
01234b

∗
1b2b3b4δ0+1−2−3−4 dk1234

+
3

2

∫
W̃

(2)
43210b

∗
1b

∗
2b3b4δ0+1+2−3−4 dk1234. (2.13)

Equation (2.13), being a generalization of the original result of Zakharov (1968) to the
next order in ε, is known as the five-wave Zakharov equation for gravity waves. The
interaction coefficients of the reduced equation, T and W̃ (2), are known in terms of
U (n), V (2) and U (n), V (n), W (2) respectively. The corresponding expressions can be found
in Krasitskii (1994). This equation is quite general; it could be derived for almost any
weakly nonlinear dispersive wave which is primarily conservative and where triad
interactions are prohibited. The specifics of each type of wave are accumulated in the
expressions for the coefficients.

2.2. Numerical algorithm

It is convenient to eliminate the rapid change of phase by change of variable:

b(k, t) = B(k, t) exp[−iω(k)t],

obtaining

i
∂B0

∂t
=

∫
T0123B

∗
1B2B3e

i(ω0+ω1−ω2−ω3)t δ0+1−2−3 dk123

+

∫
W̃

(2)
01234B

∗
1B2B3B4e

i(ω0+ω1−ω2−ω3−ω4)t δ0+1−2−3−4 dk1234

+
3

2

∫
W̃

(2)
43210B

∗
1B

∗
2B3B4e

i(ω0+ω1+ω2−ω3−ω4)t δ0+1+2−3−4 dk1234. (2.14)

A method for the numerical integration of the Zakharov equation was proposed in
Annenkov & Shrira (2001). The essence of the approach is the efficient computational
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strategy, where all the coefficients T and W̃ are computed by a preprocessing routine
and stored in a way that facilitates all subsequent operations of integration in time.
The algorithm was successfully applied to integrate dynamic equations in a number
of problems (Annenkov & Shrira 2001).

It is important to note that the variables b(k) and B(k) are not physical wave
amplitudes, but appear as a result of the canonical transformation (2.10). In the
linear approximation, b(k) = a(k); but at the first nonlinear order, O(ε) terms due to
non-resonant three-wave interactions appear and must be taken into account when
transforming the solutions of the Zakharov equation back to physical space (e.g.
Creamer et al. 1989). However, we do not perform this transformation to physical
space, since the main objective of the present paper is the comparison of the DNS
results with the predictions of the statistical theory for water waves, which are
formulated in the same canonically transformed space.

2.3. Statistical description

Now, let us turn to statistical description of a wave system in terms of the correlation
functions of the field, b(k, t). The classical derivation procedure, described in detail in,
e.g., Zakharov et al. (1992), uses (2.13), with five-wave terms dropped, as the starting
point and leads to the equation

∂n0

∂t
= 4π

∫
T 2

0123f0123δ0+1−2−3δ(ω0 + ω1 − ω2 − ω3) dk123. (2.15)

Here, n0 is the second-order correlator,

〈b∗
0b1〉 = n0δ0−1, (2.16)

where angular brackets mean ensemble averaging, and

f0123 = n2n3(n0 + n1) − n0n1(n2 + n3). (2.17)

Equation (2.15) is essentially of the type of the Boltzmann equation for the evolution
of a statistical ensemble, although in the context of surface water waves it is often
referred to as the Hasselmann or the ‘spectral transfer’ equation; in this article,
as we mentioned in the Introduction, we prefer to use the term ‘kinetic’ equation to
emphasize its universality and relevance for all dispersive wave systems with prohibited
triads. In its derivation from (2.13), a number of hypotheses and assumptions have
been used (Zakharov et al. 1992). We will now briefly review the most common way
of deriving (2.15), pointing out the approximations involved.

The wave field is taken to be statistically homogeneous in space, as implied by
the form of the correlator (2.16). Then, the free-wave field, obtained at the zeroth
approximation in ε, is assumed to have Gaussian statistics, for which all odd-order
correlators vanish, and the fourth-order correlator decomposes into products of pair
correlators,

J
(0)
0123δ0+1−2−3 = 〈b∗

0b
∗
1b2b3〉 = n0n1(δ0−2δ1−3 + δ0−3δ1−2). (2.18)

At the next approximation, correlations due to resonant nonlinear interactions result
in the fourth-order cumulant J

(1)
0123. The essential hypothesis is that wave field is

presumed to remain quasi-Gaussian over the time scale of evolution; therefore, for
all times the cumulant should remain small compared to J

(0)
0123.
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Using the Zakharov equation (2.13), with the five-wave interaction terms dropped,
we calculate ∂n0/∂t:

∂n0

∂t
= 2Im

∫
T0123J

(1)
0123δ0+1−2−3 dk123. (2.19)

The cumulant J
(1)
0123 is specified by an evolution equation containing on the right-

hand side the sixth-order correlator I012345, which by invoking the quasi-Gaussianity
assumption is replaced by the corresponding free-field Gaussian correlator I

(0)
012345

representable in terms of the products of pair correlators. As a result we have(
i
∂

∂t
+ �ω

)
J

(1)
0123 = 2T0123f0123, (2.20)

where �ω = ω0 + ω1 − ω2 − ω3, and f0123 is specified by (2.17). It is usually assumed
that n0 and, hence, f0123 depends on slow time µt , such that µ/�ω � 1. Then the
closed equation for the evolution of n(t) in its classical form (2.15) is obtained (see e.g.
Zakharov et al. 1992) by making the following steps. Employing the assumed wide
separation of scales and neglecting the oscillating terms ∼e−i�ωt in the full solution to
(2.20), an approximate solution for large t that depends only on the slow time scale,

J
(1)
0123(t) =

2T0123

�ω
f0123, (2.21)

is substituted into (2.19). Here this solution is understood in terms of generalized
functions:

J
(1)
0123(t) = 2T0123

[
P

�ω
+ iπδ(�ω)

]
f0123(t), (2.22)

where P stands for ‘principal value’. Note that is commonly assumed that µ ∼ ε4 while
�ω for four-wave interactions is O(ε2). Thus, µ/�ω ∼ ε2 � 1, and the asymptotic
derivation is valid as long as our interest is confined to slow O(ε−4) evolution.

Alternative derivations of the same kinetic equation could be based upon a
somewhat different set of hypotheses (e.g. Benney & Saffman 1966; Reznik 1983),
assuming, instead of quasi-Gaussianity, a certain smoothness of the cumulants in the
k-space at the initial moment. This smoothness is understood in terms of slow time
and, in this sense, the initial stage of evolution is also ignored.

Thus, the derivation of the kinetic equation is based on a number of important
hypotheses that are difficult to verify from within the approach, and an independent
verification by DNS is needed. Some of the conditions of applicability of (2.15)
are discussed in Zakharov et al. (1992). It is important to note that the asymptotic
derivation does not allow correction terms to be added systematically, i.e. to pass
to higher approximations. In particular, higher-order nonlinear terms (five-wave
processes) have not been considered so far. Meanwhile, it is well-known that taking
account of these terms can lead to dynamically important effects, and may be
responsible for the formation of long-lived coherent surface patterns, which indicate
a deviation from Gaussianity (Annenkov & Shrira 1999).

The fact that (2.15) is obtained as a large-time limit of the theory requires a more
detailed discussion. If we drop the assumption that µ/�ω � 1, i.e. include faster
variability of statistical moments of the wave field, we, strictly speaking, should use
instead of (2.21) the exact solution to (2.20) in the form

J
(1)
0123(t) = −2iT0123

∫ t

0

e−i�ω(τ−t)f0123 dτ + J
(1)
0123(0)ei�ωt . (2.23)
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Recently, this point was highlighted by Janssen (2003), who by taking f0123 out of the
integral in (2.23) and setting J

(1)
0123(0) = 0 arrived at a modification of the KE in the

form
∂n0

∂t
= 4

∫
T 2

0123f0123δ0+1−2−3Ri(�ω, t) dk123, (2.24)

where �ω = ω0 + ω1 − ω2 − ω3, and

Ri(�ω, t) =
sin(�ωt)

�ω
.

Then, in the limit t → ∞ (2.24) gives

lim
t→∞

Ri(�ω, t) = πδ(�ω),

leading to (2.15), while for small times, although still large compared to characteristic
wave periods (Janssen 2003),

lim
t→0

Ri(�ω, t) = t.

It is easy to see that while for large times the characteristic time of the evolution is
proportional to ε−4, in accordance with the well-known property of (2.15), for small
times it is scaled as ε−2.

It is also worth noting that while the classical version of the KE (2.15) creates a
false impression that the spectral evolution is caused by exactly resonant interactions
only, the modified equation (2.24) via the explicit presence of function Ri(�ω, t)
highlights the importance of non-resonant interactions in two different ways. First, it
emphasizes the fact that the classical delta function in (2.15) is a specific large-time
limit: for any finite time the width of Ri(�ω, t) remains finite and, thus, implies
the importance of near-resonant interactions for any time; second, the fact that at
small times there is a fast spectral evolution entirely due to near-resonant interactions
suggests a special significance of the early stages of evolution.

Unfortunately, the range of applicability of equation (2.24) is not clear. Indeed,
its derivation is based upon the implicit assumption that µ/�ω � 1. As already
mentioned, in generic situations �ω for four-wave interactions is O(ε2), which requires
µ � ε2 and, thus, contradicts the small-time scaling µ ∼ ε2 implied by (2.24). Hence, in
generic situations (2.24) is not self-consistent at the initial stages of evolution, which
it aims to describe.

In generic situations there is no small parameter to be utilized, and in order to
obtain a kinetic equation valid at all stages of evolution, including the initial one, one
should use the closed-form solution (2.23) without any further simplifications. The
resulting kinetic equation is

∂n0

∂t
= −4Re

∫ {
T 2

0123

[∫ t

0

e−i�ω(τ−t)f0123 dτ

]
+ iT0123J

(1)
0123(0)ei�ωt

}
δ0+1−2−3 dk123.

(2.25)

Thus, in the general setting the evolution of spectral density n depends not only on

the initial distribution of n, but also on the initial distribution of J
(1)
0123(0). A zero

value of J
(1)
0123(0) corresponds to situations where the wave field is initially free, so

that the wave components are not correlated, and waves begin to interact only after
t = 0. Thus, this type of initial condition is special. Non-zero J

(1)
0123(0) corresponds

to generic initial conditions where the wave field has been evolving for a sufficiently
long time, being governed by the same equations, and small but non-zero correlators
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have emerged due to nonlinear interactions. Evidently, the effect of non-zero J
(1)
0123(0)

rapidly decays with time, due to the factor ei�ωt and integration in k-space.
At large times equation (2.25) tends to the classical KE (2.15). For small time-

asymptotics, the right-hand side of (2.25) can be expanded in a Taylor series with
respect to time, which yields an easily solvable ODE:

∂n0

∂t
= α + βt, (2.26)

where α and β are ∼ O(n0
3) constants. Then, at very short times t ∼ O(ε−1) the term

βt can be neglected, and the evolution is slow, with time scale O(ε−4). This very initial
part of the evolution was considered by Tanaka (2001a). At larger but still small
times the term βt becomes dominant, which implies evolution with time scale O(ε−2)
at t 	 O(ε−2).

In the next section, we will perform a DNS of the evolution of simple ‘toy’ wave
systems and a quantitative comparison with the corresponding solutions of (2.15), in
order to clarify the effects of the approximations involved. For this purpose, we will
use the numerical algorithm for the integration of the Zakharov equation described
in Annenkov & Shrira (2001). The accuracy of these simulations is controlled by
the conservation of the Hamiltonian and other integrals (generally, accuracy of eight
significant digits is maintained). However, it is important to note that this control of
accuracy refers to dynamical computations. The evolution of statistical characteristics
can be verified only by self-consistency, which is best achieved by a detailed study of
a simple wave system, which is performed below.

3. The simplest toy model; the role of the exactly resonant, approximately
resonant, and non-resonant interactions

3.1. The simplest toy model

In order to check the hypotheses used in the derivation of the KE and to address the
basic questions on the role of resonant and non-resonant interactions, it is instructive
to examine the simplest possible model with a non-trivial evolution of the spectrum.
This will also help in developing and testing an adequate DNS method. Here, it is
important to note that the method, based on the Zakharov equation, is not restricted
to regular grids, so that we are free to consider a wave system with any number of
interacting harmonics.

The most elementary model is, clearly, a single resonant quartet

k0 + k1 = k2 + k3, ω0 + ω1 = ω2 + ω3; (3.1)

an example is shown in figure 1. The kinetic equation for this particular model can
be obtained from (2.15) by discretization, or derived directly by using the random
phase approximation (Kadomtsev 1982) in the form

∂n0

∂t
= 8πT 2

0123[n2n3(n0 + n1) − n0n1(n2 + n3)]. (3.2)

It is worth noting that both sides of (3.2) have the same dimension, due to the presence
on the right-hand side of a dimensional constant (‘phases correlation time’) which is
equal to unity in our setting and therefore omitted (cf. Kadomtsev 1982; Rabinovich &
Trubetskov 1989). Our choice of the phase correlation constant is based on the
requirement that the ‘discrete’ limit of the usual kinetic equation (2.15) for strongly
localized wave packets and the discrete equation for these packets coincide.
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Figure 1. Resonant quartet (3.1) in Fourier space. Dots show position of harmonics.
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Figure 2. Dashed curves: numerical solution of the KE for the single resonant quartet (3.1),
for initial conditions (3.3). Solid curves: ensemble-averaged evolution for 10000 quartets (3.4),
with �= 0.6 and the same initial conditions, obtained by the numerical solution of (2.14).
Each realization corresponds to a particular choice of random initial phases and of random
mismatch in (3.4).

Numerical solution of (3.2) for quartet (3.1), for initial conditions

b0(0) = 1.5 × 10−2, b1(0) = 1.0 × 10−2, b2(0) = 0.8 × 10−2, b3(0) = 0.5 × 10−2,

(3.3)

ni(0) = bi(0)1/2, is shown in figure 2 (dashed curves). Here and below, we prefer to
plot and discuss the evolution of amplitudes |b(t)|, instead of wave packet intensities
n(t) = |b(t)|2. Owing to the presence of additional integrals relating the amplitudes
of interacting packets (Manley–Rowe integrals), this wave system does not tend to
the Rayleigh–Jeans spectrum, despite the fact that the system is conservative (no
forcing or dissipation terms are included). In order to obtain the solution by DNS,
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the most direct way would be, at first glance, to build an ensemble of realizations of
the same quartet, each realization having a different set of random initial phases, with
subsequent averaging. This was performed by Stiassnie & Shemer (2005), who noted
that the result was qualitatively different from the evolution obtained with the kinetic
equation. Since, as it was mentioned above, the correct procedure should take into
account approximate resonant interactions as well, we, for our first attempt, introduce
a frequency mismatch into each realization, so that each quartet has the form

k̂0 + k̂1 = k̂2 + k̂3, ω̂0 + ω̂1 = ω̂2 + ω̂3 + Ω̂, (3.4)

where k̂i = ki + K i , ω̂i = ω(k̂i), K i is a random vector, |K i | � �, � is a parameter

and Ω̂ is the frequency mismatch. For each quartet (3.4), the evolution is computed
with the Zakharov equation (2.14), with subsequent ensemble averaging. The result is
shown in figure 2 (solid curves) and is qualitatively similar to the picture observed by
Stiassnie & Shemer (2005). The amplitudes of the harmonics evolve on a short time
scale with fast, gradually diminishing, oscillations. Such a scenario of evolution is
radically different from the corresponding solution of the kinetic equation: there is not
the slightest resemblance. Clearly, an alternative procedure is needed, which (i) would
take into account both exactly resonant and approximately resonant interactions, for
each realization, and (ii) would not depend on the position of additional harmonics
in the Fourier space, or on other parameters.

3.2. The role of the exactly resonant, approximately resonant, and non-resonant
interactions; the idea of clusters

The most natural way to build a wave system that would satisfy the conditions
formulated above, while at the same time corresponding to the case of four resonantly
interacting waves, is to consider four interacting wave packets of finite width in the
Fourier space.

Let us model each packet as a ‘cluster’ of random-phase harmonics, such that
the sum of their amplitudes squared is equal to the total intensity of a packet. In
figure 3(a), each wave packet is represented as a cluster of five harmonics kj , kj ± dx ,
kj ± dy , where dx = �κx , dy = �κy , κx = (1, 0), κy = (0, 1) are the unit wave vectors.
We will refer to the parameter � as the cluster size in the k-space. The procedure of
constructing clusters includes a parallel translation of the original resonant quartet
by dx , dy , the resulting quartets being in approximate resonance, due to the nonlinear
structure of resonance conditions. Simultaneously, in each pair of clusters there
are close pairs of harmonics that form approximately resonant quartets. Also, in
each cluster a central harmonic interacts with its sidebands, in Benjamin–Feir type
interaction. In this way, in the considered ‘minimal’ configuration, the evolution of a
single resonant quartet in the kinetic equation corresponds to the evolution of 181
coupled quartets in the dynamical equation.

Figure 3(b) shows the evolution of packet intensities with time obtained by the
numerical integration of the Zakharov equation for the wave system specified in
figure 3(a). Here and below, time is measured in characteristic wave periods. Within
each cluster, initial amplitudes of individual harmonics were chosen randomly, but
subject to the condition that the total packet intensity is equal to the prescribed initial
value, given by (3.3). In this and subsequent simulations, this distribution of amplitudes
within each cluster was kept the same for all realizations, and only the random
phases of harmonics were different. However, it was verified that if all the ampli-
tudes are random as well, this does not affect the results, provided that the initial
conditions for the amplitudes of the clusters are satisfied. The evolution almost
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Figure 3. (a) Resonant quartet (3.1): an example of cluster representation, with the cluster
size �= 0.6. (b) Comparison of the DNS with the KE solution. Solid curves: evolution
of amplitudes of four wave packets (3.1) for initial conditions (3.3), averaged over 50000
realizations. Each realization corresponds to a particular choice of random initial phases.
Dashed curves: numerical solution of the KE.

coincides with that obtained with the kinetic equation, except at the initial stage
where the time scale appears to be slightly different. The problem of time scales will
be addressed in the next section; here it is important to note that the numerical
solution in figure 3(b) is virtually independent of the way the clusters were chosen
(i.e. the cluster size �, the number and positions of harmonics within the clusters).
Specifically, the numerical solution for the example shown in figure 3(a, b) was found
to be independent of � in the range 0.05 � � � 2.0. It is however important to choose
a configuration of resonances that is most structurally stable, in a certain sense, with
respect to the change of amplitude.

3.3. Other examples of ‘discrete models’

Similar properties are also obtained for much more complex systems consisting of
numerous (up to 1000) localized wave packets. As an illustrative (sufficiently rich
but still graphically traceable) example, we present the evolution of a system of 24
wave packets. Figure 4 shows the numerical solution for this system: it tends to the
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Figure 4. Evolution of amplitudes for an ensemble of 24 wave packets. (a) DNS, averaged
over 6000 realizations, (b) solution of the KE.

thermodynamic equilibrium state, and direct numerical simulation beyond the initial
stage of evolution virtually coincides with the solution of the kinetic equation.

3.4. Conclusions: key role of near-resonant interactions and the idea of clusters

Simulations of a few simple wave systems show that the interactions that are not
exactly resonant (i.e. with a small but finite mismatch) play a crucial role in the DNS of
the evolution of the statistical properties. An adequate account of both resonant and
near-resonant interactions is achieved with a configuration based on the representation
of waves by clusters of harmonics. Physically, such a representation corresponds to
the interaction of wave packets of finite width in Fourier space. With the exact
resonances only, the DNS of a wave system cannot be even qualitatively similar to
the numerical solution of the kinetic equation. On the other hand, simultaneously
taking into account exact and approximate resonances, even in the most crude way
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Figure 5. (a) Cluster representation of the resonant quartet (3.1) with only approximately
resonant interactions. (b) Solid curves: evolution of amplitudes for this representation, averaged
over 50000 realizations. Dashed curves: numerical solution of the KE.

(say, representing a wave packet with just two harmonics) leads to a qualitative
similarity, at least. Note that the presence of exact resonances is not essential, i.e.
they do not play any special role. To illustrate this, let us slightly modify the clusters
shown in figure 3(a), by removing the central harmonic from each cluster, so that the
resulting wave system contains only approximately resonant interactions (figure 5a).
Simulation (figure 5b), again compared with the same KE solution as before, shows
that a wave field can be adequately described by taking into account approximate
resonances only. Inclusion of interactions that are far from resonant (with frequency
mismatch considerably larger than O(ε2)) does not have any noticeable effect on the
evolution.

The issue of quantitative comparison is more subtle. Before comparing it with
other results, the DNS employed should first be validated internally. The extensive
testing we carried out showed remarkable robustness of the DNS results obtained
by employing different moderately crude representations of wave packets, i.e. models
of the clusters. The specific configuration used in the present article has been found
to provide the best compromise: an economical way of taking into account the
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Figure 6. As in figure 3(b), but for initial amplitudes of all wave packets multiplied by 0.5.

near-resonant interactions without a noticeable dependence on parameters. In this
way, we have a relatively simple and robust tool for the quantitative modelling of
the statistical evolution of wave ensembles. The tool is used in the next section for a
detailed analysis of the wave field evolution and a quantitative comparison of DNS
and the KE.

4. Detailed analysis of the wave field evolution
4.1. The time scales of the field evolution; fast and slow evolution

In the wave systems chosen for the analysis so far the evolution is quite simple: in
the absence of any non-conservative effects the system tends to a certain equilibrium
state which depends on the initial conditions. To test with DNS the predictions of
field evolution requires, first of all, a careful comparison of the evolution time scales.

As we discussed earlier in § 2.3, it is expected that the amplitude dependence of the
‘true’ time scales obtained with DNS will differ from the strict ε−4 proportionality
implied by the classical kinetic equation.

In figure 3, we have plotted the evolution of the toy model obtained with the KE and
DNS, for a specific characteristic steepness of the waves, close to 0.1. Although the
curves are quite close, a certain discrepancy in the time scales can be seen. Moreover,
the time scales of the evolution are found to have different amplitude dependence.
Repeating the numerical simulations for half-amplitudes, taking the initial values of
bi as

b̂i(0) = 0.5bi(0), i = 0, 1, 2, 3, (4.1)

we arrive at the somewhat different picture presented in figure 6. While the KE
solution time scale is as always proportional to ε−4, the DNS shows a ε−2 dependence.
This can be seen in figure 7, where the evolution of amplitudes multiplied by 0.5, 1.0
and 2.0 is plotted versus time normalized by ε−2. Again, no particular dependence on
the cluster size was found, provided that 0.05 <�< 1.0. Thus, for small amplitudes
the evolution is much faster according to DNS than within the framework of the KE.
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Figure 7. Evolution of amplitudes of four wave packets (3.1), normalized by q−1, for q = 1
(solid curves), q = 0.5 (dashed curves), q = 2 (dotted curves), with time scales normalized by
q2. The averaging is over 50000 realizations.

The behaviour demonstrated in this example was found to be typical of all the
systems made up of a finite number of localized packets: in any conservative wave
system that is initially far from equilibrium, practically all the evolution towards the
equilibrium occurs on the ‘fast’ ε−2 time scale, contrary to the KE predictions.

To study evolution on a slow time scale we have to modify the systems under
consideration. Let us now add appropriately chosen small non-conservative effects.
This can be done by formally replacing each ωi , where i = 0, 1, 2, 3, by ωi +iγi , where
γi are sufficiently small, in order to retain the Hamiltonian structure at the desired
order of approximation. Results of the DNS with the initial conditions (4.1) and

γ0 = γ1 = −7 × 10−7, γ2 = 2.5 × 10−7, γ3 = 1.705 × 10−7, (4.2)

together with the corresponding KE solution, are shown in figure 8. While the time
scale of the initial evolution in the DNS is, as previously, proportional to ε−2, the
subsequent ‘slow’ evolution of the non-conservative system has the same time scale
for both the KE and DNS.

4.2. Evolution of correlators

Apart from comparing calculations of the evolution of second-order moments
obtained within the framework of DNS and KE, the DNS enables us to calculate
explicitly the evolution of statistical moments of any order. The issue of the evolution
of higher moments is an interesting and completely open question in itself. It is
worth noting, however, that because of wave breaking it is not a priori clear that
any asymptotic procedure employing a truncation in the Hamiltonian can capture
accurately the higher moments, and, therefore, since most of the existing DNS
approaches are based upon an asymptotic procedure, any conjectures concerned with
the true evolution of higher moments should be considered with caution. However,
in this paper we are concerned primarily with checking specific hypotheses involved
in the derivation of the KE, and the issues arising from the truncations in the
Hamiltonian are put aside.
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Figure 8. Evolution of the resonant quartet for the same initial conditions as in figure 6, with
small non-conservative effects added. The averaging is over an ensemble of 1000 realizations.

The hypothesis of quasi-Gaussianity should be justified by the direct calculation of
the fourth-order statistical moment. Let us first perform this calculation for the model
consisting of four wavepackets that was considered in § 3. Although the number of
harmonics in this model are too small for Gaussianity, we can nevertheless verify
the crucial assumption that the wave field is close to a free field, i.e. all higher-order
correlators approximately decompose into products of pair correlators. Let us now
consider equation (2.19), which links the evolution of the second statistical moment
for each harmonic with the sum over the fourth-order cumulants, multiplied by the
corresponding interaction coefficients, for all the interactions involving this harmonic.
The perturbation expansion used in the derivation of the KE is valid provided that
the wave field is close to the free field, i.e. this sum of cumulants must be small
compared to the corresponding sum of fourth-order correlators. Let us calculate the
right-hand side of (2.19) for all harmonics comprising the first cluster (corresponding
to wavepacket k0 in figure 1), and compare it to the zeroth-order value, summing
over the real parts of fourth-order correlators. In figure 9, the function

G(t) = Im

5∑
j=1

∑
Tjklm〈b∗

j b
∗
kblbm〉 (4.3)

is plotted, where the first summation refers to all the harmonics comprising the cluster,
and the second one includes all the interactions for the j th harmonic. Note that the
time integration of 2G(t) gives the evolution of n0 shown in figure 3. For comparison,
in the same figure we plot the function

G(0)(t) =

5∑
j=1

∑
TjklmJ

(0)
jklm, (4.4)

replacing the correlators by their decomposition into the corresponding products of
second-order correlators. As it is seen from figure 9, the first-order correction is three
orders of magnitude smaller than the corresponding free-field value. Hence, the key
assumption of the theory, that the wave field remains quasi-Gaussian in the process
of evolution, is well justified.
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Figure 9. Solid curve: evolution of G(t) for the first cluster (corresponding to wavepacket k0

in figure 1). Dashed curve: evolution of the corresponding free-field function G(0)(t).

For a wave field consisting of a larger number of harmonics, the deviations from
Gaussianity can be checked by tracing the evolution of kurtosis, related to the fourth
moment 〈ζ 4〉, where

〈ζ 4〉 =
1

4

∫
(ω1ω2ω3ω4)

1/2〈b∗
1b

∗
2b3b4〉 dk1234 + c.c., (4.5)

and the kurtosis K is

K =
〈ζ 4〉
〈ζ 2〉 − 3. (4.6)

With the increase of the number of harmonics with random phases, the wave field
approaches Gaussianity, and the kurtosis tends to zero from below. For a wave field
consisting of 24 packets, the evolution of the kurtosis is shown in figure 10. This wave
field was discussed in § 3.3, and the evolution of amplitudes was shown in figure 4.
Figure 10 shows that the kurtosis remains small during the evolution, so that the wave
field remains close to Gaussianity. It should be emphasized that these simulations of
the kurtosis are of qualitative character: the chosen number of harmonics is adequate
for capturing the evolution of the second moments but is not sufficient for the more
sensitive kurtosis. The kurtosis is expected to be zero at the initial moment for any
sufficiently large ensemble of non-interacting waves, and remain small and positive
in the course of evolution because of the specifics of the deep water interaction
coefficients (Janssen 2003). Although in this simulation the kurtosis is negative due
to the insufficient number of harmonics, it remains close to its initial value and, in
accordance with expectations, slightly exceeds it for most of the evolution.

4.3. Conclusions: phenomenon of ‘fast’ evolution due to near-resonant interactions

The discussion of the derivation of the KE in § 2 suggests that the true time scales
of evolution must be different from the KE predictions at a certain initial stage of
evolution. This initial stage of the evolution has time scale proportional to ε−2, and
it is implicitly assumed that the main stage of evolution occurs on an ε−4 time scale.
So one could expect to find in DNS a faster initial evolution followed by an ε−4
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Figure 10. Evolution of kurtosis for the wave field consisting of 24 packets, with the
averaging over 6000 realizations.

evolution governed by the KE. However, we found that if a conservative wave system
is initially far from statistical equilibrium, all of its evolution towards this equilibrium
occurs on the fast time scale. On the other hand, if small non-conservative effects are
included, the subsequent slow evolution is correctly predicted by the KE.

This important fact has two consequences. First, the fast adjustment towards
equilibrium is not resolved by the KE and, in fact, represents a modification of
its initial conditions. Second, the reaction to any rapidly varying forcing would be
incorrectly treated by the KE, since the system will evolve to equilibrium with a
different time scale. An example of such a scenario is presented in figure 11.

Moreover, since the ‘dynamical’ wave field reacts to a fast external forcing on a
different time scale than the ‘statistical’ one, this reaction can be different. A smaller
reaction time scale means that the wave field can have sufficient time to adapt to an
external forcing, which is instantaneous in terms of the KE. The consequences of this
fact for more complex wave systems are yet to be elaborated.

It should be noted that all the above simulations were carried out for situations
corresponding to ‘cold start’, i.e. J

(1)
0123 = 0 at t = 0. Therefore, a legitimate question is

whether the conclusion on the evolution time scale holds for generic situations with
non-zero initial J

(1)
0123, caused by the preceding evolution of the wave field. However,

since all the evolution in figure 7 obeys ε−2 scaling, any t = t∗ can be chosen as the
initial moment, without affecting the conclusion. The most convincing argument is
provided by figure 11, which shows the presence of fast evolution in a system that
experiences an abrupt variation of forcing after O(ε−4) wave periods, that is with
definitely non-zero correlations between the harmonics by this moment.

5. Effect of quintet interactions
The problem of the role of higher-order nonlinearities in the evolution of random

wave fields is a major open question. It is well-known that these processes could be
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Figure 11. Evolution of the resonant quartet for the same initial conditions as in figure 6,
with rapidly varying forcing. After relaxation of the conservative wave system to equilibrium,
non-conservative effects are inserted at t = 5 × 104, with γ0 = 1 × 10−4, γ1 = 2.5 × 10−4,
γ2 = γ3 = −3.5 × 10−4, and then switched off at t = 5.1 × 104. The averaging is over 1000
realizations.

dynamically important, and, in particular, are responsible for the formation of long-
lived horseshoe coherent patterns (Annenkov & Shrira 1999). Watson & Buchsbaum
(1996) and Watson (1999) have demonstrated the importance of higher-order (in their
case, four-wave) interaction processes for the evolution of capillary wave spectra. Also,
there are grounds to believe that higher-order interactions are even more important
for the evolution of a random gravity wave field. Indeed, the characteristic time scale
for four-wave processes in the dynamical equations is the same as the time scale of
spectrum evolution within the three-wave Hasselmann equation, while the dynamical
time scale due to quintet interactions (O(ε−3)) is faster than the O(ε−4)) characteristic
time scale typical of the evolution of the gravity wave spectrum. Moreover, there exist
phase-locked quintet interactions, which often manifest themselves in the emergence
of crescent shaped wave patterns in natural conditions (Csanady 1984). These phase-
locked quintet interactions are expected to retain their O(ε−3) time scale even in
the random field setting; therefore, the question of their role seems to be intriguing.
Since so far no asymptotic statistical theory accounting for high-order nonlinear
processes (five-wave interactions) has been developed, the DNS seems to be the only
way forward. In this section, as a first step, we will examine the evolution of the
same wave systems consisting of a finite number of spectrally narrow wave packets
considered in the previous sections, but taking into account five-wave interactions.

Let us first consider the simplest ‘pure’ five-wave model: a single resonant quintet
without four-wave processes

3k0 = k1 + k2, 3ω0 = ω1 + ω2 + Ω. (5.1)

Because the five-wave resonance domain is narrow (O(ε3)), linear resonances are of
little significance since the nonlinear frequency shift caused by quartet interactions
far exceeds the width of this domain. Thus, in (5.1) we have introduced explicitly
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Figure 12. (a) Three wave packets forming resonant quintet (5.1) in Fourier space.
(b) Evolution of quintet (5.1) for initial conditions (5.2), with the averaging over 1000
realizations.

a mismatch Ω , taking into account the nonlinear frequency correction and ensuring
that wave packets of finite amplitude take part in a strong five-wave interaction.

The quintet (5.1) is shown in figure 12(a). Results of the DNS, for the initial
conditions

b0(0) = 1.5 × 10−2, b1(0) = 0.5 × 10−2, b2(0) = 1.0 × 10−2 (5.2)

and Ω = 0.0161 are shown in figure 12(b). Here, we use clusters of the same form as
in § 3, with �= 0.6, and the choice of the cluster parameters is again found to be of
no importance.

This simulation demonstrates that five-wave processes play a significant role in the
evolution of spectra, even for wave packets of relatively small intensities. Note that
in the simulation shown in figure 12, the initial steepness of interacting waves does
not exceed 0.1. The time scales of the evolution are considerably larger than the
characteristic time scales of four-wave interactions.
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Figure 13. (a) ‘Mixed’ wave system (5.3) consisting of five wave packets, linked by simul-
taneous four-wave and five-wave interactions. (b) Evolution of ‘mixed’ wave system (5.3), with
averaging over 1000 realizations. Solid curves: DNS for initial conditions b0(0) = 3.75 × 10−2,
b1(0) = 2.5 × 10−2, b2(0) = 2.0 × 10−2, b3(0) = 1.25 × 10−2, b4(0) = 2.5 × 10−2, and Ω1 = 0.084,
Ω2 = 0.085. Dashed curves: Solutions of the KE (without five-wave interactions).

The most important question is whether five-wave processes can be significant at
the four-wave interaction time scale. Let us consider a ‘mixed’ wave system with wave
packets taking part simultaneously in four- and five-wave processes in the form

3k0 = k1 + k2 = k3 + k4, 3ω0 = ω1 + ω2 + Ω1 = ω3 + ω4 + Ω2. (5.3)

This wave system, shown in figure 13(a), contains two resonant quintets (with
frequency mismatches Ω1, Ω2 chosen to ensure the maximal five-wave modulations)
and one approximately resonant quartet. For this simulation, the characteristic
steepness was taken to be rather large, of the order of 0.25.
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Results of the DNS, shown in figure 13(b), demonstrate that for large, although
not unrealistic, steepness of the interacting waves the five-wave processes could
significantly affect the field evolution, even on the time scale of four-wave interactions.

6. Concluding remarks
We begin by summarizing the main findings. First, we demonstrated the key

importance of near-resonant interactions for the nonlinear evolution of the statistical
characteristics of wave fields. Although the well-established kinetic equation of the
existing statistical theory includes only exactly resonant interactions, we emphasize
that any DNS must take into account approximately resonant interactions, and have
demonstrated that the inclusion of only exact resonances gives physically meaningless
results, while the presence or absence of exact resonances in the system is not
important. Two points are new here and should be highlighted. First, the evolution of
a wave system is relatively insensitive to the specific procedure of taking into account
the near-resonant interactions. This justifies the use of clusters and leads to an efficient
way of performing DNS. The second point is concerned with the phenomenon of
‘fast’ (with time scale O(ε−2)) spectral evolution caused entirely by near-resonant
interactions. The existence of such fast evolution was expected to occur at the O(ε−2)
initial stage; this stage, perceived to be a mere ‘transient’ to normal ε−4 evolution,
is usually ignored. However, if a conservative wave system is initially far from its
statistical equilibrium, then all or most of its evolution towards this equilibrium was
found to occur on the fast time scale. When a wave system does exhibit a slow ε−4

time scale evolution, say, in the presence of appropriate forcing, it goes in quantitative
accordance with the prediction of the KE.

The effect of higher-order interactions on the evolution of wave spectra (for any
wave field) was investigated, also for the first time. Even for small steepnesses quintet
interactions can significantly affect the spectrum evolution, although on a much slower
time scale. However, for waves of high, but still not unrealistic, steepness ε 	 0.25 the
scales of evolution become no longer separable.

By tracing the evolution of high statistical moments of the wave field, we directly
verified one of the main assumptions used in the derivation of the kinetic equation:
quasi-Gaussianity of the wave field holds throughout the evolution, both with and
without taking account of quintet interactions.

Now let us briefly outline some of the implications and open questions. The acquired
understanding of the role of near-resonant interactions enables us to develop an
efficient DNS approach based upon integration of the Zakharov equation, the use of
which is in no way confined to the simple models considered in this paper.

The conclusions regarding the key importance of the fast evolution will remain
valid for the more common situation of a generic continuous wave field (i.e. without
the localized packet structure, see Annenkov & Shrira 2006). There are grounds to
expect the importance of fast evolution not only at the initial stage (which could be
understood as an effective modification of the initial conditions in the classical KE),
but also in the presence of rapidly varying forcing (for example, wind gusts). In the
context of wind waves, our results suggest that the modified version of the kinetic
equation, (2.24) derived by Janssen (2003) and (2.25) suggested in this paper, could be
a noticeably better tool for description of the field evolution compared to the classical
KE (2.15). Whether the use of a better but more computationally expensive tool (the
integration is performed on the ε−2 time scale compared to ε−4) is justified, should
probably be decided for each particular situation individually. No doubt, the issue

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

06
00

06
32

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112006000632


206 S. Yu. Annenkov and V. I. Shrira

requires special investigation. It should be mentioned, however, that at the moment
there is no numerical code for integrating the modified kinetic equations, and it took
almost twenty years to develop reasonably efficient codes for the classical KE.

We would also like to point out the class of physical situations where the simple field
configurations we considered represent a reasonably adequate description of reality.
For example, the evolution of paddle waves in wave tanks (especially with oblique
waves with wall reflections taken into account) certainly falls into this class, although
in this context the wave field evolution is rarely viewed from the perspective of
spectrum (or other statistical properties) evolution. Most of the spectral evolution in
these circumstances must occur at the fast stage. In particular, the spectral evolution
observed in the experiments by Shemer et al. (2001) was entirely due to near-resonant
interactions (since in the one-dimensional setting the exact ones are prohibited).

Throughout the paper, we considered gravity waves on the surface of a deep fluid,
for which the dispersion relation does not allow triad interactions to occur. However,
it is well-known that in shallow finite-depth water three-wave interactions can become
approximately resonant, although exact triad resonances are still prohibited. Results
of this paper suggest that these approximate resonances can play an important role
in the spectral evolution.

The most physically interesting situations are concerned with continuous wave
fields maintaining the spectral cascades of wave turbulence. By employing the DNS
method based upon the findings of this paper we can address both a number of
fundamental questions concerned with evolution of statistical properties of random
wave fields, and numerous problems of applied character that are specific for wave
fields of different nature (recall that our results are of general character and not
confined to water waves). The first results for continuous wave fields with spectral
cascades are reported in Annenkov & Shrira (2006).
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and helpful comments on the first draft of the paper. The work was supported by
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