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We investigate the entrainment, deposition and motion of coarse spherical particles
within a turbulent shallow water stream down a steep slope. This is an idealization
of bed-load transport in mountain streams. Earlier investigations have described this
kind of sediment transport using empirical correlations or concepts borrowed from
continuum mechanics. The intermittent character of particle transport at low-water
discharges led us to consider it as a random process. Sediment transport in this regime
results from the imbalance between entrainment and deposition of particles rather
than from momentum balance between water and particles. We develop a birth—death
immigration—emigration Markov process to describe the particle exchanges between
the bed and the water stream. A key feature of the model is its long autocorrelation
times and wide, frequent fluctuations in the solid discharge, a phenomenon never
previously explained despite its ubiquity in both nature and laboratory experiments.
We present experimental data obtained using a nearly two-dimensional channel and
glass beads as a substitute for sediment. Entrainment, trajectories, and deposition were
monitored using a high-speed digital camera. The empirical probability distributions of
the solid discharge and deposition frequency were properly described by the theoretical
model. Experiments confirmed the existence of wide and frequent fluctuations of
the solid discharge, and revealed the existence of long autocorrelation time, but
theory overestimates the autocorrelation times by a factor of around three. Particle
velocity was weakly dependent on the fluid velocity contrary to the predictions of
the theoretical model, which performs well when a single particle is moving. For our
experiments, the dependence of the solid discharge on the fluid velocity is entirely
controlled by the number of moving particles rather than by their velocity. We
also noted significant changes in the behaviour of particle transport when the bed
slope or the water discharge was increased. The more vigorous the stream was, the
more continuous the solid discharge became. Moreover, although 90 % of the energy
supplied by gravity to the stream is dissipated by turbulence for slopes lower than
10 %, particles dissipate more and more energy when the bed slope is increased, but
surprisingly, the dissipation rate is nearly independent of fluid velocity. A movie is
available with the online version of the paper.
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1. Introduction

A longstanding problem in the study of bed load transport in gravel-bed rivers
and mountain streams is related to the physical mechanisms governing bed resistance
and particle motion. There remains a wide gap between field measurements and the
predictions of theoretical models, despite their capacity to describe bed load transport
for laboratory experiments correctly. For instance, the sediment flow rates measured
in gravel-bed rivers may differ within one to two orders of magnitude from the
solid discharges predicted by bed-load transport equations (Gomez & Church 1989;
Wilcock 2001; Martin 2003; Barry, Buffington & King 2004).

Sediment transport has been attacked in many ways over the last century. The
historical approach consisted in seeking empirical relations between the solid discharge
and the water flow rate by correlating data obtained from flume experiments. For
instance, Meyer-Peter & Miiller (1948) used a large amount of laboratory data to
derive an equation that provides the solid discharge as a function of the water flow
rate, bed gradient and particle size distribution. This equation, which was revisited
and extended (Smart & Jaeggi 1983; Rickenmann 2001; Wong & Parker 2006), is
often used in engineering applications and research. There have also been many
attempts to develop analytical models from physical considerations. Of the numerous
mechanistic descriptions of bed load transport (for a review, see Graf 1984; Raudkivi
1990), two main approaches have emerged: Bagnold’s and Einstein’s formulations
(Seminara, Solari & Parker 2002).

In Bagnold’s approach, the solid discharge equation can be derived by considering
the balance between the energy supplied by gravity and that expended by turbulence
and sediment transport (Bagnold 1966, 1973). In Bagnold’s model and subsequent
variants (Wiberg & Smith 1989; van Rijn 1985; Nifio & Garcia 1998), bed load
transport is essentially a two-phase flow whose dynamics are controlled by the
momentum transfers between the water and solid phases. When compared with
laboratory experimental data or field measurements, Bagnold’s scaling correctly
describes the sediment transport for steady uniform or gently varying flows at
sufficiently high solid discharges (Julien 1994). However, there are several indications
that Bagnold’s formulation may be flawed or crude. First, for this scaling to match
experimental observations, the bulk particle friction coefficient introduced by Bagnold
must be fitted to non-physical values (Fernandez Luque & van Beek 1976; Nifo,
Garcia & Ayala 1994). Secondly, for conditions that depart from steady uniform flow,
Bagnold’s model yields poor results, notably for flows over arbitrarily sloping beds
(Seminara et al. 2002) or at low levels of solid discharge (Fernandez Luque & van
Beek 1976; Nelson et al. 1995). Thirdly, if bedforms (dune or antidune, depending
on the value of the Froude number) are interpreted as resulting from a loss of
linear stability in the coupled fluid—solid system, Bagnold’s model fails to capture the
necessary physics, since the corresponding equations of motion show no instability
(Balmforth & Provenzale 2001).

In Einstein’s view, sediment transport does not result from an equilibrium in the
momentum transfers between solid and liquid phases, but rather from the difference
between the entrainment and deposition rates, E and D, respectively, which are a
function of the flow conditions and bed geometry (Einstein 1950; Ettema & Mutel
2004). This amounts to writing that on a small interval Ax, the solid discharge
variation is 8¢q, =(E — D)Ax, and so the solid discharge at bed equilibrium is the
implicit solution to the equation E = D. Einstein’s stochastic approach poses several
problems that have as yet few solutions. For instance, as particles move sporadically
and in different groups, the solid flow rate comprises a series of pulses and is highly
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fluctuating, making it difficult to define and measure properly, even under steady
flow conditions (Bunte & Abt 2005). Another problem is the proper definition of the
characteristic time of entrainment and deposition rates, controversy about which has
led to several attempts to refine Einstein’s original formulation (Paintal 1971; Laursen
1999; Lopez & Garcia 2001 ; Kleinhans & van Rijn 2002; Charru, Mouilleron & Eiff
2004; Cheng 2004; Cheng, Tang & Zhu 2004). Other aspects, such as the abnormal
diffusion of bed particles or wide fluctuations in the solid discharge, seriously conflict
with the predictions of Einstein-like theories (Nikora et al. 2001, 2002; Ancey et al.
2006)-both field and laboratory experiments have revealed that the instantaneous
solid discharge is frequently three to four times higher than its mean value (Kuhnle &
Southard 1988; Lisle 1989; Bohm et al. 2004), suggesting that the probability density
functions of the transport-rate records have a thick tail and thus depart from the
expected Gaussian behaviour. This can be seen as the hallmark of collective motions
(Sornette 2000); if so, it also undermines any mean-field approximation in which
cooperation between particles is unaccounted for.

Both approaches provide solid discharge equations that agree quite well with
laboratory flume experiments and, to some degree, with field measurements in rivers,
but both require the use of fitting procedures to estimate empirical parameters. A
full analytical approach seems intractable owing to the many processes involved:
complex interplay between the particles and the carrying fluid; particle exchanges
between the bed and the flow; turbulence effects (bed friction, advection of turbulent
structures); and so forth. As in many other problems in the environmental sciences,
it is difficult to judge the reliability of a model some of whose parameters must be
tuned (Iverson 2003), as the judgement may be biased owing to the parameter fitting.
Rather than immediate applicability, progress requires an enhanced understanding
of physical processes and the testing of models by assessing the range over which
the discrepancies with measurements are minor. Moreover, if we focus on solving all
the specific problems of turbulent flow in particle systems, we may lose sight of the
original objective, of finding a simple but general analytical framework for dealing
with sediment-transport issues in practical situations.

The present paper is a step towards such a framework, made by thoroughly
examining physical processes involved in sediment transport, while limiting the
complexity of our description. A key factor was access to detailed data on the flows
and measurements on as many parameters as possible. We avoided complications
associated with many laboratory experiments when working with natural sediment by
devising a simple system in which the boundary and initial conditions can be entirely
controlled and imposed. We built a narrow channel, in which sediment was replaced
by coarse spherical glass beads. As our aim was not to provide a comprehensive
picture of sediment transport, we focused on steep slopes and coarse particles, for
which transport of particles is referred to as bedload transport—particles are not in
suspension, but roll or jump along the bed. The resulting flow conditions are typical
of those encountered in steep gravel-bed rivers in piedmont and mountain regions,
but are not representative of thick flows on shallow slopes.

Section 2 outlines our theoretical framework. We wish to compute the solid
discharge, which can be defined as the product of the number of moving particles
and the mean particle velocity. In any theory of sediment transport, the crux lies
in the proper evaluation of the number of particles entrained and maintained in
motion by the water stream. In Bagnold’s approach, sediment transport results from
an equilibrium in the momentum transfer between solid and liquid phases. The
number of moving particles is then found to be the ratio between the available energy
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and that expended during the motion of one particle due to momentum transfers
between the solid and liquid phases. The mean-field treatment applied by Bagnold
conflicts with the observed intermittent nature of sediment transport at low flow rates.
Both laboratory and field measurements reveal that particle movement occurs for a
period of time followed by a period in which no motion occurs (Drake et al. 1988;
Nifio & Garcia 1998). At low flow rates, intermittent motion occurs when the near-bed
downstream velocity is sufficiently high to destabilize stationary particles and set them
in motion, corresponding to instances in which the instantaneous near-bed velocity
outweighs its mean value as a result of near-bed turbulence and does not correlate
well with the mean flow conditions far from the bed (Nelson et al. 1995, 2001;
Schmeeckle & Nelson 2003). In Einstein’s theory, sediment transport results from
the imbalance between entrainment and deposition. Intermittency in particle motion
is usually taken into account by treating it as a two-state Markov process (Lisle
et al. 1998; Papanicolaou et al. 2002; Ancey et al. 2006). A severe shortcoming of
existing models is that they give unrealistic solid discharge fluctuation distributions;
for instance, they predict that the solid discharge gently fluctuates around its mean
value for equilibrium flow conditions, whereas experiments reveal the existence of
wide and frequent fluctuations (Ancey et al. 2006). Here, we develop a generalized
birth—death process to describe the time variation in the number of moving particles.
Our simple stochastic model overcomes the current limitations of Einstein-like models
and predicts a number of interesting features, such as the autocorrelation time of the
solid discharge.

In §3, we describe our experimental facility. We run experiments in an inclined
tight flume with a continuous particle supply and steady flow rate. This nearly two-
dimensional flume is assumed to be the simplest representation of sediment transport
on the laboratory scale and presents a number of advantages: the boundary conditions
can be controlled and most of the flow variables can be measured by image processing.
Section 4 is devoted to experimental results and comparison with our theoretical
model. Since a quantitative comparison between theory and experiment is biased by
any parameter fitting, we test theory by analysing the probabilistic features of the
model. In §5, we summarize our findings and look ahead a little.

2. Theoretical framework
2.1. Objective and notation

We consider a two-dimensional steady water stream flowing down a bed of mean
slope 6, and comprising mobile spherical particles of equal radius a and density o,,.
The water flow rate per unit width g, is prescribed at the channel entrance, and the
flume is supplied with particles identical to those in the bed. Figure 1 shows the flow
configuration.

A few solid particles are entrained by the water stream: they can roll/slide along
the bed or they can leap and stay in saltation in the water stream for short time
periods. We refer to the former motion as the rolling regime and to the latter as the
saltating regime. As we are especially interested in weakly intense bed-load transport,
we stress flows with a fairly low fluid velocity: the trajectory of a single particle then
exhibits a succession of rests and moves in a rolling or saltating regime, making it
difficult to discriminate the motion regime accurately. Below, we do not discriminate
between rolling and saltation, except when stated explicitly, and treat both motions
as a single species which we call the moving particles.
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FiGURre 1. Definition of the flow configuration.

In a typical bed-load transport problem, we wish to determine properties of the flow
such as its depth 4, the solid discharge (the volume of particles per unit time conveyed
by the flow) g, and the mean flow ii; = ¢,/ h, as functions of the flow configuration
parameters (g, 0, a, 0,). We consider a control volume ¥~ within which we follow
the particles and the motion of the fluid; the volume V =.% x L of ¥~ is a function
of its length L and its cross-section & =hW, where W represents the flume width.

In this section, we restrict our attention to sediment transport at equilibrium, i.e. on
average, flow is steady and there is neither deposition nor erosion along the bed. In
the next subsection we show that the solid discharge can be computed as g, oc Nii,,
where N denotes the number of particles within the control volume ¥~ and #, is
the mean particle velocity. In §2.2, we develop a stochastic model for the number
of particles in 7", while §2.5 is devoted to particle velocity. In §2.2, we derive a
partial differential equation governing the time variations in the probability P(n;t) of
finding N =n moving particles in the control volume at time 7. General and stationary
solutions to the master equation are derived in §2.3 and §2.4, respectively.

2.2. Birth—death emigration—immigration process

The solid discharge can be defined as the flux of particles through a flow cross-
section & g, = f o U, kd, where k is the unit normal to . This definition, suitable
for continuous fields, is not well suited to discrete elements, for which it is more
convenient to introduce the flow rate in terms of the probability P[u, | x, ¢] that a
particle crosses the control surface % at position x and time ¢ with velocity u,

qs =/ / Plu,|x,t] u,-k |dx|du,. (2.1)
7 JR?

Under steady conditions we have d P/dt =0 and so this definition reduces to

N

.1 .Uy A
gs = lim v Zu,-v,,y = lim fgui, (2.2)

L—xw

where the ensemble average is replaced by a volume average and v, is the particle
volume. Integration has been performed over the control volume ¥". We let u; =u, -k
denote the streamwise velocity component of particle i. Below we define the flow rate
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FIGURE 2. The number of moving beads observed within the window varies with time, depend-
ing on the number of particles entering/leaving the window or being entrained /deposited from/
on the stationary bed.

n=gqs/v, as

|
‘:*E . 2.
n LiZIu, (2.3)

In order to compute the discharge equation, we must establish the number N of
particles in motion and their velocities, which depend on ¢,, 6, a and ¢,. We assume
that the number of stationary beads in the bed is infinite.

We now consider the total number N(¢) of particles in motion within the control
volume 7~ at time ¢. Figure 2 sketches the particle exchanges within the control volume.
We describe sediment transport using an immigration—emigration birth—death process
(Cox & Miller 1965), using the following exchanges.

(i) A moving bead enters the window at rate 4o > 0 by rolling/saltating from the
left (immigration). The corresponding probability of arrival of a particle in the time
interval [z, r + At) is independent of r and N, and we can write

P(n — n+1;At) = JgAt + o(At). (2.4)
(i) Moving beads leave the window independently at rate v > 0 (emigration). The
transition probability is
P(n —» n—1;At) =nvAt + o(At). (2.5)
(iii) Two processes enable entrainment of particles from the bed (birth): a particle
can be dislodged from the bed by the water stream at rate 4; > 0; or a moving bead
can destabilize a stationary one and set it moving. This occurs at rate u for any moving
bead within the observation window. The corresponding transition probabilities are,
respectively,
P(n > n+1;At) =1 At +0(At), Pn — n+1;At) = unAt+ o(At). (2.6)
(iv) A moving bead can settle (i.e. come to rest) within the window, independently
at rate o for each moving bead (death). The transition probability is thus
P(n — n—1;At) =no At + o(At). (2.7

With these assumptions and using the usual arguments for setting up the forward
equations of a Markov process with discrete states in continuous time (Cox & Miller
1965; Gardiner 1983), we obtain a set of equations

P(n;t + At) =an+ )AtP(n+ ;1) + P(n — 1;0){A+ (n — D} At
+ P(n;t){1 — At(A+no +np)} + o(At),
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forn=1,2,..., and
PO;t 4+ At) =aP(1;t)At + P(0;1)(1 — AAt) + o(At),

for n =0, with the shorthand notation « =¢ + v and A=/ + 4. The time increment
At is assumed to be sufficiently small that two events cannot occur in (¢, t + At). On
rearranging the terms and letting At — 0, we obtain

%P(n;t) =m+DaPn+1;0)+(A+n—1Duw)Pn—1;t) —(A+n(a + w)P(n;t),

(2.8)
% =aP(1;t)— AP(0;1). (2.9)

At time r =0, there are N = N, particles within the control volume, so we set
P(n;0) =é(n — N), (2.10)

where § is the Kronecker delta function.

We now discuss the main assumptions underlying (2.8). The key aspects of our
model are the entrainment processes and the physical origin of the mathematical
formulation, its limitations, and the nature of the parameters Ay, 41, i, v and o.

The main originality of the model lies in the treatment of particle entrainment.
In Einstein-like theories, particles are entrained when the drag/lift force exerted by
the water stream exceeds the resisting force (weight and bed friction) of a stationary
particle (see below), and there is no collective entrainment (u=0). This results in
a purely Poissonian representation of entrainment (Lisle et al. 1998; Papanicolaou
et al. 2002; Ancey et al. 2006), which reflects the erosive action of water only and is
independent of the number of particles previously entrained. It implies that the total
number of moving particles varies little with time, in conflict with experimental
and field observations (Ancey et al. 2006). Our model includes an additional
entrainment process that depends on the number of moving particles, and reflects
the destabilization of bed particles and their entrainment owing to interactions with
moving particles. These interactions include direct collisions and softer interactions.
The former process was clearly identified in experiments and field surveys (Drake
et al. 1988; Bohm et al. 2004). In this case, the effect is close to the splash function
used for modelling sand drift, although the physical processes are quite different; in
particular, momentum exchanges during a collision are rapidly dampened by viscous
forces in water, which explains why particle ejection is not usually observed in water
(Schmeeckle et al. 2001). The latter process refers to the significant modifications in
the velocity profile when a moving particle approaches a stationary bead, which may
increase the force exerted by the fluid on this stationary particle. Since both effects
reflect interactions with moving particles, resulting entrainment is called collective
entrainment. Such entrainment allows the probability distribution function of N to
accommodate the wide fluctuations seen in experiments.

In the model above, the total entrainment rate is E = A; + uN, while the deposition
rate is D = o N. Statistically, these equations cannot be symmetric because on the one
hand, the number of stationary beads is assumed to be infinite and, on the other hand,
the number of moving particles is finite. For entrainment, we consider that a particle
can spontaneously start moving as a result of water action or be entrained because of
the disturbances induced by moving particles; in this case, these two distinct physical
mechanisms give rise to two statistically different contributions, 4; and uN. For
deposition, we can also imagine that a particle settles independently of other particles
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FiGURE 3. Fluctuations of the instantaneous velocity u around the mean value (u). (a) Mean
fluid velocity below the critical threshold u.. (b) Mean fluid velocity in excess of the critical
threshold u.. In both cases, particle entrainment occurs sporadically.

or because its motion is impeded by bed particles; in that case, although the physical
mechanics are different, the resulting probabilities have the same form, with a linear
dependence on n. Following a parsimony principle, we do not discriminate between
the physical processes governing deposition since they lead to statistical equations of
the same form, whose parameters cannot be determined separately.

Our approach is likely to perform well for a limited range of water flow rates, which
must be sufficiently high for the probability of entrainment to be appreciable, but not
so high that entrainment occurs continuously. This can be more easily understood
through figure 3, which represents the time variations in the instantaneous fluid
velocity u undergone by a bed particle under steady flow conditions (see §2.5). The
mean fluid velocity is denoted by (u)(y), where y is the height from a reference level
and the angle brackets indicate time-averaged values. The force exerted on the particle
by the fluid is usually split into hydrostatic pressure, drag and lift. In current models
of entrainment on steep slopes, a particle starts to move whenever the combined
action of gravity and fluid forces exceeds the particle weight and the frictional force
(Kovacs & Parker 1994; Armanini & Gregoretti 2005); in these models, the mean
lift and drag forces are directly linked to the mean fluid velocity (u)(y), so loss of
stability and incipient motion occur whenever the instantaneous fluid velocity exceeds
a critical threshold u,, that depends on bed slope, particle arrangement, and so forth
(Kirchner et al. 1990; Armanini & Gregoretti 2005). The probability of entrainment
is thus the exceedance probability P(u > u.) (Einstein 1950; Papanicolaou et al. 2002).

To determine how frequently these events occur, we require the characteristic time
between two events. We refer to 7,, as the waiting time between events, and the mean
duration of an entrainment event, during which P(u > u.), is denoted by 7., (see
figure 3a). The exceedance probability P. = P(u > u.) gives the time ratio 7./(t, + .).
We introduce the Taylor macro scales of length and time, L,, and of time, 1, which
represent the correlation length and time of large turbulent structures, respectively.
For open channel flows down rough surfaces, semi-empirical models give estimates of
the large-eddy length scale in the form L, = Ah./y/h, where A is a constant close to
unity (Nezu & Nakagawa 1993); for steady flow conditions, the autocorrelation time
macro scale is then t,,, =L,/{(u). If the autocorrelation time function is close to
exponential, and using the relation 1/, =1/t, + 1/T.n, then the waiting time is

1—P>L,
Ty, = —
! P (u)
varies with the fluid velocity (u).

(2.11)

thus the entrainment rate 4; oc !
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This statistical description is likely to hold at intermediate bottom shear stress, i.e.
for (u) <u. or (u)>u, (see figure 3) provided that |(u) — u.| <u’, where u’ denotes
the root mean square velocity in the streamwise direction. Indeed, at very low shear
stress, i.e. when (u) is far below the critical threshold, entrainment may occur on rare
occasions when turbulent eddies that are on the same scale as the particle produce
imbalanced pressure fields around the particle, leading to a high lift event; such
events are strongly dependent on the details of the flow around of the particle and
particle arrangement of the bed, which cannot be conveniently related to the average
conditions (Nelson et al. 2001). Extreme value theory suggests that the number of
instances in which a particle is lifted up from the bed will follow a Poisson distribution,
but with a rate 4; independent of the mean velocity. Conversely, at high bottom shear
stress (i.e. for (u) > u.), any bed particle exposed to the stream is instantaneously set
in motion. In that case, bed load transport takes the form of a sheet flow separating
the bed from the water flow (Jenkins & Hanes 1998). This continuous process cannot
readily be described within our stochastic framework.

2.3. General solution

We obtain the general solution to the forward master equations (2.8)—(2.9) subject
to the initial condition (2.10) by introducing the probability generating function
(Gardiner 1983)

G(z,l)=Zz”P(n;t),
n=0

which makes it possible to transform the master equations into a single partial
differential equation. Multiplying (2.8)—(2.9) by z" and summing over n, we obtain

%G(z, 1)=MNz—1)G(z, 1)+ {o + uzt+v—(u+o+ v)z}aa—ZG(z, t), (2.12)

whose general solution is

: 1—
G@,ﬂ:(a—muﬂmh<amkw‘z>, (2.13)
o —2zu
since z < 1 and provided that o > u (see §2.4) so that a stationary solution exists. The
function % in (2.13) may be determined by the initial condition. If there are n = Ny
beads within the control volume at time ¢ =0, then (2.13) yields

. 1—
G@m»=ﬁ=4a—zmﬂ“h< Z)»
o—zu

1 — n _ u
h(x) = ox el I
1 — pux 1 — ux
Thus the complete form of G, given that the initial state is known, is

_ a—p T (Ka — p)z +a(l—K)\"
GQJ%_QKM—Mk+a—KM> ( o—p )’ (214)

from which we obtain

where K = e~ corresponds to the autocorrelation function for flows at equilibrium
(see §2.4); note that G(1,¢)=1 and G(z,0)=7z". The coefficient of z” in the power
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series expansion of (2.14) is the transition probability prob(N (1) =m | N(0) =n), which
may be used for likelihood estimation of the parameters «, A and u when the system
is out of equilibrium, as is often the case for laboratory and field measurements.

When =0, G is the probability generating function of the binomial distribution
Bin(n, K), and we retrieve the behaviour expected under Einstein’s theory (Ancey
et al. 2006): the sporadic motion of each particle is described as a Bernoulli process,
and since the sum of N Bernoulli processes is a binomial process, N is a binomial
variable.

2.4. Steady-state solution
For steady flow conditions, the number of particles within the observation window
forms a stationary random process, whose probability distribution P;(n) =Prob(N =n)
may be obtained by letting t —» oo in (2.14), thus yielding G,(z). For steady-state
conditions, G is independent of # and we express it as G(z); this turns out to be the
probability generating function of the negative binomial distribution

C(r +n)
C'(r)n!
with r =4/u and p=1— u/a, and where I denotes the gamma function (Abramowitz

& Stegun 1964). The mean is /(e — ) and the variance is

VarN = 2% (2.16)

(0 —p)>
For =0, we obtain G,(z) =e =1/ corresponding to the Poisson distribution
of rate r' = 1/a,

P;(n) = NegBin(n;r, p) = p(l—p),n=0,1,..., (2.15)

Pi(n) = (23 e, n=01,.... (2.17)

A stationary distribution exists only if o > w: that is, the rate at which beads
disappear is lower than their appearance rate. For steady flow conditions, there are
additional constraints on the parameters v, u, o, 49 and ;. On average, the number
of particles that leave the observation window must match the number of particles
that enter it,

E(N)o + E(N)v = 2o + 41 + [E(N)u, (2.18)

where [E(N) is the time-averaged number of particles. Moreover, bed equilibrium
implies that on average, there is no variation in the bed elevation over time,

E(N)o = A1 +E(N)u, (2.19)

and that IE(N)v = y: the inflow matches the outflow.
Under stationary conditions, the autocorrelation function of the number of particles
in motion within the window may be written as (Gardiner 1983)

E[N(z)N(0)] — E[N(0)]*
Var(No)
The mean of N(t)N(0) can be expressed as IE[N(0)E{N(t)} | N(0)], in which the

conditional mean of N(t) given N(0) appears; this can be obtained from equation
(2.14) (Gardiner 1983),

corr{N(0), N(t)} = p(1) = , T>0. (2.20)

E{N(z) | N(0) = n} = (%f) — K 4 _K,
z=1

o—pu
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and on substituting this into (2.20), we find that
p(r) =e ", (2.21)
where

fo = >0 (2.22)

is the autocorrelation time.

2.5. Computation of the velocity of a single particle

In this subsection, we will compute the mean particle velocity #, as a function of
the fluid velocity uy. To that end, we will treat the rolling and saltating regimes
separately. Any computation of the fluid forces acting on a particle poses the difficult
question of how to properly define the fluid velocity field in the immediate vicinity
of the particle (e.g. see Appendix A in Schmeeckle, Nelson & Shreve 2007). Since in
our subsequent applications (see §4), the flows are shallow, leading to fairly blunt
velocity profiles in the cross-stream direction, we will not make any significant error
in assuming that the reference fluid velocity is the mean velocity ity =g,/ h.

We now use the energy balance equation to compute the velocity of a single rolling
particle, which is assumed to reach a steady regime nearly instantaneously once set
in motion (Ancey et al. 2003). On average, for steady flow conditions, the power
supplied by gravity and fluid drag force is entirely dissipated by contact forces

m'gii, sin6 + P, = P,

where m' =m —4np;a®/3 is the buoyant mass, P, = F, - i, is the power of drag forces
supplied to the particle, where Fy = C ma’lu; —u,|(u; —u,) is the drag force, with C,
the drag coefficient. The power P. lost in contacts can be determined using results for
a single bead rolling on a bumpy line in air. In this case, Ancey, Evesque & Coussot
(1996) have shown that dissipation can be broken into frictional and collisional parts
P. = /cfm’gﬁp cosf + Kc;—amﬁ;,
where (2a)~'xii, is the collision rate (if the bottom beads are regularly and closely
arranged, then y =1), k. =0.752 reflects collisional dissipation, and «,=0.104 is
a bulk friction coefficient. The resulting equation of motion is a second-degree
polynomial in i,

m'gsing + %eCdnazpf(ﬁ,, — L‘tf)2 =rKym'gcos + "C%mﬁi’ (2.23)

a
where € =+1 when #, < ity and €e = —1 when #, > it ;. The single physical solution is
i, =k(Sh'),, (2.24)

where
1—./D;
k(Sh') = : ,
1 —di.ryx/(3¢C,)
4 dierycosf(tand —ky) + 3€Cy(ker x Sh' — cos(tan6 — k5))
—9SsK C3

D;

k]
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and where we have introduced the density ratio r =p,/ps. The parameter k(Sh’) is
expressed as a function of the modified Shields number
Sh' ﬁip 2.25
~ 2(r—lag’ (2.25)
Analytical computation of the velocity of a saltating particle is more delicate, though
examples have been given by a number of authors, including Gordon, Carmichael &
Isackson (1972), Abbott & Francis (1977), van Rijn (1985), Wiberg & Smith (1985),
Nifio & Garcia (1994) and Ancey et al. (2002). To our knowledge, no analytic
model provides realistic predictions of the trajectories and velocities of a saltating
particle in water, because of the strong nonlinearities in the fluid forces exerted
on the particle, and numerical models should be used to derive the velocity. By
contrast, the experimental results are surprisingly simple: it is mostly possible to
derive linear or power-law relations between the velocities and the flow conditions
such as Shields number and shear velocity (van Rijn 1985). For the present purpose,
it is best to use empirically derived analytical expressions rather than numerical
models. Earlier experimental investigation in our two-dimensional flume showed that
the mean velocity of a single particle can be expressed as

i, =320 — ), (2.26)

with u., =1.25tan'/? @ a critical velocity (Ancey et al. 2002).
It is possible to derive a single relation that holds for both rolling and saltating
regimes (Ancey et al. 2003), but we do not develop this here.

2.6. Summary

Before addressing the validity of our approach by comparison with experiments, it is
worth outlining its salient characteristics. For flows at equilibrium, we can compute
the solid discharge as n = ZlN _, u;/L. In the previous subsections, we have computed
the number N of particles in motion and their individual velocity u;, which is assumed
to be directly linked to the fluid velocity through (2.24) and (2.26). Under our model
we have shown that N is a random variable with the following properties.

(a) Its probability density is the negative binomial function (2.15) when particles
are entrained both individually and collectively (x> 0), and has the Poisson form
(2.17) when collective entrainment does not occur (1 =0).

(b) When u > 0, the variance must exceed the mean, while they are equal when
u =0, enabling us to determine whether collective entrainment takes place.

(¢) The autocorrelation function of N is the exponential function (2.21). As
the particle velocity is not random, the solid discharge n must have the same
autocorrelation as N ;

(d) A particle continues moving for an exponential time, with parameter o. The

characteristic time (the mean duration of motion for one particle) is 7,; =1/0.
Since particles move independently, the mean deposition rate when there are n moving
particles is no and the associated characteristic time is denoted by f, =1/(no). The
mean deposition rate is thus IE(N)o. The lag times (i.e. the waiting between two
successive deposition events within the window) must be distributed exponentially

1
P(Atm—ﬁz) = rexp(_Atm—»b/tU)' (227)

The number of deposition events within a time interval §z can be computed similarly.
The probability that a particle that moves at time ¢ settles by time -+ 8¢ is
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pa = 1—exp[—(o +v)dt]. If n particles are in motion at time ¢, the probability that k
particles settle within the time interval [z, r + §¢) is binomial with parameters n and py;
note that this holds true provided that §¢ is chosen long enough for several depositions
to occur, but sufficiently short for the number of particles that start moving and then
settle within the same interval to be zero. It follows that the unconditional probability
of observing k particles that settle by &z is negative binomial with parameters r and

p'=p/(p~+pa—pra):

Prob(k depositions;dt) = ZProb(k depositions | n;8¢)Prob(n)

n=k

= Z Bin(k;n, p;)NegBin(n;r, p)

n=k

= NegBin(k;r, p'), (2.28)

since Prob(n) is the negative binomial distribution (2.15) with parameters r =1/u
and p=1—pu/a when > 0. When =0, the resulting distribution is Poisson with
parameter r” = p,r. These expressions for the probability of observing k settling
particles could have been used to derive the probability of waiting times—for instance
by using the classical arguments to show the duality between Poisson and exponential
distributions (Cox & Miller 1965)—and retrieve (2.27).

(e) The average fraction of particles that cross the control volume without coming
to rest is v/(o +v), while a fraction o /(o 4+ v) of the particles stop within it.

(f) The entrainment coefficient /; is expected to vary nonlinearly with the fluid
velocity i ¢, but for narrow ranges of i s, the variation is almost linear.

(g) When flows are at equilibrium, the model parameters 11, 49, i, v and o must
satisfy conditions (2.18) and (2.19). The autocorrelation time 7. is given by (2.22). The

ratio
t. o

151 o+v—pu
is lower than unity when there is no collective entrainment (u =0), but may exceed
unity when there is collective entrainment (u > 0). Long-range correlation is the
consequence of collective entrainment (memory effect due to the coupling between
entrainment and the number of moving particles).
(h) The coefficients 1, u© and o represent the entrainment and deposition rates
within the control volume ¥~ of length L. They are thus proportional to L.

3. Experimental set-up and procedures

3.1. Overview

We conducted our experiments in a narrow flume in which sediment consisted of
glass beads of equal size. This is a simple laboratory representation of bed load
transport, with the advantages that boundary conditions are perfectly controlled and
a wealth of information can be obtained using imaging techniques. Figure 4 sketches
the experimental facility. The nearly two-dimensional feature of this facility has some
disadvantages: for instance, the low width-to-depth ratio leads to hydraulic difficulties
since turbulence may be controlled by the sidewalls rather than the bottom; and using
spherical particles of the same size can be problematic in terms of bed arrangement,
thus producing artificial conditions for particle entrainment. This is, however, the
price paid for convenient access to the detailed flows.
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Walls (glass panes)

y Illumination

Bead supply

_ Glass beads

Bed load layer

Mobile bed
Metal channel
Base

Observation ™,
~,
window (max.):
25cmx 8 cm
(640 x 192 pixel)

camera:
130 Hz, t,,,=1 min

FiGURE 4. The experimental set-up.

We ran 15 experiments with different inclinations and various flow rates. Bed
load equilibrium flows were achieved, as neither erosion nor deposition of particles
occurred, averaged over sufficiently long time intervals. A short movie showing the
motion of a few particles in our flume is available with the online version of the
paper. Slopes and water discharges were selected to allow enough events for statistical
analysis. The features of each run are summarized in tables 1 and 2. The hydraulic
conditions are specified using classic dimensionless numbers. The flow Reynolds
number is defined as Re =4R,ii s /v,,, where R, = Wh/(2h + W) denotes the hydraulic
radius, iy =gq,/h the fluid velocity (averaged in the y- and z-directions), v, the
kinematic viscosity of water, and h the time-averaged water depth. The Froude
number Fr=ii,/ \/gTz varied significantly over the experimental duration and along
the main stream direction; its mean values are reported in tables 1 and 2. The mean
Froude number exceeded unity, which means that the flows were supercritical on
average, but its instantaneous values fluctuated a great deal and frequent transitions
to subcritical regimes occurred. This behaviour seems very close to that observed
in gravel-bed rivers, where the Froude number also varies around the critical value
(Grant 1997). We distinguished the solid discharge 7o imposed at the channel entrance
(see §3.2) and the discharge 7 measured within the observation window. Note that
we defined the solid discharge as the flux of beads per unit time. We can also define
the solid discharge ¢, as the volume flow rate and relate it 729 using g, = 7(2a)*n0/6.
For i, we used the same definition (2.3) as that used in the theoretical analysis.
Tables 1 and 2 reported the values of 72 averaged over time (approximately 1 min).

The solid concentration is defined as the ratio of the solid and the water discharges
C,=¢q,/q.. Values reported in tables 1-2 are low, indicating that particle flow was
dilute. The ratio h/d is low, typically in the range 0.8-7. We used two definitions for
the Shields number, which is classically defined as the ratio of the bottom shear stress
to the stress equivalent of a buoyant force (Julien 1994),

W
(pp — prlga’
where 7, is the bottom shear stress (here estimated as pghsinf). We also use
the variant given by (2.25), which makes more sense for shallow flows. We report
the mean particle velocities for the rolling (&,) and saltating regime (i;). We use

kr;s = N,/(N, + N;) to refer to the number N, of particles in a rolling regime relative
to the total number of moving particles N = N, + N;.

Sh = (3.1)
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Experiment E10-6 E10-7 E10-8 E10-9  E10-16  E10-21
number (e) (f) (g) (h) @) ()

tand (%) 10.0 10.0 10.0 10.0 10.0 10.0
io (beads s™') 53 6.7 8.0 10.0 154 20.0
Gu (1073 m?s7) 4.15 442 5.38 5.54 8.19 10.31
h (mm) 10.2 10.8 122 12,5 16.9 19.4
Uy (ms) 0.41 0.41 0.44 0.44 0.48 0.53
it (beads s7') 572 6.85 7.74 9.41 15.56 20.57
Re 4020 4090 4550 4570 5280 5910
Fr 1.42 1.37 1.38 1.36 1.24 1.26
A 0.95 0.95 1.10 1.10 1.30 1.59
Sh 0.113 0.120 0.135 0.139 0.188 0216
C, (%) 2.40 2.69 2.50 2.96 3.30 347
h/d 1.69 1.80 2.03 2.08 2.82 3.23
i, (ms) 0.063 0.074 0.065 0.075 0.075 0.072
i, (ms!) 0.28 0.29 0.29 0.29 0.32 0.32
Kys (%) 439 38.9 41.6 432 412 43.7

TaBLE 1. Flow characteristics and time-averaged values of dimensionless numbers characteriz-
ing bed load and water flow for tanf =10 %. Varying parameter: solid discharge n. The
notation E10-6 means: tanf =10 % and 71~ 6 beads s~'.

Experiment ~ E7-6  E7-8  E7-9 E7-11 EI29 EI2-16 E12-21 EI5-16 E15-21
number (a) (b) (© (d) (k) ) (m) (n) (0)

tan6 (%) 7.5 7.5 7.5 7.5 12.5 12.5 12.5 15.0 15.0
ig (beads s71) 5.7 7.8 8.7 10.9 9.3 15.2 20.0 15.6 21.5
gw (1073 m?s7!) 10.00 11.54 13.85  26.15 2.97 3.85 4.46 2.31 292

h (mm) 18.9 20.8 249 40.8 7.0 8.2 9.4 49 6.7
op(mm) 22 2.3 2.5 2.8 22 2.3 24 2.0 2.5
iy (ms™) 0.53 0.55 0.56 0.64 0.42 0.47 0.48 0.47 0.44
it (beadss™") 5.45 7.76 9.20 10.99 9.52 15.52 19.86 1545  20.55
Re 5860 6230 6400 7720 3760 4360 4600 3680 3830

Fr 1.26 1.26 1.15 1.02 2.20 2.09 1.90 3.72 2.63
Sh 0.158  0.173 0207 0340 0.098 0.114 0.130 0.082  0.111
Sh' 1.59 1.71 1.78 2.32 1.00 1.25 1.30 1.25 1.10
Cs (%) 0.95 1.17 1.16 0.73 5.58 7.02 7.74 11.65 12.23
i, (ms™!) 0.078  0.084 0.079 0078 0.074 0.075 0077 0072 0.079
i, (ms™!) 0.35 0.36 0.33 0.31 0.24 0.28 0.30 0.18 0.23
krss (%0) 312 30.3 333 32.4 78.4 72.6 63.9 95.1 82.2

TaBLE 2. Flow characteristics and time-averaged values of dimensionless numbers characteri-
zing bed load and water flow. The notation E7-6 indicates: tan ~7 % and 7~ 6 beadss™'.
See table 1 for the experiments at tan6 =10 %.

3.2. Channel, material used, and measurement system

Experiments were performed in a tilted narrow glass-sided channel, 2m in length and
20cm in height. The channel width W was adjusted to 6.5 mm, which was slightly
larger than the particle diameter 2a. In this way, particle motion was approximately
two-dimensional and stayed in the focal plane of the camera. The channel slope tan 6
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ranged from 5% to 15 %, but only experiments within the slope range 7.5-15 % are
reported here.

The channel base consisted of half-cylinders of equal size (radius » =3 mm) and
randomly arranged on different levels. Disorder was essential, as it prevented slipping
of entire layers of particles on the upper bed surface, which would have induced
artificial erosion conditions. The effects of bed disorder were addressed by Bohm
et al. (2004).

Coloured spherical glass beads with a nominal diameter of 2a =6 mm and a density
p, =2500kgm™ (provided by Sigmund Lindner GmbH, Germany) were injected
from a reservoir into the channel using a wheel driven by a direct current motor
and equipped with 20 hollows on the circumference (figure 4). For the experiments
presented here, the injection rate iy was 5-21 beads per second, with an uncertainty
of less than 5 %. This corresponded to a solid discharge per unit width ¢,/ W of
9 to 38 x 10> m?s~!. The water supply at the channel entrance was controlled by
an electromagnetic flow meter provided by Krohne (France). The discharge per unit
width ¢, ranged from 4 to 10 x 103 m?s~".

The hydraulic conditions (velocity profile, bed friction, etc.) have been described in
earlier papers (Ancey et al. 2002; Bohm et al. 2004). Although the flume was narrow,
its hydraulic characteristics were like those observed in wide channels with shallow
flows (Frey & Reboud 2001).

The particles and the water stream were filmed using a Pulnix partial scan video
camera (progressive scan TM-6705AN), placed perpendicular to the glass panes at
115cm from the channel, approximately 80cm upstream from the channel outlet.
The camera was inclined at the same angle as the channel, behind which lights were
positioned. An area of L =22.5c¢cm in length and 8 cm in height was filmed and later
reduced to accelerate image processing.

The camera resolution was 640 x 192 pixels for a frame rate of 129.2 f.p.s. (exposure
time: 0.2 ms, 256 grey levels). Each sequence comprised 8000 images because of limited
computer memory; this corresponded to a duration of approximately 1 min. Images
were analysed using the WIMA software, provided by the Traitement du Signal et
Instrumentation laboratory in Saint-Etienne (France). Positions of the bead mass
centres were detected by means of an algorithm combining several image-processing
operations; particle trajectories were calculated using a tracking algorithm (Bohm
et al. 2006).

4. Experimental results

With our experimental facility, we can probe quantities such as the number of
particles that come to a halt or are entrained for some time interval. Figure 5 shows
typical time series for four variables of interest: the number of particles passing from
a resting to a moving state (b — m) and conversely (m — b); the solid discharge 7; the
number of moving particles N; and the fluid velocity i ;. These results were obtained
for a mean bed slope of 0.1 and a solid discharge at the flume inlet /1o =8 beadss™!
(experiment 10-8 in table 1); the plots are typical of those for other solid discharges 7o
and slopes. The bed was free of bedforms and therefore solid discharge fluctuations
cannot be related to the collapse or evolution of organized bed structures.

Figure 6 shows the variations in the solid discharge 7 as a function of the mean fluid
velocity i ;. The solid discharge varies nearly linearly with the mean fluid velocity. A
similar dependence is found if we replace i, with the fluid discharge or the Shields
number. The range of it (0.41-0.64 ms~!) was, however, not sufficiently wide to claim
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FiGURE 5. Experiment (g) E10-8. (a) Particle exchanges between the bed and the flow: each bar
oriented upward indicates the number of beads that passed from the resting state to the rolling
regime over a given time interval 8¢ &~ 1/130s; downward-oriented bars represent the number

of rolling particles coming to a halt. (b) Solid discharge 7 as a function of time. (¢) Variation
in the number of moving particles N. (d) Mean fluid velocity # ; as a function of time.

that the relation n(iis) or g, was linear. Note the significant increase in the solid
discharge when the bed slope is increased from 7.5 % to 10 %, and the small changes
when the slope is increased from 10% to 12.5%. The strong dependence of solid
discharge on channel inclination and the linearity with water flow rate are reflected
by some empirical formulae. For instance, Rickenmann (2001) deduced from flume
experiments representative of mountain streams that g, oc tan’é(q, — g.), with g,
a critical water discharge corresponding to incipient motion. Incidentally, note that
here, for the sake of simplicity, no correcting factor was applied to take into account
sidewall effects, as is usually done in hydraulics for narrow channels; if we correct the
influence of sidewalls on the mean fluid velocity by using the hydraulic radius rather
than the flow depth, we obtain a smoother variation in 72 with bed slope (Frey et al.
20006).

Below we assess the reliability of our model by comparing its predictions with
our experimental data. As the model is not closed, we must estimate some of its
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FIGURE 6. Variation in 72 with i ;. The dashed lines represent empirical trends adjusted on the
data: n =90ii y — 30 (dashed line) for tan6 =0.1 —0.125 and 72 =45 ; — 18 (long dashed line)
for tan6 =0.075.

parameters, which biases comparison to some degree. In §4.1, we outline the
determination of the unknown parameters. In §4.2, we analyse the probability
distribution and the autocorrelation function of the number of moving particles.
Although there is good agreement between theory and experiments as regards the
probability distribution function of N, there is an appreciable difference for the
autocorrelation time 7., perhaps as a consequence of collective effects when particles
come to rest (§4.3). In §4.4, we investigate the dependence of the entrainment rates on
the mean fluid velocity. A striking result emerges in the analysis of the mean particle
velocity (§4.5): we show that i, exhibits little dependence on i ;, which contrasts with
physical intuition and theoretical analysis (§2.5). Finally, in §4.6, we try to estimate
the different sinks of energy for flows at equilibrium.

4.1. Parameter estimation

A classic impediment to any approach to sediment transport is that the models
contain parameters that cannot be computed analytically, because they are empirical
or represent complex processes whose description requires heavy computation. Our
model involves eight variables: the number of moving particles N, the mean particle
velocity i, the solid discharge 7, the inflow rate /¢, the entrainment rate of individual
particles /i, the collective entrainment rate u, the deposition rate o, and the outflow
rate v. The fluid discharge ¢, and the channel slope 6 are control parameters of
our experiments. These variables are not independent (see §2.6), as we have found
five relationships among the eight parameters related to the solid discharge; thus
we would require three additional relations to close our system. Here, the closure
equations are replaced with data fitting on three variables. Since we tuned the solid
flow rate at the channel entrance for the flow to be at equilibrium, we consider that
the flow rate and the number of particles are prescribed. Moreover, we can measure
the settling rate to deduce o. This provides us with the three required additional
equations. We therefore assume below that /g, N and o are prescribed at the channel
inlet or measured within the control volume. From the record of N(z), we infer the
mean N and the variance VarN. The deposition rate o was computed as the ratio of
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Number N VarN 1. 7. Jo A v o " E E
7.06 22.53 0.59 0.36 5.45 6.59 0.77 4.67 3.74 333 33.0

—
©
=

(b) 9.83 3094 052 027 776 1121 079 528 414 517 51.9
(c) 1219 3543 050 029 920 1514 075 505 381 618 61.5
(d) 1486 3851 046 023 1099 2140 074 491 347 724 72.9
(e) 9.46 70.74 130 037 572 1.53  0.60 513 496 479 485
(f) 9.86 36.89  0.67 036 6.85 780 0.69 486 407 485 479
(2) 1376 6455 0.85 024 774 842 056 495 434 679 68.1
(h) 13.67 49.09 066 033 941 1124 069 474 391 650 64.7

2283 7209 0.61 021 1556 2207 068 452 356 1027 1032
3421 12891 075 0.17 2057 2478 0.60 439 367 1512 1503
21.89 12338 107 026 952 1096 043 484 434 1064 1059
3239 18268 1.07 020 1552 14.64 048 477 432 1547 1546
3852 22288 1.15 023 1986 1362 052 451 416 173.0 1739
4331 21431 108 0.17 1545 2449 036 421 364 1824 1822

_—_T A~
5 B =ra=
e Rah N/

TaBLE 3. Measured values of the total number of particles moving within the window (mean
values N and variances VarN), autocorrelation times 7. computed using (2.22), autocorrelation
times 7. estimated by fitting an exponential curve to the data, and inferred values of the model
parameters obtained using (4.1). Times in s, rates in beads s*', entrainment coefficients in s~

Comparison between the measured entrainment rate E and estimated value £ =2; 4+ uN.

the total number of particles deposited to the experimental duration (approximately
1 min).

We can then estimate the coefficients i, v and Z; using (2.16) and the equilibrium
conditions (2.18)—(2.19), yielding

1 1 N _
w="4o <N - vmv) to <1 - w) A== No)g
(4.1)

The autocorrelation time 7. of n(r) and N(z) is given by (2.22). In practice, the
autocorrelation function was estimated by taking the Fourier transform of N(r)

p=F UF(N)F(N)),

where & denotes the Fourier transform, %#(N)* is the complex conjugate of Z(N),
and #~! denotes the inverse Fourier transform. Another way to estimate the
autocorrelation time is to fit the exponential form (2.21) directly to the data to
estimate the experimental correlation time 7.. The estimate depended on the number
of observations used to fit the exponential function. For instance, for experiment (g)
E10-8, we obtained 7. = 0.283 s when taking the first 50 data points against 7. =0.243 s
when a row of 100 data points was used. The empirical autocorrelation function may
become negative.

The parameter estimates are reported in table 3. This table also shows the measured
entrainment rate E and its estimated value £ = N u~+ 1, computed from the estlmates
of w and ;. The perfect match confirms that the flows were at equilibrium; £ was in
fact obtained from the measurement of the settling rate coefficient o using (4.1).

— ;u(), NV = )\40-

4.2. Number of moving particles

Figure 7 shows the probability density function of N for experiments (b), (¢), (k)
and (n); refer to the supplement available with the online version of the paper to
see all the plots. The dots represent the empirical probabilities, while the dashed


https://doi.org/10.1017/S0022112007008774

https://doi.org/10.1017/50022112007008774 Published online by Cambridge University Press

102 C. Ancey, A. C. Davison, T. Bohm, M. Jodeau and P. Frey

107! 107!

. - .
o (®) e N ©
e o,
l,’ N‘\ AN ?.s"
10254 v 1072 ¢ L,
& o’ ‘ \‘v“
3 ° —3 | AN L[]
10 % 10 o.\‘f'-o ce o
o * g0 o o o
~ ®w o w
o0 N X
0 10 20 30 0 20 40 60
107! 107!
k) ()
) |e oo oL &
107 £ g0 o 10 L] [
S . .. o b »,
2 ol o %
Q .. ..,',’/ oo
-3 ® -3 L ! %,
10 IR B A
- [] ° \\
o o0 oo
[ o ome’
0 20 40 60 0 20 40 60 80 80
N N

FiGURE 7. Empirical probability density of the total number of moving beads N (black dots).
The dashed line is the probability density function of the negative binomial distribution.
Experiments (b), (e), (k) and (n).

line stands for the negative binomial distribution (2.15), the parameters of which
were estimated using the measured values VarN and N reported in table 3; for the
sake of readability, we plotted the discrete probability mass functions as continuous
curves.

First note the fairly good agreement between the data and theoretical probability
distribution for all experiments. Local departures and data scattering are seen, but
they are usually associated with low probabilities. Since 8000 data points were used
for each run, empirical probabilities lower than 10~ are unimportant. Deviations
are also visible at N =0, but it should be kept in mind that algorithmically, it
was difficult to discriminate cases in which a particle was really set in motion
from those in which a bed particle merely swung around its rest position (Bohm
et al. 2006), and this might introduce slight errors when counting the number of
moving particles. The plots confirm that the negative binomial distribution is a
good candidate for describing the statistical behaviour of N over a wide range of
flow conditions. If we set =0 (Einstein-like theory), the theoretical distribution
is Poisson and has equal variance and mean. This supports the idea of collective
entrainment or, at least, does not undermine the simple assumption used for modelling
entrainment.

There is a significant change in the distribution shape when the water discharge
increases. When it is low (e.g. (e) in figure 7), the empirical distribution is close to
a straight line on a logarithmic scale, implying that the number of particles decays
exponentially within the observation window. For experiment (e), the discrepancy
between empirical and theoretical probability distributions is the most pronounced
of all runs, which may mean that theory performs less well for these discharges (as
expected, see §2.2). With increasing water discharge, the probability distribution takes
a bell shape, which is first skewed, then nearly symmetric at the highest slopes and
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FIGURE 8. Autocorrelation functions of the number of moving beads (solid line) and the solid
discharge (dashed lines). Dotted lines stand for the theoretical autocorrelation function (2.22),
when the autocorrelation time 7, is evaluated using (4.1). Experiments (b), (¢), (k) and (n).

flow rates (see (n) of figure 7). In the case of run (n), the discrete empirical probability
distribution can be approximated by a Gaussian distribution.

For each run, the sample variance exceeded the mean, but the ratio VarN/N dec-
reased with increasing water discharge (or Shields number). For instance, for slope
tan® = 0.1, the ratio VarN/N was as high as 7 for run (e) and dropped to below 3
for run (o). Thus for each run, the number of moving particles varied frequently and
widely, but with increasing water discharges, wide fluctuations became less frequent,
which substantiates the idea that at high water discharges, sediment transport
becomes more continuous.

Figure 8 shows the autocorrelation functions of the total solid discharge, the
number of moving beads, and the theoretical curve (2.22), where the autocorrelation
time f. is replaced by its estimate 7. given by (4.1). The autocorrelation functions
p for the solid discharge and the number of moving particles are similar for each
run, as theoretically expected (see §2.6), which shows that the instantaneous particle
velocities were never too far from their mean values. The behaviour of p at short
times is nearly exponential, as expected, but the theoretical autocorrelation time 7. is
much longer than the experimental value 7.. The values of 7. and 7. given in table 3
show that 7./7. ranges from 1.6 to 6.3, with a mean value of 3.5. We shall see that
to a large extent, this discrepancy stems from the statistical behaviour of deposition
events (see §4.3), which are more frequent than theoretically computed, but of smaller
amplitude over a time interval éz.

Despite this shortcoming of the theoretical model, the salient features of solid-
discharge fluctuations are correctly described, notably the ratio z./¢, (see §2.6) ranges
from 2 to 9, which shows that the solid discharge exhibited long-range fluctuations,
the durations of which are much longer than the typical time scale associated with
particle motion.
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FIGURE 9. Probability distribution of lag times: dots represent empirical probabilities, while
the solid line stands for the theoretical curve (2.27). Experiments (b), (e), (k) and (n).

4.3. Deposition rate

Another aspect of our experiments is the deposition rate of moving particles. From
time series such as that in figure 5(a), we can compute the lag times At,_,,,
between two deposition events within the observation window, and hence infer the
statistical properties of the lag times Az, _,,,. Figure 9 shows the empirical probability
distribution of Af,_,, for runs (b), (e), (k), (n) (refer to the online supplement to see
all the plots).

We also plot the theoretical curve given by (2.27), which is an exponential density
with parameter ;' = (1 — p)ra/p= No. As in §4.2, given the size of our samples, the
empirical probabilities make sense only when they are in excess of 1073; moreover,
since the acquisition rate was approximately 130 Hz, we could not resolve events that
occurred within time intervals shorter than 10 ms.

For low flow rates and gentle slopes (tan6 <0.1), the theoretical probability
distribution provides a crude approximation to the empirical distribution: while
the shape of the empirical distribution is well captured (exponential behaviour), the
deviation between the theoretical and empirical curves suggests that the mean lag
time is longer than predicted. At higher flow rates or steep slopes, the model yields
even cruder approximations, but still captures the main trend. The deviation between
theoretical and experimental curves is more pronounced for experiments conducted at
tan6 =0.15. Figure 10 compares the expected mean lag time ¢, with the mean of the
experimental samples A7,,. On the whole, the agreement is good, but a closer look
shows that the mean experimental lag time is twice the expected value ¢, : empirical
deposition events occur more frequently than assumed with our model.

If we plot the probability of observing n, _, particles settling during a time
interval 8¢t = 1/130s, there are smaller differences between the theoretical and empirical
distributions. Figure 11 shows these probability distributions for runs (b), (e), (k) and
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FIGURE 11. Probability distribution of the number of particles that come to a halt during a
time interval &z: dots represent empirical probabilities, while the dashed line represents the
theoretical distribution (2.28). Experiments (b), (e), (k) and (n).

(n) (refer to the online supplement to see all the plots). Theoretically, the number
of settling particles follows the probability distribution (2.28) derived in §2.6. The
behaviour at low n,, _,, values is captured well by the theoretical curve: for all slopes
and flow rates, the data fall onto the theoretical curve, for n,, _,, as large as 3 to 6.
For larger n,, _,, values, there are significant deviations between data and predictions.
Experimentally, we observe an exponential decay of the number of settling particles,
which shows that occasionally, a group of several particles (up to 12-14 particles
at the steepest slopes) can come to rest. The exponential decay is observed for all
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slopes and discharges. The theoretical probability also entails exponential decay, but
its decay rate is much larger (by a factor of roughly 10) than the empirical rate.

In conclusion, we observe empirically that deposition occurs a little less frequently
and the number of deposited particles over short time intervals can be much larger
than expected with our model. This higher activity contributes to decreasing the
autocorrelation time ¢. of the solid discharge, which may explain why we found only
the order of magnitude of 7.. Note also that table 3 shows little correlation between
the deposition rate coeflicient o and the fluid velocity u ,, which may suggest that o
is a constant parameter.

4.4. Entrainment rates

Figure 12 shows how the entrainment coefficients 4; and p vary with the mean fluid
velocity i ; and how 4, is related to ;. Note that the corresponding mean entrainment
rates are 4; and uN (and not u alone).

Figure 12(a) reveals a linear relation between the inflow coefficient /o and the
entrainment rate A; for the gentlest slopes and lowest flow rates (tan6 <0.1 and
i <16 beadss™!). At higher flow rates or for steep slopes, there is no clear trend,
but this may stem from the dearth of data. At very low entrainment rates, the influx
coefficient 4y is much higher than 4;, suggesting that bed load transport can take
place with little entrainment of isolated particles.

Figure 12(b) shows that the entrainment rate 1, grows with increasing fluid velocity.
There is no very clear trend, but it appears that the data related to slopes tan6 =0.1
and tan6 =0.125 collapse onto a single straight line, while the data corresponding to
tan & =0.075 form a parallel line. This closely reflects the behaviour observed for the
solid discharges in figure 6, with the same reservation about the role of sidewalls. This
strong dependence on slope suggests that theoretical analysis of incipient motion on
sloping beds, which provides weak dependence on cos#, underestimates the influence
of bed slope on entrainment. The linear variation in A; with #, is consistent with
the heuristic arguments presented in §2.2. The estimated waiting time given by
(2.11) is around 50ms if we take the typical values P.=0.5, L, ~h=2cm, and
(u) ~ii;=50cms™!, consistent with the mean lag time values reported in figure 10
(since At,_,~ At,_,,, in a steady state). For the highest bed slope tan6 =0.15, we
observe a drop in the entrainment rate with increasing fluid velocity, which is probably
directly linked to the very low flow submergence conditions for this slope.

Figure 12(c) shows that the collective entrainment coefficient u decreases nearly
linearly with increasing fluid velocity, but this decay rate is very low since it passes
from 4 beadss™! to 3 bead ss~' when the mean fluid velocity is increased from 0.4 to
0.65ms~!. It may be reasonable to consider it as a constant parameter.

4.5. Particle velocity

Figure 13 shows how the mean particle velocity varies with fluid velocity for particles
in a rolling regime (figure 13a) or in a saltating regime (figure 13b). It is striking
that the mean velocity #, of rolling particles is almost independent of fluid velocity
in our experiments, while theoretically we obtained a nonlinear increase in i, with
uy (see §2.5) in full agreement with earlier observations, when a single particle was
set in motion on a fixed rough bed (Ancey et al. 2003). Moreover, the order of
magnitude of i, predicted by our theory is approximately 20cms~! for tan6 =0.1,
while experimentally, ii, was closer to 6cms™!.

The same observation applies to the saltating particles, whose mean velocity exhibits
little correlation with the mean fluid velocity. Contrary to the rolling velocity, the
semi-empirical relation (2.26) intersects the data, but the dependence of the saltating
velocity i, on iy is much more pronounced theoretically than experimentally.


https://doi.org/10.1017/S0022112007008774

https://doi.org/10.1017/50022112007008774 Published online by Cambridge University Press

Coarse particles in a water stream 107

(a) 35 i T "
0=175%  0-10% 0-125% 0-15%
+ (a) m(© @ (k) » (n)
X (b) [ X0 ® () < (0
O (o) *© O (m)
O @ A
L v (@)
25 LXO)
o ° * <«
g -
g1s ® v
a--1
&
sp-"7 +
0 10 20 30 40 50
. (beads s
(b) <
50
40
=
o 30 .7
e L
§ > PR
~ 20 _-70°
D A '/®/O D x -
10 A -
- -
° . -
ol -
0.4 0.5 0.6
i (ms™)
(c) 8
6
[ ]
Tm P [ ] gt;__?@ X
[7) ; ______ o [m]
= < -
2
0.3 0.4 0.5 0.6
iy (ms™)

FIGURE 12. (a) /o as a function of A;; the dashed line represents the experimental trend
Ao=5+41/3+5. (b) Entrainment rate 4; as a function of the mean fluid velocity; the
dashed line represents the experimental trend 4y =200(iz ; —0.4) for slopes tan6 > 0.1, while
the long-dashed line stands for the experimental trend 4; =150(ii ; —0.5). (¢) Entrainment
coefficient u as a function of the mean fluid velocity; the dashed line represents the experimental
trend u=2.3—5iiy.

Although the flows were dilute, there was no clear relation between the mean
velocity of one particle of a system of N moving particles and the mean velocity
of an isolated particle, which was entrained alone by a turbulent water stream.
For the rolling regime, this may be easily understood: because the rolling particles
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FIGURE 13. (a) Variation of the rolling velocity with the mean fluid velocity. (b) Variation of
the saltating velocity with the mean fluid velocity; the solid line represents the velocity of a
single isolated particle, as predicted by (2.26) for tan6 =0.1.

moved on a mobile bed, the path was less regular in our bed-load experiments
than in our earlier experiments, where a single particle moved down a corrugated
stationary bottom. This probably induced an increase in the energy dissipation.
What is difficult to understand, however, is the very weak dependence of i, on ;. A
plausible explanation is that in our shallow turbulent flows, particle trajectories were
substantially influenced by the wakes induced by neighbouring particles; this wake
effect is probably less pronounced in thick flows.

This weak dependence has important consequences for the computation of the solid
discharge n. Recall that =) ;_, u;v,/L, with v, the particle volume; if the particle
velocity u; ~ i1, is nearly independent of # s, then we can approximate

L
~ 2,

and the dependence of n on u, is entirely contained in N. This contradicts the
common assumption in Bagnold-like models, where the mismatch between the mean
fluid and particle velocities is the control parameter of momentum transfers and thus
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FIGURE 14. Variation in the ratio P;/P, with the bottom shear stress.

of the solid discharge. This may explain why Bagnold’s approach performs poorly at
low water discharges for shallow flows on steep slopes.

4.6. Energy dissipation

In the absence of particles, energy supplied by gravity is entirely dissipated by
turbulent structures. When particles can be entrained, another energy sink is due to
momentum and energy transfer between water and particles. To evaluate the efficiency
of this energy sink, we compute between the power supplied by gravity to the control
volume

P, = / pg-ud? = pgq,Lsinb, (4.2)
and the ratio of the turbulent power
P, = pgq,Lsind — N Fpii,. (4.3)

In the particle energy budget, we neglect the energy dissipated due to particle spin
or lift force. The mean drag force was evaluated using the relation Fp = C,ma’(ii, —
is)*/2, with C;=0.5 the drag coefficient. In the numerical computations, we
distinguished the particles in rolling and saltating regimes (see tables 1 and 2).

Figure 14 shows how P,/ P, varied with the bottom shear stress pgh sinf. For gentle
slopes (tan# < 0.1) and moderate solid discharges (17 < 16 beadss™!), almost all energy
was dissipated by turbulence-the ratio P,/P, remains close to 90 %-independently
of the bottom shear stress. When the solid discharge is increased or for steep slopes,
there is a significant drop of the turbulent-energy contribution to the total energy.
For instance, for run (n) (tand=0.15 and 7 =16 beadss™'), 25% of the energy
supplied by gravity is dissipated by turbulence against 75 % by momentum transfers
with particles. As for particle velocity, the independence of the ratio P,/P, and i,
indicated that for our experiments, there was no real coupling between the solid
and water phases through energy balance, contrary to what is assumed in Bagnold’s
approach.
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5. Concluding remarks

In recent years, fundamental experiments have been conducted to gain insight into
the connection between particle behaviour on the bulk-flow and particle scales to
elucidate the dependence of the solid discharge on water flow rate. Typical examples
include the experimental and numerical investigations led by Schmeeckle & Nelson
(2003), who tried to clarify the role of turbulence in incipient motion of coarse
particles, or the experiments performed by Charru et al. (2004), who analysed
entrainment and motion of coarse particles under laminar flow conditions. With
the same objective in mind, we ran experiments in a narrow channel, where coarse
particles (glass beads) were entrained by a turbulent water stream down a steep slope
(7.5 % to 159%). As the particle trajectories were two-dimensional, we could measure
quantities such as the particle velocity and the number of entrainments/depositions
per unit time. Although idealized with respect to sediment transport in mountain
streams, our experimental facility provides a realistic basis for understanding the
physical processes involved in sediment transport on steep slopes.

The intermittent nature of solid discharge at low water discharges led us to develop
a stochastic model that has its roots in earlier work (Einstein 1950), but although
this earlier theory was a big step forward it relies on statistical assumptions that
have turned out to be unrealistic. For instance, in Einstein’s theory and subsequent
variants, fluctuations of the solid discharge are Gaussian, whereas field and laboratory
measurements show wider fluctuations. This paper proposes a simple theoretical
model of events within a control volume. The number of particles within this window
can vary as a result of inflow, outflow, entrainment and deposition of particles.
Mass balance considerations lead to a birth—death immigration—emigration Markov
model, based on the assumption that particles can be entrained both because of water
effects and interactions with moving particles. The latter assumption enables feedback
between the moving particles and those at rest, and thus helps to explain the existence
of wide fluctuations. Indeed, if we remove this feedback (u =0), our model provides
predictions that closely resemble Einstein’s results.

In this purely counting vision of bed-load transport, we do not make the feedback
dependent on water flow. Intuitively, we could expect that the water stream cannot
entrain an unlimited number of particles because of the energy constraint that limits
particle entrainment and transportation. This would favour control of water flow
conditions on sediment transport via momentum transfers, as argued by Bagnold
(1966, 1973) and subsequent authors (e.g. see Seminara et al. 2002). Within this
approach, if some part P, of the total energy supplied by acceleration due to gravity
is allocated to particle motion, then the total number of moving particles must satisfy

N=Pp/(FDI/_lp),

as shown in §4.6. Here, it clearly appears experimentally that for bed inclinations
as steep as 10 %, flow was sufficiently dilute and vigorous for turbulence to be the
main energy sink (see figure 14); the energy P, dissipated by particle motion does not
exceed 15-20 % of the total and is independent of the fluid velocity. This contradicts
Bagnold-like models: if P, remains nearly constant, the number of moving particles
should decrease with increasing fluid velocities if N is controlled by momentum
transfers. With our model, we have shown that the number of moving particles does
not depend explicitly on the water flow conditions: to some extent (for u > 0), water
flow dictates how many particles can be dislodged from the bed and entrained into
the flow, but it loosely controls the number of settling particles and the number of
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particles set in motion because of interactions (e.g. collision). In a steady state, the
entrainment rate E = uN + A1(ii ;) must balance the deposition rate D =0 N, so the
total number of moving particles varies nearly linearly with fluid velocity (if © and o
are constant):

N A (u f)'
o—u

With the solid discharge defined as the product of the number of moving particles N
and the particle velocity, our theoretical model was then completed by computing the
mean particle velocity. This computation was not indispensable: for our experiments
the mean velocity of a particular system did not depend strongly on fluid velocity (see
figure 13), whereas for a single particle entrained by the turbulent stream, the particle
velocity varies nearly linearly with the mean fluid velocity (Ancey et al. 2002, 2003).
A striking and unanticipated result is that the linearity between solid discharge and
fluid velocity stems mainly from the dependence of N on i .

Our final stochastic model counts the number of moving particles, as depicted by
figure 2. The inflow rate is denoted by /o, the outflow rate by v, the deposition rate by
o ; for entrainment, we distinguish the entrainment rate induced by water (4;) from
the collective entrainment rate (uN). For flows at equilibrium, the solid discharge
i corresponds to the inflow and outflow rates: 7= /y= Nv. The other parameters
depend on the size of the window and specifically on its length L, and the fluid velocity.
We cannot compute these parameters analytically, but their dependence on i, can
be anticipated. Experimentally, we found that © and o were almost constant (see
figure 12¢ and table 3), whereas 4; was nearly proportional to the fluid velocity (see
figure 12b). The model does not distinguish between rolling and saltating particles; a
natural development would be to extend it to allow exchanges between them.

This stochastic model enables us to predict a number of macroscopic features of
our system. The fluctuations in the solid discharge or the number of moving particles
are described well (see figure 7). The model also provides reasonably good estimates
of the autocorrelation function and the statistical properties of deposition events
for low solid discharges and gentle slopes. At higher solid discharges and for steep
slopes, there is an increasing divergence between the model and our data, presumably
reflecting the change in behaviour owing to the increase in slope; this change was
expected for slopes in excess of 10 % (see §2.5). Taking a closer look at statistical
properties of solid discharge is of fundamental importance to understanding natural
phenomena. Here, with our experimental set-up, we concluded that fluctuations arose
from interactions between particles and a turbulent stream. This conclusion probably
holds true for mountain and gravel-bed rivers, but in that case, local fluctuations may
also result from large perturbations of the river on a longer time scale, such as sudden
disruption of bedforms, hydraulic instabilities (e.g. local sub-/supercritical transition),
and topographic disturbances or changes in the hydrology regime or sediment input
(e.g. unstable banks, landsliding mass). There is probably a wide spectrum of time
scales corresponding to these sources of fluctuations (from a few years to a few
seconds); the fluctuation mechanism we describe in this paper for shallow turbulent
flows may be seen as a primary and inherent cause of variability in the sense that it
occurs with a short characteristic time dictated by the turbulence time scale, whatever
the bed topography and hydraulic conditions (see §2.2).

Simple power-law models relating the sediment flow rate for natural gravel-bed
rivers to the water flow depth can perform better than more sophisticated physically
based models (Barry et al. 2004). One possible explanation lies in the measurement
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protocols used in the field and laboratory. For gravel-bed rivers, workers in the field
of hydraulics and geomorphologists use systems such as the Helley—Smith sampler
that measure bed load by capturing sediment over a given time interval. In the
laboratory, hydraulics workers impose the solid discharge at the flume inlet (hopper
supplying the flume) or measure it at the outlet. For the former, the proper selection
of the sampling time (ranging from a few seconds to several minutes) is crucial; this
difficulty of selecting a proper time scale is underlined by the large differences among
various measurement systems (Bunte & Abt 2005). In §2.6, we saw that the number
of settling particles is negative binomial, with mean r(1— p’)/p’ (see (2.28), where
p’ depends nonlinearly on the time interval §¢ during which the measurement is
taken. From this perspective, there is little hope of establishing a direct link between
trapped sediment and solid discharge without taking the random nature of transport
into account. Experiments in the laboratory pose other problems: since bed load is
imposed or measured at the inlet or outlet, the only information available concerns
the number of particles that emigrate or immigrate (parameters v and Jy of the
model) from/into the control volume. At low water discharges, the mean waiting time
between two entrainment events is long; if the typical duration of the experiment
is shorter than the waiting time, it is likely that no emigrating particle is detected
and one may conclude that the solid discharge is zero. From this perspective, the
threshold for incipient motion is probably time-dependent at low water discharges, a
point never taken into account in hydraulics computations and which may explain
the discrepancy between laboratory and field measurements.
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