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ASYMPTOTIC BEHAVIOR AND QUASI-LIMITING DISTRIBUTIONS ON
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Abstract

In this article we provide new results for the asymptotic behavior of a time-fractional
birth and death process Nα(t), whose transition probabilities P[Nα(t) = j | Nα(0) = i] are
governed by a time-fractional system of differential equations, under the condition that
it is not killed. More specifically, we prove that the concepts of quasi-limiting distri-
bution and quasi-stationary distribution do not coincide, which is a consequence of the
long-memory nature of the process. In addition, exact formulas for the quasi-limiting
distribution and its rate convergence are presented. In the first sections, we revisit the
two equivalent characterizations for this process: the first one is a time-changed classic
birth and death process, whereas the second one is a Markov renewal process. Finally,
we apply our main theorems to the linear model originally introduced by Orsingher and
Polito [23].
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1. Introduction

The birth and death processes have been extensively studied in various areas of both prob-
ability theory and its applications in population models, epidemiology, queuing theory, and
engineering, to name just a few. Two fundamental aspects related to its analysis are the
representation of the transition probabilities that model the evolution of the system and the
asymptotic behavior after a long time.

Since many processes exhibit the phenomenon of long memory, a Markov process does not
seem at all appropriate, so that fractional models appear to be more precise. Time-fractional
models in the context of anomalous diffusion were studied by Orsingher in [21] and [22],
where he analyzed the time-fractional telegraph equation and a fractional diffusion equation,
respectively. Previous results for fractional birth and death processes can be found in the arti-
cles of Orsingher [23] for the linear case, Meerschaert [20] for the fractional Poisson process,
and Jumarie [13] for a pure birth and death process with multiple births. Surprisingly, none of
them provide representations for an arbitrary time-fractional birth and death process, and con-
sequently results concerning the asymptotic behavior for this class of process are not available
in the literature.
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For Markov processes, the study of the number of survivors after a long time started with
the early work of Kolmogorov in 1938. Later in 1947, Yaglom [25] showed that the limit
behavior of sub-critical branching processes conditioned to survival was given by a proper
distribution. In 1965, Darroch and Seneta [7] began the study of quasi-stationary distributions
(QSDs) on finite-state irreducible Markov chains, and Seneta and Vere-Jones [24] in 1966 did
it for Markov chains with countable states. A very important publication is that of Van Doorn
in 1991 [8], which states a criterion to determine the existence and uniqueness of QSDs for
birth and death chains. More recent results about the existence and uniqueness of QSDs can be
found in [9] and [10].

For diffusion processes on the half-line, the first work is due to Mandl [15], who stud-
ied the existence of a QSD on the half-line for +∞ being a natural boundary according to
Feller’s classification. Subsequently many results on the existence of QSDs and limit laws for
one-dimensional diffusions killed at 0 were provided by Ferrari [11], Collet, Martínez, and
San Martín [5], and Martínez and San Martín [16, 17].

Most of these works are based on studying the spectral decomposition of the infinitesimal
operator associated with the process. Applying similar ideas, we can study the asymptotic
behavior of time-fractional models, which is precisely one of the main objectives of this article.

This article is organized as follows. In Section 2 we present the model description. More
specifically, we introduce the system of time-fractional equations that governs the transition
probabilities. In Section 3 two equivalent characterizations are shown: the first one is a time-
changed birth and death process, whereas the second one is a Markov renewal process. In
Section 4 we follow a different approach based on a spectral representation of the transition
probabilities to study the quasi-limiting behavior of the process conditioned not to be killed.
In Section 5.1 we study the concept of quasi-stationary distributions, proving that the quasi-
limiting distribution and quasi-stationary distribution are not the same. Finally, in Section 6,
we apply our main theorems to the linear model.

2. Model formulation

We let Nα(t), t ≥ 0 denote the fractional birth and death process killed at zero. The transition
probabilities denoted by

pi,j,α(t) = P[Nα(t) = j | Nα(0) = i]

are governed by the time-fractional system of differential equations (commonly called the
system of backward equations)

D
αpi,j,α(t) =μipi−1,j,α(t) − (λi +μi)pi,j,α(t) + λipi+1,j,α(t), j ≥ 0, i ≥ 1,

p0,j,α(t) = 0, j ≥ 1.
(2.1)

As usual, the values λi > 0, μi > 0 (with the convention μ0 = λ0 = 0) are the birth rates and
death rates respectively, whereas the parameter α ∈ (0, 1] determines the order of the Caputo
fractional operator Dα(·), defined as

D
αf (t) = 1

�(1 − α)

∫ t

0

f ′(u)

(t − u)α
du, α ∈ (0, 1),

D
1f (t) = f ′(t), α= 1.
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In particular, when α= 1 the operator is just the derivative and N1(t) is the classical birth and
death process. The matrix formulation for the system of equations (2.1) is

D
αP(t) = Q(a)P(t),

where P(t) is the matrix with coefficients pi,j,α(t), i ≥ 1, j ≥ 1. The components qi,j, i ≥ 1, j ≥ 1
of the matrix Q(a) are

qi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(λi +μi) if i = j,

μi if i = j + 1,

λi if i = j − 1.

(2.2)

We recall that p0,j,α(t) = 0 for all j ≥ 1. This fact makes the matrix formulation consistent with
the system of fractional differential equations (2.1). The initial condition is the Kronecker delta
pi,j,α(0) = δi,j.

3. Two equivalent characterizations

In this section we introduce the representation of the process Nα(t) as a standard birth and
death chain changed in time, i.e. Nα(t) = N1(L(α)(t)), where L(α)(t) is the inverse of a stable
subordinator. Also, we get a representation as a Markov renewal process in the general case. To
make this work self-contained, we first introduce a brief summary of the stable subordinators
and its inverse.

3.1. The stable subordinator and its inverse

A subordinator D(α)(t), t ≥ 0 is a one-dimensional Levy process such that its trajectories
are non-decreasing with probability 1. We say that a subordinator is stable when the Laplace
transform of D(α)(t) satisfies

E
[
e−sD(α)(t)]= e−tsα . (3.1)

Associated to a subordinator D(α)(t), we define the inverse process L(α)(t), t ≥ 0 as follows:

L(α)(t) = inf{r ≥ 0: D(α)(r)> t}. (3.2)

The process L(α)(t) denotes the first time that D(α)(·) exceeds a level t> 0. It is clear that the
trajectories of the process L(α)(t) are non-decreasing and moreover they are continuous (see
Theorem 2 on page 642 of [2] for a technical proof concerning the modulus of continuity
of L(α)(·)). From (3.2) we can deduce that the finite-dimensional distributions of D(α)(t) and
L(α)(t) satisfy the identity

P[L(α)(ti)> xi, 1 ≤ i ≤ n] = P[D(α)(xi)< ti, 1 ≤ i ≤ n]. (3.3)

Equation (3.1) directly implies that the process D(α)(t) is self-similar of index 1/α, that is,

P[D(α)(cxi)< ti, 1 ≤ i ≤ n] = P[c1/αD(α)(xi)< ti, 1 ≤ i ≤ n]. (3.4)

Moreover, from (3.3) and (3.4) we have that the process L(α)(t) is self-similar of index α:

P[L(α)(cti)> xi, 1 ≤ i ≤ n] = P[cαL(α)(ti)> xi, 1 ≤ i ≤ n].
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For all t> 0, the distribution of D(α)(t) has only a density component, here denoted by gα(·, t).
In the same way, the inverse L(α)(t) has only a density component hα(·, t) satisfying

hα(u, t) = t

α
u−1−1/αgα(tu−1/α, t).

Concerning the Laplace transform of hα(u, t) we have the identities∫ ∞

0
e−sthα(u, t) dt = sα−1 e−usα ,

∫ ∞

0
e−suhα(u, t) du = Eα,1(−stα),

(3.5)

where Eα,1(·) is the Mittag–Leffler function formally defined as

Eα,1(z) =
∑
k≥0

zk

�(αk + 1)
, z ∈C.

Finally, we emphasize that the increments of the process L(α)(t) are dependent and non-
stationary (see [18, Corollaries 3.3 and 3.4] for more details).

3.2. The time-changed process

The following theorem is a generalization from the previous ones given by Orsingher and
Polito [23] for fractional linear birth and death process, and by Meerschaert [19, 20] in the con-
text of the time-fractional Brownian motion and the fractional Poisson processes, respectively.
The arguments given below do not differ too much in comparison with the aforementioned
references. However, we consider it important to write a detailed formal proof for the general
case in order to introduce some techniques that will be used in the forthcoming sections.

Theorem 3.1. For all α ∈ (0, 1), the stochastic process Nα(t), t ≥ 0 admits a representation (in
the sense ot the finite-dimensional distributions) of the form

Nα(t) = N1(L(α)(t)),

where N1(t) is a standard birth and death process and L(α)(t) is the inverse of a stable
subordinator independent of N1(t).

Proof. Given fixed i> 1 and j ≥ 0, for all t> 0 we have

P[N1(L(α)(t)) = j | N1(0) = i] =
∫ ∞

0
pi,j,1(u)hα(u, t) du.

We will show that P[N1(L(α)(t)) = j | N1(0) = i] defined above is the solution to the system of
fractional differential equations (2.1) through its Laplace transform. We notice first that

�i,j(s) =
∫ ∞

0
e−st

P[N1(L(α)(t)) = j | N1(0) = i] dt

satisfies the identity
�i,j(s) = sα−1�i,j(s

α),
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where

�i,j(s) =
∫ ∞

0
e−stpi,j,1(t) dt

is the Laplace transform of pi,j,1(t). This follows from the simple computation

�i,j(s) =
∫ ∞

0
e−st

(∫ ∞

0
pi,j,1(u)hα(u, t) du

)
dt

=
∫ ∞

0
pi,j,1(u)

(∫ ∞

0
e−sthα(u, t) dt

)
du

= sα−1
∫ ∞

0
pi,j,1(u) e−sαu du

= sα−1�i,j(s
α). (3.6)

By keeping j ≥ 0 fixed, it is not difficult to check that the sequence �i,j(sα) defined above
satisfies the recurrence relation

sα�i,j(s
α) − δi,j =μi�i−1,j(s

α) − (λi +μi)�i,j(s
α) + λi�i+1,j(s

α), i ≥ 1. (3.7)

By combining (3.6) and (3.7) we get

s�i,j(s) − δi,j

s1−α =μi�i−1,j(s) − (λi +μi)�i,j(s) + λi�i+1,j(s). (3.8)

Since P[N1(L(α)(0)) = j | N1(0) = i] = δi,j, from (A.3) we have the identities

s�i,j(s) − δi,j

s1−α = sα�i,j(s) − sα−1
P[N1(L(α)(0)) = j | N1(0) = i]

=
∫ ∞

0
e−st

D
α(P[N1(L(α)(t)) = j | N1(0) = i]) dt.

By taking the inverse of the Laplace transform in (3.8), we conclude that P[N1(L(α)(t)) = j |
N1(0) = i] is the solution to (2.1), finishing the proof. �

Remark 3.1. The trajectories of the process L(α)(t), t ≥ 0 are non-decreasing, so that
Theorem 3.1 can be used to obtain the finite-dimensional distributions of Nα(t),

P[Nα(t�) = j�; 1 ≤ �≤ n | Nα(0) = i]

= P[N1(L(α)(t�)) = j�; 1 ≤ �≤ n | Nα(0) = i]

=
n−1∏
�=0

P[N1(L(α)(t�+1) − L(α)(t�)) = j�+1 | Nα(t�) = j�],

with the convention j0 = i, t0 = 0.
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3.3. Markov renewal process

Definition 3.1. Let (Xn)n∈N0 be a Markov chain with states in N0 and let (Sn)n∈N0 be a
sequence of random times satisfying S0 = 0, Sn < Sn+1 for all n ≥ 0. The stochastic process
(Xn, Sn)n∈N0 is called a Markov renewal process with state space N0 = {0, 1, 2, 3, . . .} if the
identity

P[Xn+1 = j, Tn+1 ≤ t | (X�, S�)0≤�≤n] = P[Xn+1 = j, Tn+1 ≤ t | Xn] (3.9)

holds for all j ∈N0, n ∈N0, and t ≥ 0. Here Tn+1 = Sn+1 − Sn, n ≥ 0 are called the inter-arrival
times. The stochastic process (Y(t))t≥0 defined as Y(t) =∑

n≥0 Xn1Sn≤t<Sn+1 is called the
minimal semi-Markov process associated with (Xn, Sn)n∈N0 .

Connected to a Markov renewal process, we consider the transition probabilities

pi,j = P[Xn+1 = j | Xn = i]

and the kernel
Qi,j(t) = P[Xn+1 = j, Tn+1 ≤ t | Xn = i].

The transition probabilities are recovered in the limit t → ∞,

lim
t→∞ Qi,j(t) = lim

t→∞ P[Xn+1 = j, Tn+1 ≤ t | Xn = i] = pi,j.

By introducing the notation

Gi,j(t) = Qi,j(t)

pi,j
,

from a direct computation we get

P[Tn+1 ≤ t | Xn = i, Xn+1 = j] = Gi,j(t),

and more generally, for all finite collections of times 0< t1 < t2 < · · ·< tn,

P[Tm ≤ tm; 1 ≤ m ≤ n | (X�)0≤�≤n] =
n∏
�=1

GX�−1,X� (t�). (3.10)

Equation (3.10) implies that the inter-arrival times (T�)�∈N0 are conditionally indepen-
dent given the Markov chain (Xn)n∈N0 with a distribution GX�,X�+1 (·) depending only on X�
and X�+1. It is well known that a Markov renewal process is characterized by GX�,X�+1 (t)
and the transition probabilities pi,j. In addition, this is a Markov process if and only if
GX�,X�+1 (t) = 1 − e−r(X�,X�+1)t, for some positive rate r(X�, X�+1). A more detailed review of
Markov renewal processes can be found in [4, Chapter 8]. In the following theorem we provide
a characterization for the sample paths of the process (Nα(t))t≥0.

Theorem 3.2. For all α ∈ (0, 1) the process (Nα(t))t≥0 admits a representation of the form

Nα(t) =
∑
n≥0

Xn1Sn,α≤t<Sn+1,α ,

where (Xn, Sn,α)n≥0 is a Markov renewal process. The transition probabilities are

P[Xn+1 = i + 1 | Xn = i] = λi

λi +μi
, P[Xn+1 = i − 1 | Xn = i] = μi

λi +μi
, i ≥ 1, (3.11)
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and P[Xn+1 = j | Xn = 0] = δ0,j, j ≥ 0. Before L0 = inf{n> 0: Xn = 0}, the distributions of the
inter-arrival times

Tm+1,α = Sm+1,α − Sm,α, 0 ≤ m ≤ n,

conditioned on (X�)0≤�≤n, 1 ≤ n ≤ L0 − 1, are independent and they follow a Mittag–Leffler
distribution with parameter λXn +μXn , that is,

Gi,j(t) = 1 − Eα,1(−(λi +μi)t
α), i ≥ 1, j ≥ 1.

Proof. We first construct the process associated with α = 1. Let (Xn)n∈N0 be a Markov chain
with transition probabilities given by (3.11) and the killing condition P[Xn+1 = j | Xn = 0] =
δ0,j, j ≥ 1. Let (Sn,1)n∈N0 be an increasing sequence of random variables defined recursively as
S0,1 = 0, Sn,1 =∑n

�=1 T�,1, n ≥ 1. Here the sequence of random variables Tn+1,1 = Sn+1,1 −
Sn,1 satisfies

P[Xn+1 = j, Tn+1,1 ≤ t | (X�, S�,1)0≤�≤n] = P[Xn+1 = j, Tn+1,1 ≤ t | Xn]

for all t ≥ 0, n ∈N0 and they are conditionally independent of (Xn)n∈N0 . Let us recall the def-
inition L0 = inf{n> 0: Xn = 0}. For 0 ≤ n ≤ L0 − 1, the distribution of Tn+1,1 conditioned on
(Xn, Xn+1) is

P[Tn+1,1 ≤ t | Xn+1 = j, Xn = i] = 1 − e−(λi+μi)t, t ≥ 0, i ≥ 1.

Note that the origin is an absorbing state, so we automatically have X� = 0 for all �≥ L0
and consequently N1(t) = 0 for all t ≥ SL0,1. This implies that the sequence of random vari-
ables (T�,1)�≥L0+1 has no influence on the evolution of (N1(t))t≥SL0,1

. The process (N1(t))t≥0 is
defined by

N1(t) :=
∑
n≥0

Xn1Sn,1≤t<Sn+1,1 =
∑
n≥0

Xn∧L01Sn,1,≤t<Sn+1,1 ,

where n ∧ L0 = min{n, L0} is a Markov process (see [4, Chapter 8, Section 3] for more details).
Now, from Theorem 3.1, we know that (Nα(t))t≥0 = (N1(L(α)(t)))t≥0 is a time-changed version
of N1(t), so

Nα(t) :=
∑
n≥0

Xn∧L01Sn,1≤L(α)(t)<Sn+1,1
,

where L(α)(t) is the inverse of a stable subordinator (D(α)(t))t≥0 independent of (Xn, Sn,1)n∈N0 .
The sequence (Sn,α)n∈N0 is defined via the equivalence

Sn,α ≤ t ⇐⇒ Sn,1 ≤ L(α)(t), t ≥ 0, n ≥ 1.

Once the process Nα(t) is properly defined, the next step is to prove that the pairs
(Xn, Sn,α)n∈N0 defined above form a Markov renewal process with the specified properties.
To prove the condition (3.9), we first note that

{S�,α ≤ t� : 1 ≤ �≤ n} ⇐⇒ {S�,1 ≤ L(α)(t�); 1 ≤ �≤ n}, t ≥ 0, n ≥ 1.

for any collection 0 = t0 < t1 < · · · tn. From the definition of an inverse subordinator we
have Sn,1 ≤ L(α)(t) ⇐⇒ D(α)(Sn,1) ≤ t for all t ≥ 0, so that Sn,α = D(α)(Sn,1) in the finite
distributional sense. This implies that for all n ≥ 0

Sn+1,α − Sn,α = D(α)(Sn+1,1) − D(α)(Sn,1)

= D(α)(Tn+1,1 + Sn,1) − D(α)(Sn,1). (3.12)
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Since D(α)(·) is a stable subordinator, (3.12) implies that Tn+1,α = Sn+1,α − Sn,α is inde-
pendent of S�,α = D(α)(S�,1), 1 ≤ �≤ n and has the same distribution as D(α)(Tn+1,1). But
D(α)(Tn+1,1) ≤ t is equivalent to Tn+1,1 ≤ L(α)(t). Consequently it follows that

P[Xn+1 = j, Tn+1,α ≤ t | (X� = i�, S�,α ≤ t�)1≤�≤n]

= P[Xn+1 = j, Tn+1,1 ≤ L(α)(t) | (X� = i�, S�,1 ≤ L(α)(t�))0≤�≤n]

= P[Xn+1 = j, Tn+1,1 ≤ L(α)(t) | Xn = in]

= P[Xn+1 = j, Tn+1,α ≤ t | Xn = in].

We will now show that Nα(t) preserves the transition probabilities of the original process
N1(t). Since limt→∞ L(α)(t) = ∞ with probability 1, we get for all j ≥ 0, i ≥ 0

pαi,j = lim
t→∞ P[Xn+1 = j, Tn+1,α ≤ t | Xn = i]

= lim
t→∞ P[Xn+1 = j, Tn+1,1 ≤ L(α)(t) | Xn = i]

= lim
u→∞ P[Xn+1 = j, Tn+1,1 ≤ u | Xn = i]

= pi,j.

The next step is to prove that the random variables Tn+1,α , conditioned on (Xn, Xn+1), 1 ≤ n ≤
L0 − 1, follow a Mittag–Leffler distribution. For i ≥ 1 we have

P[Tn+1,α > t | Xn+1 = j, Xn = i] = P[Tn+1,1 > L(α)(t) | Xn+1 = j, Xn = i]

=
∫ ∞

0
P[Tn+1,1 > u | Xn+1 = j, Xn = i]hα(u, t) du

=
∫ ∞

0
e−(λi+μi)uhα(u, t) du

=E[e−(λi+μi)L(α)(t)]

= Eα,1(−(λi +μi)t
α).

The independence of (T�,α)1≤�≤n conditioned on (X�)0≤�≤n, is more delicate. We first notice
that from (A.4), for all s> 0 and i ≥ 1, we have∫ ∞

0
e−st

P[Tn+1,α ≤ t | Xn+1 = j, Xn = i] dt =
∫ ∞

0
e−st(1 − Eα,1(−(λi +μi)t

α)) dt

= 1

s

λi +μi

sα + λi +μi
. (3.13)

By integrating by parts, we can deduce that the identity (3.13) is the same as

E
[
e−sTn+1,α | Xn+1 = j, Xn = i

]= λi +μi

sα + λi +μi
. (3.14)
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Now we set

ϕn,α(s) =
∫ ∞

0
e−st

P[Sn,α ≤ t | (X�)0≤�≤n] dt.

Similarly to (3.14), from the construction of ϕn,α(s) we can see that

ϕn,α(s) = 1

s
E
[
e−sSn,α | (X�)0≤�≤n

]= 1

s
E

[
n∏

m=1

e−sTm,α | (X�)0≤�≤n

]
. (3.15)

We need to compute ϕn,α(s) more explicitly. Since Nα(t) is a time-changed process, we have

ϕn,α(s) =
∫ ∞

0
e−st

P[Sn,1 ≤ L(α)(t) | (X�)0≤�≤n] dt

=
∫ ∞

0
e−st

(∫ ∞

0
P[Sn,1 ≤ u | (X�)0≤�≤n]hα(u, t) du

)
dt,

by using Fubini’s theorem and recalling the identity∫ ∞

0
e−sthα(u, t) dt = sα−1 e−usα .

Thus we obtain

ϕn,α(s) =
∫ ∞

0
e−st

(∫ ∞

0
P[Sn,1 ≤ u | (X�)0≤�≤n]hα(u, t) du

)
dt

=
∫ ∞

0
P[Sn,1 ≤ u | (X�)0≤�≤n]

(∫ ∞

0
e−sthα(u, t) dt

)
du

=
∫ ∞

0
P[Sn,1 ≤ u | (X�)0≤�≤n]sα−1 e−sαu du

= sα−1ϕn,1(sα).

For α = 1, conditioned on (X�)0≤�≤n, the inter-arrival times are independent and exponentially
distributed, so

ϕn,1(sα) = 1

sα

n−1∏
�=0

λX� +μX�

sα + λX� +μX�
,

leading to the formula

ϕn,α(s) = 1

s

n−1∏
�=0

λX� +μX�

sα + λX� +μX�
. (3.16)

By combining (3.14), (3.15), and (3.16), we now get

sϕn,α(s) =E

[
n∏

m=1

e−sTm,α | (X�)0≤�≤n

]
=

n∏
m=1

E
[
e−sTm,α | (Xm, Xm−1)

]
. (3.17)

Equation (3.17) directly implies that for all 1 ≤ n ≤ L0 − 1, conditioned on (X�)0≤�≤n, the inter-
arrival times T�+1,α = S�+1,α − S�,α , 0 ≤ �≤ n are independent, concluding the proof. �
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4. The spectral representation of the transition probabilities

4.1. Preliminaries

For all i ≥ 0 fixed, we let
Ti,α = inf{t> 0: Nα(t) = i}

denote the first time the process Nα(t) attains the state i. In particular, for i = 0, we say that T0,α
is the absorption time or the extinction time of the process. For the sake of convenience, for α=
1 we write T0 instead of T0,1. In the following we will use the notation Pi[·] for P[· | Nα(0) = i]
and Ei[·] for E[· | Nα(0) = i] to denote the dependence on the initial condition Nα(0). For n ≥ 1
we define the coefficients

π1 = 1,

πn =
n−1∏
i=1

λi

μi+1
, n ≥ 2.

Note that these coefficients satisfy the identity πn+1/πn = λn/μn+1. This implies that Q(a) is
reversible with respect to the measure π , that is,

πiqi,j = πjqj,i for all i, j ≥ 1.

The following series are essential to describe some properties of the process:

A =
∑
i≥1

(λiπi)
−1, B =

∑
i≥1

πi, D =
∑
j≥1

πj

j−1∑
k=1

1

λkπk
.

For α = 1, some well-known results are as follows (see e.g. [6, Chapter 5]).

(1) The process is almost surely absorbed at zero, i.e. Pi[T0 <∞] = 1, if and only if A = ∞.

(2) The absorption time has a finite mean, i.e. Ei[T0]<∞, if and only if B<∞.

(3) The process comes from infinity, i.e. supi≥1 Ei[T0]<∞, if and only if D<∞.

4.2. Main results

Here we present the approach of Karlin and McGregor’s polynomials originally introduced
in [14] ([6, Section 5.2] is also recommended for a detailed discussion). Given a fixed θ > 0,
we define recursively the sequence of polynomials

−θψi(θ ) =μiψi−1(θ ) − (λi +μi)ψi(θ ) + λiψi+1(θ ), i ≥ 1,

ψ0(θ ) = 0, ψ1(θ ) = 1.
(4.1)

These polynomials satisfy the orthogonality condition

πj

∫ ∞

θ

ψj(θ )ψk(θ ) d�(θ ) = δj,k, (4.2)

where � is a probability measure supported in [θ
,∞), for some θ
 ≥ 0, and δj,k is the
Kronecker delta.
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Based on these polynomials, it can be shown that when α= 1, the spectral representation
of the transition probabilities is

pi,j,1(t) = πj

∫ ∞

θ

e−tθψi(θ )ψj(θ ) d�(θ ), j ≥ 1, i ≥ 1, (4.3)

The following theorem generalizes the representation (4.3) to the complete case α ∈ (0, 1].

Theorem 4.1. The solution to the system of equations (2.1) can be written as

pi,j,α(t) = πj

∫ ∞

θ

Eα,1(−θ tα)ψi(θ )ψj(θ ) d�(θ ), i ≥ 1, j ≥ 1, (4.4)

where Eα,1(·) is the Mittag–Leffler function with parameter α.

Proof. By combining Theorem 3.1 and equation (4.3), we have for j ≥ 1, i ≥ 1

pi,j,α(t) = Pi[N1(L(α)(t)) = j]

=
∫ ∞

0
Pi[N1(u) = j]hα(u, t) du

= πj

∫ ∞

0

(∫ ∞

θ

e−θuψi(θ )ψj(θ ) d�(θ )

)
hα(u, t) du. (4.5)

We now define the integrals

Ii,j(t) :=
∫ ∞

θ

e−θ tψi(θ )ψj(θ ) d�(θ ), i ≥ 1, j ≥ 1.

Recalling that � is a probability measure, it is clear that Ij,j(t) ≤ Ij,j(0) for all t ≥ 0, j ≥ 1. In
addition, from the Cauchy–Schwarz inequality and (4.2) we get

0 ≤
∫ ∞

θ

e−θ t|ψi(θ )ψj(θ )| d�(θ ) ≤√Ii,i(t)Ij,j(t) ≤√Ii,i(0)Ij,j(0) = 1√

πiπj
<∞. (4.6)

For each t ≥ 0 fixed, hα(u, t) is a probability density function supported on R
+
0 . By applying

Fubini’s theorem in (4.5) we get

pi,j,α(t) = πj

∫ ∞

θ


(∫ ∞

0
e−θuhα(u, t) du

)
ψi(θ )ψj(θ ) d�(θ ),

and recalling the identity

Eα,1(−θ tα) =
∫ ∞

0
e−θuhα(u, t) du,

we deduce (4.4), concluding the proof. �

The following theorem provides an explicit form for the distribution of the absorption time.

Theorem 4.2. Assume A = ∞. For all i ≥ 1, the probability of non-extinction before the instant
t ≥ 0 is

Pi[T0,α > t] =μ1

∫ ∞

θ

Eα,1(−θ tα)

ψi(θ )

θ
d�(θ ).
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Proof. If A = ∞, it is well known that the probability measure � satisfies �({0}) = 0, and
moreover d�d(θ ) =μ1θ

−1 d�(θ ) is a probability measure with no atoms at zero (see formula
(2.20) from [8]). In this case we have for α= 1

Pi[T0 > t] = 1 − pi,0,1(t) = 1 −μ1

∫ ∞

θ

e−tθ ψi(θ )

θ
d�(θ ), i ≥ 1.

We first check that ∫ ∞

θ


1

θ
|ψi(θ )| d�(θ )<∞, i ≥ 1.

For any δ > 0 we have

∫ ∞

θ


1

θ
|ψi(θ )| d�(θ ) ≤

(
max

θ∈[θ
,θ
+δ] |ψi(θ )|
) ∫ δ+θ


θ


1

θ
d�(θ ) + 1

δ + θ


∫ ∞

δ+θ

|ψi(θ )| d�(θ ).

(4.7)

For the first term on the right-hand side of (4.7), we have that ψi(θ ) is a polynomial of degree
i − 1, so it is bounded on any closed interval. Since d�d is a probability measure, we have

0 ≤
∫ δ+θ


θ


1

θ
d�(θ ) ≤

∫ ∞

θ


1

θ
d�(θ ) = 1

μ1
.

By choosing j = 1 in (4.6) we get

0 ≤
∫ ∞

δ+θ

|ψi(θ )| d�(θ ) ≤

∫ ∞

θ

|ψi(θ )| d�(θ ) ≤ 1√

πi
<∞.

The proof finishes by following the same approach as Theorem 4.1. �

Remark 4.1. The transition probabilities pi,j,α(t) are also the solution to the forward system of
equations

D
αpi,j,α(t) = λj−1pi,j−1,α(t) − (λj +μj)pi,j,α(t) +μj+1pi,j+1,α(t), j ≥ 1, i ≥ 1, (4.8)

D
αpi,0,α(t) =μ1pi,1,α(t), (4.9)

with the convention λ0 =μ0 = 0. In fact, by combining (2.1), (4.1), and (4.4), for i ≥ 1, j ≥ 1
we have

D
αpi,j,α(t) =μipi−1,j,α(t) − (λi +μi)pi,j,α(t) + λipi+1,j,α(t)

= πj

∫ ∞

θ

Eα,1(−θ tα)(μiψi−1(θ ) − (λi +μi)ψi(θ ) + λiψi+1(θ ))ψj(θ ) d�(θ )

= πj

∫ ∞

θ

Eα,1(−θ tα)(−θψi(θ ))ψj(θ ) d�(θ ).

We now apply the recursive formula (4.1) to −θψj(θ ),

D
αpi,j,α(t) = πj

∫ ∞

θ

Eα,1(−θ tα)ψi(θ )(μjψj−1(θ ) − (λj +μj)ψj(θ ) + λjψj+1(θ )) d�(θ ),
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and we use (4.4) to obtain

D
αpi,j,α(t) = πjμj

πj−1
pi,j−1,α(t) − (μj + λj)pi,j,α(t) + λjπj

πj+1
pi,j+1,α(t).

This is equivalent to (4.8), since πjμj = πj−1λj−1 and πjλj = πj+1μj+1. For j = 0, (4.9) can
be deduced in a similar way. From Theorem 4.2 we get for all i ≥ 1

pi,0,α(t) = 1 − Pi[T0,α > t] = 1 −μ1

∫ ∞

θ

Eα,1(−θ tα)

ψi(θ )

θ
d�(θ ). (4.10)

By replacing (4.10) in the backward equation (2.1) for j = 0, i ≥ 1,

D
αpi,0,α(t) =μipi−1,0,α(t) − (λi +μi)pi,0,α(t) + λipi+1,0,α(t)

= −μ1

∫ ∞

θ

Eα,1(−θ tα)

μiψi−1(θ ) − (λi +μi)ψi(θ ) + λiψi+1(θ )

θ
d�(θ ),

and from the recurrence relation (4.1),

D
αpi,j,α(t) =μ1

∫ ∞

θ

Eα,1(−θ tα)ψi(θ ) d�(θ ) =μ1pi,1,α(t).

5. Asymptotic behavior and quasi-limiting distributions

Theorem 4.2 allows us to deduce some new results related to the quasi-limiting behavior.
We start by defining the integrals

Ci,j,k =
∫ ∞

θ


ψi(θ )ψj(θ )

θk
d�(θ ), i ≥ 1, j ≥ 1, k ≥ 0.

When θ
 > 0, the coefficients Ci,j,k are finite. In fact

Ci,j,k ≤ 1

(θ
)k

(∫ ∞

θ

ψ2

i (θ ) d�(θ )

)1/2(∫ ∞

θ

ψ2

j (θ ) d�(θ )

)1/2

<∞.

From a probabilistic point of view, the parameter θ
 can be identified as

θ∗ := sup
{
θ : Ei

(
eθT0

)
<∞}= − lim inf

t→∞
1

t
ln Pi(T0 > t), i ≥ 1.

We remark that the definition of θ
 does not depend on i. In particular, the condition θ
 > 0
implies that the absorption time T0 has finite exponential moments for all θ ∈ (0, θ
) (see [6,
Lemma 4.1]). In the following proposition, we establish the asymptotic behavior of both the
transition probabilities and the distribution of the absorption time T0,α .

Proposition 5.1. Assume θ
 > 0. For all 0<α < 1 the following limits are fulfilled:

lim
t→∞ tαPi[T0,α > t] = μ1

�(1 − α)

∫ ∞

θ


ψi(θ )

θ2
d�(θ ), (5.1)

lim
t→∞ tαpi,j,α(t) = πj

�(1 − α)

∫ ∞

θ


ψi(θ )ψj(θ )

θ
d�(θ ). (5.2)
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Proof. For all θ > 0 the following limit applies (see (A.8) from the Appendix):

lim
t→∞ tαEα,1(−θ tα) = 1

θ

1

�(1 − α)
. (5.3)

In addition, we know that ∫ ∞

θ


ψj(θ )

θk
d�(θ )<∞ for all k ≥ 1.

Given ε > 0, the limit (5.3) in particular implies that

Eα,1(−θ tα) ≤ 1 + ε

θ�(1 − α)
t−α

for t> tε large enough. This means that the limit (5.1) follows from the dominated convergence
theorem

lim
t→∞ tαPi[T0,α > t] =μ1

∫ ∞

θ


(
lim

t→∞ tαEα,1(−θ tα)
)ψi(θ )

θ
d�(θ )

= μ1

�(1 − α)

∫ ∞

θ


ψi(θ )

θ2
d�(θ ).

The limit (5.2) is proved by using the same argument. �

Proposition 5.1 leads us to the following theorem, interpreted as a Yaglom limit for the
fractional case.

Theorem 5.1. Assume θ
 > 0. For all 0<α < 1 we have

lim
t→∞ Pi[Nα(t) = j | T0,α > t] = Pi,j∑

j≥1 Pi,j
, (5.4)

where

Pi,j = πj

(
Pi,1 +

min{i−1,j−1}∑
k=1

1

λkπk

)
, j ≥ 2, (5.5)

Pi,1 = 1

μ1
.

Remark 5.1. Before proving Theorem 5.1, let us make some comments.

1. The limit (5.4) is the same for the complete interval α ∈ (0, 1) and strongly depends on
the initial condition i ≥ 1. This behavior is completely different to the non-fractional
case α = 1,

lim
t→∞ Pi[N1(t) = j | T0 > t] = νj(θ


),

because the limit νj(θ
) is independent of the initial condition i ≥ 1. Here νj(θ
) is
a probability measure, also called the quasi-stationary distribution or quasi-limiting
distribution.
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2. We analyze in more detail the two extreme cases for the limit (5.4).

• For i = 1, the second term in (5.5) vanishes, so

lim
t→∞ Pi[Nα(t) = j | T0,α > t] = πj∑

j≥1 πj
.

• For i → ∞ (assuming that the limit exists) we get

lim
i→∞ lim

t→∞ Pi[Nα(t) = j | T0,α > t] = πj
( 1
μ1

+∑j−1
k=1

1
λkπk

)
∑

j≥1 πj
( 1
μ1

+∑j−1
k=1

1
λkπk

) .

The condition
∑

j≥1 πj <∞ is equivalent to the positive recurrence of the process, i.e.
Ei[T0]<∞ for all i ≥ 1. On the other hand, the series

∑
j≥1

πj

j−1∑
k=1

1

λkπk
=
∑
k≥1

1

λkπk

∑
j≥k+1

πj

converges if and only if the process comes down from infinity, i.e. supj≥1 Ej[eθT0,1 ]<∞
for all θ ∈ (0, θ
). According to Theorem 3.2 of [8], this is equivalent to the existence of a
unique quasi-stationary distribution, which is associated with θ
. As we mention below, in the
fractional model (i.e. α ∈ (0, 1)) the quasi-limiting behavior strongly depends on the initial
condition, so its behavior changes drastically compared to the Markovian case. This fact is not
at all intuitive, and constitutes an interesting result on asymptotic behavior associated with a
long memory process.

Proof of Theorem 5.1. As a direct consequence of Proposition 5.1, we have

lim
t→∞ Pi[Nα(t) = j | T0,α > t] = πj

μ1

Ci,j,1

Ci,1,2
. (5.6)

Since pi,j,1(t) = Pi[N1(t) = j, T0 > t], we get from (4.3)

Pi[N1(t) = j, T0 > t] = πj

∫ ∞

θ

e−tθψi(θ )ψj(θ ) d�(θ ).

By taking the integral over t ≥ 0, Fubini’s theorem yields∫ ∞

0
Pi[N1(t) = j, T0 > t] dt = πj

∫ ∞

0

∫ ∞

θ

e−tθψi(θ )ψj(θ ) d�(θ ) dt

= πj

∫ ∞

θ


ψi(θ )ψj(θ )

θ
d�(θ ), (5.7)

and analogously ∫ ∞

0
Pi[T0 > t] dt =μ1

∫ ∞

θ


ψi(θ )

θ2
d�(θ ), (5.8)

so the limit (5.6) is equivalent to

lim
t→∞ Pi[Nα(t) = j | T0,α > t] =

∫∞
0 Pi[N1(t) = j, T0 > t] dt∫∞

0 Pi[T0 > t] dt
.
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We recall the system of equations (4.8) for α = 1

p′
i,j,1(t) = λj−1pi,j−1,1(t) − (λj +μj)pi,j,1(t) +μj+1pi,j+1,1(t), j ≥ 1. (5.9)

By taking the integral over t ≥ 0, from the right-hand side of (5.9), we obtain for j ≥ 1∫ ∞

0
p′

i,j,1(t) dt = lim
t→∞ pi,j,1(t) − pi,j,1(0) = −δi,j.

When j = 0, from (4.9) we get for α= 1 that p′
i,0,1(t) =μ1pi,1,α(t), and consequently

∫ ∞

0
Pi[N1(t) = 1, T0 > t] = 1

μ1
.

By introducing the notation

Pi,j =
∫ ∞

0
Pi[N1(t) = j, T0 > t] dt,

with the convention Pi,0 = 0 we get the recurrence formula

−δi,j = λj−1Pi,j−1 − (λj +μj)Pi,j +μj+1Pi,j+1, j ≥ 1,

whose solution can be computed explicitly. Let us rearrange some terms,

−δi,j = (λj−1Pi,j−1 − λjPi,j) + (μj+1Pi,j+1 −μjPi,j),

by taking the sum over 1 ≤ k ≤ j:

−
j∑

k=1

δi,k = λ0Pi,0 − λjPi,j +μj+1Pi,j+1 −μ1Pi,1, j ≥ 1.

Since Pi,0 = 0 and Pi,1 = 1/μ1, we get

1 −
j∑

k=1

δi,k = −λjPi,j +μj+1Pi,j+1. (5.10)

We notice that

1 −
j∑

k=1

δi,k =
⎧⎨
⎩

0 if j ≥ i,

1 if j< i,

equation (5.10) becomes
1j<i =μj+1Pi,j+1 − λjPi,j.

Recalling the identity
μj+1

λjπj
= 1

πj+1
,

we now get
1j<i

λjπj
= Pi,j+1

πj+1
− Pi,j

πj
,
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whose solution is

Pi,j = πj

(
Pi,1 +

j−1∑
k=1

1k<i

λkπk

)
, j ≥ 2,

Pi,1 = 1

μ1
.

For j ≥ 2 this is the same as

Pi,j = πj

(
1

μ1
+

min{i−1,j−1}∑
k=1

1

λkπk

)
, (5.11)

so the limit is

lim
t→∞ Pi[Nα(t) = j | T0,α > t] = Pi,j∑

j≥1 Pi,j
,

concluding the proof. �

The following theorem provides the convergence rate of the limit obtained in (5.6).

Theorem 5.2. For all 0<α < 1, α 
= 1/2, we have

lim
t→∞ tα

(
pi,j,α(t)

Pi[T0,α > t]
− Pi,j∑

j≥1 Pi,j

)
= Pi,j∑

j≥1 Pi,j

�(1 − α)

�(1 − 2α)

(
Ci,1,3

Ci,1,2
− Ci,j,2

Ci,j,1

)
,

and similarly for α = 1/2,

lim
t→∞ t

(
pi,j,α(t)

Pi[T0,α > t]
− Pi,j∑

j≥1 Pi,j

)
= 1

2

Pi,j∑
j≥1 Pi,j

(
Ci,1,4

Ci,1,2
− Ci,j,3

Ci,j,1

)
.

Proof. For α 
= 1/2 we recall the asymptotic expansion of the Mittag–Leffler function for t
large enough (see (A.5) from the Appendix):

Eα,1(−θ tα) = 1

�(1 − α)

1

θ tα
− 1

�(1 − 2α)

1

θ2t2α
+ o(t−2α).

The constants Ci,j,k are finite, so the following asymptotic expansions are valid,

pi,j,α(t) = πj

(
Ci,j,1

�(1 − α)

1

tα
− Ci,j,2

�(1 − 2α)

1

t2α
+ o(t−2α)

)
,

Pi[T0,α > t] =μ1

(
Ci,1,2

�(1 − α)

1

tα
− Ci,1,3

�(1 − 2α)

1

t2α
+ o(t−2α)

)
,

and after some algebraic manipulations,

pi,j,α(t)

Pi[T0,α > t]
= πj

μ1

Ci,j,1

Ci,1,2

(
1 − Ci,j,2

Ci,j,1

�(1−α)
�(1−2α)

1
tα + o(t−α)

1 − Ci,1,3
Ci,1,2

�(1−α)
�(1−2α)

1
tα + o(t−α)

)
.

For |z| small enough, we know that (1 − z)−1 = 1 + z + o(z), so

pi,j,α(t)

Pi[T0,α > t]
= πj

μ1

Ci,j,1

Ci,1,2

(
1 − 1

tα
�(1 − α)

�(1 − 2α)

(
Ci,j,2

Ci,j,1
− Ci,1,3

Ci,1,2

))
+ o(t−α)
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and consequently

tα
(

pi,j,α(t)

Pi[T0,α > t]
− πj

μ1

Ci,j,1

Ci,1,2

)
= πj

μ1

Ci,j,1

Ci,1,2

(
�(1 − α)

�(1 − 2α)

(
Ci,1,3

Ci,1,2
− Ci,j,2

Ci,j,1

))
+ o(1).

The limit is obtained by letting t → ∞ and recalling the identity

Pi,j∑
j≥1 Pi,j

= πj

μ1

Ci,j,1

Ci,1,2
.

For α = 1/2 we now have to consider the asymptotic expansion (A.7),

E1/2,1(−θ t1/2) = 1

θ t1/2
1

�(1/2)
+ 1

θ3t3/2
1

�(−1/2)
+ o(t−3/2).

Following the same approach we now obtain

pi,j,α(t)

Pi[T0,α > t]
= πj

μ1

Ci,j,1

Ci,1,2

(
1 + 1

t

�(1/2)

�(−1/2)

(
Ci,j,3

Ci,j,1
− Ci,1,4

Ci,1,2

))
+ o(t−1).

Since
�(1/2)

�(−1/2)
= −1

2
,

the proof concludes by using the same argument as the case α 
= 1/2. �

5.1. Quasi-stationary distributions

In this section we suppose that the initial state Nα(0) is random, with a distribution ν
supported on N

+ = {1, 2, 3, . . .}. In this case we set

Pν[Nα(t) = j] :=
∑
i≥1

P[Nα(0) = i]P[Nα(t) = j | Nα(0) = i]

=
∑
i≥1

νipi,j,α(t),

where pi,j,α(t) are the transition probabilities defined in the previous sections. More generally,
given A ⊆N

+ we write

Pν[Nα(t) ∈ A] =
∑
j∈A

Pν[Nα(t) = j].

It can be shown that
pj,α(t) := Pν[Nα(t) = j]

is the unique ‘honest’ solution, that is, it is a non-negative solution to the system of equations

D
αpj,α(t) = λj−1pj−1,α(t) − (λj +μj)pj,α(t) +μj+1pj+1,α(t), j ≥ 2, (5.12)

D
αp1,α(t) = −(λ1 +μ1)p1,α(t) +μ2p2,α(t), (5.13)

D
αp0,α(t) =μ1p1,α(t), (5.14)
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satisfying
∑

j≥0 pj,α(t) = 1 and pj,α(0) = νj, for all t ≥ 0, j ≥ 1. In fact, for α ∈ (0, 1) we know
from Theorem 3.1 that

pi,j,α(t) =
∫ ∞

0
pi,j,1(u)hα(u, t) du, i ≥ 1, j ≥ 0.

This implies

pj,α(t) =
∑
i≥0

νi

∫ ∞

0
pi,j,1(u)hα(u, t) du =

∫ ∞

0
pj,1(u)hα(u, t) du.

Since pj,1(t) =∑
i≥1 νipi,j,1(t) is the unique honest solution for α = 1 (see [8, pages 685–686]

for more details on the non-fractional case), necessarily pj,α(t) defined above is the unique
solution for α ∈ (0, 1).

Definition 5.1. We say that a probability measure ν is a quasi-stationary distribution (QSD) if,
for all A ⊆N

+ and t ≥ 0, we have the identity

Pν[Nα(t) ∈ A, T0,α > t] = ν(A)Pν[T0,α > t]. (5.15)

When α = 1, a probability measure ν is a QSD if and only if it is a solution to the system
νtQ(a) = −θν for some θ ∈ (0, θ∗], where Q(a) is the matrix defined in (2.2). Moreover,

Pν[T0 > t] = e−θ t, (5.16)

Pν[N1(t) = j, T0 > t] = νj e−θ t. (5.17)

Similar properties appear in the fractional case. They are enunciated in the following results.

Proposition 5.2. Let ν be a QSD for (N1(t))t≥0. Then, for all α ∈ (0, 1), the following identities
are satisfied:

Pν[T0,α > t] = Eα,1(−θ tα), (5.18)

Pν[Nα(t) = j, T0,α > t] = νjEα,1(−θ tα) (5.19)

for some θ ∈ (0, θ
]. Consequently, ν is a QSD for (Nα(t))t≥0, α ∈ (0, 1).

Proof. If ν is a QSD for (N1(t))t≥0, then (5.16) and (5.17) hold for some θ ∈ (0, θ
]. To
prove (5.18), from Theorem 3.1 we have

Pν[T0,α > t] =
∫ ∞

0
Pν[T0 > u]hα(u, t) du

=
∫ ∞

0
e−θuhα(u, t) du

= Eα,1(−θ tα)

for all t ≥ 0 and α ∈ (0, 1) fixed. Equation (5.19) is obtained from (5.17) by using the same
argument. The proof concludes by noticing that (5.15) can be directly deduced from (5.18) and
(5.19). �

https://doi.org/10.1017/jpr.2022.14 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.14


1218 J. L. CURINAO

Proposition 5.2 asserts that if the initial distribution coincides with some QSD of (N1(t))t≥0,
then the distribution of the absorption time follows a Mittag–Leffler distribution. The following
theorem establishes that the family of quasi-stationary distributions for (Nα(t))t≥0 coincides for
all α ∈ (0, 1].

Theorem 5.3. A probability measure ν is a QSD for (Nα(t))t≥0 if and only if it solves the system
of equations

−θνj = λj−1νj−1 − (λj +μj)νj +μj+1νj+1, j ≥ 2, (5.20)

−θν1 = −(λ1 +μ1)ν1 +μ2ν2, (5.21)

where θ =μ1ν1. Consequently ν is a QSD for (Nα(t))t≥0 if and only if ν is a QSD for (N1(t))t≥0.

Proof. From Proposition 5.2 we know that any QSD associated with N1(t) is necessarily a
QSD for Nα(t), α ∈ (0, 1], so the system of equations (5.20), (5.21) is a sufficient condition to
be a QSD for (Nα(t))t≥0.

To prove the converse, we first notice that if ν is a QSD, then for all j ≥ 1

pj,α(t) = Pν[Nα(t) = j, T0,α > t] = νjPν[T0,α > t].

By taking the operator Dα on both sides we now get

D
αpj,α(t) = νjD

α(Pν[T0,α > t]).

Since pj,α(t) is a solution to (5.12) satisfying pj,α(0) = νj, j ≥ 1, we get for all t> 0

νjD
α(Pν[T0,α > t]) = λj−1pj−1,α(t) − (λj +μj)pj,α(t) +μj+1pj+1,α(t), j ≥ 2, (5.22)

ν1D
α(Pν[T0,α > t]) = −(λ1 +μ1)p1,α(t) +μ2p2,α(t). (5.23)

The existence of the limit ν1μ1 = limt→0+ D
α(Pν[T0,α > t]) can be deduced by noticing

first that
D
αp0,α(t) =D

α(1 − Pν[T0,α > t]) = −D
α(Pν[T0,α > t]).

By letting t → 0+ in the equation D
αp0,α(t) =μ1p1,α(t), we get

θ = lim
t→0+ D

αp0,α(t) =μ1 lim
t→0+ p1,α(t) =μ1ν1.

Finally, we take the limit t → 0+ in (5.22), (5.23) to conclude that any QSD ν is a solution to
(5.20), (5.21) for θ = ν1μ1. �

Since the family of quasi-stationary distributions is the same for the complete interval
α ∈ (0, 1], its characterization coincides with the one originally presented by Van Doorn,
enunciated below.

Theorem 5.4. (Van Doorn [8].) If the series

∑
j≥1

πj

j−1∑
k=1

1

λkπk
=
∑
k≥1

1

λkπk

∑
j≥k+1

πj

diverges, then either θ
 = 0 and there is no QSD distribution, or θ
 > 0, in which case there is
a family of QSD distributions indexed by νθ , θ ∈ (0, θ
]. If the D series converges, then there
is a unique distribution QSD indexed by θ
.
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6. The linear process

We revisit the linear model, previously studied by Orsingher and Polito [23]. The birth rates
and death rates are λi = iλ and μi = iμ respectively. To make our analysis simpler, we assume
first that the initial condition is Nα(0) = 1. It is well known that in the case α = 1, the transition
probabilities are

p1,j,1(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(λt)j−1

(1 + λt)j+1
, λ=μ,

(λ(1 − e−(λ−μ)t))j−1

(λ−μ e−(λ−μ)t)j+1
(λ−μ)2 e−(λ−μ)t, λ 
=μ.

Similarly, the probabilities of non-extinction are

P1[T0 > t] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ−μ

λ

(
1 −

∑
m≥1

(
μ

λ

)m

e−(λ−μ)mt

)
, λ > μ,

μ− λ

λ

∑
m≥1

(
λ

μ

)m

e−(μ−λ)mt, λ < μ,

1

1 + λt
, λ=μ

(see Section 8.6 of [1]). A widely known fact is that the asymptotic behavior depends on the
ratio λ/μ. In the fractional case the same occurs, so we study the three cases separately.

The case λ<μ. As mentioned above, we first study the asymptotic behavior of the process
with initial state Nα(0) = 1. When α ∈ (0, 1), the probability of non-extinction is

P1[T0,α > t] =
(
μ− λ

λ

)∑
m≥1

(λ/μ)mEα,1(−(μ− λ)mtα)

(see formula (2.20) from [23]). We recall that from (A.8) we have for all m ≥ 1

lim
t→∞ tαEα,1(−(μ− λ)mtα) = 1

�(1 − α)

1

(μ− λ)m
. (6.1)

From (6.1) and the dominated convergence theorem, we obtain

lim
t→∞ tαP1[T0,α > t] =

(
μ− λ

λ

)
lim

t→∞ tα
∑
m≥1

(λ/μ)mEα,1(−(μ− λ)mtα)

=
(
μ− λ

λ

)∑
m≥1

(λ/μ)m lim
t→∞ tαEα,1(−(μ− λ)mtα)

= 1

�(1 − α)

1

λ

∑
m≥1

(λ/μ)m

m

= − 1

�(1 − α)

1

λ
ln

(
1 − λ

μ

)
.
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The limit can be deduced in an alternative way. We now consider the representation

P1[T0 > t] = μ− λ

λ

(λ/μ) e−(μ−λ)t

1 − (λ/μ) e−(μ−λ)t
.

Equations (5.1) and (5.8) jointly imply

lim
t→∞ tαPi[T0,α > t] = 1

�(1 − α)

∫ ∞

0
Pi[T0 > u] du.

By using this equivalence we get for i = 1

lim
t→∞ tαP1[T0,α > t] = 1

�(1 − α)

∫ ∞

0

μ− λ

λ

(λ/μ) e−(μ−λ)u

1 − λ

μ
e−(μ−λ)u

du

= 1

�(1 − α)

1

λ
ln

(
1 − λ

μ
e−(μ−λ)u

)∣∣∣∣
∞

0

= − 1

�(1 − α)

1

λ
ln

(
1 − λ

μ

)
. (6.2)

Similarly, from (5.2) and (5.7) we have for all j ≥ 1

lim
t→∞ tαP1[Nα(t) = j, T0,α > t] = 1

�(1 − α)

∫ ∞

0
P1[N1(u) = j, T0 > u] du.

We obtain in the linear case

∫ ∞

0
P1[N1(u) = j, T0 > u] du = (λ−μ)2

∫ ∞

0

(λ(1 − e−(λ−μ)u))j−1

(λ−μe−(λ−μ)u)j+1
e−(λ−μ)u du

= (λ−μ)2
∫ ∞

0

(λ(e(λ−μ)u − 1))j−1

(λ e(λ−μ)u −μ)j+1
e(λ−μ)u du.

By taking the change of variable z = e(λ−μ)u, after some manipulation we find

(λ−μ)2
∫ ∞

0

(λ(e(λ−μ)u − 1))j−1

(λ e(λ−μ)u −μ)j+1
e(λ−μ)u du = (μ− λ)

λj−1

μj+1

∫ 1

0

(1 − z)j−1

(1 − λz/μ)j+1
dz.

For z ∈ [0, 1], it is certain that

0 ≤ λz

μ
≤ λ

μ
< 1,

so the expansion series

1

(1 − λz/μ)j+1
=
∑
�≥0

(
�+j

�

)
(λz/μ)�

https://doi.org/10.1017/jpr.2022.14 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.14


QLDs on time-fractional birth and death processes 1221

holds, and by applying Tonelli’s theorem we get

(μ− λ)
λj−1

μj+1

∫ 1

0

(1 − z)j−1

(1 − λz/μ)j+1
dz = (μ− λ)

λj−1

μj+1

∫ 1

0
(1 − z)j−1

∑
�≥0

(
�+j

�

)
(λz/μ)� dz

= (μ− λ)
λj−1

μj+1

∑
�≥0

(λ/μ)�
(
�+j

�

) ∫ 1

0
(1 − z)j−1z� dz

= (μ− λ)
λj−1

μj+1

∑
�≥0

(λ/μ)�
(
�+j

�

) �(j)�(�+ 1)

�(�+ j + 1)
.

Since (
�+j

�

)
= (�+ j)!

�!j! = �(�+ j + 1)

�(�+ 1)�(j + 1)
,

we can simplify some terms in the series, obtaining

(μ− λ)
λj−1

μj+1

∑
�≥0

(λ/μ)�
(
�+j

�

) �(j)�(�+ 1)

�(�+ j + 1)
= 1

j
(μ− λ)

λj−1

μj+1

∑
�≥0

(λ/μ)� = 1

jλ
(λ/μ)j.

For j ≥ 1, from a direct computation we have shown the limit∫ ∞

0
P1[N1(u) = j, T0 > u] du = 1

λ

(λ/μ)j

j
. (6.3)

For Nα(0) = 1, the quasi-limiting distribution can be deduced from (6.2) and (6.3), by
noticing that

− ln

(
1 − λ

μ

)
=
∑
j≥1

(λ/μ)j

j
,

so that

lim
t→∞ P1[Nα(t) = j | T0,α > t] = (λ/μ)j/j∑

j≥1 (λ/μ)j/j
. (6.4)

Since P1,j = (λ/μ)j−1/j, the limit (6.4) can also be written in the form

lim
t→∞ P1[Nα(t) = j | T0,α > t] = P1,j∑

j≥1 P1,j
,

which is consistent with our theorems. Now, the quasi-limiting behavior when the initial condi-
tion is Nα(0)> 1 can be obtained directly from (5.4). We recall the expressions πj = (λ/μ)j−1/j
and λj = jλ, so λjπj =μ(λ/μ)j and (5.11) becomes

Pi,j = (λ/μ)j−1

j

[
1

μ
+

min{i−1,j−1}∑
k=1

1

μ(λ/μ)k

]

= (λ/μ)j

λj

min{i−1,j−1}∑
k=0

1

(λ/μ)k

= (λ/μ)j

λj

(λ/μ)− min{i,j} − 1

(λ/μ)−1 − 1
. (6.5)
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Equation (6.5) is the same as

Pi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

λj

1 − (λ/μ)j

(λ/μ)−1 − 1
, j ≤ i,

1

λj

(λ/μ)j−i − (λ/μ)j

(λ/μ)−1 − 1
, j ≥ i + 1.

The quasi-limiting distribution is

Pi,j∑
j≥1 Pi,j

= j−1((λ/μ)max{0,j−i} − (λ/μ)j)∑
j≥1 j−1((λ/μ)max{0,j−i} − (λ/μ)j)

.

We notice that in the limit case i → ∞ we have

P∞,j = 1

λj

1 − (λ/μ)j

(λ/μ)−1 − 1
,

which is not a finite measure since
∑

j≥1 j−1 = ∞.

The case λ≥μ. We first study the case λ=μ. The probability of non-extinction is

P1[T0,α > t] =
∫ ∞

0
e−uEα,1(−λtαu) du

(see [23, formula (2.26)]). Alternatively, for α= 1 we have the identity P1[T0 > t] =
1/(1 + λt). From Theorem 3.1 we get the formula

P1[T0,α > t] =E

[
1

1 + λL(α)(t)

]
.

In order to study the asymptotic behavior, we introduce the function

f (t) = tα(log log tα)1−α .

It is well known that (see [3, equation 4.2, page 31])

lim sup
t→∞

L(α)(t)

f (t)
= Cα (6.6)

with probability 1, for some positive constant Cα depending only on α. By taking the limit
t → ∞, we now get

lim inf
t→∞ f (t)P1[T0,α > t] = lim inf

t→∞ E

[
f (t)

1 + λL(α)(t)

]

≥E

[
lim inf

t→∞
f (t)

1 + λL(α)(t)

]

≥E

[
1

lim supt→∞ 1
f (t) + λ

L(α)(t)
f (t)

]
.
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From (6.6) and noticing that limt→∞ f (t) = ∞, we conclude

lim inf
t→∞ f (t)P1[T0,α > t] ≥ 1

λCα
.

Similarly, we compute

lim sup
t→∞

p1,j,α(t)

P1[T0,α > t]
= lim sup

t→∞
f (t)p1,j,α(t)

f (t)P1[T0,α > t]

≤ lim supt→∞ f (t)p1,j,α(t)

lim inft→∞ f (t)P1[T0,α > t]

≤ λCα lim sup
t→∞

f (t)p1,j,α(t).

The identity

p1,j,α(t) =E

[
(λL(α)(t))j−1

(1 + λL(α)(t))j+1

]
allows us to compute the limit

lim sup
t→∞

f 2(t)p1,j,α(t) = lim sup
t→∞

f 2(t)E

[
(λL(α)(t))j−1

(1 + λL(α)(t))j+1

]

≤E

[
lim sup

t→∞
f 2(t)

(λL(α)(t))j−1

(1 + λL(α)(t))j+1

]

≤ 1

λ2
E

[
lim sup

t→∞
1

(L(α)(t)/f (t))2

]

= 1

(λCα)2
.

In conclusion,

lim sup
t→∞

f (t)p1,j,α(t) ≤ lim
t→∞

1

f (t)
lim sup

t→∞
f 2(t)p1,j,α(t) = 0.

Consequently there is no quasi-limiting distribution as expected. Finally, when λ>μ the
probability of non-extinction is

P1[T0,α > t] = μ

λ
− λ−μ

λ

∑
m≥1

(
μ

λ

)m

Eα,1(−(λ−μ)mtα),

which is a strictly positive value (see [23, formula (2.13)]), so there is no quasi-limiting
distribution. By following an argument similar to the previous case, we get the limit

lim
t→∞ tα

(
P1[T0,α > t] − λ−μ

λ

)
= 1

�(1 − α)

λ−μ

λ

∑
m≥1

(λ/μ)m

m
.
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Appendix A. The Mittag–Leffler function

We present a summary concerning the basic properties of the Mittag–Leffler function.

Definition A.1. The complex-valued Mittag–Leffler function with parameter α ∈ (0, 1] is
defined as

Eα,1(z) =
∑
k≥0

zk

�(αk + 1)
, z ∈C.

In particular, when α = 1 we have that E1,1(z) = ez is the exponential function.

In the real-valued case it is well known (see [12, Proposition 3.23]) that the Mittag–Leffler
function with negative argument Eα,1(−x), x> 0 is completely monotonic for all 0 ≤ α ≤ 1,
that is,

(−1)n dn

dxn
(Eα,1(−x)) ≥ 0.

This is equivalent to the existence of a representation of Eα,1(−x) in the form of a Laplace–
Stieltjes integral with non-decreasing density and non-negative measure dμ:

Eα,1(−x) =
∫ ∞

0
e−xu dμ(u).

Since Eα,1(0) = 1 we have from the dominated convergence theorem that μ is a probability
measure. In fact we know from (3.5), for s = x and t = 1, that

Eα,1(−x) =E
[
e−xL(α)(1)]= ∫ ∞

0
e−xuhα(u, 1) du, (A.1)

and consequently the measure is dμ(u) = hα(u, 1) du. The density hα(u, 1) is known as the
Lamperti distribution obtained as the law of the ratio of two independent subordinators of order
α. In particular, the integral representation (A.1) implies that the function Eα,1(x) is strictly
positive for x ≥ 0.

Proposition A.1. For all λ> 0, f (x) = Eα,1(−λxα) is the unique solution to the equation

D
αf (x) = −λf (x), f (0) = 1. (A.2)

Proof. It proceeds by direct computation by taking the Laplace transform

L[f ](s) =
∫ ∞

0
e−sx f (x) dx

on both sides of (A.2). On the right-hand side we just have L[−λf ](s) = −λL[f ](s), whereas
on the left-hand side we have

L[Dαf ](s) = 1

�(1 − α)
L
[∫ x

0

f ′(u)

(x − u)α
du

]
(s)

=L[f ′](s)L
[

t−α

�(1 − α)

]
(s)

= (sL[f ](s) − f (0))sα−1. (A.3)
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This implies

L[f ](s) = sα−1

λ+ sα
. (A.4)

By taking the inverse

f (x) =
∑
k≥0

(−λxα)k

�(αk + 1)
,

we conclude f (x) = Eα,1(−λxα). �

Concerning the asymptotic behavior of the complex-valued Mittag–Leffler function, we
take formulas 4.7.4 and 4.7.5 from page 75 of [12]. Let α ∈ (0, 2) and let πα/2< θ <
min{π, απ}, where θ = arg(z). For all |z| large enough we have

Eα,1(z) = 1

α
ez1/α −

N−1∑
m=1

z−m

�(1 − mα)
+ O

(|z|−N) , | arg(z)| ≤ θ,

Eα,1(z) = −
N−1∑
m=1

z−m

�(1 − mα)
+ O

(|z|−N) , θ ≤ | arg(z)| ≤ π .

In particular, when arg(z) = 0 and arg(z) = π , we recover the asymptotic expansion for the
real-valued case. In fact when |x| is large enough we get the following approximations:

Eα,1(x) = 1

α
ex1/α − 1

x

1

�(1 − α)
− 1

x2

1

�(1 − 2α)
+ O(x−3),

Eα,1(−x) = 1

x

1

�(1 − α)
− 1

x2

1

�(1 − 2α)
+ O(x−3).

(A.5)

The variable x can be replaced by ±λtα , so that for α 
= 1/2, λ> 0 fixed and t> 0 large enough,
we obtain the following asymptotic formulas:

Eα,1(λtα) = 1

α
eλ

1/α t − 1

λtα
1

�(1 − α)
− 1

λ2t2α
1

�(1 − 2α)
+ O(t−3α),

Eα,1(−λtα) = 1

λtα
1

�(1 − α)
− 1

λ2t2α
1

�(1 − 2α)
+ O(t−3α).

(A.6)

For α = 1/2, the second term in (A.6) vanishes, yielding

Eα,1(−λt1/2) = 1

λt1/2
1

�(1/2)
+ 1

λ3t3/2
1

�(−1/2)
+ O(t−2). (A.7)

Moreover, the following limits are valid for all λ> 0:

lim
t→∞ tαEα,1(−λtα) = 1

λ

1

�(1 − α)
,

lim
t→∞ e−λ1/α tEα,1(λtα) = 1

α
.

(A.8)
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