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In the first part of this article, we extend the formal upscaling of a diffusion–precipitation

model through a two-scale asymptotic expansion in a level set framework to three dimensions.

We obtain upscaled partial differential equations, more precisely, a non-linear diffusion

equation with effective coefficients coupled to a level set equation. As a first step, we consider

a parametrization of the underlying pore geometry by a single parameter, e.g. by a generalized

“radius” or the porosity. Then, the level set equation transforms to an ordinary differential

equation for the parameter. For such an idealized setting, the degeneration of the diffusion

tensor with respect to porosity is illustrated with numerical simulations. The second part and

main objective of this article is the analytical investigation of the resulting coupled partial

differential equation–ordinary differential equation model. In the case of non-degenerating

coefficients, local-in-time existence of at least one strong solution is shown by applying

Schauder’s fixed point theorem. Additionally, non-negativity, uniqueness, and global existence

or existence up to possible closure of some pores, i.e. up to the limit of degenerating

coefficients, is guaranteed.

Key words: periodic homogenization; evolving microstructure; effective constitutive

equations; finite element methods; strong solutions

1 Introduction

Diffusive transport in porous media is a thoroughly, investigated multi-scale problem,

which has been studied in numerous publications. Traditionally, a porous medium is

characterized by a rigid porous matrix. However, recently, the integration of an evolving

porous matrix caused by, e. g. heterogeneous reactions has attracted increased interest.

Consequently, new demands are being placed on multi-scale modeling, analysis, and

numerics of such problems.
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In the field of upscaling, the issue of deformable porous media has been treated in the

following alternative approaches: On the one hand, mechanical aspects have been integ-

rated to flow and transport models to account for small elastic deformations [14–16]. On

the other hand, an extension of the homogenization technique including transformations

to fixed domains has been introduced in [19] and applied in [13, 18, 20]. This is, how-

ever, restricted to a relatively smooth evolution of the porous matrix without topological

change. In comparison, an approach capable of more flexible variations in geometry is

introduced in [35]. More precisely, an extension of formal two-scale asymptotic expansion

to a level set framework to capture the evolving solid–liquid interface was introduced for

two space-dimensional applications. This formal method was recently applied to locally

periodic media, biofilm growth, colloid dynamics, and drug delivery systems [24–26,37,38].

Finally, phase-field models that are based on a free energy functional are an alternative

tackling the deformations of the porous medium or phase transitions. Homogenization

techniques are applied to such models in [8, 27–30].

In the context of homogenization in non-rigid porous media, only a small number

of analytical results is present in the literature: In [17, 37], upscaling of an advection–

diffusion(–reaction) system in a locally periodic medium, including low and high diffusiv-

ities, was considered. Moreover, existence analysis was undertaken and an error estimate

was obtained for the resulting upscaled system, which includes space-dependent but not

time-dependent coefficients. Based on [34], in [36], the authors analysed dissolution and

precipitation in one spatial dimension. In particular, existence and uniqueness were shown

by transforming the model to a fixed domain. Likewise, in [5], root growth was considered

and analysed further by a rigorous homogenization technique. Thereby, the evolution of

root tips with a simple root geometry was modelled by an ordinary differential equation

(ODE). The existence of weak solutions was shown for the microscopic model by applying

a transformation to a fixed domain. An upscaled model describing the growth of biofilms

in porous media was derived and its weak solvability was investigated in [31]. In [2], the

existence of strong solutions for coupled system of an ODE and partial differential equa-

tions (PDEs) with non-constant coefficients and quadratic non-linearities, in the context

of dopant diffusion in three dimensions, was shown. Thus far, however, little attention

has been paid to the fact that upscaling flow and transport in evolving porous media may

directly lead to systems of degenerate, PDEs, whose analytical investigation is hardly ever

available. A comprehensive overview of degenerate parabolic equations was given, e. g.

in [6]. Degenerate parabolic equations are often treated by applying Kirchhoff’s trans-

formation [1]. In porous media applications, the problem of degeneration was already

addressed with reference to this technique, among others, in the context of Richards’

equation, cf. [21, 22].

When modelling reactive transport including homogeneous and heterogeneous reac-

tions, another difficulty arises: systems of non-linear ODEs and PDEs coupled to algebraic

equations must be considered [12].

In this article, we consider diffusive transport in a saturated porous medium including

precipitation at the porous matrix and revise the model’s upscaling by extending the

theory of van Noorden [35] from two to three dimensions. In this locally periodic setting,

we obtain a system of coupled, upscaled PDEs containing time- and space-dependent

coefficient functions. As a first step, we consider a parametrization of the underlying
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pore geometry by a single parameter that is, for example, related to a generalized

“radius” or the porosity. Then, the level set equation transforms to an ODE for the

parameter. Their regularity is analysed and the aforementioned degeneration of the

diffusion tensor with respect to porosity is illustrated with numerical simulations. For

such a simplified geometric setting, we first prove existence of at least one local-in-time

solution of the resulting coupled PDE–ODE model by applying Schauder’s fixed point

theorem. Moreover, positivity, uniqueness and global-in-time existence of strong solutions

in case of non-degenerating coefficients, i.e. away from clogging, is shown. Beyond that

result, uniqueness and existence is guaranteed up to the clogging of some pores, i.e. up to

the limit of degenerating coefficients.

2 Mathematical model

In this section, we present a pore-scale model and an effective model describing diffusive

transport in a porous medium and the species’ interaction with the porous matrix by

heterogeneous reactions. In particular, the evolution of the porous matrix, i. e. of the

solid–liquid interface is included into the model by means of a level set description.

Moreover, the derivation of the effective model by asymptotic expansion in a level set

framework in two and three dimensions is discussed. In this first part of the article, we

strongly refer to [35] in which an extension to our model is considered, i.e. a moving fluid

is included. However, all results presented therein are restricted to the two-dimensional

case. We conversely focus on the three-dimensional setting and extend all analysis needed.

In particular, we transfer [35, Lemma 3.1] and [35, Lemma 3.2] to three dimensions; these

form the basis for the purpose of upscaling in a level set framework. Contrary to two

dimensions, the introduction of a uniquely defined tangent vector orthogonal to the unit

outer normal is not possible in three dimensions and as a consequence [35, Lemma 3.2]

has to be reformulated in different terms.

2.1 Geometrical setting and pore-scale model

To set up the multi-scale framework, we first describe the underlying geometrical setting:

We consider a bounded and connected domain Ω0 ⊂ �n, n = 2, 3, with exterior bound-

ary ∂Ω0 and with an associated periodic microstructure. The microstructure is defined by

unit cells Y = [− 1
2
,+1

2
]n with exterior boundary ∂Y . The unit cells contain an evolving

solid inclusion Ys(t) ⊂ Y , and its complement, the evolving liquid part Yl(t) := Y \Y s(t).

Moreover, the solid–liquid interface Γ within the unit cell is defined by Γ := Y s ∩ Y l .

In addition, we assume separation of scales. Let ε � 1 denote the scale parameter and

presuppose that the macroscopic domain Ω0 is an ideal porous medium: For the case n = 3

(and analogously for n = 2), it is given by the periodic composition of scaled and shifted

unit cells Y i,j,k
ε := εY + ε(i, j, k) with (i, j, k) ∈ �3. The scaled and shifted cells Y i,j,k

ε ,

are divided into an analogously scaled liquid part Y
i,j,k
ε,l (t) and solid part Y i,j,k

ε,s (t). The

correspondingly scaled and shifted, solid–liquid interface is denoted by Γ i,j,k
ε (t). The liquid

part of the domain Ω0 is denoted by Ωε(t), its solid part Ω0\Ωε(t), and the the solid–

liquid interface, i. e. the interior boundary Γε(t) with unit outer normal νε of the porous

medium, are respectively defined by Ωε(t) :=
⋃

i,j,k Y
i,j,k
ε,l (t), Ω\Ωε(t) :=

⋃
i,j,k Y

i,j,k
ε,s (t), and
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Γε(t) :=
⋃

i,j,k Γ
i,j,k
ε (t). The initial pore space is denoted by Ωε(0). Finally, the distribution

of the solid and liquid phase and the solid–liquid interface are characterized by a level set

function, cf. [32, 35]:

Lε(t, x)

⎧⎪⎪⎨
⎪⎪⎩
> 0 liquid phase Ωε(t) ,

= 0 interface Γε(t) ,

< 0 solid phase Ω\Ωε(t) .

(2.1)

We consider the following two- or three-dimensional pore-scale model for the description

of diffusive transport within a porous medium Ωε(t); cf. [35] for the extension of our pore-

scale model including fluid flow. In detail, we consider the transport equation (2.2a), in

which cε denotes for the solute’s concentration and d > 0 its diffusivity. The level set

equation (2.2e) for the level set Lε characterizes the solid–liquid interface, cf. (2.1), which

evolves in normal direction with velocity vn,ε. For analytical investigations below, we

restrict this general-level set approach to a simplified geometric setting.

At the evolving solid–liquid interface Γε, the boundary condition (2.2b) is derived

from mass conservation [35]. Supplementary, appropriate initial conditions c0 (2.2d)

and L0 (2.2f) and, on the exterior boundary ∂Ω0, appropriate boundary conditions (2.2c)

are chosen. In the following, the parameter ρ denotes the constant density of the solid.

Finally, we summarize the pore-scale model:

∂tcε −∇ · (d∇cε) = 0 x ∈ Ωε(t), t ∈ (0, T ) , (2.2a)

d∇cε · νε = vn,ε(cε − ρ) x ∈ Γε(t) , t ∈ (0, T ) , (2.2b)

cε(t, x) = 0 x ∈ ∂Ω0, t ∈ (0, T ) , (2.2c)

cε(0, x) = c0(x) x ∈ Ωε(0) , (2.2d )

∂tLε + vn,ε|∇Lε| = 0 x ∈ Ω0 , t ∈ (0, T ) , (2.2e)

Lε(0, x) = L0(x) x ∈ Ω0 . (2.2f )

To close the system of model equations (2.2a)–(2.2f), a constitutive assumptions on the

solid–liquid interface velocity vn,ε is required. Since we presuppose that the interface is

evolving due to heterogeneous reactions f taking place at the solid–liquid interface Γε, we

directly relate the velocity vn,ε to the reaction f by

vn,ε = ε
1

ρ
f(cε) . (2.2g)

Finally, only constitutive assumptions for the heterogeneous reaction rate f generating the

evolution of the solid–liquid interface are required. In [35], a precipitation–dissolution rate

is discussed with a quite general precipitation part of the reaction rate. The formulation

of the dissolution part of the reaction rate by means of a Heaviside graph is standard

and is motivated and used, e. g., in [11, 34]. Contrarily, we assume a linear precipitation

rate f in this article which simplifies the model’s analysis in Section 4, since we hereby

avoid higher than quadratic order non-linearities.
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2.2 Effective model and its derivation

The main steps in deriving the effective model will be discussed at the end of this section

after introducing the main technical tools for the purpose of upscaling in a level set

framework. An extension of our effective model below, including fluid flow, was presented

in [35] for two spatial dimensions. In the following, we define the two- or three-dimensional

effective model (2.3)–(2.5), corresponding to the pore-scale model presented in Section 2.1:

θ∂tc0 −∇x · (D∇xc0) = σ
1

ρ
f(c0)c0 − σf(c0) in (0, T ) × Ω0 , (2.3a)

c0(t, x) = 0 in (0, T ) × ∂Ω0 , (2.3b)

c0(0, x) = c0(x) in Ω0 . (2.3c)

∂tL0 +
1

ρ
f(c0)|∇yL0| = 0 in (0, T ) × Y × Ω0 , (2.3d )

L0(0, x, y) = L0(x, y) in Y × Ω0 . (2.3e)

For each (t, x) ∈ (0, T ) × Ω0, Yl,0(t, x) := {y : L0(t, x, y) > 0}, and Γ0(t, x) := {y :

L0(t, x, y) = 0}. Moreover, θ :=
|Yl,0|
|Y | and σ :=

|Γl,0|
|Y | denote the porosity and specific

surface, respectively. We emphasize here that θ is strictly positive and, contrary to the

situation of rigid porous media, both θ and σ are functions of time and space. The

diffusion tensor D is defined by

Dij :=
1

|Y |

∫
Yl,0(t,x)

d (∂yiζj + δij) dy (2.4)

and standard cell problems for ζj for j = 1, 2, 3 are given by

−∇y · (∇yζj) = 0 in Yl,0(t, x) , (2.5a)

∇yζj · ν0 = −ej · ν0 on Γ0(t, x) , (2.5b)

1

|Y |

∫
Yl,0(t,x)

ζj dy = 0 , and ζj is Y -periodic . (2.5c)

Under the assumption of linear precipitation, i. e. f(c0) = kc0, Equation (2.3a) simplifies

to

θ∂tc0 −∇x · (D∇xc0) = σ
1

ρ
kc2

0 − σkc0 = τ̃c2
0 − σ̃c0 . (2.6)

The coefficients σ̃ := σk and τ̃ := τk := σ k
ρ

are related to the porosity θ by means of

geometry. In particular, the specific surface σ can be expressed as a function σ : (0, 1) → �
depending on the porosity θ; σ is non-negative and continuous in θ. If a parametrization

of the underlying cell geometry by a single parameter is possible the relations are further

discussed in Remark 2.2. A problem formulation involving (2.6) for such a simplified

geometric setting is further analysed in Section 4.
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Alternatively, it is reasonable to consider the re-scaling ĉ := θc0 and state the following

reformulation of the effective transport equation (2.3) for ĉ that reads

∂tĉ−∇x · (D̂∇xĉ− v̂ĉ) = −k̂ĉ

with D̂ := D
θ
, v̂ := D

θ2 ∇xθ, and k̂ = σ
θ
k. In general, the velocity v̂ is not divergence free

and k̂ has dimension 1/T, whereby σ
θ

is the specific surface area related to the pore space

instead of total volume.

We now comment on the upscaling of the pore-scale model (2.2a)–(2.2g). To that end,

we first revise the method of two-scale asymptotic expansion in a level set framework,

cf. [35], and point out its extension to the three-dimensional setting. Thereafter, this

method is applied to equations (2.2a)–(2.2g). Distinctions between the three-dimensional

derivations and the two-dimensional case are highlighted.

Owing to the separation of scales, in addition to the global variable x, a microscopic

variable y is introduced. Both variables are connected via the relation y = x/ε. As

a consequence, the expansions of the gradient and further spatial derivatives read

∇ = ∇x +
1

ε
∇y , ∇· = ∇x · +

1

ε
∇y· , Δ = Δx + 2

1

ε
∇x · ∇y +

1

ε2
Δy . (2.7a)

Furthermore, it is assumed that the concentration cε may be expanded in series of the

scale parameter ε, i. e.

cε(t, x) = c0(t, x, y) + εc1(t, x, y) + ε2c2(t, x, y) + . . . , y = x/ε . (2.7b)

In addition to the expansions (2.7), in the framework of an evolving porous media, also

the level set function Lε itself and the outer normal vector νε must be expanded. In

general, the expansion of the normal vector νε may be expressed in terms of the level set

function Lε, cf. [35]:

Lε(t, x) = L0(t, x, y) + εL1(t, x, y) + ε2L2(t, x, y) + . . . , y = x/ε , (2.8a)

νε = ν0 + εν1 + O(ε2) , (2.8b)

ν0 =
∇yL0

|∇yL0|
, ν1 =

∇xL0 + ∇yL1

|∇yL0|
− ∇xL0 · ∇yL0

|∇yL0|2
ν0 −

ν0 · ∇yL1

|∇yL0|
ν0 . (2.8c)

In two dimensions, with the definition of τ0 := ν⊥0 denoting the unit tangent on Γ0,

the representation ν1 = τ0
τ0·(∇xL0+∇yL1)

|∇yL0| holds true, cf. [35]. However, such a expression

may not be derived directly for the three-dimensional setting. This explicit representation

is, however, only relevant for the formulation of [35, Lemma 3.2.], which up to now

has been the basis for the purpose of upscaling in a level set framework. We extend

the theory of [35] by establishing quite analogously to the derivations in [35] new

versions of [35, Lemma 3.1.] and [35, Lemma 3.2.] for three dimensions. Later on,

these new formulations will be applied to our pore-scale model (2.2a)–(2.2g). Thereby,

F := d(∇xc0 + ∇yc1) and g = F · ν0 are chosen in the context of Lemmas 2 and 1,

respectively.
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Lemma 1 Let g(t, x, y) be a scalar function such that g(t, x, y) = 0 for y ∈ Γ0(t, x), x ∈ Ω0,

and t � 0. Then, for y ∈ Γ0(t, x), x ∈ Ω0, t � 0, it holds that

∇xg =
ν0 · ∇yg

∇yL0
∇xL0 .

[35, Lemma 3.1] and its proof directly transfer to the three-dimensional case as does [35,

Lemma 3.2]. However, the result has to be reformulated without using the tangent

vector τ0, which is not unique in three dimensions. We state this reformulation of

in [35, Lemma 3.2] in the following and highlight the crucial steps in its proof.

Lemma 2 Let F(t, x, y) be a vector-valued function such that ∇y ·F(t, x, y) = 0 on Y0(t, x) :

= {y|L0(t, x, y) < 0} and ν0 · F(t, x, y) = 0 on Γ0(t, x) for x ∈ Ω0, and t � 0. Then,

for y ∈ Γ0(t, x), x ∈ Ω0, t � 0, it holds that

∫
Γ0(t,x)

(
∇yL1

|∇yL0|
− ν0 · ∇yL1

|∇yL0|
ν0

)
· F − L1

|∇yL0|
ν0 · ∇y(ν0 · F) doy = 0 .

Proof The proof of Lemma 2 directly follows the lines of the proof in [35] by considering

the right derivative (denoted by ∂+
δ ) of the integrals

∫
Y δ
±
∇y · Fdy with respect to δ > 0,

where Y δ
±(t, x) := {y|L0(t, x, y) + δ[L1]±(t, x, y) < 0}. Therefore, in three dimensions, we

carefully evaluate the following expression:

∫
[0,1]2

(∂δν
δ |δ=0 · F + ∇y(ν0 · F) · ∂δk+|δ=0)| det((Dsk+)T (Dsk+))(s, 0)|

1
2 ds

= ∂δ

∫
Y δ

+

∇y · Fdy|δ=0 = 0 ,

where k+(., 0) : [0, 1]2 → Γδ
+ := {y|L0 + δ[L1]+ = 0} parametrizes the interface Γδ

+ of Y δ
+.

To this end, we consider the normal on Γδ
+ which we denote by νδ . We expand νδ via

νδ = ν0 + δνδ1 + . . .

with ν0 =
∇yL0

|∇yL0| being the normal corresponding to L0. Moreover, we have the represent-

ation

νδ =
∇y(L0 + δ[L1]+)

|∇y(L0 + δ[L1]+)|

which, by applying Taylor’s series, reads

νδ =
∇yL0

|∇yL0|
+

(
Id|∇yL0|2 −∇yL0 ⊗∇yL0

|∇yL0|3
)
δ∇y[L1]+ + . . . .

https://doi.org/10.1017/S0956792516000164 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000164


186 R. Schulz et al.

We aim to determine ∂δν
δ |δ=0 = νδ1 and considering the calculations above, we obtain

∂δν
δ |δ=0 =

∇y[L1]+
|∇yL0|

− ν0 · ∇y[L1]+
|∇yL0|

ν0 .

All further investigations follow directly the lines in [35]. �

Remark 2.1 In two dimensions, the above expression may be reformulated using the tangent

vector τ0 as

∂δν
δ |δ=0 =

τ0 · ∇y[L1]+
|∇yL0|

τ0 .

In deriving the effective model equations (2.3)–(2.5) in three dimensions, there are certain

aspects we would like to highlight:

(1) The zeroth-order expansion L0 of the level set function characterizes the zeroth-

order time evolving domain Yl,0(t, x) := {y : L0(t, x, y) > 0} and interface Γ0(t, x) :

= {y : L0(t, x, y) = 0}, [35].

(2) Lemmas 1 and 2 enter the upscaling procedure when analysing the zeroth-order

terms (2.9) of the transport equation (2.2a). We deduce the changes in the proof

that have to be done in the three-dimensional setting:

∂tc0 −∇x · (d∇xc0 + d∇yc1) −∇y · (d∇xc1 + d∇yc2) = 0 . (2.9)

The corresponding boundary condition (2.2b) is of order ε1. Using the notation λ =

− L1

|∇yL0| −
y·∇xL0

|∇yL0| and bearing in mind the additional terms that occur due to the

evolving pore geometry [35], it reads

(d∇xc1 + d∇yc2) · ν0 + (d∇xc0 + d∇yc1) · ν1

+ y · ∇x(d∇xc0 + d∇yc1) · ν0 + λν0 · ∇y(d∇xc0 + d∇yc1) · ν0 =
1

ρ
f(c0)(c0 − ρ) .

Defining F := d(∇xc0 +∇yc1), taking the mean 1
|Y |

∫
Yl (t,x)

·dy of (2.9) and applying

the previously stated boundary condition, we obtain by the transport theorem for

the diffusive term and Gauss’ theorem for third term in (2.9)

1

|Y |

∫
Yl

∂tc0 dy −∇x ·
(

1

|Y |

∫
Yl

(d∇xc0 + d∇yc1) dy

)
− 1

|Y |

∫
Γ0

∇xL0

|∇yL0|
· F doy

+
1

|Y |

∫
Γ0

F · ν1 + y · ∇x(F · ν0) + λν0 · ∇y(F · ν0) =
1

|Y |

∫
Γ0

1

ρ
f(c0)(c0 − ρ) doy .

Substituting λ = − L1

|∇yL0| −
y·∇xL0

|∇yL0| and defining g = F · ν0, Lemma 1 applies directly,

and certain terms are eliminated. By means of the boundary condition of order ε0,

it holds ν0 · F = 0 on Γ0(t, x) for x ∈ Ω0 and t � 0. With this property, (2.8c),

and Lemma 2, further terms cancel. Finally, inserting the cell problems (2.5) and
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Figure 1. Examples for cell geometries: (a) two-dimensional square, (b) three-dimensional cube,

(c) three-dimensional network.

the constitutive assumption on the velocity of the solid–liquid interface, we derive

θ∂tc0 −∇x ·
(
D∇xc0

)
=

1

|Y |

∫
Γ0(t,x)

1

ρ
f(c0)(c0 − ρ) doy = σ

1

ρ
f(c0)c0 − σf(c0).

2.3 Level set equation and geometry

Up to Section 2.2, the underlying microscopic geometry could have had quite arbitrary

shape. We aim to have a geometry at hand that may be parametrized by a single parameter

since it simplifies the investigation drastically in the following sense: As outlined below

the level set equation which is an hyperbolic equation then reduces to an ODE. Instead

of investigating the fully coupled PDE system (2.3)–(2.5), we restrict ourselves to a PDE–

ODE system. We are well aware that this setting is simplified and idealized. However,

on the other hand, it is numerically and analytically accessible and maintains the main

difficulties and interesting aspects such as degenerating coefficients. Finally, the required

assumptions on the geometry transfer directly to our assumption on the heterogeneous

reaction rate since it dictates the behaviour of the geometry. We may interpret the

situation as having local thermodynamic equilibrium or uniform precipitation preserving

the geometric structure within a unit cell. However, the crucial part is that the reaction

may nevertheless be x -dependent. This means that as time proceeds we have at best a

locally periodic setting as in [37], even if starting with a periodic setting. As a remark note

that under additional strong convection (which may be included in a straight forward

way to our model), concentration gradients could be levelled out. This would simplify

the situation drastically since it would lead to uniform precipitation within the whole

macroscopic domain instead of a uniform precipitation within the unit cell.

The latter setting enables us to define a generalized “radius” R completely characterizing

the geometrical setting. It is assumed that this parameter R changes uniformly within

the cell, which yields y-independence of R from y. In this case, the hyperbolic level set

equation (2.3d) reduces to an ODE for this “radius” R, see (2.10). According to the smooth

relation between “radius” and porosity, (2.10) may be transformed to an ODE for the

porosity, see (2.11).

For illustration, we consider that for every t ∈ [0, T ], the pore space and the cor-

responding boundary have shape (a), cf. Figure 1. However, further examples for
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Figure 2. Visualization of the coordinate transformation y �→ η(y) of the cell Y = [− 1
2
, 1

2
]2 (left)

and the transformed level set function L̃ = L̃(η) (right).

pore-scale geometries such as, e.g., shape (b) and (c), cf. Figure 1, and Y 1, Y 2, Y 3,

cf. Table 1, may be treated likewise to obtain (2.10). In the following, the single para-

meter R(t, x) ∈ [0, 1
2
], (t, x) ∈ (0, T ) × Ω0, characterizes the evolution of these shapes:

a) Yl(R(t, x)) := {y ∈ [− 1
2
, 1

2
]2 |R(t, x) < ‖y‖∞ < 1

2
} ,

Γ (R(t, x)) := {y ∈ [− 1
2
, 1

2
]2 | ‖y‖∞ = R(t, x)} ,

b) Yl(R(t, x)) := {y ∈ [− 1
2
, 1

2
]3 |R(t, x) < ‖y‖∞ < 1

2
} ,

Γ (R(t, x)) := {y ∈ [− 1
2
, 1

2
]3 | ‖y‖∞ = R(t, x)} ,

c) Yl(R(t, x)) := {y ∈ [− 1
2
, 1

2
]3 |R(t, x) < |yi|, |yj | < 1

2
for i, j = 1, 2, 3 , i 
= j} ,

Γ (R(t, x)) := {y ∈ [− 1
2
, 1

2
]3 | |yi| = R(t, x), |yj | � R(t, x) and |yk| � R(t, x)

for i, j, k = 1, 2, 3 , i 
= j 
= k 
= i} .

To derive the ODE that corresponds in case (a) to the level set equation (2.3d), we

introduce new coordinates

η :=

(
η1

η2

)
=

1√
2

(
1 −1

1 1

) (
y1

y2

)
.

With respect to these coordinates, an appropriate level set function is defined by

L̃(η) :=

{
η2 + |η1| −

√
2R if η2 � 0

−η2 + |η1| −
√

2R if η2 < 0

and the pore space can be rewritten as Yl(R) = {η ∈ �2|‖η‖1 ∈
√

2(R, 1/2)}. The

coordinate transformation and the level set function L̃ are visualized in Figure 2. Note
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that L̃ belongs to C(Yl(R)) ∩W 1,∞(Yl(R)). This yields

∇yL(y) =
1√
2
∇ηL̃

(
1 −1

1 1

)
=

1√
2

(1 − sgn η1, 1 + sgn η1) .

Finally, taking the mean of equation (2.3d) indeed simplifies to the ODE

∂tR =
1

|Y |

∫
Y

1 + | sgn η1|√
2

1

ρ
f(c0) =

1

ρ
f(c0) . (2.10)

Instead of the “radius” R(t, x) of the grains we are more interested in the porosity θ(t, x)

of the porous medium for each (t, x) ∈ (0, T ) × Ω0, which is nothing but the volume

of Yl(R(t, x)). The porosity θ depends smoothly on the “radius” R and vice versa.

Furthermore, with Dirac delta δ and specific surface σ, the coarea formula yields the

following relation describing the evolution of porosity

∂tθ = −1

ρ
f(c0)

1

|Y |

∫
Y

|∇yL|δ(L(t, x)) = −|L−1(0)|
|Y |

1

ρ
f(c0) = −σ(θ)

1

ρ
f(c0) ; (2.11)

compare also the first term on the right-hand side of (2.3a). Consequently, the level set

function, hence the evolution of the topology of the unit cell, is completely determined by

the ODE for the porosity (2.11). In case of linear precipitation, i. e. f(c0) = kc0, it holds

that

∂tθ = −σ(θ)
k

ρ
c0. (2.12)

Remark 2.2 The specific surface σ describes the change of porosity θ with respect to ra-

dius R up to constants. Contrarily, R is related to θ, i. e. |Γ (θ)| = σ(θ) =
(
( d
dR

θ) ◦ R
)
(θ),

cf. (2.10) and (2.11). For instance, in case of shape (a) defined in Figure 1, we have |Γ (θ)| =

4
√

1 − θ. Choosing instead the three-dimensional pendant (b) defined in Figure 1, we ob-

tain |Γ (θ)| = 6 3
√

(1 − θ)2. It is more challenging to describe a function σ as function of θ

corresponding to shape (c) defined in Figure 1, but at least we easily have |Γ (R(θ))| =

48(1
2
−R(θ))R(θ). However, since σ represents a polynomial with respect to the “radius” R,

it holds that σ : (0, 1) → � is a non-negative, smooth function with respect to θ provided

this is also true for R.

3 Cell problem and diffusion tensor

3.1 Analysis of the diffusion tensor

To analytically solve the cell problem{
−Δyζj = 0 in Yl(θ)

∇yζj · ν = −ej · ν on Γ (θ) ,
(3.1)

the interface Γ (θ) is not only assumed to evolve uniformly, cf. Section 2.3, but also to

remain regular, i.e. Γ (θ) is a Lipschitz boundary. For illustration purposes, we are assuming

in this section that the pore space Yl(θ) := Yl(R(θ)) is described by the three-dimensional
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shape (c) defined in Figure 1. In the following, we are first interested in estimating the

solutions of the cell problem. Second, we are interested in the smoothness properties of

the diffusion coefficient D : [0, 1) → �3×3 that depends on the porosity θ ∈ [0, 1) and is

defined componentwise by

Dij(θ) :=

∫
Yl (θ)

d
(
δij + ∂iζj(y)

)
dy if θ ∈ (0, 1)

and for vanishing porosity by Dij(0) := 0 for i, j = 1, 2, 3, cf. (2.4).

Similar to the approach in continuum mechanics and in [19], we first transform the

given cell problems (3.1) into cell problems on the fixed geometry Y0 := Yl(
1
2
) via the map

ϕθ : Yl(θ) → Y0 , ϕθ(y) :=

[(
1

2 − 4R(θ)

(
|yi| −

1

2

)
+

1

2

)
· sgn (yi)

]
i=1,2,3

.

We note that these transformations ϕθ belong to C∞(Yl(θ)) with the well-defined Jac-

obian (Jyϕ
θ)(y) = 1

2−4R(θ)
� for R(θ) < 1

2
. Let aθ : H1(Yl(θ)) × H1(Yl(θ)) → � denotes

the bilinear form corresponding to the Laplacian on Yl(θ). For all u, v ∈ H1(Yl(θ)), there

holds the equation

aθ(u, v) :=

∫
Yl (θ)

∇yu · ∇yv =

∫
Yl (θ)

∇y(ũ ◦ ϕθ) · ∇y(ṽ ◦ ϕθ)

=

∫
Yl (θ)

3∑
i=1

(
3∑

k=1

(∂kũ)(∂iϕ
θ
k)

) (
3∑

l=1

(∂l ṽ)(∂iϕ
θ
l )

)

= (2 − 4R(θ))−2

∫
Yl (θ)

(∇ỹ ũ)(ϕ
θ(y)) · (∇ỹ ṽ)(ϕ

θ(y))

= (2 − 4R(θ))−2

∫
Y0

(∇ỹ ũ)(ỹ) · (∇ỹ ṽ)(ỹ)|det(Jyϕ
θ)−1|

= (2 − 4R(θ))

∫
Y0

∇ỹ ũ · ∇ỹ ṽ , (3.2)

with ũ := u◦ (ϕθ)−1, ṽ := v ◦ (ϕθ)−1. Defining a matrix-valued function Aθ : Yl(θ) → �3×3,

Aθ
kl(ỹ) := |det(Jyϕ

θ)−1|
3∑

i=1

∂iϕ
θ
k(y)∂iϕ

θ
l (y) = δkl(2 − 4R(θ)),

we easily get the ellipticity of the operator L̃θ defined by

L̃θ(ũ) := −
3∑

k,l=1

Aθ
kl (∂kl ũ) = −(2 − 4R(θ))Δỹũ .

Due to (3.2), the weak solutions of the cell problems (3.1) are nothing but ζj := ζ̃j ◦
ϕθ ∈ H1(Yl(θ)), where ζ̃j ∈ H1(Y0) are the weak solutions of the ϕθ-transformed cell
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problems (3.3), {
L̃θ(ζ̃j) = 0 in Y0 ,

∇ỹ ζ̃j · ν0 = −(2 − 4R(θ))2ej · ν0 on Γ0 ,
(3.3)

whereby Γ0 := Γ ( 1
2
). These solutions ζ̃j are unique up to a constant. Similarly, the

diffusion tensor D can be expressed by integrals over the fixed domain Y0 via:

Dij(θ) =

∫
Yl (θ)

d (δij + ∂iζj) =

∫
Yl (θ)

d

(
δij +

3∑
k=1

(∂kζ̃j)(∂iϕ
θ
k)

)

=

∫
Yl (θ)

d
(
δij + ((∇ζ̃j) ◦ ϕθ) · ∂iϕ

θ
)

= d(2 − 4R(θ))3|Y0| + d(2 − 4R(θ))2
∫
Y0

(∂iζ̃j) .

Since we assume R : [0, 1) → (0, 1
2
) to be smooth with respect to θ, the crucial term on the

right-hand side investigating the smoothness of D is the integral
∫
Y0

(∂iζ̃j). This integral

can be estimated by the H1-norm of ζ̃j . Furthermore, for all θ1, θ2 ∈ (0, 1) and for the

corresponding weak solutions ζ̃j(θ1), ζ̃j(θ2) to (3.3), we may apply the elliptic theory to

obtain the inequality

∫
Y0

|∂iζ̃j(θ1) − ∂iζ̃j(θ2)| � |Y0|
1
2 ‖ζ̃j(θ1) − ζ̃j(θ2)‖H1(Y0)

� C|Y0|
1
2 ‖ej · ν0‖L2(Γ0)|R(θ1) − R(θ2)|2 . (3.4)

Since 2 − 4R(θ) is constant with respect to ỹ, the difference ζ̃j(θ1) − ζ̃j(θ2) satisfies (in a

weak sense) Δỹ(ζ̃j(θ1)− ζ̃j(θ2)) = 0 in Y0. Hence, we obtain the continuity of the diffusion

coefficient D in (0, 1). A similar estimate as in (3.4) yields the continuity in 0. Indeed

the tensor D belongs to C∞([0, 1)), since it inherits the regularity from the boundary

condition (3.3). This can be illustrated for the first derivative D
′
(θ) as follows: The unique

solution of {
L̃θ(ζ′j) = 0 in Y0

∇ỹζ
′
j · ν0 = 4(2 − 4R(θ))R′(θ)ej · ν0 on Γ0

is nothing but the first derivative of ζ̃j with respect to θ. Similar to (3.4), it holds

∫
Y0

|∂i(ζ
′
j(θ1) − ∂iζ

′
j(θ2)| � |Y0|

1
2 ‖ζ′j(θ1) − ζ′j(θ2)‖H1(Y0)

� C|Y0|
1
2 ‖ej · ν0‖L2(Γ0)

[
|R(θ1) − R(θ2)‖R′(θ1)| + |R(θ2)‖R′(θ1) − R′(θ2)|

]
such that D at least belongs to C1([0, 1)). Moreover, the diffusion tensor D is symmetric

and positive definite for every θ ∈ (0, 1), cf. [25]. In case of “radially” uniform evolution of

the microstructure, the diffusion tensor reduces to a scalar function D(θ) � 0, i. e. D(θ) =

D(θ)� with unit matrix �.
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Table 1. Cell geometries and corresponding computed tensors, illustrated for the three

considered families of cells Y i, for porosities of θ = 0.8 (top) and θ = 0.2 (bottom)

3.2 Numerical computations

We solve the cell problems (2.5) numerically in two space dimensions for three different

(evolving) cell geometries and compute the corresponding effective diffusion tensors as

defined in (2.4). The three different cells are denoted by Y i = Y i(R), i = 1, 2, 3, each of

which is linearly parametrized by a single parameter R. Table 1 illustrates the geometries of

the fluid phases for porosity θ = 0.8, which are possible initial configurations, and poros-

ity θ = 0.2, corresponding to configurations after a precipitation process has taken place.

The corresponding j = 1, 2 cell problems are solved using Raviart–Thomas elements of

lowest order [23] on unstructured triangular meshes. In using mixed finite elements, the

flux unknowns ξj := −∇yζj − ej , which have to be integrated for the computation of the

diffusion tensor, are computed directly. For the computation of the functional relation

between diffusion tensor and porosity, 100 sampling points are used on the porosity axis

in Figure 3. The meshes on the representative unit cells contain between 30,000 and

70,000 triangles. Figure 3 illustrates the eigenvalues of the computed tensors on Y i (for

diagonal tensors, the eigenvalues equal the entries). In this way, the dependency of the

diffusion tensor on the generalized “radius” R respectively on the porosity is highlighted:

The functional relation as highlighted theoretically in Section 3.1 is smooth. Moreover,

it is seen in Figure 3 that the diffusion tensor degenerates whenever the porosity tends

to zero, i. e. in the case of total clogging. Consistently, the diffusion tensor is unity in case

of vanishing microstructure, i. e. in the case of complete dissolution.

Explicit values of the diffusion tensor for porosities of θ = 0.2 and θ = 0.8 are stated

in Table 1. Due to the isotropic geometry of the cell, the diffusion tensors reduce to
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Figure 3. Functional relation between diffusion tensor’s eigenvalues λ1, λ2 and porosity, illustrated

for the three considered families of cells Y 1, Y 2, Y 3.

diagonal tensors D(θ)�2 in the first setting, i. e. the tensors are in fact scalar coefficients.

The second example accounts for anisotropic effects resulting in non-zero off-diagonal

elements. Finally, in the third example, a diagonal matrix is again the result; this time

with eigenvalues that do not coincide.

4 Analysis

In this section, we prove existence of solutions to the effective equations (2.3)–(2.3d)

with general functions τ and σ. To this end, we apply Schauder’s fixed point theorem

in strong solution spaces. Moreover, positivity of solutions and uniqueness is shown. Let

us introduce the following notations: ΩT := (0, T ) × Ω, ∂ΩT := (0, T ) × ∂Ω, and ‖ . ‖p
denoting the Lp-norm in Ω for p ∈ [1,∞]. For the reader’s convenience, we restate the

model equations under investigation in the following form (suppressing all indices etc.):

θ∂tc−∇ · (D(θ)∇c) = τ(θ)c2 − σ(θ)c in ΩT , (4.1a)

∂tθ = −τ(θ)c in ΩT , (4.1b)

c(t, x) = 0 on ∂ΩT , (4.1c)

c(0, x) = c0(x) in Ω , (4.1d )

θ(0, x) = θ0(x) in Ω . (4.1e)
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We denote the significant anisotropic Sobolev spaces by

X1 := W 1,2
r (ΩT ) = Lr(0, T ;W 2

r (Ω)) ∩W 1
r (0, T ;Lr(Ω)) ,

X2 := W
1− μ

2 ,2−μ
r (ΩT ) = Lr(0, T ;W 2−μ

r (Ω)) ∩W
1− μ

2
r (0, T ;Lr(Ω)) ,

where r > n+2 and μ > 0 is assumed to be sufficiently small, i.e. μ < 1− 2+n
r

. In this case, X2

is compactly embedded in W
3
4 ,

3
2

2r (ΩT ) as well as in C
1
2 ,1(ΩT ), cf. [7, Theorem 2.2], [4].

Theorem 4.1 (Local in time existence of strong solutions) Let Ω ⊂ �n, n = 2, 3, be a do-

main with C2-smooth boundary ∂Ω, r > n + 2, c0 ∈ W
2− 2

r
r (Ω), c0 � 0, satisfying the

compatibility condition c0|∂Ω ≡ 0 and θ0 ∈ W 2
r (Ω) with θ0(x) ∈ (δ, 1 − δ) ⊂ (0, 1) for all

x ∈ Ω and some δ ∈ (0, 1
2
). Furthermore, let D ∈ C1((0, 1)) be a positive scalar function and

σ ∈ C((0, 1)), τ ∈ C2((0, 1)). Then, there exists a constant T > 0 and at least one strong

solution (c, θ) ∈ X 2
1 solving (4.1).

Proof First, we define the constants

σmax := max
δ
2 �θ�1− δ

2

σ(θ) , τmax := max
δ
2 �θ�1− δ

2

τ(θ) , Dmax := max
δ
2 �θ�1− δ

2

D(θ) ,

τ1,max := max
δ
2 �θ�1− δ

2

τ′(θ) , τ2,max := max
δ
2 �θ�1− δ

2

τ′′(θ) , D1,max := max
δ
2 �θ�1− δ

2

D′(θ)

and Dmin := min δ
2 �θ�1− δ

2
D(θ) > 0 limiting the corresponding functions. We further define

the following non-empty, closed, and convex subset

K1 := {c ∈ X1 : ‖c‖X1
� K, sup

0�t�T

‖c(t)‖2r � 2‖c0‖2r and ‖∇c‖Lr(0,T ;L2r(Ω)) � Ka} ,

where K � 1 is assumed to be sufficiently large and a ∈ (0, 1) is a suitable constant chosen

below. Moreover, we set

K2 := {c ∈ X2 : c ∈ K1}
‖.‖X2 ,

K3 := {θ ∈ X2 : ‖θ − 1

2
‖L∞(ΩT ) � Kδ and sup

0�t�T

‖∇θ(t)‖2r � 2‖∇θ0‖2r}

with Kδ := 1
2
(1 − δ) < 1

2
. We note that c ∈ K2 inherits the properties sup0�t�T ‖c(t)‖2r �

2‖c0‖2r and ‖∇c‖Lr(0,T ;L2r(Ω)) � Ka from K1. The fixed-point operator F : K1 → K1 is

defined as the composition F := F2 ◦ F1 of F1 : K1 → K2 × K3 with (c̃, θ) := F1(ĉ),

whereby c̃ = ĉ and θ being the unique solution of the ODE

∂tθ = −τ(θ)ĉ (4.2)

and F2 : K2 × K3 → K1 with c := F2(c̃, θ) being the unique solution of the parabolic

equation

∂tc−∇ ·
(
D(θ)

θ
∇c

)
= −σ(θ)

θ
c̃ +

τ(θ)

θ
c̃2 +

D(θ)

θ2
∇θ · ∇c̃ . (4.3)
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F is a well-defined self-map on K1. Estimate (4.4) is obtained by Sobolev’s embedding

theorem in space and Hölder’s inequality in time for all c ∈ K1 and will be used several

times: ∫ T

0

‖c(s)‖W 1
2r(Ω) +

∫ T

0

‖c(s)‖W 1
∞(Ω) � CT 1− 1

r ‖c‖Lr(0,T ;W 2
r (Ω)) � CKT 1− 1

r , (4.4)

where C > 0 is an appropriate constant.

Let ĉ ∈ K1. Since X1 ⊂ X2 and τ is Lipschitz continuous with respect to θ, there

exists due to the existence theorem by Picard–Lindelöf, for all x ∈ Ω, a unique solution

θ(., x) ∈ C1([0, T (x)]), T (x) > 0, to the ODE

∂tθ(., x) = −τ(θ(., x))ĉ(., x) ,

such that θ(t, x) ∈ ( δ
2
, 1 − δ

2
) for all t ∈ [0, T (x)]. Integration over time yields by means

of (4.4)

δ − τmaxCK · T (x)1−
1
r � θ(t, x) � 1 − δ + τmaxCK · T (x)1−

1
r .

We choose T ∈ (0, 1) independently of x such that

δ

2
− τmaxCK · T 1− 1

r � 0 , (4.5)

i. e. T 1− 1
r � T1(K)1−

1
r := δ

2τmaxCK
. If we set T (x) := T for all x ∈ Ω, there holds

‖θ− 1
2
‖L∞(ΩT ) � Kδ . So we obtain a unique solution θ ∈ C1(0, T ;L∞(Ω)) of the ODE (4.2).

By testing the corresponding ODE

∂t(∂xiθ) = −(∂xi (τ ◦ θ))ĉ− τ(θ)∂xi ĉ (4.6)

for the spatial derivative ∂xiθ, i = 1, . . . , n, with |∂xiθ|2r−2∂xiθ, we have

1

2r

d

dt
‖∂xiθ(t)‖2r

2r = −
∫
Ω

τ′(θ)ĉ|∂xiθ|2r −
∫
Ω

τ(θ)(∂xi ĉ)|∂xiθ
2r−2|∂xiθ

� τ1,max‖ĉ‖∞‖∂xiθ‖2r
2r + τmax‖∂xi ĉ‖2r‖∂xiθ‖2r−1

2r .

Gronwall’s Lemma (cf. Theorem A.1) together with (4.4) yields

‖∂xiθ(t)‖2r
2r �

[
‖∂xiθ

0‖2r + τmax

∫ t

0

‖∂xi ĉ(t)‖2r

]2r

exp

(
2rτ1,max

∫ t

0

‖ĉ(t)‖∞
)

�
[
‖∂xiθ

0‖2r + τmaxCKT 1− 1
r

]2r

e(2rτ1,maxCKT
1− 1

r ) . (4.7)

At this point, we require a further smallness property of T : Let T � T1(K) also satisfy

T 1− 1
r � T2(K)1−

1
r := min{ ‖∇θ0‖2r

2τmaxCK
, 1

4r2τ1,maxCK
}. Since 3

2
e1/2r < 2, it holds that due to the

previous estimate

sup
0�t�T

‖∇θ(t)‖2r � 2‖∇θ0‖2r (4.8)
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holds. Testing the ODE

∂t(∂xj ∂xiθ) = (∂xj ∂xi(τ ◦ θ))ĉ− (∂xj (τ ◦ θ))(∂xi ĉ) − (∂xi(τ ◦ θ))(∂xj ĉ) − τ(θ)(∂xj ∂xi ĉ) (4.9)

which corresponds to the second-ordered derivative ∂xj ∂xiθ, i, j = 1, . . . , n, with test

function |∂xj ∂xiθ|r−2∂xj ∂xiθ yields θ ∈ X1. Thus, the solution θ indeed belongs to K3.

Now, consider the parabolic equation (4.3) for some (c̃, θ) ∈ F1(K1) ⊆ X 2
1 . The regularity

theorem (cf. Theorem A.2) for parabolic equations ensures the existence of a solution

c := F2(c̃, θ) belonging to X1. It remains to prove the self mapping property, i.e. c ∈ K1.

To this end, testing (4.3) with |c|2r−2c yields similarly to (4.7)

1

2r

d

dt
‖c(t)‖2r

2r + (2r − 1)
Dmin

1 − δ
2

‖(cr−1∇c)(t)‖2
2

� C ′(δ)
(
‖c̃‖2r + ‖c̃2‖2r + ‖∇θ‖2r‖∇c̃‖∞

)
‖c‖2r−1

2r (4.10)

with C ′(δ) := 4
δ2 (σmax + τmax + Dmax). Applying Gronwall’s Lemma (cf. Theorem A.1) as

well as (4.4) leads to

‖c(t)‖2r
2r �

[
‖c0‖2r + 2C ′(δ)

(
‖c0‖2r

∫ t

0

(1 + ‖c̃(t)‖∞) + ‖∇θ0‖2r

∫ t

0

‖∇c̃(t)‖∞
)]2r

�
[
‖c0‖2r + 2C ′(δ)

(
‖c0‖2rT + (‖c0‖2r + ‖∇θ0‖2r)CKT 1− 1

r

)]2r

. (4.11)

If necessary, we again reduce T � min{T1(K), T2(K}) such that

sup
0�t�T

‖c(t)‖2r � 2‖c0‖2r , (4.12)

e. g. by choosing T � T0 := 1
4C′(δ)

and T 1− 1
r � T

1− 1
r

3 (K) := ‖c0‖2r

4C′(δ)(‖c0‖2r+‖∇θ0‖2r)CK
.

Moreover, by the regularity theory for parabolic equations (cf. Theorem A.2), we obtain

the estimate

‖c‖X1
� CP

(
‖c0‖

W
2− 2

r
r (Ω)

+
∥∥∥ − σ(θ)

θ
c̃ +

τ(θ)

θ
c̃2 +

D(θ)

θ2
∇θ · ∇c̃

∥∥∥
Lr(ΩT )

)

� CP

(
‖c0‖

W
2− 2

r
r (Ω)

+ 2C ′(δ)
[
‖c0‖2rT

1
r

(
|Ω| 1

2r + 2‖c0‖2r

)
+ ‖∇θ0‖2rK

a
])

� K
1+a
2 � K , (4.13)

if a constant K := K(T0, ‖c0‖
W

2− 2
r

r

, ‖∇θ0‖2r) � 1 satisfies

K � max
{

1 ,

(
2CP

(
‖c0‖

W
2− 2

r
r (Ω)

+ 2C ′(δ)‖c0‖2rT
1
r

0

(
|Ω| 1

2r + 2‖c0‖2r

))) 2
1+a

,

×
(
4CPC

′(δ)‖∇θ0‖2r

) 2
1−a

}
.

Finally, it remains to bound the norm ‖∇c‖Lr(0,T ;L2r(Ω)) of the gradient to conclude c ∈ K1.

Implying r = 1 in (4.10), we obtain for a constant CD := CD(δ, ‖c0‖2r, ‖∇θ0‖2r) > 0 by
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means of the estimates (4.4), (4.8), and (4.12)

∫ t

0

‖∇c‖2
2 �

2 − δ

2Dmin

[
1

2

(
‖c0‖2

2 − ‖c‖2
2

)
+ C ′(δ)

∫ t

0

(
‖c̃‖2 + ‖c̃2‖2 + ‖∇θ‖2‖∇c̃‖∞

)
‖c‖2

]

� CD

(
1 + T + KT 1− 1

r

)
. (4.14)

Moreover, testing (4.3) with ∂tc ∈ Lr(ΩT ), integrating over time, and applying Young’s

inequality yields

‖∂tc‖2
L2(ΩT )+

Dmin

1 − δ
2

‖∇c(t)‖2
2 �

2

δ
Dmax‖∇c0‖2

2+
4

δ2
(D1,max+Dmax)τmax‖ĉ|∇c|2‖L1(ΩT )

+ C ′(δ)
[
C(ε)(T |Ω|) r−2

r ‖|c̃| +|c̃2| + |∇θ∇c̃|‖2
Lr(ΩT ) + ε‖∂tc‖2

L2(ΩT )

]
, (4.15)

since there holds

−
∫
Ω

∇ ·
(
D(θ)

θ
∇c

)
∂tc =

1

2

d

dt

∫
Ω

D(θ)

θ
|∇c|2 − 1

2

∫
Ω

(
D′(θ)

θ
− D(θ)

θ2

)
∂tθ|∇c|2 .

Since the crucial terms of the right-hand side of (4.15) can be estimated by using the fact

that ĉ ∈ C
1
2 ,1(ΩT ) with a 1

2
-Hölder constant M > 0 and applying (4.14), i.e.

‖ĉ|∇c|2‖L1(ΩT ) �

∫ T

0

‖ĉ(s) − ĉ(T )‖∞‖∇c(s)‖2
2 ds +

∫ T

0

‖ĉ(T )‖∞‖∇c(s)‖2
2 ds

� CD

(
1 + T + KT 1− 1

r

)(
MT

1
2 + K

)
(4.16)

and by estimating in the same manner as in (4.13)

‖c̃ + c̃2 + ∇θ∇c̃‖Lr(ΩT ) �
[
‖c0‖2rT

1
r

(
|Ω| 1

2r + 2‖c0‖2r

)
+ ‖∇θ0‖2rK

a
]
, (4.17)

respectively, we are able to estimate ‖∇c‖2 in the Lr-norm with respect to time. There

exist constants C
(i)
D := C

(i)
D (δ, ‖c0‖2r, ‖∇c0‖2, ‖∇θ0‖2r) > 0, i = 1, 2, such that we obtain by

combining (4.15), (4.16) as well as (4.17) and using (4.4)

‖∇c‖rLr((0,T );L2(Ω)) � C
(1)
D + C

(1)
D

(
1 + T + KT 1− 1

r

) r
2
(
T 1+ r

4 + T
1
2 K

r
2

)
+ C

(1)
D T

r
2

(
T

1
2 + K

r
2 a

)2

� C
(2)
D

(
1 + T 1+ 3

4 r +
(
T

1
2 + T

1
2 + 3

4 r
)
K

r
2 + T

r
2 Kr

)
.

Finally, we have for sufficiently large K and a ∈ ( 1
2
, 1) by reducing T ones again,

i.e. choosing T � T4(K) := 1
Kra � 1:

‖∇c‖rLr((0,T );L2(Ω)) � 5C (2)
D K

r
4 < C

−2r2(1− 1
2r )

S K
r
2 a , (4.18)

where CS > 0 denotes an adequate constant such that ‖u‖4r−2 � CS‖u‖W 1,r(Ω) for all

u ∈ W 1
r (Ω) by Sobolev’s embedding theorem W 1

r (Ω) ↪→ L4r−2(Ω). Hence, we obtain
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by choosing a := 4r−2
4r−1

∈ ( 1
2
, 1) and applying the interpolation inequality to time and

space-dependent functions [7, Theorem 2.5], [3]
(

1
2r

= 1
2r
· 1

2
+ (1 − 1

2r
) 1
4r−2

)
the estimate

‖∇c‖Lr(0,T ;L2r(Ω)) � ‖∇c‖
1
2r

Lr(0,T ;L2(Ω))
‖∇c‖1− 1

2r

Lr(0,T ;L4r−2(Ω))

� C
1− 1

2r

S ‖∇c‖
1
2r

Lr(0,T ;L2(Ω))
‖c‖1− 1

2r

X1
� K

a
4r ·K (1− 1

2r ) = Ka . (4.19)

Due to (4.8), (4.12), (4.13), and (4.19), the operator F : K1 → K1 is a well-defined.

Continuity of the operator F . To show continuity of F , we first prove continuity of

F1. Therefore, let (ĉk)k∈� ⊂ K1 converge to ĉ ∈ K1. Then, the sequence (F1(ĉk))k∈� =:

((c̃k, θk))k∈� ⊂ K2 ×K3 converges to F1(ĉ) =: (c̃, θ) ∈ K2 ×K3, since θk converges to θ in

the W 1
r ((0, T );Lr(Ω))-norm:

1

r

d

dt
‖θk − θ‖rr =

∫
Ω

|τ(θk)ĉk − τ(θ)ĉ||(θk − θ)r−1|

� τ1,max‖ĉk‖∞‖θk − θ‖rr + τmax‖ĉk − ĉ‖r‖θk − θ‖r−1
r ,

which yields by Gronwall’s Lemma (cf. Theorem A.1)

‖θk − θ‖rr �

[
τmax

∫ t

0

‖ĉk − ĉ‖r
]r

exp

(
τ1,max

∫ t

0

‖ĉk‖∞
)

;

and further with (4.2)

‖ d

dt
θk −

d

dt
θ‖r � τ1,max‖θk − θ‖r + ‖ĉk − ĉ‖r .

The convergence with respect to the Lr((0, T );W 1
r (Ω))-norm can be proven similarly,

cf. (4.7). To extend convergence to the space Lr((0, T );W 2
r (Ω)), we consider (4.9) and

manage the first term on the right-hand side by using (4.8) and θk, θ ∈ W 1,1
r (ΩT ) ⊂

C0,0(ΩT ), i.e. sup(t,x)∈ΩT
|τ′′(θk(t, x)) − τ′′(θ(t, x))| → 0 if k → ∞ since τ′′ is uniformly

continuous on [ δ
2
, 1 − δ

2
]. Hence, even the slightly modified operator F̃1 : K1 → X 2

1 ,

F̃1(ĉ) := F1(ĉ) (necessary for compactness below) is continuous.

To show continuity of F2, let now (c̃k, θk)k∈� ∈ K2 × K3 be an arbitrary sequence

converging to (c̃, θ) ∈ K2 × K3 with respect to the X2-norm. With ck := F2(c̃k, θk) ∈ X1,

k ∈ �, and c := F2(c̃, θ) ∈ X1, we set c̄k := ck − c. The function c̄k solves the parabolic

equation

∂tc̄k −∇·
(
D(θk)

θk
∇c̄k

)
= −σ(θk)

θk
c̃k +

σ(θ)

θ
c̃ +

τ(θk)

θk
c̃2
k −

τ(θ)

θ
c̃2 +

D(θk)

θ2
k

∇θk ·∇c̃k

− D(θ)

θ2
∇θ·∇c̃ + ∇·

((
D(θk)

θk
− D(θ)

θ

)
∇c

)
.
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However, solutions of this PDE fulfil the parabolic regularity estimate [7, Theorem 2.9]:

‖c̄‖X1
�

∥∥∥∥σ(θk)

θk
− σ(θ)

θ

∥∥∥∥
L∞(ΩT )

‖c̃k‖Lr(ΩT ) + ‖σ(θ)

θ
‖L∞(ΩT )‖c̃k − c̃‖Lr(ΩT )

+

∥∥∥∥τ(θk)θk
− τ(θ)

θ

∥∥∥∥
L∞(ΩT )

‖c̃k‖L∞(ΩT )‖c̃k‖Lr(ΩT )

+

∥∥∥∥τ(θ)θ
‖L∞(ΩT )

∥∥∥∥c̃k + c̃‖L∞(ΩT )‖c̃k − c̃‖Lr(ΩT )

+

∥∥∥∥D(θk)

θ2
k

− D(θ)

θ2

∥∥∥∥
L∞(ΩT )

‖∇θk‖L2r(ΩT )‖∇c̃k‖L2r(ΩT )

+

∥∥∥∥D(θ)

θ2
‖L∞(ΩT )

∥∥∥∥∇θk −∇θ‖L2r(ΩT )‖∇c̃k‖L2r(ΩT )

+

∥∥∥∥D(θ)

θ2
‖L∞(ΩT )

∥∥∥∥∇θ‖L2r(ΩT )‖∇c̃k −∇c̃‖L2r(ΩT )

+

∥∥∥∥D(θk)

θk
− D(θ)

θ

∥∥∥∥
L∞(ΩT )

‖Δc‖Lr(ΩT )

+

∥∥∥∥D′(θ)θ − D(θ)

θ2

∥∥∥∥
L∞(ΩT )

‖∇θk −∇θ‖L2r(ΩT )‖∇c‖L2r(ΩT )

+

∥∥∥∥D′(θk)θk − D(θk)

θ2
k

− D′(θ)θ − D(θ)

θ2

∥∥∥∥
L∞(ΩT )

‖∇θk‖L2r(ΩT )‖∇c‖L2r(ΩT )

�

(∥∥∥∥σ(θk)

θk
− σ(θ)

θ

∥∥∥∥
L∞(ΩT )

+

∥∥∥∥τ(θk)θk
− τ(θ)

θ

∥∥∥∥
L∞(ΩT )

+

∥∥∥∥D(θk)

θ2
k

− D(θ)

θ2

∥∥∥∥
L∞(ΩT )

+

∥∥∥∥D(θk)

θk
− D(θ)

θ

∥∥∥∥
L∞(ΩT )

+

∥∥∥∥D′(θk)θk−D(θk)

θ2
k

− D′(θ)θ−D(θ)

θ2

∥∥∥∥
L∞(ΩT )

)

× (‖c̃k‖X2
+ ‖c‖X1

)(1 + ‖c̃k‖X2
+ ‖θk‖X2

)

+

(
2σmax

δ
+ 2‖c̃k + c̃‖L∞(ΩT )

τmax

δ
+

4Dmax

δ2
‖θ‖X2

)
‖c̃k − c̃‖X2

+

(
4Dmax

δ2
‖c̃k‖X2

+ 4
D1,maxθ0,max + Dmax

δ2
‖c‖X1

)
‖θk − θ‖X2

. (4.20)

Due to the uniform continuity of the functions σ, τ, D on [ δ
2
, 1 − δ

2
] and even of the

derivative D′ with respect to θ the sequence (ck)k∈� converges in X1 to c since we assumed

the convergence of (c̃k, θk)k∈� to (c̃, θ) in X2, i. e. F is a continuous map onto K1.

Compactness of operator F . Let (ĉk)k∈� ⊂ K1 be a bounded sequence. In particular, it

holds ‖ĉk‖X1
� K for all k ∈ �. Let (c̃k, θk) := F1(ĉk) ∈ K2 × K3 be the corresponding

images. Due to the compact embedding X1 ⊂⊂ X2, cf. [7, Theorem 2.2], the sequence

(c̃k)k∈� is relatively compact. The relatively compactness of (θk)k∈� in X2 is given by the

continuity of F̃1 : K1 → X 2
1 , i. e. (θk)k∈� is bounded in X1. Hence, the compactness of F

https://doi.org/10.1017/S0956792516000164 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000164


200 R. Schulz et al.

is given by (4.20), since the images ck := F2(c̃k, θk) of a convergent subsequence denoted

again by (c̃k, θk)k∈� converge in K1.

Existence of a fixed point. We proved in the previous steps that the operator F is

a continuous and compact self-map on a non-empty closed and convex set K1. Thus,

Schauder’s fixed point theorem yields at least one local-in-time strong solution. �

Lemma 3 (Non-negativity) Let the conditions of Theorem 4.1 be satisfied. Additionally, let

σ and τ be non-negative functions. Then, the solution (c, θ) ∈ X 2
1 remains non-negative,

i. e. c(t, x) � 0 and θ(t, x) > 0 for all (t, x) ∈ ΩT .

Proof Constructing the proof of Theorem 4.1, we immediately see that θ(t, x) � δ
2
> 0.

Let Ω− be the support of [c]−. To prove the non-negativity of c, we test (4.1a) with −[c]−
and integrate over Ω− to obtain

δ

4

∫
Ω−

[c]2−(t) �
1

2

∫
Ω−

θ0[c]2−(0) −
∫ t

0

∫
Ω−

σ(θ)[c]2− −
∫ t

0

∫
Ω−

τ(θ)[c]3− � 0 .

Consequently, ‖[c]−(t)‖2
L2(Ω−) = 0 for every t, i. e. [c]−(t, x) = 0 for all (t, x) ∈ (0, T ) × Ω−

which implies c(t, x) � 0 for all (t, x) ∈ ΩT . �

Theorem 4.2 (Uniqueness) Let the conditions of Theorem 4.1 be satisfied. Additionally, let

σ be a Lipschitz continuous function. Then, the strong solution (c, θ) ∈ X 2
1 to (4.1) is unique

in X 2
1 .

Proof On the contrary, let us assume that additionally to the solution of problem (4.1)

constructed in Theorem 4.1 (c1, θ1) ∈ X 2
1 , there exists a solution called (c2, θ2) ∈ X 2

1 . Let

us first assume θ2(t, x) ∈ [ δ
2
, 1 − δ

2
] for all (t, x) ∈ ΩT , i. e. θ2 also remains strictly positive.

Setting c̄ := c1 − c2 and θ̄ := θ1 − θ2 and subtracting the systems of equations satisfied by

(c1, θ1) and (c2, θ2) gives

∂tc̄−∇ ·
(
D(θ1)

θ1
∇c̄

)
= −σ(θ1)

θ1
c1 +

σ(θ2)

θ2
c2 +

τ(θ1)

θ1
c2
1 −

τ(θ2)

θ2
c2
2 +

D(θ1)

θ2
1

∇θ1 · ∇c1

− D(θ2)

θ2
2

∇θ2 · ∇c2 + ∇ ·
((

D(θ1)

θ1
− D(θ2)

θ

)
∇c2

)
(4.21a)

∂tθ̄ = − (τ(θ1)c1 − τ(θ2)c2) (4.21b)

in ΩT with homogeneous initial data c̄(0) = θ̄(0) = 0 as well as the homogeneous

boundary condition c̄ = 0. Let Lσ , Lτ, LD , and LD,2 denote the Lipschitz constants of

the maps σ
θ
, τ

θ
, D

θ
, and D

θ2 , respectively. We use (c̄, θ̄) as the test function in the weak

formulation of (4.21) to obtain

1

2

d

dt
‖θ̄‖2

2 �

∫
Ω

|θ̄|
[
|τ(θ1)| |c̄| + |c2| |τ(θ1) − τ(θ2)|

]
�

τmax

2

(
‖c̄‖2

2 + ‖θ̄‖2
2

)
+ τ1,max sup

0�t�T

‖c2(t)‖∞‖θ̄‖2
2 (4.22)
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as well as

1

2

d

dt
‖c̄‖2

2 +
Dmin

1 − δ
2

‖∇c̄‖2
2 �

2σmax

δ
‖c̄‖2

2 +
Lσ

2
sup

0�t�T

‖c2(t)‖∞
(
‖c̄‖2

2 + ‖θ̄‖2
2

)

+
4τmax

δ
max
i=1,2

sup
0�t�T

‖ci(t)‖∞ ‖c̄‖2
2 +

Lτ

2

(
sup

0�t�T

‖c2(t)‖∞
)2 (

‖c̄‖2
2 + ‖θ̄‖2

2

)
+

LD,2

2
sup

0�t�T

‖∇θ1(t)‖∞ sup
0�t�T

‖∇c1(t)‖∞
(
‖c̄‖2

2 + ‖θ̄‖2
2

)
+

8Dmax

δ2

(
sup

0�t�T

‖∇θ1(t)‖∞
(
C(ε)‖c̄‖2

2 + ε‖∇c̄‖2
2

)
+ sup

0�t�T

‖∇c2(t)‖∞
(
‖c̄‖2

2 + ‖∇θ̄‖2
2

))

+
LD

2
sup

0�t�T

‖∇c2‖∞
(
C(ε)‖θ̄‖2

2 + ε‖∇c̄‖2
2

)
, (4.23)

where ε > 0 is chosen so small that the terms on the right-hand side of (4.23) dealing

with ∇c̄ can be absorbed by diffusion term. Due to the last term of inequality (4.23), we

also need an estimate for ∇θ̄. Since ∇θ̄ satisfies the ODE

∂t(∇θ̄) = −
(
τ′(θ1)c1∇θ1 − τ′(θ2)c2∇θ2 + τ(θ1)∇c1 − τ(θ2)∇c2

)
,

we obtain by testing this ODE with ∇θ̄ similarly to the previous estimates

1

2

d

dt
‖∇θ̄‖2

2 �
τ2,max

2
sup

0�t�T

‖c1(t)‖∞ sup
0�t�T

‖∇θ1(t)‖∞
(
‖∇θ̄‖2

2 + ‖θ̄‖2
2

)
+

τ1,max

2
sup

0�t�T

‖∇θ1(t)‖∞
(
‖∇θ̄‖2

2 + ‖c̄‖2
2

)
+ τ1,max sup

0�t�T

‖c2(t)‖∞‖∇θ̄‖2
2

+
τ1,max

2
sup

0�t�T

‖∇c1(t)‖∞
(
‖∇θ̄‖2

2 + ‖θ̄‖2
2

)
+

τmax

2

(
C(ε)‖∇θ̄‖2

2 + ε‖∇c̄‖2
2

)
. (4.24)

We add (4.22)—(4.24). Then, for the function B(c̄, θ̄) := 1
2
(‖c̄‖2

2 + ‖θ̄‖2
2 + ‖∇θ̄‖2

2) it holds

d

dt
B(c̄, θ̄) � Ψ (t)B(c̄, θ̄) for a.e. t ∈ (0, T ) ,

where Ψ is a non-negative measurable function in t. By Gronwall’s inequality, B(c̄, θ̄) = 0

for a.e. t which implies ‖c̄‖2
2 + ‖θ̄‖2

2 = 0. This shows that the solution (c, θ) exists uniquely.

Let us now suppose inf0�t�T ‖θ2(t)‖∞ < δ
2
. Since θ2 ∈ X1 ↪→ C

1
2 ,1(ΩT ), there exists T1 ∈

(0, T ) such that inf0�t�T1
‖θ2(t)‖∞ ∈ ( δ

4
, δ

2
). Applying the preceding proof of uniqueness

on the time interval (0, T1) yields equality of the solutions (c1, θ1) and (c2, θ2) in (0, T1)×Ω.

But inf0�t�T1
‖θ2(t)‖∞ = inf0�t�T1

‖θ1(t)‖∞ � δ
2

contradicts the supposition. We argue in

the same manner to assure sup0�t�T ‖θ2(t)‖∞ � 1 − δ
2
. �

Due to (4.5), (4.8), (4.12), and (4.18), the existence interval (0, T ) of the unique solution

(c, θ) ∈ X 2
1 to (4.1) can even be estimated from below by

T � min{T0, T1(K), T2(K), T3(K), T4(K)} .
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The next result states extensibility of the existence interval of the strong solution to (4.1)

until the phenomena of pore-clogging appears at time Tclog > 0. This can directly

be proven under the assumption of more regularity on the data since the property

sup0�t�T ‖c(t)‖
W

2−2/r
r (Ω)

< ∞ for all T < Tclog is needed.

Corollary 1 (Solvability up to clogging) Let the conditions of Theorems 4.1, 4.2, and

Lemma 3 be satisfied with the additional regularity assumptions c0 ∈ W
4−2/r
r (Ω), θ0 ∈

W
3−2/r
r (Ω), D ∈ C3((0, 1)) and σ ∈ C2((0, 1)). Suppose also the compatibility conditions

(∇θ0 · ∇c0)|∂Ω ≡ 0 and Δc0|∂Ω ≡ 0. Moreover, let (0, T ) be the maximal existence interval

of the unique non-negative solution (c, θ) of (4.1) belonging to X 2
1 with θ(t, x) ∈ (0, 1)

for all (t, x) ∈ (0, T ) × Ω, i. e. (c, θ) can not be extended to a non-negative solution

(c̃, θ̃) ∈ W 1,2
r ((0, T̃ ) × Ω) for some T̃ > T . Then, there holds either

lim
t↗T

inf
x∈Ω

θ(t, x) = 0 or T = ∞ .

Proof Let us suppose T < ∞ and there exists δ′ ∈ (0, 1
2
) such that infx∈Ω θ(t, x) � δ′

for all t ∈ (0, T ), where (0, T ) denotes the maximal existence interval of the solution

(c, θ) ∈ X 2
1 . We obtain with (4.7) and (4.11)

sup
0�t�T

‖c(t)‖2r + sup
0�t�T

‖∇θ(t)‖2r < ∞ .

We consider the PDE

θ∂tc
′ −∇ · (D(θ)∇c′) = (3τ(θ)c− σ(θ))c′ − τ′(θ)τ(θ)c3 + σ′(θ)τ(θ)c2

−∇ · (D′(θ)τ(θ)c∇c) in ΩT

c′(t, x) = 0 on ∂ΩT

c′(0) =
1

θ0

[
τ(θ0)(c0)2 − σ(θ0)c0 + ∇ · (D(θ0)∇c0)

]
in Ω.

corresponding to c′ := ∂tc with c′(0) ∈ W
2− 2

r
r (Ω). In the same way as in (4.13) of the

proof of Theorem 4.1, we conclude c′ ∈ W 1,2
r (ΩT ) ⊂ C(ΩT ). Since c satisfies the elliptic

equation

−∇ · (D(θ)∇c) = τ(θ)c2 − σ(θ)c− θ∂tc

for each fixed t ∈ (0, T ) elliptic Lp-regularity theory [9] yields

‖D2c‖r � C‖τ(θ)c2 − σ(θ)c− θ∂tc‖r + ‖c‖2

and hence sup0�t�T ‖c(t)‖W 2
r (Ω) < ∞. We even obtain c ∈ C(0, T ;W

2− 2
r

r (Ω)) by Aubin–

Lions compactness lemma.

We now set T̃ := min{T̃0, T̃1(K̃), T̃2(K̃), T̃3(K̃), T̃4(K̃)} > 0, where K̃ and T̃i, i =

0, . . . , 3, denotes the modified constants K and Ti introduced in the proof of Theorem 4.1

by replacing δ, ‖c0‖2r , ‖∇θ0‖2r and ‖c0‖
W

2−2/r
r (Ω)

with the bounds δ′, sup0�t�T ‖c(t)‖2r ,

sup0�t�T ‖∇θ(t)‖2r and sup0�t�T ‖c(t)‖
W

2−2/r
r (Ω)

, respectively. Furthermore, let t̃ := T −
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T̃ /2. Then, Theorem 4.1 yields a strong solution (c̃, θ̃) on (̃t, t̃+T̃ ) with initial data (c(̃t), θ(̃t))

which coincides by Theorem 4.2 with (c, θ) on (0, T ), i. e. (c, θ) can be extended to

(0, T + T̃ /2). This contradicts the assumption on (0, T ) being the maximal existence

interval. �

Remark 4.1 For the previous result, it suffices to assume the weakened additional integrabil-

ity assumptions c0 ∈ W
4−2/κ
κ (Ω), θ0 ∈ W

3−2/κ
κ (Ω) with κ > 1 + n

2
. With such a choice of κ,

the inclusion W 1,2
κ (ΩT ) ⊂ C(ΩT ) holds. Moreover, we obtain by parabolic regularity theory

(cf. Theorem A.2) c′ ∈ W 1,2
κ (ΩT ). In contrast to (4.13) in the proof of Theorem 4.1, the

corresponding norm must not be estimated by a constant K and thus there is no need for

the solution to belong to C
1
2 ,1(ΩT ).

In either case, there holds the embedding W
3− 2

κ
κ (Ω) ⊂ C1(Ω). Thus, the restriction ∇θ0|∂Ω

to the boundary ∂Ω is reasonable to ensure that the compatibility condition is well-defined.

Let n = 2 and r = 2. Suppose we have a local-in-time strong solution c, θ ∈ W
1,2
2 (ΩT )

for example, by regularizing a weak solution. The extension of this solution up to clogging

at Tclog > 0 could be done without additional assumptions on the data since due to the

embedding W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;W 2,2(Ω)) ⊂ C(0, T ;W 1,2(Ω)) there already holds

sup0�t�T ‖c(t)‖W 1
2 (Ω) < ∞ for all T < Tclog.

5 Conclusion

We investigated a diffusion–precipitation model in an evolving porous medium. Its up-

scaling was performed and the resulting model was analysed. In detail, we first generalized

the method of two-scale asymptotic expansion in a level set framework [35] for three spa-

tial dimensions. Applying this method to the diffusion–precipitation model, an upscaled,

quadratically non-linear diffusion equation with effective, time- and space-dependent

coefficients was obtained. The regularity of these coefficients was analysed and possible

degeneration of the diffusion tensor with respect to porosity was illustrated by numerical

simulations.

The second major aspect of this work was the analysis of the non-linear PDE coupled

to an ODE. We proved positivity, existence, and uniqueness of a strong solution up

to a possible clogging phenomena by applying Schauder’s fixed point theorem. In this

respect, the obtained results extend the understanding of diffusion–precipitation models

presented in or based on [11, 35].

A limitation of our work that could easily be overcome, is the restriction to a single

parameter. More general or complex geometries being described by several independent

parameters would lead to a system of ODEs in the respective parameters. Such a situation

can be analysed along the same lines as in Sections 3 and 4. Considering the full PDE–PDE

problem (including the level-set equation) instead needs different analytical tools.

A further limitation of our analysis is the fact that we did not include the dissolution

process to our analysis. This could introduce further complications as it is commonly

modelled by a Heaviside graph which is a multi-valued function [10, 34]. To handle

the multi-valuedness, a regularization of the Heaviside graph must be performed. The

main issue in using the regularization technique is obtaining a-priori estimates that are
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independent of the regularization parameter with the help of which the author passes to

the limit as the regularization parameter tends to zero. Contrary to our investigations,

applying this approach additionally to evolving porous media seems reasonable for

defining solutions in a weaker space, e. g. c(t) ∈ W 1,r(Ω) for a.e. t.

Further work needs to be undertaken to extend our findings to the case of several

mobile and immobile species being present in an evolving porous medium. In [12], multi-

species, diffusion–reaction-systems including non-linear, homogeneous reactions following

the mass action law are investigated and the existence of a unique, positive, and global

strong solution is shown in appropriate function spaces.

Combining all these approaches would likely be a reasonable way to tackle compre-

hensive diffusion–precipitation-reaction systems in evolving porous media.
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Mécanique 335(7), 357–362.

[20] Peter, P. (2007) Homogenisation of a chemical degradation mechanism inducing an evolving

microstructure. Comptes Rendus Mécanique 335(11), 679–684.
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Appendix A

A.1 Variables and parameters

Here, L denotes a characteristic length, T a characteristic time, and N the amount of

a substance.

·0 physical quantity of order ε0

·0 initial values
·ε physical quantity on pore-scale
· y-averaged physical quantity
[·]± positive/negative part of ·, i.e. · = [·]+ − [·]−
∇ 1/L gradient
∂t 1/T time derivative
c N/L3 concentration
d L2/T diffusivity in the fluid
D L2/T diffusion tensor
D L2/T scalar diffusion
δij − Kronecker delta
ej − jth unit vector
ε − scale parameter, ratio of pore size to domain size
f N/L2/T surface reaction rate
Γ L2 solid–liquid interface
Γ0 L2 solid–liquid interface within unit cell
Γε L2 interior boundary of Ωε

Γ i,j,k
ε L2 solid–liquid interface within scaled unit cell

k L/T rate coefficient

k̂ 1/T rate coefficient
L − level set function
ν − outer unit normal
Ω L3 global domain
∂Ω L2 exterior boundary
Ωε L3 periodic, perforated domain
R L parametrization of geometry
ρ N/L3 density of the solid phase
σ 1/L specific surface area
t T time
τ rescaled specific surface area
θ = |Yl |/|Y | − water content = porosity
vn L/T normal velocity of the solid–liquid interface
x L global space variable
y L microscopic space variable
Y L3 unit cell

Y i,j,k
ε L3 scaled unit cell

Yl L3 fluid phase within unit cell
Yl,0 L3 fluid phase within unit cell

Y
i,j,k
l,ε L3 fluid phase within scaled unit cell

Ys L3 solid phase within unit cell

Y
i,j,k
s,ε L3 solid phase within scaled unit cell

https://doi.org/10.1017/S0956792516000164 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792516000164


Strong solvability up to clogging 207

A.2 Inequalities and theorems

Theorem A.1 (Gronwall’s inequality [33]) . Let F1 and F2 be non-negative and integrable

functions on [0, T ] and let γ ∈ (0, 1) as well as C > 0 be constants. Assume that the

function f ∈ C([0, T ]) satisfies

f(t) � C +

∫ t

0

F1(s)f(s)1−γ ds +

∫ t

0

F2(s)f(s) ds

for all t ∈ [0, T ]. Then, the inequality

f(t) �

[
Cγ + γ

∫ t

0

F1(s) ds

] 1
γ

exp

(∫ t

0

F2(s) ds

)

holds for all t ∈ [0, T ].

Theorem A.2 (Parabolic regularity theory [7, Theorem 2.9]) . Suppose Ω ⊂ �n is a domain

with C2-smooth boundary ∂Ω, 3
2

= r > 1, A is a bounded and elliptic tensor whose coefficients

belong to C0(ΩT ) ∩ Ls(0, T ;W 1
s (Ω)) with s > max(r, n + 2). Suppose f ∈ Lr(ΩT ), u0 ∈

W
2−2/r
r (Ω), and U0 ∈ W

1−1/(2r),2−1/r
r (∂ΩT ). In the case of r > 3

2
, let the initial and boundary

data be compatible in the sense U0(0, ·) = u0 on ∂Ω. Then, the solution u of

∂tu−∇ · (A∇u) = f in ΩT

u = U0 on ∂ΩT

u(0, ·) = u0 in Ω

is an element of W 1,2
r (ΩT ) and satisfies the a priori estimate

‖u‖
W

1,2
r (ΩT ) � C

(
‖f‖Lr(ΩT ) + ‖U0‖W 1−1/(2r),2−1/r

r (∂ΩT )
+ ‖u0‖W 2−2/r

r (Ω)

)
with a constant C independent of f, U0, and u0.
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