
J. Inst. Math. Jussieu (2020) 19(4), 1211–1257

doi:10.1017/S1474748018000373 c© Cambridge University Press 2018

1211

(G, µ)-DISPLAYS AND RAPOPORT–ZINK SPACES
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Abstract Let (G, µ) be a pair of a reductive group G over the p-adic integers and a minuscule cocharacter

µ of G defined over an unramified extension. We introduce and study ‘(G, µ)-displays’ which generalize
Zink’s Witt vector displays. We use these to define certain Rapoport–Zink formal schemes purely group

theoretically, i.e. without p-divisible groups.
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1. Introduction

In the theory of Shimura varieties, as interpreted by Deligne [9], one starts with a

‘Shimura datum’ (G, X). This is a pair of a (connected) reductive algebraic group

G over the field of rational numbers Q, and a symmetric Hermitian domain X =
{h} for G(R) given as a G(R)-conjugacy class of an algebraic group homomorphism

h : C∗→ GR over the real numbers R, that satisfies certain axioms. For each open

compact subgroup K of the finite adeles G(A f ), one considers the Shimura variety

ShK (G, X) = G(Q)\(X ×G(A f )/K ); this complex analytic space is actually an algebraic

variety with a canonical model over a number field, the so-called reflex field of the pair

(G, X).
The proposal that there should exist a similar theory of ‘p-adic local Shimura varieties’

was recently put forward by Rapoport and Viehmann [21]. The current paper can be

viewed as a contribution to this theory. In [21], one starts with the ‘local Shimura datum’.

This is a triple (G, {µ}, [b]) consisting of a connected reductive algebraic group G over

Qp, a conjugacy class {µ} of minuscule cocharacters of GQp
, and a σ -conjugacy class [b]

of elements in G(L), satisfying some simple axioms. (Here, L is the completion of the

maximal unramified extension of Qp and σ the canonical lift of Frobenius.) For each open

compact subgroup K ⊂ G(Qp) we should have the local Shimura variety MK (G, {µ}, [b]);
this is expected to be a rigid analytic space with a canonical model over the ‘local

reflex field’ which is a finite extension E of Qp that depends only on (G, {µ}). See [21]

for more details and expected properties of the local Shimura varieties. Examples of

such local Shimura varieties have first been constructed in the work of Rapoport and
Zink [22] in some special cases. There, they appear as covers of the generic fibers of

certain formal schemes over the ring of integers OE . These formal schemes (which we

call Rapoport–Zink formal schemes) are moduli spaces parametrizing p-divisible groups

(with additional structure) with a quasi-isogeny to a fixed p-divisible group. They can

be viewed as integral models of the desired local Shimura varieties.

In this paper, we consider the case in which the local Shimura datum is unramified. In

particular, the open compact subgroup K is maximal hyperspecial. Then, starting from

(G, {µ}, [b]), we give a functor RZG,µ,b on p-nilpotent algebras. As we explain below, this

functor has a direct group theoretic definition which uses only G, suitable representatives

µ and b, and involves rings of Witt vectors. We conjecture that RZG,µ,b is represented

by a formal scheme which should then be an integral model of the sought-after local
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Shimura variety for this hyperspecial level. We essentially show this conjecture when the

local Shimura datum is of Hodge type, i.e. when it embedds into a local Shimura datum

for GLn .

The main tool we use is a variation of the theory of Zink displays. By the work of Zink

and Lau, (formal) p-divisible groups over a p-adically complete and separated algebra R
are classified by displays. These are projective finitely generated modules P over the ring

of Witt vectors W (R) with additional structure given by a suitable filtration I (R)P ⊂
Q ⊂ P and a Frobenius semi-linear operator V−1

: Q → P that satisfy certain axioms.

Here, I (R) is the kernel of the projection w0 : W (R)→ R given by w0(r0, r1, . . .) = r0.

In this paper, we develop a theory of displays ‘with (G, µ)-structure’: Instead of

projective W (R)-modules, we use G-torsors over W (R) or, equivalently, L+G-torsors over

R. Here, G is a reductive group scheme over Zp and µ is a (minuscule) cocharacter of

G defined over a finite unramified extension W (k0). Then L+G is the positive ‘Witt

loop group scheme of G’ defined by L+G(R) = G(W (R)). To explain the definition of

(G, µ)-displays we need to introduce some more objects: We let Hµ be the subgroup

scheme of L+GW (k0) with R-valued points Hµ(R) given by those g ∈ G(W (R)) whose

projection g0 ∈ G(R) lands in the R-points of the parabolic subgroup Pµ ⊂ G associated

to µ. We then construct the ‘divided Frobenius’ which is a group scheme homomorphism

8G,µ : Hµ
→ L+GW (k0)

such that, for h ∈ Hµ(R), we have

8G,µ(h) = µσ (p) · F(h) ·µσ (p)−1

in G(W (R)[1/p]). Here F is induced by the Frobenius on W (R).

Definition 1.0.1. A (G, µ)-display is a triple D := (P, Q, u) which we can write

P ←↩ Q
u
−→ P,

where P is a L+G-torsor and Q a Hµ-torsor. We ask that

P = Q×Hµ L+GW (k0)

and that u is a morphism compatible with the actions on Q and P and with 8G,µ, in

the sense that u(q · h) = u(q) ·8G,µ(h), for all q ∈ Q(R), h ∈ Hµ(R).

(This definition first appeared in [3], see also [26] for a similar construction. One can

view this structure as formally similar to that of a Drinfeld shtuka with W (R) replacing

the affine ring R[t] of a curve.)

Locally the morphism u is given by a point of L+G and we can see that (G, µ)-displays

are objects of the quotient stack

[L+GW (k0)/8G,µ Hµ
]

where the action of Hµ is by 8G,µ-conjugation: g · h := h−1g8G,µ(h).
Apparently, the notion of a (G, µ)-display is sufficiently well-behaved and we can

generalize several of the results of Zink on Witt vector displays, for example, about
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deformation theory. We can also define a notion of a G-quasi-isogeny between two

(G, µ)-displays and show that a triple (G, µ, b) allows us to give a ‘base-point’

(G, µ)-display D0 defined over k = k̄0. With these ingredients, we now describe the

‘Rapoport–Zink functor’ RZG,µ,b:

By definition, RZG,µ,b sends a p-nilpotent W (k)-algebra R to the set of isomorphism

classes of pairs (D, ρ), where D is a (G, µ)-display over R, and ρ : D×R R/pR 99K D0×k
R/pR is a G-quasi-isogeny.

We can also view RZG,µ,b as given by a quotient stack. Set LG for the Witt loop group

scheme of G given by LG(R) = G(W (R)[1/p]). Then RZG,µ,b is given by the isomorphism

classes of objects of the (fpqc, or étale) quotient stack

RZG,µ,b := [(L+G×LG,µ,b LG)/Hµ
]

for the action of Hµ given by

(U, g) · h = (h−1
·U ·8G,µ(h), g · h).

Here, the fiber product (L+G×LG,µ,b LG)(R) is by definition the set of pairs (U, g) with

U ∈ L+G(R), g ∈ LG(R), such that

g−1bF(g) = Uµσ (p)

in LG(R). The σ -centralizer group

Jb(Qp) = { j ∈ G(L) | j−1bσ( j) = b}

acts on RZG,µ,b by

j · (U, g) = (U, j · g).

It follows from the definition that the k-valued points of RZG,µ,b are given by the affine

Deligne–Lusztig set

RZG,µ,b(k) = {g ∈ G(L) | g−1bσ(g) ∈ G(W )µσ (p)G(W )}/G(W ).

Here, W = W (k), L = W (k)[1/p].
Assuming an additional mild condition on the slopes of b, we conjecture that the functor

RZG,b,µ is representable by a formal W -scheme which is formally locally of finite type and

W -formally smooth. For G = GLn , and when b has no zero slopes, this follows from the

results of Rapoport–Zink and Zink and Lau. Indeed, in that case, the results of Zink and

Lau imply that our functor is equivalent to the functor of isomorphism classes of (formal)

p-divisible groups with a quasi-isogeny to a fixed p-divisible group considered in [22];

the representability of that functor is one of the main results of loc. cit. For more general

(G, µ), we show that pairs (D, ρ) over R have no automorphisms when R is Noetherian.

When (G, µ) is of Hodge type, i.e. when there is an embedding i : G ↪→ GLn with

i ·µ conjugate to one of the standard minuscule cocharacters of GLn , we show that the

restriction of the functor RZG,µ,b to Noetherian algebras is representable as desired. This

is one of the main results of the paper. The basic idea of the proof is as follows: We

show (Corollary 5.2.6) that when (G, µ) ↪→ (G ′, µ′) is an embedding of local Shimura

data, the corresponding morphism of stacks RZG,µ,b → RZG ′,µ′,i(b), when restricted to
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Noetherian algebras, is relatively representable by a closed immersion. (Proving this is,

maybe surprisingly, involved; the main step is the descent result of Proposition 5.2.5. Part

of the difficulty comes from the need to handle the nilradical of various rings that appear

in the argument.) In the Hodge type case, we have an embedding (G, µ) ↪→ (GLn, µ
′)

and RZGLn ,µ′,i(b) is representable by the results of Zink, Lau, and Rapoport–Zink as

explained above. The result follows by combining these two statements. (In all of this,

we have to assume that the slopes of i(b) do not include 0.)

A construction of Rapoport–Zink formal schemes in the Hodge type case was also

given by Kim [15], and, under an additional condition, independently by Howard and

the second author [14]. It is easy to see that, in the Hodge type case, the formal scheme

representing RZG,µ,b given in this paper coincides with the corresponding formal schemes

constructed in [22] (in the PEL and EL cases), in [15], and in [14]. Hence, our results

give a unified group theoretic description of these formal schemes as moduli functors

and describe their R-valued points for all Noetherian algebras R. In particular, they

imply the existence of isomorphisms between ‘classical’ Rapoport–Zink spaces when the

corresponding local Shimura data are isomorphic (for example, because of exceptional

isomorphisms between the underlying groups); this answers a question of Rapoport.

Let us also mention here that the restriction of our functors to perfect k-algebras

has already appeared in the work of Zhu [27] (see also [2]). In fact, when we consider

functors with values in perfect algebras there is a more comprehensive theory that

employs the ‘Witt vector affine Grassmannian’ which does not require the assumption

that µ is minuscule. However, the techniques of [27] and [2] cannot handle p-nilpotent

algebras and only give information about the perfection of the special fiber. On the other

extreme, when one considers only the generic fibers, in the Hodge type case, Scholze

and Scholze–Weinstein [25] can give a construction of the inverse limit of the tower

of local Shimura varieties as a perfectoid space (see also [7]). There are also related

constructions of more general spaces (even for µ not minuscule) that use G-bundles

on the Fontaine–Fargues curve and Scholze’s theory of diamonds [11, 24]. Again, the

more classical integral theory in this paper is in a different direction. Nevertheless,

it would be interesting to directly compare these constructions with ours. In another

direction, it should also be possible to develop a theory of ‘relative’ Rapoport–Zink spaces

by combining our group theoretic constructions with the theory of relative displays of

T. Ahsendorf (see for example [1]). Then one can compare these with the ‘absolute’

Rapoport–Zink spaces of the current paper when the group is given by Weil restriction

of scalars (see [23] for an example of such a comparison).

We now briefly describe the contents of the paper: We start with preliminaries on Witt

vectors, various notions of ‘Witt loop schemes’ (these are variations of the Greenberg

transform), and a review of the main definitions of Zink’s theory of displays. In § 3,

we define the group theoretic displays ((G, µ)-displays). We discuss several of their

basic properties, study their deformation theory and define a notion of quasi-isogeny.

In § 4, we give our group theoretic definition of the Rapoport–Zink stacks and state

the representability conjecture. In § 5, we show representability for local Shimura data

of Hodge type over Noetherian rings. At the end of the paper, we include three short

appendices: The first reviews certain facts about parabolic subgroups of reductive groups
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and the second discusses torsors for Witt loop group schemes. Finally, the third appendix

gives some results on nilradicals of certain rings which are used in the proof of the main

representability theorem.

2. Preliminaries

Let p be a prime number. Denote by k an algebraic closure of Fp = Z/pZ. Set W = W (k)
for the ring of Witt vectors and K = W [1/p] for its fraction field. Denote by K̄ an

algebraic closure of K . We use the symbol k0 to denote a finite field of cardinality q = p f

contained in k.

If O is a Zp-algebra, we denote by ANilpO the category of O-algebras in which p is

nipotent. Similarly, we let NilpO be the category of Spec(O)-schemes S which are such

that p is Zariski locally nilpotent on OS .

In most of the paper, G stands for a connected reductive group scheme over Zp. Its

generic fiber is a connected reductive group over Qp, and is unramified, i.e. quasi-split

and split over an unramified extension of Qp. Conversely, every unramified connected

reductive group over Qp is isomorphic to the generic fiber of such a G.

2.1. Witt vectors

If R is a commutative ring which is a Zp-algebra, we denote by Wn(R) the ring of p-typical

Witt vectors (r0, . . . , rn−1) of length n with entries in R. We allow in the notation n = ∞;

in this case, we simply denote by W (R) the ring of Witt vectors with entries in R. For

r ∈ R, we set

[r ] = (r, 0, 0, . . .).

The ring structure on Wn(R) is functorial in R. Recall the ring homomorphisms (‘ghost

coordinates’)

wk : Wn(R)→ R; (r0, r1, . . . , rn−1) 7→ r pk

0 + pr pk−1

1 + · · ·+ pkrk .

We denote by In(R), or simply I (R) if n = ∞, the kernel of w0 : Wn(R)→ R. The

Frobenius Fn and Verschiebung Vn are maps Wn+1(R)→ Wn(R), respectively Wn(R)→
Wn+1(R), that satisfy the defining relations

wk(Fn x) = wk+1(x), wk(Vn x) = pwk−1(x), w0(Vn x) = 0.

The Frobenius Fn is a ring homomorphism. The Verschiebung Vn is additive, is given by

Vn(r0, r1, . . . , rn−1) = (0, r0, r1, . . . , rn−1),

and we have VnWn(R) = In+1(R). Again, we usually omit the subscript n if n = ∞. We

have the identities

F ◦ V = p, V (Fx · y) = x · V (y).

The following will be used later in the paper. We denote by J (R) the Jacobson radical

of R.

Lemma 2.1.1. Let A ⊂ Wn(R) be an ideal, and suppose that one of the following two

assertions holds:
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(i) p ∈ J (R) and Rw0(A) = R.

(ii) n <∞ and Rwk(A) = R holds for all 0 6 k < n.

Then A = Wn(R).

Proof. We begin with case (ii), which we handle by induction on n: It suffices to

check V n−1([x]) = (0, 0, . . . , x) ∈ A, for any x ∈ R. (Here, for simplicity, we denote the

composition Vn−1 ◦ Vn−2 ◦ · · · ◦ V1 as V n−1.) The assumption allows us to write the element

x as a sum
∑m

i=1 aiwn−1( fi ) where ai ∈ R and fi ∈ A. It follows that

V n−1([x]) =
m∑

i=1

V n−1([aiwn−1( fi )]) =

m∑
i=1

fi V n−1([ai ]),

as elements of Wn(R), which gives what we wanted. It remains to consider (i). Notice

that w0 is surjective, so that w0(A) = Rw0(A). It follows that we can assume A is

principal, i.e. A = Wn(R) f , and we only need to check that f is a unit in every quotient

Wn(R)/(Vn−1 ◦ · · · ◦ Vn−k)Wn−k(R) = Wk(R) of Witt vectors of finite length. (This then

also implies the case n = ∞.) However, this follows from (ii) together with p ∈ J (R) and

wk( f ) ≡ w0( f )pk
mod p for every k.

If X is a scheme over W (R), we denote by F X the scheme over W (R) obtained by

pulling back via the Frobenius, i.e.

F X = X ×Spec(W (R)),F Spec(W (R)).

2.2. Greenberg transforms and Witt loop schemes

Suppose that X is an affine scheme which is of finite type, respectively of finite

presentation, over Wn(R). By [12, § 4] (see also [18, Proposition 29]), the functor

R′→ X (Wn(R′)) is represented by an affine scheme Fn X over R; this is of finite type,

respectively of finite presentation, if n <∞. The scheme Fn X is sometimes called the

Greenberg transform of X . (Again, for n = ∞, we simply write F X instead of F∞X .

Also, if X is a scheme over W (R), we write Fn X instead of Fn(X ⊗W (R) Wn(R)).)
We can also consider the functor R′→ X (W (R′)[1/p]). By [18, Proposition 32], we

see that this functor is represented by an Ind-scheme F(p)X over R which we might call

the Witt loop scheme of X . In [18], F(p)X is called the ‘localized’ Greenberg transform
of X .

We collect a few useful properties of the Greenberg transforms Fn .

Proposition 2.2.1.

(a) If X and Y are two affine finite type schemes over Wn(R), then there is a natural

isomorphism

Fn(X ×Spec(Wn(R)) Y ) ∼= Fn X ×Spec(R) FnY. (2.2.1.1)

(b) If f : X → Y is a formally smooth, respectively formally étale, morphism of affine

schemes over Wn(R), then Fn f : Fn X → FnY is formally smooth, respectively

formally étale, morphism of affine schemes over R.
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(c) If X is affine and smooth over Wn(R), and n <∞, then Fn X is smooth over R.

(d) If X is affine and smooth over W (R) (n = ∞), then F X is flat and formally smooth

over R.

Proof. Part (a) follows quickly from the defining property of the Greenberg transforms

Fn X (R′) = X (Wn(R′)), FnY (R′) = X (Wn(R′)). Let us show part (b). Consider an

R-algebra B with a nilpotent ideal I ⊂ B and set B̄ = B/I . Then there is a natural

map of sets

a : Fn X (B)→ FnY (B)×FnY (B̄) Fn X (B̄).

By definition, Fn f is formally smooth, respectively formally étale, if a is surjective,

respectively bijective, for all such pairs I ⊂ B. By definition, the map a is the natural

map

a : X (Wn(B))→ Y (Wn(B))×Y (Wn(B̄)) X (Wn(B̄)).

However, we can easily see that the kernel Wn(I ) of Wn(B)→ Wn(B̄) is still nilpotent

(also for n = ∞). In fact, if I r
= 0, then Wn(I )r = 0. Hence, the surjectivity, respectively

bijectivity, of a follows since f is assumed to be formally smooth, respectively formally

étale. Part (c) follows from (b) and the above since then Fn X → Spec(R) is of finite

presentation, and so smooth amounts to formally smooth. Finally, to show (d) observe

that, under our assumptions, the natural morphism Fn+1 X → Fn X is formally smooth,

for all n. (This is obtained using the fact that if B̄ = B/I with I nilpotent, then the

natural homomorphism Wn+1(B)→ Wn(B)×Wn(B̄) Wn+1(B̄) is surjective with nilpotent

kernel.) If we write An for the R-algebra with Fn(X ⊗W (R) Wn(R)) = Spec(An), we have

F X = Spec(lim
−→n

An). Formal smoothness of F X over R follows as above. Flatness also

follows from (c) since smooth implies flat, using also that a direct limit of flat R-algebras

is R-flat.

2.2.2. If X is an affine finite type scheme over W (k0), we write L+n X and L X for the

Greenberg and localized Greenberg transforms of the base changes of X to Wn(W (k0))

by the natural Cartier ring homomorphism 1n : W (k0)→ Wn(W (k0)) characterized

by wk(1n(x)) = Fk(x). These Greenberg transforms are schemes, respectively an

Ind-scheme, over W (k0).

Since w0 ·1 is the identity, there is a natural morphism

L+X → X

induced by w0 : W (R)→ R. We denote by s0 ∈ X (R) the image of the point s ∈
L+X (R) = X (W (R)) under this map.

The homomorphism 1n commutes with the Frobenius on the source and target ([28,

Lemma 52]) and we can see that we have natural isomorphisms

F (L+X) ' L+(F X), F (L X) ' L(F X),

while F induces natural morphisms

F : L+X → F (L+X), F : L X → F (L X)

which cover the Frobenius isomorphism of Spec(W (k0)).
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If X is in addition a group scheme over W (k0), then L+n X , respectively L X , are group

schemes, respectively is a Ind-group scheme, over W (k0). In this case, the isomorphisms

and morphisms above are group scheme, respectively Ind-group scheme, homomorphisms.

Remark 2.2.3. Suppose that R is a k0-algebra via φ : k0 → R and X = Spec(A) an affine

finite type W (k0)-scheme. We view R as a W (k0)-algebra via the composition W (k0)→

k0 → R where the first map is w0. By our definition of the W (k0)-scheme L+X above,

which uses the Cartier homomorphism, the points L+X (R) = X (W (R)) are given by ring

homomorphisms A→ W (R) such that the composition W (k0)→ A→ W (R) is equal to

W (k0)
1
−→ W (W (k0))

ε
−→ W (k0)

W (φ)
−−−→ W (R),

where the second map ε is the result of applying the functor W (−) to w0 : W (k0)→ k0.

However, ε ◦1 is the identity by [28, equation (92)] and so this composition is equal to

W (φ) : W (k0)→ W (R).
This gives a simpler description of the special fiber L+X ⊗W (k0) k0; its R-valued

points for φ : k0 → R are the W (R)-valued points of X where W (R) is regarded as a

W (k0)-algebra via W (φ). In particular, we see that

F X = L+X ⊗W (k0) k0.

As mentioned above, some authors call the special fiber F X = L+X ⊗W (k0) k0 the

Greenberg transform of X .

2.3. Displays

Let us now quickly review the definition of displays as in [28]. Suppose that R is a

(commutative) ring which is p-adically complete and separated. A display over R is a

quadruple

D = (M, N , F0, F1)

where M is a finitely generated projective W (R)-module, N a submodule such that

I (R)M ⊂ N and M/N a projective R-module, F0 : M → M and F1 : N → M are F-linear

maps such that the image F1(Q) generates M as a W (R)-module, and we have

F1(Vw · x) = wF0(x) for w ∈ W (R) and x ∈ M . See [28] and other places for the definition

of nilpotence and of a nilpotent display. To avoid confusion, let us note that in [28] displays

are called 3n-displays (3n = not necessarily nilpotent), while nilpotent displays are called

displays. The notation for these objects there is (P, Q, F, V−1) in which V−1 is just a

symbol.

Over a perfect field, a display is the same as a Dieudonné module (M, F, V ); then

N = V (M) and F1 is the inverse of V . In that case, the nilpotence condition means that

V is p-adically topologically nilpotent.

Displays over R form a category and Zink constructs a functor BT from nilpotent

displays over R to formal p-divisible groups over R which he shows to be an equivalence

of categories in many cases, for example when R/pR is a finitely generated algebra over

Fp. Later, Lau [19] showed that BT gives an equivalence for all R which are p-adically

complete and separated.
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Let D = (M, N , F0, F1) be a display over R and suppose there exists a ‘normal

decomposition’ of D, i.e. a decomposition M = T ⊕ L with T , L two W (R)-modules such

that also N = I (R)T ⊕ L. Suppose that both T and L are free W (R)-modules of rank d
and h− d (we can always find such a decomposition Zariski locally on Spec(R), see [28]).

Assume e1, . . . , ed is a basis of T and ed+1, . . . , eh a basis of L. Then there is an invertible

matrix U = (ui j ) in GLh(W (R)) = L+ GLh(R) such that

F0e j =

h∑
i=1

ui j ei , 1 6 j 6 d,

F1e j =

h∑
i=1

ui j ei , d + 1 6 j 6 h.

We can write this as a block matrix

U =
(

A B
C D

)
with A of size d × d and D of size (h− d)× (h− d). Suppose that D′ is another display

over R which is also given by a block matrix U ′ with blocks of the same sizes. Then a

morphism of displays D→ D′ is given by a block matrix of the form

H =
(

X V (Y )
Z T

)
with X , Y , Z , T blocks with coefficients in W (R) which satisfies(

A′ B ′

C ′ D′

)(
F(X) Y

pF(Z) F(T )

)
=

(
X V (Y )
Z T

)(
A B
C D

)
. (2.3.0.1)

Set

8(H) = 8
((

X V (Y )
Z T

))
=

(
F(X) Y

pF(Z) F(T )

)
. (2.3.0.2)

The morphism D→ D′ is an isomorphism if and only if H is invertible. Then the identity

above can be written

H−1U ′8(H) = U. (2.3.0.3)

By [28, Theorem 37] displays form a fpqc stack over NilpZp
. The above discussion then

implies that displays of rank h and rankR(M/N ) = d are given by the fpqc quotient stack

[L+ GLh /8 H (d,h−d)
]

over NilpZp
. Here, H (d,h−d)(R) is the subgroup of L+ GLh(R) = GLh(W (R)) of matrices

of the form

H =
(

X V (Y )
Z T

)
as above and the quotient is for the right action by ‘8-conjugation’ as in (2.3.0.3). Of

course, here 8 is the F-linear map given by (2.3.0.2).
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3. (G, µ)-displays

In this section, we define (G, µ)-displays and show several basic properties.

3.1. The divided Frobenius 8G,µ

We start by defining the ‘divided Frobenius’. This generalizes the map 8 of the previous

section and plays a central role in everything that follows.

3.1.1. Suppose G is a reductive group scheme over Zp and that

µ : Gm W (k0)→ GW (k0)

is a minuscule cocharacter. As in Appendix A we denote by Pµ ⊂ GW (k0) the parabolic

subgroup scheme defined by µ. This is the parabolic subgroup of G such that Pµ×W (k0) W
contains exactly the root groups Ua of the split group GW , for all roots a with 〈µ, a〉 > 0.

We denote by Uµ the corresponding unipotent group which is the unipotent radical of Pµ.

We denote by g, p, p−, u, u−, the Lie algebras of G, Pµ, Pµ−1 , Uµ, Uµ−1 ; these are finite

free Zp-, respectively W (k0)-modules, and we have the weight decompositions

W (k0)⊗Zp g = p⊕ u−. (3.1.1.1)

We denote by Hµ the group scheme over Spec(W (k0)) with

Hµ(R) = {g ∈ L+G(R) | g0 ∈ Pµ(R)}.

We can see that Hµ is a closed subgroup scheme of L+G.

Proposition 3.1.2. There is a group scheme homomorphism

8G,µ : Hµ
→ L+GW (k0)

characterized by the following property: We have

8G,µ(h) = F · (µ(p) · h ·µ(p)−1) ∈ F G(W (R)[1/p]) = G(W (R)[1/p]). (3.1.2.1)

Proof. Consider the group scheme L>0Uµ−1 ⊂ L+Uµ−1 with R-valued points u ∈
Uµ−1(W (R)) such that u0 = 1.

We use the following:

Proposition 3.1.3. Assume that p is in the Jacobson radical J (R) of R. Then

multiplication in L+G(R) gives a bijection

L+Pµ(R)× L>0Uµ−1(R) ∼= Hµ(R).

Proof. Let h ∈ Hµ(R) ⊂ L+G(R) = G(W (R)). We would like to show that the

corresponding morphism h : Spec(W (R))→ G factors through G∗ = Pµ×W (k0) Uµ−1 .

Recall that by A.0.2, G∗ is an open subscheme of the affine scheme G = Spec(A0) with

the open immersion G∗→ G given by multiplication. Suppose
√
I = I ⊂ A0 is the ideal

corresponding to the reduced induced subscheme structure on the complement G−G∗.
The element h is given by h∗ : A0 → W (R). Consider the composition

h∗0 = w0 ◦ h∗ : A0 → W (R) −→ R.
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We know that h∗0(I)R = R. By part (i) of Lemma 2.1.1 it follows that h∗(I)W (R) =
W (R), and so h factors through G∗. The result now follows from the definition of Hµ.

We now continue with the construction of 8G,µ. By Lemma A.0.5, we have Uµ−1 '

Gr
a ×Zp W (k0). We have L+Gr

a(R) = W (R)r , L>0Gr
a(R) = I (R)r and we can define

V−1
: L>0Gr

a →
F L+Gr

a

as given by the direct sum of r copies of V−1
: I (R)→ W (R). This gives

V−1
: L>0Uµ−1 →

F L+Uµ−1

which is independent of choices. Consider also the composition

F · Intµ(p) : L+Pµ(R)→ L+Pµ(R)→ F L+G(R) = L+G(R).

Here we are using the extension of conjugation Intµ(p) : A1
→ End(Pµ) (see A.0.1) applied

to W (R) so that Intµ(p) ∈ End(Pµ)(W (R)).
First suppose that p ∈ J (R) and let h ∈ Hµ(R); by Proposition 3.1.3, we can write

(uniquely)

h = h′ · h′′, h′ ∈ L+Pµ(R), h′′ ∈ L>0Uµ−1(R),

and we set

81(R)(h) := (F · Intµ(p))(h′) · V−1(h′′) ∈ F L+G(R) = L+G(R).

This gives

81(R) : Hµ(R)→ L+G(R)

when p ∈ J (R).
Now suppose R is arbitrary; consider R1 = (1+ pR)−1 R and R2 = R[1/p]. This gives

a faithfully flat cover of Spec(R)

Spec(R) = Spec(R1)∪Spec(R2).

Notice that p is in every maximal ideal of R1; indeed if m is such an ideal and p is not in

m, we can find r = b/(1+ pb′) ∈ R1, such that pr − 1 ∈ m. This gives 1+ p(b′− b) ∈ m,

a contradiction, since this is a unit in R1. Therefore, p is in the Jacobson radical of R1.

• Let h2 ∈ Hµ(R2) = Hµ(R[1/p]). Since

p ∈ W (R[1/p]))× = Gm(W (R[1/p])),

we can consider µ(p), µ(p)−1
∈ L+G(R[1/p]). We define

82(R2)(h2) := F(µ(p) · h2 ·µ(p)−1) ∈ L+G(R[1/p]).

• Let h1 ∈ Hµ(R1) = Hµ((1+ pR)−1 R). Since p ∈ J (R1), we consider 81(R1)(h1) ∈

L+G(R1) as above.

Now let us apply this to R = OHµ the affine algebra of Hµ and the universal points hi ∈

Hµ(Ri ). We obtain elements 8i (Ri )(hi ) ∈ L+G(Ri ). These points agree over Spec(R12)

with R12 = (1+ pR)−1 R⊗R R[1/p] = (1+ pR)−1 R[1/p]. Indeed, when p is invertible,
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the map V−1
: L>0Uµ−1 →

F L+Uµ−1 agrees with division by p followed by F . On the

other hand, the adjoint action of µ(p)−1 on u− = Lie(Uµ−1) agrees with multiplication

by p. Therefore, by descent, we obtain a well-defined morphism

8G,µ : Hµ
→ L+GW (k0). (3.1.3.1)

Notice that R = OHµ is p-torsion free and so R ⊂ R2 = R[1/p] and W (R) ⊂ W (R[1/p]).
Since 82(R2) is obviously a group homomorphism we conclude that 8G,µ is a group

scheme homomorphism which satisfies the identity (3.1.2.1). In fact, by considering R =
OHµ we see that 8G,µ is the unique morphism that satisfies that identity.

3.2. Definitions and basic properties

Suppose that (G, µ) is a pair of a reductive group scheme over Zp and a minuscule

cocharacter µ : GW (k0)→ GW (k0), where k0 is a finite field of characteristic p. In the

previous paragraph, we have constructed Hµ and

8G,µ : Hµ
→

F L+GW (k0) = L+GW (k0)

over Spec(W (k0)). Suppose S is a W (k0)-scheme.

Definition 3.2.1. A (G, µ)-display over S is a triple D := (P, Q, u) where

• Q is an (fpqc locally trivial) Hµ-torsor over S,

• P := Q×Hµ L+GW (k0) is the induced L+GW (k0)-torsor,

• u : Q → P is a morphism which is compatible with 8G,µ in the sense that u(q · h) =
u(q) ·8G,µ(h).

Notice that P is determined by Q by P := Q×Hµ L+GW (k0) and so we sometimes omit

it from the notation. Our convention is that groups act on the right.

A morphism (P1, Q1, u1)→ (P2, Q2, u2) between two (G, µ)-displays is a Hµ-torsor

isomorphism Q1
∼
−→ Q2 which is compatible with u1 and u2 in the obvious manner.

In most of the paper, we consider (G, µ)-displays over schemes in NilpW (k0)
. We can

see that (G, µ)-displays form a fpqc stack in groupoids over NilpW (k0)
which we denote

by B(G, µ).

Example 3.2.2. For non-negative integers d 6 h, we let µd,h : Gm → GLh be the

minuscule cocharacter of GLh over Zp given by1

µd,h(z) = diag(1(d), z(h−d)).

The discussion in 2.3 implies that there is an equivalence between the stack of

(GLh, µd,h)-displays, and the stack of (Zink, not-necessarily-nilpotent) displays of rank

h and dimension d.

1The notation z(r) means that there are r copies of z.
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3.2.3. The fpqc quotient L+GW (k0)/Hµ can be identified with the homogeneous space

Xµ = GW (k0)/Pµ. If D := (P, Q, u) is a (G, µ)-display over S then the quotient P/Hµ

is a Xµ-bundle. Since the L+GW (k0)-torsor P admits a reduction (given by Q) to the

subgroup Hµ we also obtain a section

α : S = Q/Hµ
→ P/Hµ

of this Xµ-bundle over S. We call this section the Hodge filtration of the (G, µ)-display

D. We also consider the vector bundle

TD := α∗(Nα(S)|P/Hµ)

over S obtained by pulling back via α the normal bundle of the (regular) closed immersion

α(S) ↪→ P/Hµ. Under a condition on D, we see that the bundle TD controls the

deformations of D (see Theorem 3.5.11).

3.2.4. Suppose S = Spec(B) with B a p-adically complete and separated W (k0)-algebra.

Then using Proposition B.0.2 (see also Remark B.0.5(ii)) we can reinterpret the datum

of the Hµ-torsor Q as a pair (P, α), where P is a G-torsor over Spec(W (B)) and α a

section over Spec(B) of the Xµ-bundle obtained by first restricting P along the closed

immersion Spec(B)→ Spec(W (B)) and then taking quotient by the action of Pµ. The

G-torsor P corresponds, via Appendix B.0.2, to P := Q×Hµ L+GW (k0) so that P = FP,

the Xµ-bundle is P/Hµ and the section is Q/Hµ
→ P/Hµ as above.

Definition 3.2.5. We say that a (G, µ)-display D = (P, Q, u) is banal, if the torsor Q is

trivial. Banal (G, µ)-displays over S in NilpW (k0)
give a full subgroupoid B(G, µ)(S) of

B(G, µ)(S).

Remark 3.2.6. By Corollary B.0.3, any (fpqc locally trivial) Hµ-torsor or L+G-torsor over

S in NilpW (k0)
is locally trivial for the étale topology on S. Therefore, every (G, µ)-display

is banal locally for the étale topology on S.

3.2.7. Suppose that (P, Q, u) is banal. Then, after choosing a trivialization

α : Hµ ∼
−→ Q

which also induces α : L+GW (k0)
∼
−→ P := Q×Hµ L+GW (k0), the triple (P, Q, u) is

determined by

U := α−1u(α(1)) ∈ F L+G(OS(S)) = G(W (OS(S))).

A different trivialization α′ = α · h gives U ′ = α′−1u(α′(1)). We can see that

U ′ = h−1
·U ·8G,µ(h).

Therefore, the groupoid of banal (G, µ)-displays B(G, µ)(S) can be identified with the

quotient groupoid

[L+G(S)/8G,µ Hµ(S)]

where the action is by 8G,µ-conjugation as above. This implies that the fpqc stack of

(G, µ)-displays can be identified with a fpqc quotient stack

B(G, µ) = [L+GW (k0)/8G,µ Hµ
].
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3.2.8. By the definition, there is a natural forgetful morphism

q : B(G, µ)→ B Hµ, (P, Q, u) 7→ Q,

where B Hµ is the fpqc stack of Hµ-torsors.

Lemma 3.2.9.

(a) The morphism q : B(G, µ)→ B Hµ is representable and affine.

(b) The diagonal morphism 1 : B(G, µ)→ B(G, µ)×W (k0) B(G, µ) is representable and

affine.

Proof. If Qi → S, i = 1, 2, are Hµ-torsors, we can see by descent, that the functor on

S-schemes

(T → S) 7→ IsomHµ(Q1×S T, Q2×S T )

is represented by an affine S-scheme IsomHµ(Q1, Q2). This implies that the diagonal of

the stack B Hµ is representable and affine. There is a similar statement for isomorphisms

between L+G-torsors.

Now suppose that S→ B Hµ is the morphism corresponding to an Hµ-torsor Q. Recall

that we have P = Q×Hµ L+G. Then the fibered product S×B Hµ B(G, µ) is represented

by the affine S-scheme IsomL+G(P
′, P), where P ′ = Q×Hµ,8G,µ L+G. Part (a) now

follows easily from the definition of B(G, µ); then part (b) follows quickly from part

(a) and the above.

3.2.10. Suppose that A is a Noetherian W (k0)-algebra complete and separated for the

I -adic topology for I ⊂ A an ideal that contains a power of p. Then A is also complete

and separated for the p-adic topology.

Proposition 3.2.11. There is a natural equivalence between the category of (G, µ)-displays

D over A and the category of compatible systems of (G, µ)-displays Dn over A/I n, n > 1,

given by D 7→ {D×A A/I n
}n.

Proof. The full faithfulness of the functor D 7→ {D×A A/I n
}n follows easily by using

Lemma 3.2.9(b). Let us show essential surjectivity: Consider a compatible sequence of

(G, µ)-displays Dn = (Pn, Qn, un) over A/I n ; we would like to construct D = (P, Q, u)
over A. Using Lemma B.0.4(b) and Remark B.0.5(i) we can construct a L+G-torsor P over

A with compatible isomorphisms P ×A An ' Pn . To give the Hµ-torsor Q over A we use

Remark 3.2.4 and apply Grothendieck’s algebraization theorem to the proper morphism

P/Hµ
→ Spec(A). Finally, the homomorphism u : Q → P is given from {un}n using that

IsomL+G(Q×Hµ,8G,µ L+G, P) is affine (see also the proof of 3.2.9(b) above).

3.2.12. Suppose that µ′ : Gm W (k0)→ GW (k0) is conjugate to µ, i.e. µ′ = Int(g) ◦µ, for

g ∈ G(W (k0)). Then Int(g) : Hµ ∼
−→ Hµ′ and

8G,µ′ = Int(F g) ·8G,µ · Int(g)−1.

Using this, we see that conjugation by g gives an isomorphism B(G, µ) ∼−→ B(G, µ′), cf. [3,

§ 3.3.2].
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3.2.13. Suppose that (Gi , µi ), i = 1, 2, are two pairs as above and that we are given

a group scheme homomorphism ρ : G1 → G2 such that µ2 = ρ(µ1). We then write ρ :

(G1, µ1)→ (G2, µ2). Then ρ induces group scheme homomorphisms ρ : Hµ1
1 → Hµ2

2 and

ρ : L+G1 → L+G2 and we have ρ ·8G1,µ1 = 8G2,µ2 · ρ. Using this we obtain a morphism

ρ∗ : B(G1, µ1)→ B(G2, µ2).

(cf. [3, § 3.3.1]).

3.2.14. Let us discuss (G, µ)-displays over the algebraically closed field k. Since I (k) =
V W (k) = pW (k), we have

Hµ(k) = µ−1(p)G(W )µ(p)∩G(W )

and

8G,µ(h) = F(µ(p)hµ−1(p)) = µσ (p)σ (h)µσ (p)−1.

Proposition 3.2.15. The set of isomorphism classes of (G, µ)-displays over k is in 1-to-1
correspondence with the quotient

G(W )µσ (p)G(W )/σ G(W )

by σ -conjugation.

Proof. Since both torsors Q and P are trivial, a (G, µ)-display D = (P, Q, u) over k is

given by u ∈ G(W ). The action by 8G,µ-conjugation is given by

u 7→ h−1
· u ·8G,µ(h) = h−1uµσ (p)σ (h)µσ (p)−1.

If we set g = uµσ (p), we see that this action replaces g by h−1gσ(h). Therefore, the

isomorphism classes of (G, µ)-displays over k are in 1-to-1 correspondence with the

quotient

G(W )µσ (p)/σ (µ(p)
−1G(W )µ(p)∩G(W ))

by σ -conjugation. Consider the natural map

G(W )µσ (p)/σ (µ(p)
−1G(W )µ(p)∩G(W ))→ G(W )µσ (p)G(W )/σ G(W ).

If gµσ (p) = h−1g′µσ (p)σ (h) for h ∈ G(W ), then g′−1hg = µσ (p)σ (h)µσ (p)−1. This
implies σ(h) ∈ µσ (p)−1G(W )µσ (p), so h ∈ µ(p)−1G(W )µ(p)∩G(W ). This shows that

the above map is injective. The map is also surjective: consider u1µ
σ (p)u2 and write

u2 = σ(h)−1, for h ∈ G(W ). Then we have

h−1u1µ
σ (p)u2σ(h) ∈ G(W )µσ (p)

which shows u1µ
σ (p)u2 is in the image.

3.2.16. Notice that the above proof also shows that, if D is a (G, µ)-display over k given

by u ∈ G(W ), then the σ -conjugacy class of b := uµσ (p) ∈ G(W [1/p]) only depends on

the isomorphism class of D. The pair (µ, b) gives a filtered G-isocrystal over W [1/p] as

considered in [22, Chapter 1].
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We denote by D the algebraic torus over Qp whose character group is Q. Kottwitz [17]

associates to the Frobenius conjugacy class b a morphism of algebraic groups defined

over K := W [1/p]
νb : DK → G K

called the slope morphism.

If ρ : G → GL(V ) is a Qp-rational representation of G, the morphism ρ · νb defines

a Q-grading on the vector space V ⊗Qp K . The morphism νb is characterized by the

property that this grading is the slope decomposition of the isocrystal over K associated

to b and V . The rational number λ is called a slope of ρ · νb if the corresponding isotypic

component of V ⊗Qp K is not equal to zero. In particular, we can consider the adjoint

representation ρ = AdG
: G → GL(Lie(G)) and the slopes of AdG(b).

3.3. Quasi-isogenies

3.3.1. Suppose that S is a scheme over Spec(Fp) and denote by F : S→ S the absolute

Frobenius. Recall that if Y → S is an S-scheme (or Ind-scheme) we set

F Y = Y ×S,F S.

Since G is defined over Zp we have a natural isomorphism F LG
'
−→ LG.

Definition 3.3.2. Suppose that S is a scheme over Spec(Fp).

A G-isodisplay over S is a pair (T, φ) of a LG-torsor T over S and an isomorphism

φ : F T
∼
−→ T .

An (iso)morphism α : (T1, φ1)
∼
−→ (T2, φ2) of two G-isodisplays over S is an isomorphism

of LG-torsors α : T1
∼
−→ T2 which is compatible with φ1, φ2, in the sense that: α ·φ1 =

φ2 ·
Fα.

3.3.3. Let us now show how to associate a G-isodisplay

D[1/p] = (P[1/p], φ)

to a (G, µ)-display D = (P, Q, u) over S ∈ NilpW (k0)
.

We first assume p ·OS = 0. If P is a L+G-torsor over S in NilpW (k0)
, then we set

P[1/p] := P ×L+G LG

for the LG-torsor over S obtained from P using the natural L+G → LG. Then if (P, Q, u)
is a (G, µ)-display over S, we construct an isomorphism

φ : F P[1/p]
∼
−→ P[1/p]

of LG-torsors over S. We can assume that S is affine S = Spec(R); the general case can

then be handled by descent as below.

Suppose first that Q is the trivial Hµ-torsor and choose a trivialization of Q so that u
is given by U ∈ G(W (R)). Both P[1/p] and F P[1/p] are then identified with the trivial
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LG-torsor. Define φ : F P[1/p]
∼
−→ P[1/p] to be the morphism given by left multiplication

by Uµσ (p) ∈ G(W (R)[1/p]) = LG(R):

φ(x) = Uµσ (p) · x .

After changing the trivialization of Q by right multiplication by h ∈ Hµ(R), U changes

to U ′ = h−1U8G,µ(h), and the morphism φ now is given by multiplication by

U ′µσ (p) = h−1U8G,µ(h)µσ (p)

= h−1U F(µ(p)hµ(p)−1)µσ (p) = h−1Uµσ (p)F(h).

This shows that φ : F P[1/p]
∼
−→ P[1/p] is independent of our choice of trivialization of

the H -torsor Q. We can now easily see using descent that this construction also produces

φ : F P[1/p]
∼
−→ P[1/p] in general.

For S in NilpW (k0)
, set S̄ = S⊗W (k0) k0 for its special fiber.

Definition 3.3.4. If D is a (G, µ)-display over S in NilpW (k0)
we set D[1/p] = (P[1/p], φ)

to be the G-isodisplay which is associated to its special fiber D×S S̄, by the above

construction.

Notice that for S in NilpW (k0)
, we have

(P ×L+G LG)×S S̄ = (P ×S S̄)[1/p].

This is because, if S = Spec(R), we have W (R)[1/p] = W (R/pR)[1/p], since pm R = 0
implies pm W (pR) = 0.

Definition 3.3.5. A G-quasi-isogeny

α : D1 = (P1, Q1, u1) 99K D2 = (P2, Q2, u2)

between two (G, µ)-displays over S in NilpW (k0)
is an isomorphism

α : (P1[1/p], φ1)
∼
−→ (P2[1/p], φ2)

between their corresponding G-isodisplays, i.e. an isomorphism of LG-torsors α :

P1[1/p]
∼
−→ P2[1/p] which is compatible with φ1, φ2, in the sense that α ·φ1 = φ2 ·

Fα.

Remark 3.3.6. Recall (Example 3.2.2) that there is an equivalence between the stack of

(GLh, µd,h)-displays, and the stack of Zink (not-necessarily-nilpotent) displays of rank

h and dimension d, over NilpW (k0)
. It follows from [28, Proposition 66] that, under this

equivalence, GLn-quasi-isogenies as defined here, bijectively correspond to quasi-isogenies

between displays as considered in loc. cit.

3.4. The adjoint nilpotent condition

3.4.1. Suppose that D is a (G, µ)-display over a W (k0)-scheme S. Let x be a point of

S̄ = S⊗W (k0) k0 and let k(x)ac be an algebraic closure of the residue field k(x). Set L(x) =

https://doi.org/10.1017/S1474748018000373 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000373


(G, µ)-displays and Rapoport–Zink spaces 1229

W (k(x)ac)[1/p]. By 3.2.14 applied to k = k(x)ac, we see that D×S k(x)ac is described by

an element u := u(x) ∈ G(W (k(x)ac)) and that the Frobenius conjugacy class of b(x) =
u(x)µσ (p) in G(L(x)) is well-defined.

Definition 3.4.2. We say that the (G, µ)-display D over S is adjoint nilpotent if, for all

x ∈ S̄, all the slopes of AdG(b(x)) ∈ GL(Lie(G))(L(x)) are >−1. We denote by Bnil(G, µ)
the full substack of B(G, µ) given by adjoint nilpotent (G, µ)-displays.

3.4.3. We continue with the above assumptions and notations. For every x ∈ S̄, consider

the isocrystal given by the Frobenius semi-linear φ(x) := AdG(b(x)) ◦ Fk(x)ac acting on

GL(Lie(G))(L(x)). The Hodge weights of this isocrystal with respect to the lattice Lx =

gW (k(x)ac) = Lie(G)W (k(x)ac) ⊂ Lie(G)L(x) are just the weights of µ−1 on gW (k(x)ac). Since

µ is minuscule these weights lie in the set {−1, 0, 1}. Hence, the Newton slopes of the

isocrystal are all greater than or equal to −1, by the Hodge–Newton inequality. We then

obtain that D is adjoint nilpotent if and only if for all x ∈ S̄, we have φ(x)rLx ⊂ p1−rLx ,

with r = dimZp (g). Using this, we see that we also have (cf. [3, Definition 3.23]):

Lemma 3.4.4. Suppose π is the projector on W (k0)⊗Zp Lie(G) with im(π) = Lie Uµ−1 and

ker(π) = Lie Pµ. Let D be a banal (G, µ)-display over a k0-algebra R and let U ∈ G(W (R))
be a representative for it. Then D is adjoint nilpotent if and only if the endomorphism

on R⊗Zp Lie(G) defined by

AdG(w0(U )) ◦ (FR ⊗ idLie G) ◦ (idR ⊗π)

is nilpotent.

Proof. When R = k is an algebraically closed field the condition that the endomorphism

in the statement is nilpotent is equivalent to

(φ · p)r (Lie(G)W (k)) ⊂ p(Lie(G)W (k)),

where φ := AdG(Uµσ (p)) ◦ Fk ; given the above discussion this gives the result in this

case. The case of general R follows from this.

Remark 3.4.5. Suppose that (G, µ) = (GLh, µd,h). Recall that, by Example 3.2.2, there
is an equivalence between B(GLh, µd,h), i.e. the stack of (GLh, µd,h)-displays, and the

stack of (Zink, not-necessarily-nilpotent) displays of rank h and dimension d.

Suppose that R is in ANilpW (k0)
and that D is a (GLh, µd,h)-display over R. The adjoint

nilpotence condition on D (as defined above) is related to Zink’s nilpotence condition [28,

Definition 11/Definition 13] on the corresponding Zink display as follows:

First assume that R = k is an algebraically closed field and that the display D
is given by b = uµd,h(p) ∈ GLh(W (k)[1/p]): Then we observe that the isocrystal on

Lie(GLh)W (k)[1/p] given by AdG(b) has a non-trivial isotypic component of slope −1 if

and only if the isocrystal given by b has non-trivial isotypical components for both slopes

0 and 1. (This is obtained by a simple consideration of roots and weights for GLh .) For
a general R as above, this now implies that D is adjoint nilpotent if and only if there
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exist radical R-ideals Inil and Iuni with Inil ∩ Iuni =
√

pR, such that both the Zink display

DR/Inil and the dual (DR/Iuni)
t satisfy Zink’s nilpotence condition. In particular, if either

DR/pR or (DR/pR)
t satisfy Zink’s nilpotence condition then D is adjoint nilpotent.

3.5. Liftings and deformation theory

In this subsection, we describe the deformation theory of (G, µ)-displays which satisfy

the adjoint nilpotence condition. Many of our results are group theoretic versions of

corresponding results of Zink [28] about deformations of nilpotent displays.

3.5.1. Let A be a p-adically separated and complete W (k0)-algebra and fix a p-adically

closed ideal a ⊂ A with divided powers which are compatible with the natural divided

powers on pW (k0). In addition, let us assume that a is p-adically topologically nilpotent.

Then A is also complete for the a-adic topology. (The most useful case is when A is in

ANilpW (k0)
and a ⊂ A is a nilpotent pd-ideal.)

We set Ia(A) := W (a)+ I (A), which is a pd-ideal of W (A). In this situation, Zink’s

logarithmic ghost coordinates [28, § 1.4] establish an isomorphism

log : W (a)
'
−→

∞∏
i=0

a

leading to splittings W (a) = a⊕ I (a) and Ia(A) = a⊕ I (A). We write the elements of∏
∞

i=0 a using brackets [a0, a1, . . .]. We have F([a0, a1, . . .]) = [pa1, pa2, . . .], so F(a) = 0.

The splittings allow one to define the important F-linear extension V−1
a : Ia(A)→ W (A)

of V−1
= V−1

a |I (A) by setting 0 = V−1
a |a (see [28, Lemma 38]).

3.5.2. Now let (G, µ) be as above. We set Hµ(A, a) to be the inverse image of Hµ(A/a)
in L+G(A). Using an argument as in the proof of Proposition 3.1.3 we deduce that

Hµ(A, a) = Uµ−1(W (a))Hµ(A).

We obtain further decompositions

Hµ(A, a) = Uµ−1(a)Hµ(A) = G(a)Hµ(A),

where G(a) = ker(G(A)→ G(A/a)) and similarly for Uµ−1(a). We can now see that

8G,µ(A) : Hµ(A)→ L+G(A) can be extended to a map

9a : Hµ(A, a)→ L+G(A)

vanishing on G(a). (Notice that 8G,µ takes the identity value on Pµ(a) = Hµ(A)∩G(a),
cf. [3, Corollary 3.11].) We similarly get

9a(G(W (a)) ⊂ G(W (a)).

3.5.3. Recall the weight decomposition

W (k0)⊗Zp g = p⊕ u−

induced by our minuscule cocharacter µ. We can also construct Lie-theoretic analogs of

the group Hµ(A, a) and the homomorphism 9a. Namely, we set

h
µ
a (A) = (Ia(A)⊗W (k0) u

−)⊕ (W (A)⊗W (k0) p), (3.5.3.1)
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and we define

ψa : h
µ
a (A)→ W (A)⊗Zp g (3.5.3.2)

to be V−1
a on Ia(A)⊗W (k0) u

−, and pm F on all summands of µ-weight m > 0.

Theorem 3.5.4. Under the above assumptions on a ⊂ A, and with the above notations,

suppose in addition that we have U , U ′ ∈ L+G(A) = G(W (A)) that satisfy the adjoint

nilpotence condition and are such that

U ′ ≡ U mod W (a).

Then there is a unique element h ∈ G(W (a)) such that U ′ = h−1U9a(h).

Proof. We endow G(W (a)) = ker(G(W (A))→ G(W (A/a))) with the topology coming

from the restriction of the p-adic topology of A, with respect to which it is separated

and complete. Consider the chain of ideals an = a(p A+ a)n which are pd-subideals of a.

Then the ideal a is complete and separated for the topology given by (an). Note that

9a(G(W (an)) ⊂ G(W (an)), because an is a pd-subideal of a. By an inductive procedure

we construct elements hn ∈ G(W (a)) such that

hn ≡ hn−1 mod G(W (an−1))

and

h−1
n U9a(hn) ≡ U ′ mod G(W (an)):

Then h = lim
←−n

hn is the required element. Set h0 = 1 and for n > 1 consider the element

U ′′ := h−1
n−1U9a(hn−1).

By the induction hypothesis we have

U ′′ ≡ U ′ mod G(W (an−1)).

We can define a function K from

W (an−1/an)⊗Zp g
exp
∼= G(W (an−1/an)) ∼= G(W (an−1))/G(W (an)).

to itself by setting

K (X) := exp−1(U ′′9a(ẽxp(X))U ′−1 mod G(W (an))),

where the tilde denotes a lift of exp(X) ∈ G(W (an−1/an)) to G(W (an−1)). For Y, X ∈
W (an−1/an)⊗Zp g, we have

K (Y + X) = K (Y )+ (AdG(U ) ◦ψan−1/an )(X). (3.5.4.1)

(Here ψan−1/an is the map of our construction above applied to the ring A/an and its

pd-ideal an−1/an . Note also that since U , U ′ and U ′′ are congruent modulo W (an−1), the

maps AdG(U ), AdG(U ′) and AdG(U ′′) induce the same operator on W (an−1/an)⊗Zp g.)
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Now observe that W (an−1/an) '
∏
∞

i=0 an−1/an can be regarded as a A/(p A+ a)-

module; the module structure on the i-th component of the right hand side is given

by s · a = F i (s)a, where F is the absolute Frobenius on A/(p A+ a). Let

ψ∗ : (A/(p A+ a))⊗Zp g→ (A/(p A+ a))⊗Zp g

be the composition of the absolute Frobenius on (A/(p A+ a))⊗Zp g with the projection π

of W (k0)⊗Zp g onto u− killing p. Since V−1
a ([x0, x1, x2, . . .]) = [x1, x2, . . .], we can deduce

from the definition of ψan−1/an that

ψan−1/an = idW (an−1/an)⊗A/(p A+a)ψ
∗.

This together with Lemma 3.4.4 shows that the adjoint nilpotence of U implies

that AdG(U ) ◦ψan−1/an is nilpotent on W (an−1/an)⊗Zp g. In turn, this nilpotence

together with (3.5.4.1) implies that K has a unique fixed point in G(W (an−1/an)) '

W (an−1/an)⊗Zp g. Finally, let us choose a lift h∗ to G(W (an−1)) of the fixed point of K ,

and let us write hn := hn−1h∗. We can now see that

h−1
n U9a(hn) = h−1

∗ h−1
n−1U9a(hn−1)9a(h∗) = h−1

∗ U ′′9a(h∗) = U ′

modulo G(W (an)). This completes the inductive step that shows the existence of h.

(Notice that this is a group theoretic generalization of the proof of [28, Theorem 44].)

Now let us show the uniqueness of h: We can see that it is enough to show that

h−1U9a(h) = U = U ′ and h ∈ G(W (a)) imply h = 1. In fact, it is enough by induction

to assume that h ∈ G(W (an−1)). Apply the argument above to h instead of hn−1; then

we have U ′′ ≡ U mod G(W (an−1)). Since obviously K (0) = 0, the uniqueness of the fixed

point of the map K implies that h ∈ G(W (an)). Since
⋂

n an = (0), we conclude that

h = 1.

3.5.5. Recall that by Lemma 3.2.9 the diagonal of B(G, µ) is affine. We now show that

the diagonal of Bnil(G, µ) is p-adically formally unramified, cf. [28, Proposition 40], [3,

Corollary 3.26(ii)]:

Corollary 3.5.6. Let A be a a-adically separated algebra in ANilpW (k0)
, where a is an

ideal that contains some power of p. Let φ be an automorphism of an adjoint nilpotent

(G, µ)-display D over Spec A. Then φA/a is the identity if and only if φ is the identity.

Proof. It is enough to prove, that if φA/a is the identity, then φA/an is the identity for

every n, since by Lemma 3.2.9(b), the diagonal of the stack (G, µ)-displays is affine,

hence separated. By a straightforward induction argument it suffices to do this under

the additional assumption that a2
= 0. After passing to some affine étale covering we

can also assume that D is banal. Then since ideals of vanishing square have a natural

pd-structure we can apply Theorem 3.5.4 and the result follows immediately from the

uniqueness in the statement there.

3.5.7. Suppose that D0 is a adjoint nilpotent (G, µ)-display over A0 = A/a which

is banal, and so given by a U0 ∈ G(W (A0)). Using Theorem 3.5.4 we classify lifts

(‘deformations’) of D0 to displays over A, up to isomorphism. By definition, a lift
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of D0 is a pair (D, δ) of a (G, µ) display D over A together with an isomorphism

δ : D0
∼
−→ D⊗A A/a. Since D is also banal by B.0.3, such pairs are given by pairs (U, h0)

with U ∈ G(W (A)), h0 ∈ Hµ(A0), such that

U mod a = h−1
0 U08G,µ(h0);

two such pairs (U, h0), (U ′, h′0), are isomorphic if there is h ∈ Hµ(A) with

h mod a = h−1
0 h′0, U ′ = h−1U8G,µ(h).

Suppose we are given a pair (U, h0) up to isomorphism. Under our assumptions, since also

Hµ is formally smooth, we can lift h0 ∈ Hµ(A0) to h̃0 ∈ Hµ(A); this gives an isomorphism

of (U, h0) to a pair of the form (U ′, 1), i.e. with U ′ mod a = U0; hence, in classifying

pairs (U, h0) up to isomorphism, we can always assume that the second component is

trivial, i.e. h0 = 1; then U mod a = U0. Suppose that (U, 1), (U ′, 1), are two such pairs.

By Theorem 3.5.4 there is unique g ∈ G(W (a)) such that

U ′ = g−1U9a(g).

Using this and the fact that the restriction of 9a to Hµ(a) coincides with 8G,µ, we see

that the following is true:

After choosing a lift U of U0, we can identify the set of lifts of the (G, µ)-display D0
up to isomorphism with the set of right cosets G(W (a))/Hµ(a); the bijection is given by

gHµ(a) 7→ [(g−1U9a(g), 1)].

We can see that the natural map

G(W (a))/Hµ(a) ↪→ G(W (A))/Hµ(A)→ (G/Pµ)(A)

identifies G(W (a))/Hµ(a) with the set of A-valued points of the homogeneous space G/Pµ
that reduce to the identity coset modulo a. (As usual, we can then also see that this set

is in bijection with the set of liftings of the Hodge filtration of D0.)

3.5.8. Continue with the above assumptions and notations but suppose that in addition

we have a2
= (0). Then we have as above

a⊗W (k0) u
− ∼
−→ G(W (a))/Hµ(a).

Hence, if a2
= (0), the choice of a lift U of U0 gives a bijection between the set of all lifts

of D0 up to isomorphism and the set a⊗W (k0) u
−. In fact, the above discussion shows that

there is an action of the group a⊗W (k0) u
− on the set of all lifts of D0 up to isomorphism,

and this set is a (trivial) principal homogeneous space for the group a⊗W (k0) u
−.

3.5.9. Suppose that k is a separably closed field of characteristic p and let D0 be an

adjoint nilpotent (G, µ) display over S0 = Spec(k). We can then consider the functor

DefD0 of formal deformations of D0. This is a functor on the category of augmented local

Artinian W (k)-algebras, i.e. local Artinian W (k)-algebras (A,m) with an isomorphism

A/m
∼
−→ k with DefD0(A) the set of isomorphism classes of lifts of D0 to a (G, µ)-display
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over A. Here, as above, a lift of D0 is by definition a pair (D, δ) of a (G, µ)-display D
over A together with an isomorphism δ : D0

∼
−→ D⊗A k.

The display D0 is banal and given by a matrix U0 ∈ G(W (k)). Choose a basis e1, . . . , er

of the W (k0)-module u− = Lie(Uµ−1). By A.0.5 this induces an isomorphism Gr
a
∼
−→ Uµ−1 ;

we write by exp(a1e1+ · · ·+ ar er ) the point of Uµ−1 which is the image of (a1, . . . , ar ).

Set A = W (k)[[t1, . . . , tr ]] for the power series ring with r variables. (More canonically,

we can take A to be the formal completion of Uµ−1 ⊗W (k0) W (k) at the origin.) Let us set

guni = exp([t1]e1+ · · ·+ [tr ]er ) ∈ Uµ−1(W (A)) ⊂ G(W (A))

where [ti ] = (ti , 0, 0, . . .) ∈ W (A) is the Teichmuller lift. Set

Uuni = g−1
uniU0 ∈ G(W (A)).

The element Uuni defines a (G, µ)-display Duni over A.

We claim that Duni prorepresents the functor DefD0 of formal deformations of D0:

Given the above work, the proof of this is very similar to the proof of the corresponding

statement for Zink displays given in [28, pp. 173–176]. We just sketch the argument here:

We first observe that, by the discussion in the above paragraph, DefD0 is formally smooth.

Next, we notice that Theorem 3.5.4 (or the discussion above) quickly implies that the

reduction of Duni over A2 := A/(t1, . . . , tr )2 is universal for deformations over augmented

local Artinian W (k)-algebras with maximal ideal of square zero. (Notice that over A2,

we have 9(t1,...,tr )(guni) = 1.) This implies that the morphism of functors on augmented

local Artinian W (k)-algebras ε : Spf(A)→ DefD0 given by Duni induces an isomorphism

on tangent spaces. It now follows that ε is an isomorphism and this concludes the proof.

The same argument works even if the field k is not separably closed provided D0 is banal.

3.5.10. We can similarly obtain a global version of some deformation theory statements

in which we consider adjoint nilpotent (G, µ)-displays over general schemes in NilpW (k0)

(cf. [3, § 3.5] and especially [3, Corollary 3.27]).

Let S be a scheme in NilpW (k0)
and recall that if D = (P, Q, u) is a (G, µ)-display over

S, then the Hodge filtration of D is a section

α : S→ P/Hµ

of the Xµ = G/Pµ-bundle P/Hµ
→ S. Recall also the vector bundle TD over S obtained

by pulling back via α the normal bundle of the (regular) closed immersion α(S) ↪→ P/Hµ.

Suppose I ⊂ OS is an ideal sheaf with I2
= 0. For any S-scheme X we denote S0×S X =

X0, where S0 ↪→ S is the nilimmersion defined by I. We can view

0→ I ↪→ OS � OS0 → 0

as an exact sequence on abelian sheaves on the fpqc site of S: More specifically let OS0(X),
OS(X), and I(X) be the global sections of X0, X , and the kernel of OS(X)→ OS0(X).

Now let D0 be an adjoint nilpotent (G, µ)-display over S0. Again, by a lift of D0 over

an S-scheme X we mean a pair (D, δ) where D is a (G, µ)-display over X , and δ : D0×S0

X0
∼
−→ D×X X0 is an isomorphism. By Corollary 3.5.6 no lift has any automorphism

other than the identity. Let DD0,S(X) be the set of isomorphism classes of lifts over
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X . By pull-back of lifts this is a presheaf on S. Let us check that DD0,S satisfies the

sheaf axiom for a faithfully flat map Y → X : If the pull-backs pr∗1(D) and pr∗2(D) of

some (D, δ) ∈ DD0,S(Y ) agree for the two projections pr1, pr2 : Y ×X Y → Y , then this

means that there exists β : pr∗1(D)
'
→ pr∗2(D) which restricts to the identity on Y0×X0 Y0.

We easily deduce the cocycle condition for β, because any equality of isomorphisms of

displays over Y ×X Y ×X Y can be checked over Y0×X0 Y0×X0 Y0, by Corollary 3.5.6. This

shows that D (respectively δ) descends to X (respectively X0). It follows that DD0,S is a

fpqc-sheaf on S.

Theorem 3.5.11. Suppose that D0 is an adjoint nilpotent (G, µ)-display over S0 and that

S0 ↪→ S is a closed immersion defined by an ideal sheaf I of square zero. Then the above

functor DD0,S has the structure of a locally trivial principal homogeneous space for the

sheaf I ⊗OS TD0 . In particular, the set DD0,S(S) of isomorphism classes of lifts of D0 over

S is either empty or is a principal homogeneous space for 0(S, I ⊗OS TD0).

Proof. The case that S is affine and the display is banal is given by 3.5.8. (To see this

one uses the fact that the Lie algebra u− gives the tangent space of the homogeneous

space Xµ at the identity 1 · Pµ.) The general case follows from this and descent.

Corollary 3.5.12. If S0 is affine, then DD0,S is globally trivial, i.e. DD0,S(S) 6= ∅.

3.6. Faithfulness up to isogeny

If B is a ring such that both pB and
√

0B are nilpotent the forgetful functor from

(Zink-)displays to isodisplays is faithful (see [28, p. 186]). Here, we describe an extension

of this which needs the notion of Frobenius separatedness defined in Appendix C. We

write ANilpaFs
W for the full subcategory of ANilpW consisting of W -algebras which are

almost Frobenius separated.

Proposition 3.6.1. Suppose that B is in ANilpaFs
W . Then the functor of 3.3.3 from adjoint

nilpotent (G, µ)–displays over B to G-isodisplays over B/pB is faithful.

Proof. Let φ be an automorphism of a display D = (P, Q, u) with (G, µ)-structure over

B, such that φ and idD give rise to the same self-G-quasi-isogeny. We would like to prove

φ = idD. Using Corollary 3.5.6 and since p is nilpotent in B, we can easily reduce to the

case pB = 0. Let a be the smallest ideal of B such that φ ≡ idD mod a; this ideal exists

since by Lemma 3.2.9(b) the diagonal of B(G, µ) is representable and affine. In fact,

the B-scheme representing the automorphisms of the display D is a closed subscheme of

the Greenberg transform FI of I := AutG(P), where P is the G-torsor over W (B) that

corresponds to the L+G-torsor P by Proposition B.0.2. Corollary 3.5.6 on the rigidity of

automorphisms implies that a = a2. For simplicity, set Jn = ker(Fn
B) = {x ∈ B|x pn

= 0}.
Note that W (Jn) = W (B)[pn

], and⋃
n

W (Jn) = ker(W (B)→ W (B)Q = W (B)[1/p]).

Since G is of finite type over Zp, by descent we see that the G-torsor P and also the scheme

I, are of finite presentation over W (B). Since φ becomes the identity in F(p)I(B) =
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I(W (B)[1/p]), there must exist some integer N such that φ is equal to the identity in

I(W (B/JN )). We deduce that a ⊂ JN which is bounded nilpotent, while a = a2. Hence,

by Lemma C.0.4, a = 0 which completes the proof.

3.7. Display blocks

In this subsection, we define and discuss the notion of a display block. This is a technical

construction which is useful for handling a certain type of descent that appears in the

proof of Proposition 5.2.5 and of the main result Theorem 5.1.3. The subsection can be

omitted at first reading.

3.7.1. We consider two pairs (G, µ) and (G ′, µ′) where both G and G ′ are reductive

group schemes over Zp, and µ and µ′ are, respectively, minuscule cocharacters of G
and G ′ defined over W (k0). We suppose that there is a group scheme homomorphism

i : G → G ′ which is a closed immersion and is such that µ′ = i ·µ as in 3.2.13. We denote

this set-up by writing i : (G, µ) ↪→ (G ′, µ′).
Note that if for a (G, µ)-display D the (G ′, µ′)-display i(D) is adjoint nilpotent then

D is also adjoint nilpotent (since the Frobenius isocrystal given by AdG(D)[1/p] is a

sub-isocrystal of the one given by AdG ′(i(D))[1/p]).

Definition 3.7.2. Fix i : (G, µ) ↪→ (G ′, µ′) as above. Consider an injective homomorphism

A ↪→ B in ANilpW (k0)
. An (A, B)-display block is a triple (D′,D, ψ) where

• D′ is a (G ′, µ′)-display over A,

• D is a (G, µ)-display over B, and

• ψ : i(D) ∼−→ D′×A B is an isomorphism of (G ′, µ′)-displays.

An isomorphism of two (A, B)-display blocks

(C′, C, φ) ∼−→ (D′,D, ψ).

is a pair of isomorphisms ε′ : C′ ∼−→ D′ and ε : C ∼−→ D satisfying

ψ ◦ i(ε) ◦φ−1
= ε′×A B.

Definition 3.7.3. The (A, B)-display block (D′,D, ψ) is called effective if there exists a

(G, µ)-display D3 over A such that

(D′,D, ψ) ∼= (i(D3),D3
×A B, i(idD3)×A B).

Then the (G, µ)-display D3 is unique up to a unique isomorphism.

3.7.4. Consider an ideal b ⊂ B and write a := b∩ A ⊂ A. By the reduction of (D′,D, ψ)
modulo b we mean the (A/a, B/b)-display block given by the triple (D′×A A/a,D×B
B/b, ψ ×B B/b).
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3.7.5. We first need the following result, which is a slight generalization of [3, Corollary

3.28]:

Lemma 3.7.6. Suppose i : (G, µ) ↪→ (G ′, µ′) is as above, and consider homomorphisms

A ↪→ B � B/b in ANilpW (k0)
. We assume that

(i) B is b-adically separated, i.e. (0) =
⋂

n b
n, and

(ii) A is b-adically closed as a subset of B, i.e. A =
⋂

n(A+ bn).

Let a := A∩ b so that we have A/a ↪→ B/b.

Suppose that D1 and D2 are two (G, µ)-displays over A. We assume that i(D j ×A A/a),
j = 1, 2 are adjoint nilpotent (G ′, µ′)-displays (so that then D j ×A A/a are also adjoint

nilpotent (G, µ)-displays). Let

ψ : i(D1)×A B
∼
−→ i(D2)×A B

be a (G ′, µ′)-isomorphism over B, and

φ0 : D1×A A/a
∼
−→ D2×A A/a

a (G, µ)-isomorphism over A/a. Assume the base changes of φ0 and ψ to B/b are

compatible in the obvious sense. Then there is a unique (G, µ)-isomorphism φ : D1
∼
−→ D2

over A that induces both φ0 and ψ.

Proof. We first deal with the case that b is nilpotent. Then, by induction we can assume

that b2
= 0. Now we can use the map φ0 in order to view D1 as a lift of D̄2 := D2×A A/a,

so that there exists a well-defined element N ∈ TD̄2
⊗A a that measures the difference

between the elements D1 and D2 of the deformation DD̄2,Spec A. The existence of ψ implies

that the image of N in Ti(D̄2)
⊗A b has to vanish. Since TD̄2

⊗A a→ Ti(D̄2)
⊗A b is injective,

this yields N = 0 which implies the existence of φ over A.

We now deal with the general case: The argument above gives that, for every n > 1,

there is a (G, µ)-display isomorphism φn : D1×A A/(A∩ bn)
∼
−→ D2×A A/(A∩ bn) which

lifts φ0 and is compatible with ψ ×B B/bn . This, since the diagonal of B(G ′, µ′) is affine

by Lemma 3.2.9, implies that ψ , as a (G ′, µ′)-display isomorphism, is actually defined

over the subring A+ bn
⊂ B and therefore over A =

⋂
n(A+ bn). Now, by the above,

ψ ×A A/(A∩ bn) = φn which is a (G, µ)-isomorphism for all n > 1. Since
⋂

n(A∩ b
n) = 0

we obtain that ψ is also a (G, µ)-isomorphism.

3.7.7. We end this paragraph with two lemmas that, roughly speaking, show that under

some assumptions, certain deformations and liftings of effective display blocks are still

effective. In both of these, we fix i : (G, µ) ↪→ (G ′, µ′) as above.

Lemma 3.7.8. Consider homomorphisms A ↪→ B � B/b in ANilpW (k0)
. Suppose that b is

nilpotent and set a := b∩ A. Let D3
0 be a (G, µ)-display over A/a such that i(D3

0 ) is an

adjoint nilpotent (G ′, µ′)-display. Then the assignment

D3
7→ (i(D3),D3

×A B, i(idD3)×A B)

https://doi.org/10.1017/S1474748018000373 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748018000373


1238 O. Bültel and G. Pappas

induces a canonical bijection from the set of isomorphism classes of deformations of

the (G, µ)-display D3
0 over A to the set of isomorphism classes of deformations of the

(A/a, B/b)-display block

(i(D3
0 ),D

3
0 ×A/a B/b, i(idD3

0
)×A/a B/b)

over (A, B).

Proof. We can assume b2
= 0, by induction. In this case, Corollary 3.5.12 shows that

both of the two sets in question are principal homogeneous spaces, the former one under

TD3
0
⊗A a and the latter one under

(Ti(D3
0 )
⊗A a)∩ (TD3

0
⊗A b),

the intersection taking place in Ti(D3
0 )
⊗A b. We get the result as these two groups are

equal.

Lemma 3.7.9. Consider homomorphisms A ↪→ B � B/b in ANilpW (k0)
. Assume that

(A,m) is a complete local Noetherian ring, and that one of the following two assertions

holds:

(i) There exists a regular sequence ( f, g) in m such that B = A[g−1
] and b is generated

by f .

(ii) B is a finitely generated A-module and b = J (B).

Let (D′,D, ψ) be a (A, B)-display block with D′ adjoint nilpotent whose reduction modulo

b is effective and given by a (G, µ)-display over A/A∩ b which is banal over A/m. Then

(D′,D, ψ) is effective.

Proof. Let us write an for the intersection A∩ bn . In case (ii) the Artin–Rees lemma

implies that the ideals an form a basis of neighborhoods for the m-adic topology on A. In

case (i) each an is generated by f n . Thus, in both cases B is b-adically separated and A
is b-adically closed as a subset of B, as an tends m-adically toward 0A. By Lemma 3.7.8

we can choose a sequence of suitable adjoint nilpotent (G, µ)-displays D3
n over A/an and

isomorphisms:

(i(D3
n ),D3

n ×A/an B/bn, i(idD3
n
)×A/an B/bn) ∼= (D′,D, ψ) mod bn .

Using the existence of the universal deformation over the formal deformation space of

the (banal) (G, µ)-display D3
1 ×A/A∩b A/m over A/m we can now construct a ‘limit’

(G, µ)-display lim
←−n

D3
n = D3 over A = lim

←−n
A/an (cf. Proposition 3.2.11). Passing to the

limit we get:

(i(D3),D3
×A B̂, i(idD3)×A B̂) ∼= (D′,D×B B̂, ψ ×B B̂),

where B̂ = lim
←−n

B/bn . Since B is b-adically separated B ↪→ B̂. The above isomorphisms

allows us to identify the L+G-torsors corresponding to the two displays D and D3
×A B

over B as two L+G-equivariant subschemes of the L+G ′-torsor corresponding D′×A B
which are the same after base changing by B → B̂. Using that G ′/G is represented by
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an affine scheme [8, 6.12] we can see that this implies that these subschemes are equal.

This gives an isomorphism

(i(D3),D3
×A B, i(idD3)×A B) ∼= (D′,D, ψ),

which shows that (D′,D, ψ) is effective.

4. Rapoport–Zink spaces

We now give our definition of the Rapoport–Zink stack and functor, state the

representability conjecture and prove our main result on representability in the Hodge

type case.

4.1. Local Shimura data

Let G be a connected reductive group scheme over Zp. We follow [21] and [14].

4.1.1. Let ([b], {µ}) be a pair consisting of:

• a G(K̄ )-conjugacy class {µ} of cocharacters µ : Gm K̄ → G K̄ ,

• a σ -conjugacy class [b] of elements b ∈ G(K ); here, as usual, b and b′ are σ -conjugate

if there is g ∈ G(K ) with b′ = gbσ(g)−1.

We let E ⊂ K̄ be the field of definition of the conjugacy class {µ}. This is the local

reflex field. Denote by OE its valuation ring and by kE its (finite) residue field. In fact,

under our assumption on G, the field E ⊂ K̄ is contained in K and there is a cocharacter

µ : Gm E → G E in the conjugacy class {µ} that is defined over E ; see [16, Lemma (1.1.3)].

In fact, we can find a representative µ that extends to an integral cocharacter

µ : GmOE → GOE , (4.1.1.1)

and the G(OE )-conjugacy class of such an µ is well-defined. In what follows, we usually

assume that µ is such a representative. We can identify OE with the ring of Witt vectors

W (kE ) and we have E = W (kE )[1/p].
We write µσ = σ(µ) for the Frobenius conjugate of (4.1.1.1).

Definition 4.1.2 (cf. [21, Definition 5.1]). A local unramified Shimura datum is a triple

(G, [b], {µ}), in which G is a connected reductive group over Zp, the pair ([b], {µ}) is as

above, and we assume

(i) {µ} is minuscule,

(ii) for some (equivalently, any) integral representative (4.1.1.1) of {µ}, the σ -conjugacy

class [b] has a representative

b ∈ G(W )µσ (p)G(W ). (4.1.2.1)

By [20, Theorem 4.2], assumptions (i) and (ii) imply that [b] lies in the set

B(GQp , {µ}) of neutral acceptable elements for {µ}; see [21, Definition 2.3]. In particular,

(GQp , [b], {µ}) is a local Shimura datum in the sense of [21, Definition 5.1].
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4.2. Definitions and a representability conjecture

Fix a local unramified Shimura datum (G, [b], {µ}) and choose an integral representative

µ of the conjugacy class {µ} as in (4.1.1.1). Choose a representative b of the σ -conjugacy

class [b] such that b = uµσ (p), with u ∈ G(W ). Consider the (G, µ)-display D0 =

(P0, Q0, u0) over k given by P0 = L+GW , Q0 = Hµ, and u0 : Hµ
→ L+GW given as the

composition of the inclusion followed by left multiplication by u.

Suppose that S is a scheme in NilpW and consider pairs (D, ρ) with

• D a (G, µ)-display over S,

• ρ : D̄ 99K D0×k S̄ a G-quasi-isogeny over S̄.

(In the above, S̄ and D̄ denote the reductions of S and D modulo p.) Consider the natural

notion of isomorphism between two such pairs.

We denote by RZG,µ,D0 the stack of groupoids over NilpW that classifies pairs (D, ρ)
as above. We can see that this is a fpqc stack. Denote by RZG,µ,b the corresponding

functor NilpW → Sets which sends S to the isomorphism classes of pairs (D, ρ) over S as

above.

Consider the group of automorphisms Aut(D0[1/p]) of the G-isodisplay given by D0.

We can see that

Aut(D0[1/p]) ' Jb(Qp) := { j ∈ G(L) | j−1bσ( j) = b}.

This group acts RZG,µ,D0 and on the functor RZG,µ,b on the left by

j · (D, ρ) = (D, j · ρ).

We can now state:

Conjecture 4.2.1. Assume that −1 is not a slope of AdG(b). The functor RZG,µ,b is

representable by a formal scheme which is formally smooth and formally locally of finite

type over W .

Here, representability by a formal scheme is in the sense explained in [22]. For G = GLn
and for b with no slopes equal to 0, the conjecture follows by a combination of the results

of Rapoport–Zink and Zink and Lau: By Lau and Zink and the discussion of 2.3 (see

also 3.2.2, 3.3.6 and 3.4.5) the functor for GLn is equivalent to the Rapoport–Zink functor

of deformations up to quasi-isogeny of the p-divisible group over k that corresponds

to D0. For local unramified Shimura data of Hodge type, we prove this conjecture

for the restriction of the functor RZG,µ,b to locally Noetherian schemes in NilpW , see

Theorem 5.1.3.

For general (G, µ) and b as above, it follows easily from Proposition 3.6.1 that, if B is

Noetherian, then the objects of the groupoid RZG,µ,D0(B) have no automorphisms.

Remark 4.2.2. We refer to [22, Definition 3.45] for the notion of a Weil descent datum

relative to the extension W/OE for a functor on the category NilpW . Set f = [E : Qp].

(Recall that E/Qp is finite and unramified.) Denote by τ : Spec(OE )→ Spec(OE ) the

morphism induced by σ f
: OE → OE and by τ̄ its reduction τ̄ : Spec(kE )→ Spec(kE ).

Using the construction of loc. cit. 3.48, we can define a Weil descent datum on RZG,µ,b
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(relative to τ ). This datum is given by the isomorphism of functors α : RZG,µ,b → RZτG,µ,b
(see loc. cit.) obtained by sending the pair (D, ρ) to the pair of τ ∗D together with the

G-quasi-isogeny

τ̄ ∗D̄ 99K τ̄ ∗(D0×k S̄) 99K D0×k S̄

where the first arrow is τ̄ ∗(ρ) and the second arrow is given by the relative Frobenius

of D0.

4.2.3. Suppose that (D, ρ) is as above with S = Spec(R) affine and D banal; then D is

determined by U ∈ L+G(R); the corresponding G-isocrystal over R̄ is given by Uµσ (p).
The G-quasi-isogeny ρ is given by left multiplication by g ∈ LG(R̄) which satisfies the

identity

bF(g) = uµσ (p)F(g) = gUµσ (p) (4.2.3.1)

in LG(R̄) = G(W (R̄)[1/p]). Note that since p is nilpotent in R, the ideal W ((p)) ⊂ W (R)
is p-power torsion and so

W (R)[1/p] = W (R̄)[1/p].

We conclude that in the banal case, the pair (D, ρ) is given by a pair (U, g) ∈ L+G(R)×
LG(R) which satisfies

g−1bF(g) = Uµσ (p). (4.2.3.2)

By the definitions, two pairs (U ′, g′), (U, g) give isomorphic pairs (D, ρ), (D′, ρ′), when

there exists h ∈ Hµ(R) such that

(U ′, g′) = (h−1
·U ·8G,µ(h), g · h). (4.2.3.3)

This implies that RZG,µ,b is given by the isomorphism classes of objects of the (fpqc, or

étale) quotient stack

[(L+G×LG,µ,b LG)/Hµ
].

Here the fiber product is

L+G×LG,µ,b LG //

��

LG

cb

��
L+G // LG

with cb(g) := g−1bF(g) and the bottom horizontal map is the natural map followed by

right multiplication by µσ (p) ∈ G(E) ⊂ LG(R). The quotient is for the action of Hµ

given by

(U, g) · h = (h−1
·U ·8G,µ(h), g · h).

4.2.4. Continue with the set-up above and assume that I ⊂ R is a nilpotent ideal. Set

R0 = R/I . Then, since W (R)[1/p] = W (R0)[1/p], the pair (U, g) is determined by (U, g0).

We can use this to deduce that for any (D0, ρ0) over R0, the forgetful functor RZG,µ,D0 →

B(G, µ), (D, ρ) 7→ D, induces an equivalence of deformation functors D(D0,ρ0),S
∼
−→ DD0,S .

In particular, our results in § 3.5 apply to the deformation theory of RZG,µ,D0 .
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4.2.5. Let k′ be an algebraically closed field extension of k and set W ′ = W (k′), K ′ =
W ′[1/p]. In this case, since W (k′) is torsion free, the equation g−1bF(g) = Uµσ (p) shows

that U is determined from g. By the above discussion, we have

RZG,µ,b(k′) = {g ∈ G(K ′) | g−1bF(g) ∈ G(W ′)µσ (p)}/Hµ(k′), (4.2.5.1)

where Hµ(k′) ⊂ G(K ′) acts on G(K ′) on the right. Since k′ is perfect, we have I (k′) =
pW (k′). This gives

Hµ(k′) = G(W ′)∩µ(p)−1G(W ′)µ(p).

(Hence, the group Hµ(k′) is equal to group of W ′-valued points of a parahoric subgroup

scheme defined over W (k0).)

Proposition 4.2.6. We have a bijection

RZG,b,µ(k′) ∼= {g ∈ G(K ′) | g−1bF(g) ∈ G(W ′)µσ (p)G(W ′)}/G(W ′)

where the quotient is for the natural right action of G(W ′) on G(K ′).

The right hand side of the identity in this statement is, by definition, the affine

Deligne–Lusztig set

XG,µσ ,b(k′) ⊂ G(K ′)/G(W ′)

for the data (G, µσ , b) and the field k′.

Proof. This follows from 4.2.5.1 and an argument as in the proof of Proposition 3.2.15

(or [14, Proposition 2.4.3(i)]) which shows that the map

G(K ′)/Hµ(k′)→ G(K ′)/G(W ′); gHµ(k′) 7→ gG(W ′),

restricts to a bijection between the set in the right side of 4.2.5.1 and XG,µσ ,b(k′).

Remark 4.2.7. By [14, Proposition 2.4.3(iii)], the map g 7→ σ−1(b−1g) gives a bijection

XG,µσ ,b(k′)
∼
−→ XG,µ,b(k′) and so we also have

RZG,µ,b(k′) ∼= XG,µ,b(k′).

5. Rapoport–Zink spaces of Hodge type

5.1. Hodge type local Shimura data

The two definitions below are slight variants of definitions in [14].

Definition 5.1.1. The local unramified Shimura datum (G, [b], {µ}) is of Hodge type if

there exists a closed group scheme embedding ι : G ↪→ GL(3), for a free Zp-module 3 of

finite rank, with the following property: After a choice of basis 3OE

∼
−→ On

E , the composite

ι ◦µ : GmOE → GLn,OE

is the minuscule cocharacter µr,n(a) = diag(1(r), a(n−r)), for some 1 6 r < n.
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Definition 5.1.2. Let (G, [b], {µ}) be a local unramified Shimura datum of Hodge type.

A local Hodge embedding datum for (G, [b], {µ}) consists of

• a group scheme embedding ι : G ↪→ GL(3) as above,

• the G(W )–σ -conjugacy class {gbσ(g)−1
: g ∈ G(W )} of a representative b ∈

G(W )µσ (p)G(W ) of [b] as in (4.1.2.1).

Notice that the G(W )-conjugacy class of an integral representative µ as in (4.1.1.1) is

determined from {µ}.

We refer to the quadruple (G, b, µ,3), where µ is given up to G(W )-conjugation, and

b up to G(W )-σ -conjugation, as a local unramified Shimura–Hodge datum.

The following is the main result of the paper:

Theorem 5.1.3. Assume that (G, [b], {µ}) is a local unramified Shimura datum of Hodge

type with a local Hodge embedding datum such that ι(b) has no slope 0. Then the

restriction of the functor RZG,µ,b to locally Noetherian schemes in NilpW is representable

by a formal scheme which is formally smooth and formally locally of finite type over W .

5.1.4. Fix a local unramified Shimura–Hodge datum (G, b, µ,3). The following is

obtained similarly to [14, Lemma 2.2.5]. Note however that, here, we are using the

covariant Dieudonné module.

Lemma 5.1.5 [14]. There is a unique, up to isomorphism, p-divisible group

X0 = X0(G, b, µ,3)

over k whose (covariant) Dieudonné module is D(X0)(W ) = 3⊗Zp W with Frobenius F =
b ◦ σ . Moreover, the Hodge filtration

V Dk ⊂ Dk = D(X0)(k)

is induced by a conjugate of the reduction µk : Gmk → Gk of µ modulo (p).

In what follows, we show Theorem 5.1.3. We use a natural morphism from RZG,µ,b
to the functor represented by the ‘classical’ Rapoport–Zink formal scheme RZX0 , where

X0 = X0(G, b, µ,3) is as above.

5.2. The proof of the representability theorem

5.2.1. In this subsection we show Theorem 5.1.3. We are going to use the notion

of Frobenius separatedness defined in Appendix C. We write ANilpnoeth
O , ANilpared

O ,

ANilpaFs
O be the full subcategories of ANilpO consisting of O-algebras which are

respectively Noetherian, respectively with nilpotent nilradical, respectively which are

almost Frobenius separated.

5.2.2. In what follows we fix a closed group scheme immersion

i : (G, µ) ↪→ (G ′, µ′)

as in 3.7.1. We eventually apply the following statements to the case that G ′ = GLh ,

µ′ = µd,h , and i is given by a Hodge embedding datum.
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Proposition 5.2.3. Suppose that B is in ANilpaFs
W . Let D1 and D2 be banal displays with

(G, µ)-structure over B such that i(D1) and i(D2) are adjoint nilpotent. Then a pair

(φ, ψ) with

(i) φ : D1 99K D2 a G-quasi-isogeny,

(ii) ψ : i(D1)→ i(D2) a G ′-isomorphism,

is induced from a G-isomorphism ε : D1 → D2 if and only if

i(φ) = ψ[1/p],

i.e. if and only if i(φ) and ψ give the same G ′-quasi-isogeny i(D1) 99K i(D2). (By

Proposition 3.6.1, the isomorphism ε is then uniquely determined.)

Proof. Using Lemma 3.7.6 we can reduce to the case pB = 0. Again set Jn = ker(Fn
B) =

{x ∈ B|x pn
= 0}. Since the displays Di are banal, they are represented by elements

Ui ∈ G(W (B)). The quasi-isogeny φ gives us an element k ∈ G(W (B)Q) such that U2 =

k−1U18
µ(k) holds in G(W (B)Q). The isomorphism ψ gives us an element l ∈ Hµ′(B)

such that i(U2) = l−1i(U1)8
µ′(l) holds in G ′(W (B)). By our assumption, the images of

i(k) and l agree in the group G ′(W (B)Q).
Since i is a closed immersion there exists a smallest ideal I0 of W (B) such that

the restriction of the W (B)-valued point l to Spec(W (B)/I0) factors through, say

h ∈ G(W (B)/I0). Since i : G → G ′ is of finite presentation, I0 is a finitely generated ideal

of W (B).
The existence of k shows that I0 is contained in W (B)[p∞] =

⋃
n W (Jn). By the finite

generation of I0, we can choose a large enough n such that I0 ⊂ W (Jn) and we can

consider hn ∈ G(W (B)/W (Jn)) = G(W (B/Jn)) = L+G(B/Jn). Since Hµ
= L+G ∩ Hµ′ ,

we see that hn is in Hµ(B/Jn). Let Ui,n be the images of Ui in the group G(W (B/Jn)). Note

that the elements U2,n and h−1
n U1,n8

µ(hn) are well-defined in G(W (B/Jn)) and have the

same image in G ′(W (B)Q). Since G ′ is of finite type, there exists another integer n′ > n
such that these elements agree already in G ′(W (B/Jn′)) and so also in G(W (B/Jn′)).

Therefore, we have constructed an isomorphism

η : D1×B B/Jn′
∼
−→ D2×B B/Jn′

with η[1/p] = φ and i(η) ≡ ψ mod Jn′ . Now use deformation theory (as in the proof of

Lemma 3.7.6) to extend η to a compatible system of isomorphisms ηN over B/J N
n′ , for all

N , which are given by hN ∈ Hµ(W (B/J N
n′ )) and which, when viewed in Hµ′(W (B/J N

n′ )),

are all the reduction of a single element h′ ∈ Hµ′(W (B)). Set I =
⋂

N J N
n′ ; by our

assumption that B is almost Frobenius separated, I is nilpotent. It follows that h′mod I is

in Hµ(W (B/I )) and so it gives a lift of η to an isomorphism η̃ : D1×B B/I
∼
−→ D2×B B/I

with η̃[1/p] = φ and i(η̃) ≡ ψ mod I . We can now conclude by a similar deformation

theory argument as before.

5.2.4. Now let D0 be a (G, µ)-display defined over an algebraically closed field extension

k of k0. Suppose that the (G ′, µ′)-display i(D0) is adjoint nilpotent, then the same

holds true for D0. We can consider the Rapoport–Zink stacks of groupoids RZG,µ,D0 ,

respectively RZG ′,µ′,i(D0), of pairs of (G, µ)-displays, respectively (G ′, µ′)-displays,
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together with a G-quasi-isogeny to D0, respectively a G ′-quasi-isogeny to i(D0). There is

a natural transformation

i : RZG,µ,D0 → RZG ′,µ′,i(D0).

(Note that by Lemma 3.6.1, for B in ANilpaFs
W (k), the objects of RZG,µ,D0(B),

RZG ′,µ′,i(D0)(B), have no automorphisms.)

Proposition 5.2.5. Suppose that B is an object of ANilpared
W (k) and let A ⊂ B a Noetherian

W (k)-subalgebra. Suppose we are given:

• (D, δ) is an object of RZG,µ,D0(B),

• (D′, δ′) is an object of RZG ′,µ′,i(D0)(A),

• ψ an isomorphism ψ : i((D, δ)) −→ (D′, δ′)×A B.

Then there is an object (D3, δ3) of RZG,µ,D0(A) together with isomorphisms

(D3, δ3)×A B
∼
−→ (D, δ), i((D3, δ3))

∼
−→ (D′, δ′),

which are compatible with ψ in the appropriate manner.

Proof. Given the above, the data (D′,D, ψ) give an (A, B)-display block as in

Definition 3.7.2. Part of the desired conclusion is that (D′,D, ψ) is effective. In fact,

we first show that it is enough to show this effectivity: Indeed, assume we have

that, i.e. suppose that we have constructed a (G, µ)-display D3 over A together with

isomorphisms i(D3)
∼
−→ D′, D3

×A B
∼
−→ D, which are compatible with ψ . We can then

give the G-quasi-isogeny δ3 over Ā as follows: The data δ, δ′ together with the above

isomorphisms give a G ′-quasi-isogeny δ̃′ : i(D̄3) 99K i(D0)×k Ā and a G-quasi-isogeny

δ̃ : D̄3
× Ā B̄ 99K D0×k B̄. These two are compatible in the sense that

i(δ̃) = δ̃′× Ā B̄.

We claim that this implies that δ̃ is defined over Ā and so it gives the desired δ3.

To see this we can assume that the display D3 is banal (by using étale descent on

A and Corollary B.0.3). Then δ̃, δ̃′ are given by elements in g ∈ G(W (B)[1/p]) and

g′ ∈ G ′(W (A)[1/p]) respectively and the condition is that these elements coincide in

G ′(W (B)[1/p]). Now observe that our conditions on A ⊂ B imply

W (A)[1/p] ⊂ W (B)[1/p].

(Indeed, since A, B are in ANilpared
W there is an integer n such that pn annihilates

both W (rad(A)) and W (rad(B)). Hence, W (A)[1/p] = W (Ared)[1/p], W (B)[1/p] =
W (Bred)[1/p]. Since W (Ared), W (Bred) are p-torsion free and A ⊂ B induces Ared ⊂ Bred,

the inclusion follows.) Now g is given by OG → W (B)[1/p] and g′ by OG ′ → W (A)[1/p].
The compatibility condition is that the following diagram commutes

OG ′ −→ OG
g′ ↓ ↓ g

W (A)[1/p] ↪→ W (B)[1/p].

Since OG ′ → OG is surjective this implies that g factors through W (A)[1/p]; this provides

the G-quasi-isogeny δ3.
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To show (D′,D, ψ) is effective we now proceed in several steps, some of which are

similar to [3, proof of Proposition 5.4.(ii)]. As it turns out, the two most important cases

that we need to handle are when B is faithfully flat over A (Step 1), and when A = K [[t]]
and B = K ((t)), with K a field (Step 3).

Observe that the statement holds for a finite product A =
∏n

i=1 Ai if and only if it

holds for each factor Ai , so that it does no harm to assume the connectedness of Spec A
in each of the steps below.

Step 1. B is faithfully flat over A (e.g. if A is a field).

By Lemma B.0.3, there is an étale faithfully flat B → B ′ such that D×B B ′ is banal.

Notice that B ′ has also nilpotent radical and so we can replace B by B ′ and assume

that D is banal. Then the conclusion will be a consequence of fpqc descent for A→ B
and RZG,µ,D0 . We can use Corollary C.0.6 and Proposition 5.2.3 applied to B⊗A B to

construct the descent datum as follows:

Let d1 : B → B⊗A B, d2 : B → B⊗A B, be the coprojections and d : A→ B⊗A B their

common restriction to A. Consider

d∗i (D, δ) := (D, δ)×B,di (B×A B),

for i = 1, 2, in RZG,µ,D0(B⊗A B). Define a G-quasi-isogeny φ : d∗1D 99K d∗2D by setting

φ = d∗2 (δ)
−1
· d∗1 (δ) : d

∗

1D 99K d∗D0 99K d∗2D.

There is also a G ′-isomorphism ψ ′ : d∗1 i(D)→ d∗2 i(D) given by the composition

d∗1 i(D)
d∗1 (ψ)
−−−→ d∗1 (D

′
×A B) = d∗D′ = d∗2 (D

′
×A B)

d∗2 (ψ)
−1

−−−−−→ d∗2 i(D).

We can now see that ψ ′ gives the G ′-quasi-isogeny i(φ). By Corollary C.0.6, B⊗A B
is in ANilpaFs

W and so we can apply Proposition 5.2.3 to construct the descent datum

which is given by a G-isomorphism ε : d∗1D
∼
−→ d∗2D over B⊗A B. The G-isomorphism ε

is compatible with the G-quasi-isogenies d∗1 δ and d∗2 δ.

Step 2. A is a complete local Noetherian ring and B is finite over A.

First let us make the following observation: Let A→ A′ be an étale extension of local

rings with a finite separable extension of residue fields k′ over the residue field k = A/m
(then A′ is also complete Noetherian). Assume we have the result for A′ ↪→ B ′ := B⊗A A′,
and for the base changes of our displays to A′ (B ′ is then also in ANilpW ). Then we can

apply descent (or Step 1) to the faithfully flat A→ A′ to further descent to A and obtain

the result for A→ B.

Now apply Step 1 to the inclusion A/m ↪→ B/J (B). This shows that the display block

(D′×A A/m,D×B B/J (B), ψ ×B B/J (B)) is effective and is given by a (G, µ)-display

over k = A/m. There is a finite separable extension k′ of k such that this display is banal

and we can find an étale extension A′ as above with k′ as residue field. Now apply part

(ii) of Lemma 3.7.9 to the base changes by A′ to descent to A′ and conclude by using the

observation above.

Step 3. A = K [[t]] and B = K ((t)), where K is a field extension of k.
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By using Step 1 we may assume that K is algebraically closed. By base changing to

a finite separable extension L of K ((t)) we can arrange that the (G, µ)-display D is

banal. Notice that if A is the integral closure of K [[t]] in L, then A = K [[u]] for some

variable u and L = K ((u)). Since A = K [[u]] is finite over K [[t]], an application of Step

2 shows that we can always descend along K [[t]] ↪→ K [[u]]; hence, we can reduce to the

situation A = K [[t]] ↪→ B = K ((t)) with K algebraically closed and all displays banal.

For simplicity of notation, set R = K [[t]], E = K ((t)). Hence we can find U ′ ∈ G ′(W (R))
for D′, and U ∈ G(W (E)) for D. The isomorphism ψ : i(D) −→ D′×R E is given by l ∈
Hµ′(E) ⊂ G ′(W (E)) with U = l−1U ′8G,µ(l). Using the two isogenies δ, δ′ we obtain a

factorization

l = ab−1

in G ′(W (E)[1/p]). In this, b ∈ G(W (E)[1/p]) gives δ : D 99K D0×k K ((t)) and a ∈
G ′(W (R)[1/p]) gives δ′ : D′ 99K i(D0)×k R. Consider the quotient G ′/G which is

represented by an affine scheme Z [8, 6.12]. The above identity implies that the

W (E)-valued point of Z which is given by l is equal to the W (R)[1/p]-valued point

which is given by a with the equality of points considered in Z(W (E)[1/p]). Now use

W (E)∩W (R)[1/p] = W (R).

(The intersection takes place in W (E)[1/p].) Using that Z is affine, we see that there

is a W (R)-valued point z of Z which gives both l and a. Since G ′→ Z = G ′/G is a

G-torsor and W (R) = W (K [[t]]) is henselian, there is c ∈ G ′(W (R)) that lifts z. Then

c = a · d with d ∈ G(W (R)). Thus we can adjust b by multiplying by d−1 and assume

now that l = ab−1 with a ∈ G ′(W (R)) and b ∈ G(W (E)). Now use that, by the Iwasawa

decomposition, we have

G(E) = Pµ(E) ·G(R).

This and the surjectivity of G(W (E))→ G(E), G(W (R))→ G(R) (which holds

by Hensel’s lemma, since W (E), respectively W (R), is I (E)-adically, respectively

I (R)-adically, complete and G is smooth) gives

G(W (E)) = Hµ(E) ·G(W (R)).

Write b = h · g with h ∈ Hµ(E), g ∈ G(W (R)). Then l = ab−1
= ag−1

· h−1. Hence, we

may write l = ab−1 with a ∈ G ′(W (R)) and b ∈ Hµ(E). Observe that then a ∈ Hµ(R).
Now set

U3
= a−1U ′8G ′,µ′(a) = b−1U8G,µ(b).

This element is in both G ′(W (R)) and G(W (E)), hence it belongs to the intersection

G(W (R)). We can now see that it defines the desired display D3; the elements a and b
give the isomorphisms of i(D3) to D and of D3

×R E to D respectively.

In what follows, we denote by Q(R) the total quotient ring of R, i.e. the localization

N−1 R of R at the set of non-zero divisors N ⊂ R.

Step 4. A is a reduced complete local one-dimensional Noetherian ring.

Consider A ⊂ Q(A) ⊂ B⊗A Q(A); we can apply Step 1 to the base change Q(A) ⊂
B⊗A Q(A). This allows us to reduce to considering A ⊂ Q(A), i.e. we can assume B =
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Q(A). Consider the normalization A′ of A in Q(A). By [13, Théorème (23.1.5)] this is

a finite extension of A. By the Cohen structure theorem we have A′ ' K [[t]], Q(A) '
K ((t)). The result follows by applying sucessively Step 3 and Step 2.

The sequence of the following four steps settles the case of Noetherian rings of finite

Krull dimension, we argue by induction on dim(A):

Step 5. A is an integrally closed complete local Noetherian ring.

By Serre’s condition S2, there exists a regular sequence of length two, i.e. elements f
and g such that f is neither a unit nor a zero-divisor of A and g is neither a unit nor

a zero-divisor of A/ f A. Notice that A[1/g] is a Noetherian ring of dimension strictly

less than dim A, so by induction we can apply Step 8 (for a ring of smaller dimension)

to the inclusion A[1/g] ⊂ B[1/g] and we obtain the desired display D3 over the ring

A[1/g]. Thus we may replace B by A[1/g], and so do consider the inclusion A ⊂ A[1/g],
which satisfies the assumption of part (i) of Lemma 3.7.9. (Here, to make sure that the

(G, µ)-display over the residue field A/m is banal, we might need to base change by a

finite étale local extension A→ A′ as in Step 2.)

Step 6. A is a complete local Noetherian ring.

Using Lemma 3.7.8 we see that we can assume that A is reduced. Then by an argument

as in Step 4, we can reduce to the case B = Q(A). Just as in the Step 4 we consider the

normalization A′ of A in Q(A). Using the previous step we can replace B by the ring

A′. However, by [13, Théorème (23.1.5)], A′ is a finite extension of A, so that we can

conclude by applying Step 2.

Step 7. A is a local Noetherian ring.

Just as in the step above we can assume A is reduced, putting us into a position

where B may be replaced by Q(A). Apply Step 6 to the ring extension Â ⊂ Q(A)⊗A Â,

where Â denote the completion of the local ring A. This allows us to reduce to the case

A→ B = Â. Since A→ Â is faithfully flat we can conclude by applying Step 1.

Step 8. A is a Noetherian ring of finite Krull dimension.

As before we can assume Ared = A and B = Q(A). By base change, for every maximal

ideal m of A we obtain a (Am, Q(Am))-display block

(D′×A Am,D×Q(A) Q(Am), ψ ×Q(A) Q(Am)),

where Am stands for the localization of A at m.

Set A] :=
∏

m Am, which is reduced (m runs through the set of maximal ideals). Observe

that the fact that Am are all reduced implies that the union
⋃

m Spec(Am) ↪→ Spec(A])
of the closed immersions Spec(Am) ⊂ Spec(A]) is dense in Spec(A]). (In fact, in general,

if the radical of
∏

i Ai is nilpotent, then ∪i Spec(Ai ) is dense in Spec(
∏

i Ai ).)

Now let us write (D3
m, δ

3
m) for its descent to RZG,µ,D0(Am), of which the existence is

granted by the previous step. Now let us construct a product display D]
:= (P], Q], u]) =∏

mD3
m over the ring A]:

(i) We obtain the L+G-torsor P] by applying Remark B.0.5. To obtain the descent

Q] to an Hµ-torsor use the observation 3.2.4: We need a section over Spec(A]) of the

corresponding Xµ-bundle P]/Hµ for Xµ = G/Pµ. By assumption, we have such a section
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over Spec(Am), for all m, while the Xµ′-bundle P ′/Hµ′ for Xµ′ = G ′/Pµ′ has a section over

Spec(A) and therefore over Spec(A]). These agree as sections of P ′/Hµ′ over Spec(Am), for

all m. Now notice that, by descent, P]/Hµ
⊂ P ′]/Hµ′ is a closed immersion and hence,

by the above density of ∪m Spec(Am) ↪→ Spec(A]), we see that these give a section of

P]/Hµ over A].
(ii) The construction of u] from (um) is obtained by an argument as in the proof of

essential surjectivity in Lemma B.0.4.

In addition, we need to construct a ‘compatible’ G-quasi-isogeny δ] : D] 99K D0×k
A]/(p): Let us first assume that D′, D3

m are banal and fix trivializations of the torsors

P ′, P3
m . Then (δ3m) is given by

(gm) ∈
∏
m

G(W (Am)[1/p]) = G
(∏

m

(W (Am)[1/p])
)
;

this also lies in G ′(W (A])[1/p]) and therefore in G(W (A])[1/p]). The non-banal case is

treated in a similar way by working with, instead of points of affine group schemes, points

of the affine schemes of suitable torsor isomorphisms.

Notice that the morphism A→ A] is faithfully flat. By construction, D′×A A] ∼= i(D]),

and so (D], δ]), (D′, δ′), provide data to which we can apply the special case of Step 1.

Step 9. A is an arbitrary Noetherian ring.

Since every local Noetherian ring has finite Krull dimension, we can apply the previous

step one more time, because meanwhile we know the local result without a restriction on

the dimension.

Corollary 5.2.6. Fix a Noetherian algebra A in ANilpW . Let (D′, δ′) be an object of the

stack RZG ′,µ′,i(D0) over A. Then there exists an ideal I ⊂ A such that the following

statement is true: For each A-algebra f : A→ B in ANilpared
W , we have f (I ) = 0 if and

only if there exists an object (D, δ) of RZG,µ,D0 over B together with an isomorphism

φ : (D′, δ′)×A B
∼
−→ i((D, δ)).

This implies that the morphism RZG,µ,D0 → RZG ′,µ′,i(D0) of stacks, when restricted

over ANilpnoeth
W , is represented by a closed immersion.

Proof. This is similar to [3, proof of Theorem 5.5]: Let us say (D′, δ′) has G-structure over

f : A→ B if there is an isomorphism φ : (D′, δ′)×A B
∼
−→ (D, δ). Then Proposition 5.2.5

implies that (D′, δ′) has a G-structure over the quotient A/ker( f ). Denote by S(D′, δ′) the

set of ideals of A for which (D′, δ′) has a G-structure over A/I . If I and J are in S(D′, δ′)
we can apply Proposition 5.2.5 to A/(I ∩ J ) ↪→ A/I × A/J and deduce that I ∩ J is also

in S(D′, δ′). In general, finite intersections of ideals in S(D′, δ′) are also in S(D′, δ′). Now

consider the ideal

I := I(D′,δ′) =
⋂

I∈S(D′,δ′)
I.

Consider the reduced product B[ =
∏

I∈S(D′,δ′) A/ rad(I ) of the reduced rings A/ rad(I ).
We can construct a product (G, µ)-display D and a G-quasi-isogeny of D to D0 over

this product ring B[ by an argument as in the proof of Step 8 above. Now apply
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Proposition 5.2.5 to

A/ rad(I) ↪→ B[ =
∏

I∈S(D′,δ′)
A/ rad(I ).

We obtain that rad(J) also belongs to S(D′, δ′). Now repeat the argument and apply

Proposition 5.2.5 to

A/I ↪→
∏

I∈S(D′,δ′),I⊂I⊂rad(I)

A/I.

(Notice that the radical of this product is also a nilpotent ideal.) This implies that

I ∈ S(D′, δ′) which is enough to deduce the result.

Apply the above to the case that G ′ = GLh , µ′ = µd,h , and i is given by a Hodge

embedding datum. By the results of Rapoport–Zink, Zink, and Lau, the functor

RZGLh ,µd,h ,i(b) is representable by a W -formal scheme which is locally formally of finite

type over W (see 4.2; notice that the base-point p-divisible group is X0, given in

Lemma 5.1.5). By Corollary 5.2.6, we obtain that the restriction of RZG,µ,b to ANilpnoeth
W is

represented by a W -formal closed subscheme of RZGLh ,µd,h ,i(b) which is then also formally

locally of finite type over W . Formal smoothness over W follows from our deformation

theory results. This concludes the proof of Theorem 5.1.3.

Remark 5.2.7. We now easily see that, in the Hodge type case of Theorem 5.1.3, the

W -formal scheme representing the restriction of RZG,µ,b above to locally Noetherian

schemes is isomorphic to formal schemes constructed in [15] and [14] (when these are

defined, for example, when the local Hodge embedding is globally realizable, see loc.

cit.) Indeed, all of these are W -formal closed subschemes of the classical Rapoport–Zink

W -formal scheme RZGLh ,µd,h ,i(b) with the same k-valued points (given by the affine

Deligne–Lusztig set, Proposition 4.2.6), and the same formal completions at these points

(by deformation theory, see 4.2.4 and 3.5) so they agree by flat descent. Let us note,

however, a slight difference in notation: The Rapoport–Zink formal scheme for (G, µ, b) in

this paper agrees with the one for (G, δ ·µ−1, pb−1) in [14], with δ : Gm → G ⊂ GL(3) the

central diagonal torus. (The existence of δ is part of the assumption of being of Hodge type

in loc. cit.). The reason for this discrepancy is that [14] uses the contravariant Dieudonné

functor for the construction of the base-point p-divisible group X0 corresponding to i(D0).

Remark 5.2.8. In the Hodge type case of Theorem 5.1.3, we can use the descent datum

α given in Remark 4.2.2 to descend RZG,µ,b over OE as in [22, 3.49, 3.51]. This is done

by an argument as in loc. cit., see for example loc. cit. Lemma 3.50.
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Appendix A. Minuscule cocharacters and parabolics

Here we collect some notations and standard results on (minuscule) cocharacters and

corresponding parabolic and unipotent subgroups of reductive group schemes. We refer

the reader to [10] or [6] for more details.
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A.0.1. We consider a perfect field k0 and a smooth affine group scheme G over W (k0)

with connected fibers. Let µ : Gm,W (k0)→ G be a group scheme homomorphism (a

‘cocharacter’ of G). We consider the closed subgroup schemes Uµ and Pµ of G which

are defined by the following subfunctors of G on W (k0)-algebras

Pµ(R) =
{
g ∈ G(R) | lim

t 7→0
µ(t)gµ(t)−1 exists

}
Uµ(R) =

{
g ∈ G(R) | lim

t 7→0
µ(t)gµ(t)−1

= 1
}

(See [4, 2.1], or [6, Theorem 4.1.17].)

Here ‘limt→0 exists’, by definition, implies that the conjugation action GW (k0)×W (k0)

Pµ→ Pµ extends to a morphism

Intµ : A1
W (k0)

×W (k0) Pµ→ Pµ.

This gives an action of the monoid scheme A1
W (k0)

on Pµ by group scheme endomorphisms.

Under this the zero section of A1
W (k0)

maps Uµ to the neutral section.

A.0.2. By [6, Theorem 4.1.17] we have:

• Under our assumption, Uµ and Pµ are smooth group schemes over W (k0) with

connected fibers.

• The subgroup scheme Uµ is unipotent and the multiplication

m : Pµ×W (k0) Uµ−1 → G

is an open immersion. We denote by G∗µ or G∗, if µ is clear from the context, the open

subscheme of G given as the image of this morphism.

• If g = Lie(G) =
⊕

n∈Z gn is the weight space decomposition of the Lie algebra under

the adjoint action (i.e. gn = {v ∈ g | µ(t)vµ(t)−1
= tnv}), then we have

pµ = Lie(Pµ) =
⊕
n>0

gn,

uµ−1 = Lie(Uµ−1) =
⊕
n<0

gn .

A.0.3. Suppose that G is connected split reductive over W (k0) and T ⊂ G is a split

maximal torus such that µ factors through T . Denote by 8 the roots of G and for a ∈ 8
by ga ⊂ g, respectively Ua , the root W (k0)-subspace of g, respectively root subgroup

scheme of G. Then gn =
⊕

a|〈µ,a〉=n ga . Denote by 8(µ) ⊂ 8 the set of roots a such that

〈µ, a〉 > 0. Then the multiplication (with the factors in the product taken in any order)∏
a∈8(µ)

Ua → Uµ

gives an isomorphism of W (k0)-schemes [6, 5]. The subgroup scheme Pµ ⊂ G is a parabolic

subgroup. The group scheme Uµ is the unipotent radical of Pµ. It contains a finite

filtration

Uµ = U8(µ)>1 ⊇ U8(µ)>2 ⊇ · · ·
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of normal subgroup schemes such that the multiplication map∏
a|〈µ,a〉=n

Ua → U8(µ)>n/U8(µ)>n+1

(with the factors in the product taken in any order) is an isomorphism of group schemes [6,

Proposition 5.1.16].

Recall that µ defines a decreasing filtration Fil•(V ) on each representation G → GL(V ).
We can view Pµ ⊂ G as the subgroup scheme that respects the filtration Fil•(V ). Then

Uµ ⊂ Pµ is the subgroup scheme of Pµ that acts trivially on the graded gr•(V ).

A.0.4. We assume that G is a connected reductive group scheme over W (k0) with k0 a

finite field. Then there is a finite field extension k′0/k0 such that G×W (k0) W (k′0) is split.

We now assume that the cocharacter µ is minuscule, i.e. that 〈µ, a〉 ∈ {−1, 0, 1} for all

absolute roots a ∈ 8.

Lemma A.0.5. The unipotent group scheme Uµ is commmutative and is isomorphic to

Gr
a ×Zp W (k0), where r > 0 and Ga = Spec(Zp[T ]) is the additive group scheme over Zp.

Proof. First we see that Uµ×W (k0) W (k′0) ' Gr
a ×Zp W (k′0): This follows from [6,

Proposition 5.1.16] and étale descent (see also loc. cit. Theorem 5.4.3). Indeed, since

there are no absolute roots a with 〈µ, a〉 > 2, the subgroup scheme U8(µ)>2 of loc. cit.

is trivial. We can now conclude using [10, XVII.4.1.5] and the fact that all projective

finitely generated W (k0)-modules are free.

Appendix B. Loop group torsors

Suppose that R is a W (k0)-algebra. As usual, G is a connected reductive group scheme

over Zp. We compare between L+G-torsors over R and G-torsors over W (R). Here, we

view W (R) as a W (k0)-algebra via W (k0)→ W (W (k0))→ W (R). The torsors are, by

definition, locally trivial for the fpqc topology. Our convention is that the group acts on

the right.

Lemma B.0.1. If P is a G-torsor over W (R), then the Greenberg transform F P is a

L+G-torsor over R.

Proof. Observe that P is affine of finite presentation and smooth by descent, and so by

Proposition 2.2.1 the Greenberg transform F P is affine flat and formally smooth over

R. We can also easily see that F P → Spec(R) is surjective, hence faithfully flat. By

Proposition 2.2.1 the action morphism P ×W (R) (G×W (k0) W (R))→ P gives an action

F P ×R L+G → F P.

Since P is a G-torsor the morphism P ×W (R) (G×W (k0) W (R))
∼
−→ P ×W (R) P given by

(x, g) 7→ (x, x · g) is an isomorphism. By Proposition 2.2.1 again, the morphism F P ×R
L+G ' F P ×R F P given by the above action is an isomorphism and the result follows

since F P → Spec(R) is fpqc.
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Proposition B.0.2. Let R be in ANilpW (k0)
.

(a) If P is a G-torsor over W (R), then there is an étale faithfully flat ring

homomorphism R→ R′ such that P ×W (R) W (R′) is trivial (i.e. has a section).

(b) The functor P 7→ F P provides an equivalence from the category of G-torsors over

W (R) to the category of L+G-torsors over R.

Proof. Let us first show part (a): Since G is smooth, the base change P0 = P ×W (R),w0 R
of P by w0 : W (R)→ R splits locally for the étale topology on R, i.e. there is R→ R′

étale faithfully flat such that P0×R R′ has a section s′0. Now since p is nilpotent in R′,
the Witt ring W (R′) is separated and complete for the topology defined by the powers

of I (R′) = ker(W (R′)→ R′) (see [28, Proposition 3]). By Hensel’s lemma, the section s′0
lifts to a section s′ of P ×W (R) W (R′).

Now let us prove part (b). We first show that the functor is fully faithful. Let φ,ψ :

P → P ′ be (iso)morphisms of G-torsors over W (R) such that F(φ) = F(ψ). By part (a),

there is an étale faithfully flat R ↪→ R′ such that P ×W (R) W (R′), P ′×W (R) W (R′), are

both trivial G-torsors. Hence, φ and ψ are given by multiplication by gφ , gψ ∈ G(W (R′)).
Our assumption F(φ) = F(ψ) now quickly implies that gφ = gψ and so φ = ψ . It now

remains to show the essential surjectivity of P 7→ F P. First notice that in the case

G = GLh this is provided by Zink’s Witt descent [28, Proposition 33, Corollary 34]).

Indeed, a (fpqc locally trivial) L+ GLh-torsor over R gives by definition ‘Witt descent

data’ on W (R′)h with respect to the faithfully flat R→ R′; by loc. cit. these determine

a projective finitely generated W (R)-module; this is locally free of rank h on W (R) and

its scheme of linear automorphisms produce the desired GLh-torsor over W (R). Let us

now handle the case of a general reductive group G. There is a closed group scheme

immersion i : G ↪→ GLh and the fpqc quotient GLh /G = Spec(A) is represented by an

affine scheme [8, Proposition 6.11, Corollary 6.12]. Suppose now that Q is a L+G-torsor

over R and consider the induced L+ GLh-torsor

i(Q) = Q×L+G,i L+ GLh .

By the above discussion, there is a GLh-torsor P over W (R) such that F P ∼= i(Q); this

gives a closed immersion j : Q ↪→ F P of schemes over R which is L+G-equivariant. By

descent, the quotient P/G is represented by an affine W (R)-scheme Z and P → Z = P/G
is a G-torsor. Then by a similar argument as in the proof of Lemma B.0.1, F P → F Z is

a L+G-torsor. Now by applying fpqc descent (i.e. ‘taking the quotient of j ’ by the action

of L+G) we obtain a morphism

j/L+G : Spec(R)→ F Z

which amounts to a W (R)-valued point of Z . The pull-back of the G-torsor P → Z along

this point gives the desired G-torsor over W (R).

Corollary B.0.3. Suppose S is a scheme in NilpW (k0)
. Then all (fpqc locally trivial)

L+G-torsors over S split locally for the étale topology of S.
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Lemma B.0.4.

(a) Let An, n > 1, be a sequence of local W (k0)-algebras. Then the functor from the

category of G-torsors over A =
∏

n An to the product of the categories of G-torsors

over An is an equivalence of categories.

(b) Let A be a W (k0)-algebra with a descending chain of ideals an, n > 1, with aia j ⊂

ai+ j and a1/an nilpotent in An := A/an, for all n, and such that A ∼= lim
←−n

An. Then

the functor from the category of G-torsors over A to the category of compatible

systems of G-torsors over An is an equivalence of categories.

Proof. In both cases (a) and (b), the full faithfulness is clear and follows from the fact

that the scheme of isomorphisms between two G-torsors over A is represented by an

affine A-scheme. Also, when G = GLh , both functors are essentially surjective (for (b)

this follows from lifting of projective modules, see for example [28, p. 146–148]). In

general, pick a closed group scheme embedding i : G ↪→ GLh . Consider a (compatible,

for part (b)) sequence of G-torsors Qn over An and the corresponding GLh-torsors Qn ×G
GLh . (In case (a), since An is local, the GLh-torsor Qn ×G GLh is trivial: GLh ×A An ∼=

Qn ×G GLh .) By essential surjectivity for GLh , there is a GLh-torsor P over A with

(compatible) isomorphisms P ×A An ∼= Qn ×G GLh . As in the proof of Proposition B.0.2,

the fpqc quotient P/G is representable by an affine A-scheme Z and P → Z is a G-torsor.

The Qn ’s give rise to a (compatible) sequence of elements of Z(An), which yields a point

Z(A); this gives the desired G-torsor over A.

Remark B.0.5.

(i) Lemma B.0.4 remains true if G is replaced by L+G provided that, in addition,

all An are in ANilpW (k0)
. Indeed, we see that the proof of part (a) goes through

after the observation that all L+ GLh-torsors over An are trivial, given by free

W (An)-modules, of rank h. This is a corollary of Zink’s Witt descent (also obtained

by combining Proposition B.0.2 with [28, Proposition 35]). For part (b), we can

again apply Proposition B.0.2 and observe that we have W (A) ∼= lim
←−n

W (An) with

W (a1/an) nilpotent in W (A/an).

(ii) As a corollary of the above, it also follows that the equivalence of Proposition B.0.2

(b) extends to the case that R is a p-adically complete and separated W (k0)-algebra.

Appendix C. On certain nilradicals

Suppose that R is a (commutative) Fp-algebra. Denote by FR : R→ R the Frobenius

FR(x) = x p so that ker(Fn
R) = {x ∈ R | x pn

= 0}.

Definition C.0.1.

(a) We say that a Fp-algebra R is Frobenius separated (Fs) when, for all n > 1, R is

ker(Fn
R)-separated, i.e. when for all n > 1, we have⋂

m

ker(Fn
R)

m
= 0. (C.0.1.1)
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(b) We say that a Z(p)-algebra R is almost Frobenius separated (aFs) when there exists

a nilpotent ideal a such that p ∈ a and R/a is Frobenius separated.

Lemma C.0.2. We have:

(1) Noetherian rings with pR = 0 (respectively p ∈
√

0R) are (almost) Fs.

(2) If R ⊂ R′ and R′ is (almost) Fs, then so is R.

(3) If Ri , i ∈ I , are Fs then the product
∏

i∈I Ri is Fs.

Proof. These properties are easy consequences of the definition.

The following is a slight generalization of [3, lemma 5.1]:

Lemma C.0.3. Let k be a field of characteristic p, and let B and B ′ be reduced k-algebras.
The tensor product R = B⊗k B ′ is Frobenius separated.

Proof. Notice that we can write B⊗k B ′ ↪→
∏

i L i ⊗k
∏

j L ′j where L i , L ′j are field

extensions of k; then B⊗k B ′ ⊂ (
∏

i L i )⊗k (
∏

j L ′j ) ↪→
∏

i, j L i ⊗k L ′j . Hence, as Frobenius

separatedness is inherited by products and subrings (Lemma C.0.2), without loss of
generality, we can assume that B and B ′ are algebraically closed fields. We may clearly
also assume B = B ′. Zorn’s lemma allows us to pick a maximal separable subextension
k ⊂ S ⊂ B, so that B = S1/p∞ . Notice that T := B⊗k S is a reduced ring. Let {xi |i ∈ I }
be a p-basis of S (i.e. a subset such that every element of S has a unique representation
as a sum x =

∑
n a p

n xn where n = (ni )i∈I runs through the set of multiindices with

p− 1 > ni > 0 and ni = 0 for almost all i). It is easy to see that B is the quotient of the
polynomial algebra S[{bi,e|i ∈ I , e > 1}] by the ideal which is generated by bp

i,e+1− bi,e

and bp
i,1− xi for i ∈ I , e > 1. Now consider

ri,e := bi,e⊗ 1− 1⊗ bi,e ∈ R.

It follows that R is the quotient of the polynomial algebra

T [{ri,e|i ∈ I , e > 1}]

by the ideal which is generated by r p
i,e+1− ri,e and r p

i,1, for i ∈ I , e > 1. We can deduce
that, for each subset I0 ⊂ I , there exists a ring endomorphism θI0 : R→ R, defined by
θI0(ri,e) = ri,e if i ∈ I0, θI0(ri,e) = 0, if i /∈ I0. Notice that each θI0 preserves an := ker(Fn

R),
and that θI0 = θI0 ◦ θI0 .

Now we can see that an is generated by the elements ri,n , so that aνn is generated by
the set {

∏
i rνi

i,n|
∑

i νi = ν}. The only multiindices which give rise to non-zero products
are bounded by νi 6 pn

− 1, and these are seen to involve factors indexed by at least
ν/(pn

− 1) many elements of I . Consequently one has θI0(a
ν
n) = 0 provided that #(I0) <

ν/(pn
− 1). Now consider some x ∈

⋂
ν a

ν
n , and choose a large finite set I0 with θI0(x) = x .

We deduce x ∈ θI0(a
1+(pn

−1)#(I0)) = 0.

Lemma C.0.4. Suppose that A is an almost Frobenius separated Z(p)-algebra. Let a ⊂ A
be an idempotent ideal, i.e. a = a2, which is in addition bounded nilpotent, i.e. there exists
m > 1 such that for all x ∈ a, xm

= 0. Then a is the zero ideal.
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Proof. Consider the image ā of a in A/p A. It is enough to show ā = 0; then a ⊂ p A and
so a = a2

⊂ p2 A which gives a ⊂ pm A = 0 for m � 0. Therefore, it is enough to show
the result when p A = 0. Our assumption implies that there is n > 1 such that a = a2

⊂

ker(Fn
A). The result follows since then a = am

⊂ ker(Fn
A)

m which gives a ⊂
⋂

m(ker(Fn
A))

m .

Therefore a is nilpotent and a = a2 gives a = 0.

Remark C.0.5. In fact, the proof only uses that ∩m ker(FA/p A)
m is nilpotent. Indeed,

suppose that p A = 0 and that we have a = a2
⊂ ker(Fn

A) with n > 1. We can induct

on n. Consider a′ = {
∑

i xi y p
i |xi ∈ A, yi ∈ a}. This satisfies a′ = a′2 ⊂ ker(Fn−1

A ) and by
induction a′ = 0. This gives a ⊂ ker(FA) and we can conclude the proof.

Corollary C.0.6. Let R be a Noetherian ring. If p is nilpotent in R and if B is a flat
R-algebra for which

√
0B is nilpotent, then B⊗R B is almost Frobenius separated (aFs).

Proof. Recall that we denote by Q(A) the total quotient ring of A, i.e. Q(A) is the
localization N−1 A on the set of non-zero divisors N ⊂ A. Lemma C.0.3 implies that
Q(Bred)⊗Q(Rred) Q(Bred) is almost Frobenius separated, and we claim that the kernel of
the canonical homomorphism

B⊗R B → Q(Bred)⊗Q(Rred) Q(Bred)

is nilpotent. We first argue that we can quickly reduce to the case that R is reduced.
Indeed, since R is Noetherian,

√
0R is a nilpotent ideal we can replace R and B by Rred

and B/
√

0R B. Now assuming that R = Rred, let us write S for the set of non-zero divisors
of R. Observe that since B is R-flat the images of the elements of S in B are also non-zero
divisors of B, yielding natural injections B ↪→ S−1 B and also B⊗R B ↪→ S−1 B⊗R S−1 B.
However, since the kernels of both maps

S−1 B⊗Q(R) Q(Bred)→ Q(Bred)⊗Q(R) Q(Bred),

and
S−1 B⊗R S−1 B → S−1 B⊗R Q(Bred)

are nilpotent, the statement easily follows.

In particular Corollary C.0.6 applies when

• B =
∏

m Rm, where m runs through the set of maximal ideals of the Noetherian ring
R and Rm stands for the localization at m, and

• R is a local Noetherian ring and B = R̂ is its completion.

(In the first situation, the flatness of B =
∏

m Rm over the Noetherian ring R follows
from [5, Theorem 2.1].)
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