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PROBLEMS AND SOLUTIONS

PROBLEM

02.2.1. ARMA Representation of Squared Markov Switching Heteroskedastic
Models, proposed by Walter Distaso. Markov switching models have become
very popular in macroeconomics, since they were first proposed by Hamilton
(1989). More recently, this kind of model has been applied to describe the be-
havior of the volatility of financial time series (see, e.g., Francq and Zakoian,
2000).

Let the process {A,} be described by a Markov chain with state space {0,1}
and transition probabilities given by

Pr[A, = 1|A,_,=1]=p,
Pr[A, =0]A, =1]=1—p,
Pr[A, =0]A,_,=0]=g¢q,
Pr[A, =1|A,_,=0]=1—g,

with 0 < p,q < 1. Consider the simple case of a model

Ve = &, 1
where
g = 0,7, 0_[2 = M(At)’ (2)
2
n(d,) = Zlu“ilA,:i—l’ 0<py<p,, 3)

i=1

and {Z,} is i.i.d.(0,1) with an existing fourth moment and independent of {A,}.
Show that the process {e?} admits an ARMA(1,1) representation (see
Francq and Zakoian, 2000, Example 7, p. 700) of the form

e = w+ael, +u,— Pu,_, )

and express o, a, B in terms of p, g, uy, w2, E(Z}).

REFERENCES
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SOLUTIONS

01.2.1. A Determinantal Inequality—First solution,' proposed by Tom Was-
beek and Jos de Berge. Let C = A;'/2AA;/?; then the question is to show that
|C| = |I| =1, i.e., the determinant of a correlation matrix is less than (or equal
to) unity. Let Ay, ..., A, be the eigenvalues of C; then

n

2(/\ —1)=t(C)—n=0,

i=1

In|C| =1n

1:1:

which gives the desired result.

Second solution, proposed by Christian Kleiber. This proof uses the arithmetic-
geometric mean (AGM) inequality. Let A;(-) denote the ith eigenvalue of a
matrix. Define the diagonal matrix A, = diag(a,,...,a,,). Then A;/2AA;'/?
is also positive definite, with a diagonal of ones.

Now, by the AGM inequality,

n=tr(Ag2AA;'V?) = tr(AA7Y) = D) A (AALY)

i=1

n 1/n N Un
= n(H Ai(AAd1)> = n(det(AA;l))l/n — n(det(A)-H aﬁl) ,

i=1

which implies det(A) = det(A,).

Third solution, proposed by Christian Kleiber. This proof considers the prob-
lem as a constrained optimization problem: Because A is positive definite, we
can write A = R R, in particular a;; = 3, #7. Consider the problem

n
max |det(R)| st. X ri=a; forj=1,...,n
i=1

The objective function is continuous and to be maximized over a compact set,
so a solution exists. Let R be a solution. Thus, expanding det(R) by the jth
column,

det(R) = >, Ty Cips
i=1
where C = (c;); ; is the matrix of (signed) cofactors of R. Clearly

|detR| = H a}/* = det(AY?) >0,
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because ACII/ ®is an element of the feasible region. Now the Cauchy—Schwarz
inequality implies

n

2 Tij Cjj

i=

- DD = g2 )
|det(R)| = = [r NN = a2 [,

where ) = (ry,...,r,) " and ¢V) = (cy;,...,c,;) ", with equality if and only
if 770 = p,c'Y, for some p; € IR. Because R solves the maximum problem,
r/) is necessarily of this form. Now consider, for k # j,

n
k i) — k i) —
FOTRD) = 0T )= S ey,
i=1

which is seen to be an expansion, by column j, of the determinant of R with

column j replaced by a copy of column k. Thus, r®Tr) = 0, for all k # j;
hence R has orthogonal columns. This gives

det(R")-det(R) = det(R"R) = det((r"Tr\)), ;) = det(A,)

and, R being a solution of the maximum problem, det(A) = det(RTR) =
det(RTR) = det(A,).

Fourth solution, proposed by Heinz Neudecker, the poser of the problem.
Consider X = A, + X, x;(E; + Ej;), where x;; is the (i,j) element of X and
Ej; is a basis matrix, i.e., Ej; = e; e/, where ¢; is a unit vector with ith element
equal to 1. Then d|X| = [X|u X~ 'dX = |X|w X' 3,_;(E; + E;;)dx;. Neces-
sary for a maximum is

|X|e X WE; +E;)) =0 Vi<

As | X| # 0 this yields x¥ = 0, where x? is the (i,j) element of X!, Hence
x; = 0. This implies that the stationary point is X, = A,. Further at the station-
ary point

d?|X| = d|X)tr X 'aX + | X|tr(dX V)dX
—|X|r X ' (dX)X 'dX <0

as |X| > 0and r X '(dX)X 'dX = (dvec X)' (X ' ® X ")d vec X > 0. This
shows that a maximum has been found.

NOTE

1. Christian Kleiber also reported that an alternative proof based on majorization theory can be
found in Marshall and Olkin (1979, p. 223).
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01.2.2. The R/S Statistics as a Unit Root Test—Solution, proposed by
Giuseppe Cavaliere.

Part (a). Because i = T '(Xy — Xo) = T "(uT + Sy) = u + TSy, the
equality >/_,(AX; — ) = S, — (¢/T)Sr holds and we can follow Lo (1991,
Theorem 3.1) to get (A/A)R/S = Z, := supsero,1] Vi(s) — infefo,17 Vi(s), where
V, is the Brownian bridge V,(s) = B(s) — sB(1), B is a standard Brownian
motion, and = denotes weak convergence. Finally, R/S has the same asymp-
totic distribution provided that A is bounded away from O and 5\2 A= o,(1).
But this fact follows directly from the conditions on {u,} and /\2 (see de Jong,
2000).

Part (b). First, simple calculations allow us to state that S (AX, — ) =
X, — Xo— at = X,, from which it follows that the numerator of R/S has the
representation max,X, mm,X Under the alternative hypothesis, X is given
by X, =X, — Xo — (t/T)( Xy — Xo) = 2'_, S; — 1§, where S, := 3!_, u; and
S:i=r1"" E,T:1 S,; note that )2, depends neither on u nor on X,. By standard
1(2) asymptotics and the continuous mapping theorem,

Xpor) 1@ LTl

= ES[

S= B(r)dr—sf B(s)ds =: V,(s)

AT AT 5 AT2

1 % . O . .
32 (max X, — min X,) = Z,:= sup V,(s) —infgpg 7 Va(s). (1)
AT t ' s€[0,1]

Now consider the denominator. Because X, is 7(2), AX, is 1(1), and conse-
quently A% is based on the sample autocovariance function of the demeaned
integrated process AX, — 4 = S, — S. In this case Phillips (1991) has proved

that
LA Z—JI(B() B)%d K'—fk()d )
e KqTT:> = . K S, = . s)ds

provided that g, is O(T”), y < 5. By combining (1) and (2) one gets

(qr/T)*R/S = Z,/Z"*. Finally, the condition g/T — 0 implies that R/S

diverges to +oo and a right tail test based on R/S is consistent against I(2).
Part (c). Under the alternative hypothesis,

a=p+(po—mw(l—a)+T7'Sr+cq,

where S, := X/_,u; and c; := T (o — w)(aT — [aT]); therefore

AMN

X, = D AX, — = (po— Wit — [aT DI > [T ]) — (1 — a)t}

1

1

+8,—(t/T)S; — tcy.
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Because T~ '(S, — (1/T)Sy — tcr) = 0,(1), all ¢,
T Xy = (o = W{(s = )I(s > @) = (1 = @)s} + 0,(1).

Hence, (1/T) times the numerator of the R/S statistics, i.e., the range of T“)?[ST],
s € [0,1], converges in probability to the range of (ug — w)((s — a) X
I(s > a) — s(1 — «)), which is given by |uy — u|a(1 — @); note that in the
case of no trend breaks 7' (max, X, — min, X,) —> 0.

Finally, consider the behavior of the long-run variance estimator. Using ar-
guments similar to those of Phillips (1991) (see part (b) in the preceding dis-
cussion), it can be proved that

A
—— =k+o,(1), k=a(l—a)(uy—u?>>0

Kqr
for wy # n. By combining this result with the probability limit of the numera-
tor it follows that R/S diverges to +oco and a right tail test based on R/S is
consistent against trend breaks.
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