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Abstract

Longitudinal normative data obtained from a robust elderly sample (i.e., believed to be free from neurodegenerative disease)
are sparse. The purpose of the present study was to develop reliable change indices (RCIs) that can assist with interpretation of
test score changes relative to a healthy sample of older adults (ages 50 + ). Participants were 4217 individuals who completed
at least three annual evaluations at one of 34 past and present Alzheimer’s Disease Centers throughout the United States. All
participants were diagnosed as cognitively normal at every study visit, which ranged from three to nine approximately annual
evaluations. One-year RCIs were calculated for 11 neuropsychological variables in the Uniform Data Set by regressing
follow-up test scores onto baseline test scores, age, education, visit number, post-baseline assessment interval, race, and sex in
a linear mixed effects regression framework. In addition, the cumulative frequency distributions of raw score changes were
examined to describe the base rates of test score changes. Baseline test score, age, education, and race were robust predictors
of follow-up test scores across most tests. The effects of maturation (aging) were more pronounced on tests related to attention
and executive functioning, whereas practice effects were more pronounced on tests of episodic and semantic memory.
Interpretation of longitudinal changes on 11 cognitive test variables can be facilitated through the use of reliable change
intervals and base rates of score changes in this robust sample of older adults. A Web-based calculator is provided to assist
neuropsychologists with interpretation of longitudinal change. (JINS, 2015, 21, 558–567)

Keywords: Reliability of results, Longitudinal studies, Cognition, Cognitive symptoms, Aging, Dementia

INTRODUCTION

Neuropsychologists are often tasked with re-evaluating
individuals to help determine whether cognitive functioning
has changed over a given time interval. Most neuropsycho-
logical test instruments are interpreted using normative data
collected from a putatively healthy sample to understand the
expected mean and variance in test scores produced by
nondiseased persons (Mitrushina, Boone, Razani, & D’Elia,
2005). These normative data are typically used to interpret an
individual person’s test scores in the context of his or her
peers, with corrections for demographic factors such as age,
education, sex, and race (Heaton, Miller, Taylor, & Grant,
2004). When applying norms for the purpose of under-
standing change in older adults, there are two critical issues
that could undermine interpretation.

First, it is difficult to determine whether the normative data
are robust to latent causes of cognitive difficulties, especially
in older age groups. An older person who is part of a
normative sample may be in the very early stages of a neuro-
degenerative disease, such as Alzheimer’s disease, but may
not be manifesting clinically obvious cognitive difficulties at
the time the normative data were collected. Recent efforts
have been made to include participants believed to be
disease-free after several years of follow-up (“robust norms;”
Holtzer et al., 2008; Pedraza et al., 2010), as a means of
ensuring that the normative sample is representative of cog-
nitively healthy individuals.
Second, norms are generally cross-sectional in nature, not

longitudinal, yet are interpreted to reflect magnitude of
change when used for repeated assessments of patients or
research participants. This ignores properties of the test such
as reliability and practice effects, and it also discounts
statistical effects such as regression to the mean (McCaffrey,
Duff, & Westervelt, 2000). Various statistical methods have
been proposed to account for these potential confounds,
ranging from simple standard deviation difference methods
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(see Frerichs & Tuokko, 2005), to reliable change models of
varying complexity (see Hinton-Bayre, 2010), to standar-
dized regression-based (SRB) methods (e.g., Attix et al.,
2009). See Duff (2012) and Heilbronner et al. (2010) for a
more detailed discussion of these and other issues related to
serial assessment in neuropsychology. Robust longitudinal
norms contextualize the change in an individual’s test scores
relative to a sample that is believed to have been free from
neurodegenerative disease during the test–retest interval.
Change in test scores that is more extreme than that observed
in robust normative samples may reflect a change in cogni-
tion that is beyond the limits of normal aging (Bläsi et al.,
2009). Robust norms have been shown to improve diagnostic
accuracy in the longitudinal assessment of older adults (De
Santi et al., 2008; Holtzer et al., 2008; Pedraza et al., 2010).
In this study, we propose to address the two weaknesses

discussed above by quantifying expected changes in cogni-
tive abilities over time through the use of linear mixed effects
regression models to calculate reliable change intervals
(RCIs). Linear mixed effects models are an extension of SRB
models, which address longitudinal data by allowing for
individual variability in baseline test scores (intercepts) and
rate of change over time (slopes; Pinhiero & Bates, 2000).
These models can be used to predict an examinee’s follow-up
test score based on variables such as the examinee’s baseline
test score and several demographic variables. The observed
follow-up test score is compared to the predicted follow-up
test score, and if the difference is large enough, the change
may be interpreted as reliable. The magnitude of reliable
change is scaled relative to the standard error observed in the
linear mixed effects model and the degree of confidence
desired in the prediction interval (often 90%). For instance, if
the standard error is 2.0 and the desired degree of confidence
for the interval is 90%, then the confidence interval would
have a range of 2.0 times the standard normal distribution
quantile associated with a two-tailed alpha level of .05
(i.e., 1.645). (For small sample sizes, this standard normal
quantile can be replaced with the appropriate t distribution
quantile for a given degrees of freedom.) In this example,
2 × 1.645 = 3.29, indicating that the 90% confidence interval
would have range of 3.29 units in both the positive and
negative directions. Differences between observed and pre-
dicted follow-up scores that are more extreme than ±3.29 are
thus suggestive of reliable change. By applying RCIs to
neuropsychological measurements, one can identify whether
a change in a given score is clinically interpretable. We seek
to produce robust longitudinal change indices that can be
used in vivo to determine whether individuals are changing at
a rate that is consistent with normal aging, whether an
individual’s rate of change is more rapid than expected, or
whether a treatment has a beneficial effect on cognition.
We will identify individuals from the National Alzheimer’s

Coordinating Center (NACC) Uniform Data Set (UDS;
Beekly et al., 2007; Morris et al., 2006) who have been con-
firmed through at least three (and up to nine) longitudinal
clinical assessments to be cognitively healthy. We will then
retrospectively examine the first (baseline) and second

(follow-up) visits to quantify the degree of change observed
across time in this putatively healthy sample. While the UDS
neuropsychological battery is well established (Weintraub
et al., 2009), the psychometric properties are still under
evaluation and no RCIs have yet been presented, limiting the
effectiveness and potentially the accuracy of longitudinal
evaluations using this selection of tests. As the UDS
neuropsychological battery is possibly the most widely used
research battery for the cognitive assessment of dementia in
the United States, it is important to identify the longitudinal
psychometric characteristics of this battery, for both research
and clinical purposes. The objective of this study is to present
RCIs based on linear mixed effects models for each of the
available UDS neuropsychological variables. As a result,
readers will have access to robust longitudinal data that can be
used to interpret cognitive changes in older adults.

METHOD

Participants

This study was determined to be exempt from human subjects
review by the University of Colorado, Colorado Springs
Institutional Review Board. Data used in the present study
were obtained from the NACC’s publicly available database.
Created by the National Institute on Aging, the NACC com-
piles a wide variety of data, including neuropsychological test
scores from 34 past and present Alzheimer’s Disease Centers
(ADCs) using the UDS battery. We included participants who
had completed at least three visits, including one baseline visit,
between September 2005 and March 2014. A total of 4598
individuals in the database were diagnosed as cognitively
normal at all visits. We also excluded 92 participants whowere
less than 50 years old at their baseline visit and 302 partici-
pants who did not speak English as their primary language or
who were not assessed in English. In total, we excluded 381
participants (13 participants met more than one of the exclu-
sion criteria), leaving a sample of 4217 for inclusion in the
study. These participants underwent at least three—and up to
nine—approximately annual evaluations at an ADC and were
diagnosed as cognitively normal at all evaluations. Because
very few participants completed more than seven visits, we did
not analyze data from the eighth or ninth visits. See Table 1 for
details regarding participant demographic variables.

Measures

The neuropsychological measures available for these
analyses included the Mini-Mental State Examination
(Folstein, Folstein, & McHugh, 1975), Wechsler Adult
Intelligence Scale-Revised (WAIS-R) Digit Span Forward
and Backward conditions (Wechsler, 1981), WAIS-R Digit
Symbol (Wechsler, 1981), Trail Making Test (TMT) parts A
and B (Reitan & Wolfson, 1993), Story A from Wechsler
Memory Scale-Revised (WMS-R) Logical Memory
(Wechsler, 1987), two semantic fluency tasks (animals and
vegetables; Weintraub et al., 2009), and the 30 odd-item short
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form of the Boston Naming Test (BNT) (Jefferson et al.,
2007). These tests are common to most dementia clinicians
and researchers, and will not be described here. See the study
by Weintraub and colleagues (2009) for more information.

Data Analysis

The test data, which were available for as few as three to as
many as seven approximately annual visits, were used in a
linear mixed effects model for each test, with visit number
nested within participants. For each test, we modeled linear,
quadratic, and logarithmic trends and found that a linear trend
provided the best balance between model fit and parsimony
(data not shown). Reliable change intervals were derived
for the second visit only. All analyses were performed in
R version 3.1.2 (R Core Team, 2015). The lme4 package
(version 1.1-8) was used for longitudinal modeling (Bates,
Maechler, Bolker, & Walker, 2015).
Eleven linear mixed effects regression models, one for

each test, were specified to include both fixed and random
(intercept and slope) effects. The follow-up test scores from
visits two to seven were regressed onto the following fixed
effects: baseline test score, age at baseline (years), education
(years), visit number, assessment interval (years post-base-
line), race (Caucasian or non-Caucasian), and sex (male or
female). All predictor variables were entered simultaneously;
although stepwise regression procedures have been used
previously for RCI studies in the neuropsychology literature,
these methods were not used here. Being data driven, rather
than theory driven, models identified using stepwise methods
have the potential to capitalize on chance and may not gen-
eralize beyond the sample data; many other limitations have
also been identified (e.g., Whittingham, Stephens, Bradbury,
& Freckleton, 2006). Dummy coding was used for race and
sex, with Caucasians and males as the reference categories
for their respective groups. For each model, fixed effects
parameter estimates and their 95% confidence intervals were
obtained using restricted maximum likelihood estimation.
The standard deviation of the random intercepts and slopes
were also obtained. Predicted follow-up scores were based on
the fixed effects parameter estimates only. To account for the
variability introduced by the uncertainty in both the fixed and
random effects, 90% reliable change intervals were based on
the residual standard error as well as the variability in the
predictions. The variability in the predictions was estimated
using parametric bootstrapping (B = 1000) of the predicted
test scores across all visits. This bootstrapping procedure was
based on simulated values for the random effects to account
for these sources of variability and results in unique predic-
tion intervals for each participant.
In addition to calculating RCI, we also examined the fre-

quency with which raw scores changed from baseline to
follow-up. To establish base rates for longitudinal change in
this sample, we derived cumulative percentages for raw score
changes of each observed magnitude. It is not uncommon
for “statistically significant” score differences to occur fre-
quently in healthy samples (Matarazzo & Herman, 1984).

Therefore, these base rate data can serve to augment the RCI
values to not only determine the statistical significance of the
observed change from baseline to follow-up, but to determine
the relative frequency of change of a given magnitude.

RESULTS

Participant demographics are presented in Table 1. Descrip-
tive statistics for the 11 neuropsychological tests at baseline
and 1-year follow-up are presented in Table 2. The fixed
effects parameter estimates and their 95% confidence inter-
vals are presented in Table 3, along with the standard devia-
tions of the random effects. For each test, the random slope
accounted for very little variability, with SDs ranging from
0.09 (MMSE) to 3.99 (TMT-B); in contrast, the SDs of the
random intercept terms were more sizeable, ranging from
0.66 (MMSE) to 20.99 (TMT-B). These results suggest that,
although individuals varied in their baseline test scores, there
is little heterogeneity in individual trajectories of change over
time on any of the tests. These patterns of change are depicted
graphically in Figure 1. As seen in this figure, the margin of
error in the average reliable change intervals increases,
sometimes asymmetrically, across visits for most tests. A
closer examination of the fixed effects parameter estimates
and their 95% confidence intervals in Table 3 reveals that, for
most tests, baseline test score, age, education, and race were
the most reliable predictors of follow-up test score. Higher
baseline test scores, younger age, more years of education,
and Caucasian race were associated with better performance
on all follow-up test scores. Female sex was associated with
higher follow-up scores on the MMSE, Digit Symbol
Coding, vegetable fluency, and Logical Memory I and II,
whereas male sex was predictive of higher follow-up scores
on the BNT. A longer post-baseline interval was predictive of
worse follow-up scores on all tests except the MMSE and
Forward Digit Span. More frequent exposure to tests (i.e., a
larger number of previous visits) yielded better scores on
Backward Digit Span, Digit Symbol Coding, the BNT, and
the two Logical Memory subtests. Neither visit number nor

Table 1. Participant demographics

Variable N M SD Range

Visits 4217 5.12 1.68 3–9
Age at baseline 4217 72.61 8.77 50.1–100.3
Education (years) 4202 15.80 2.79 3–25
Sex (Female) 2857 (67.7%) — — —

Caucasian race 3440 (81.6%) — — —

Hispanic ethnicity 88 (2.1%) — — —

T1 to T2 Interval (months) 4217 14.62 5.20 4.8–63.6
T2 to T3 Interval (months) 4217 13.92 4.73 3.6–58.8
T3 to T4 Interval (months) 3256 13.51 3.79 2.4–55.2
T4 to T5 Interval (months) 2414 13.25 3.50 4.8–51.6
T5 to T6 Interval (months) 1771 12.86 2.98 1.2–33.6
T6 to T7 Interval (months) 1056 12.59 2.24 7.2–26.4

Note. N = sample size; M = mean; SD = standard deviation.
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post-baseline interval were predictive of follow-up scores on
the MMSE and Forward Digit Span.
As there is concern for potential heteroscedasticity among

the regression residuals, a plot of the residuals versus fitted
values is provided in Figure 2. The models for MMSE,
TMT-A, TMT-B, and BNT should be interpreted with
caution due to non-normal score distributions caused by floor
and ceiling effects. Floor effects (for the TMT) and ceiling
effects (for MMSE and BNT) in the data may bias the
interpretation of change scores in examinees who are close to
floor or ceiling on these tests at baseline.
Table 4 contains data relevant to the reliable change indices

from baseline to the first annual follow-up visit. The methods
used in this study produce a unique RCI for each participant.
To summarize the margin of error needed for reliable change,
the data shown in Table 4 were derived from the average
participant in our sample [i.e., with mean values of all
continuous predictor variables and modal values for sex
(i.e., female) and race (i.e., Caucasian)]. The column labeled
“SEE” reflects the residual standard error, as reported in
Table 3. The column labeled “90% PI MOE” represents the
bootstrapped margin of error for predicting follow-up test
scores, conditioned on all random effects. The column labeled
“90% RCI MOE” represents the margin of error for the 90%
reliable change intervals. If the difference between observed
and predicted follow-up scores falls outside of this interval, the
change may be interpreted as reliable with 90% confidence.
The test scores associated with several relevant base rates of
score changes on these 11 tests are presented in Table 5.
Readers wishing to obtain reliable change intervals for

other combinations of predictor variables are referred to the
Web-based calculator created to supplement this manuscript.
It should be noted, however, that predictions for out-of-
sample data cannot be conditioned on the random effects,
which may underestimate the magnitude of the reliable
change intervals. This calculator can be accessed at https://
begavett.shinyapps.io/UDS_RCI.

DISCUSSION

As the aging population continues to grow worldwide, the
number of individuals who suffer from neurodegenerative
diseases also continues to grow (Sosa-Ortiz, Acosta-Castillo,
& Prince, 2012). Clinical diagnosis of neurodegenerative
disease requires a change from a baseline level of functioning
(McKhann et al., 2011), which supports the need for serial
assessment. Despite the clear importance of serial assessment
in the tracking of longitudinal cognitive decline, relatively
little attention has been paid to issues of interpreting change
scores. Without an understanding of factors such as normal
aging, practice effects, regression to the mean, and measure-
ment error, it may be easy to misinterpret score differences
between baseline and follow-up. Because there are very lim-
ited normative data available for serial assessment data and
change scores, interpretation of change is often subjective.
The current study adds to the reliable change literature in

two important ways. First, we have used linear mixed effects
regression to model change in cognitive test scores over at
least three and as many as seven approximately annual visits.
The results of these analyses reveal that there is little het-
erogeneity in the individual trajectories of change over time
in a large sample believed to be free from cognitive impair-
ment. Second, these results also help to tease apart the rela-
tive contributions of maturation (i.e., normal aging) and
practice effects that can affect follow-up test scores. Of the 11
test scores examined here, practice effects were most evident
for Backward Digit Span, Digit Symbol Coding, the BNT,
and the two Logical Memory subtests. Based on the para-
meter estimates for these tests, a one-point test score increase
appears after approximately 2 visits for Logical Memory
Immediate and Delayed, 3 visits for Digit Symbol Coding, 9
visits for the BNT, and 17 visits for Backward Digit Span,
when holding all other predictor variables constant. For many
tests, these practice effects are outweighed by the length of
the post-baseline assessment interval, which was inversely

Table 2. Descriptive statistics for each UDS test at baseline and 1-year follow-up

Baseline visit Follow-up visit Test–retest reliability

Test M SD S K Min Max M SD S K Min Max r 95% CI

MMSE 29.06 1.27 −2.09 7.16 17.00 30.00 29.05 1.36 −2.28 8.03 18.00 30.00 0.49 [.47, .52]
DS-F 8.73 2.02 −0.21 −0.61 1.00 12.00 8.73 2.00 −0.20 −0.50 1.00 12.00 0.66 [.64, .67]
DS-B 7.02 2.24 0.23 −0.45 0.00 12.00 7.04 2.24 0.25 −0.49 1.00 12.00 0.67 [.66, .69]
Digit Symbol 48.61 12.00 −0.05 0.33 3.00 91.00 48.97 12.33 −0.03 0.23 3.00 93.00 0.86 [.85, .87]
TMT-A 33.64 14.78 2.51 11.23 12.00 150.00 32.87 14.47 2.67 13.67 11.00 150.00 0.64 [.62, .66]
TMT-B 86.13 47.13 2.29 6.62 25.00 300.00 85.03 47.21 2.40 7.22 24.00 300.00 0.74 [.73, .76]
Animals 20.64 5.65 0.29 0.09 1.00 52.00 20.60 5.62 0.33 0.44 0.00 50.00 0.67 [.65, .69]
Vegetables 15.20 4.22 0.29 0.39 1.00 36.00 15.16 4.27 0.30 0.13 2.00 31.00 0.61 [.59, .63]
BNT 27.36 3.18 −2.67 10.21 0.00 30.00 27.61 3.12 −2.94 12.87 0.00 30.00 0.78 [.77, .79]
LM-I 13.98 3.77 −0.17 −0.15 0.00 24.00 14.49 3.76 −0.21 −0.13 1.00 25.00 0.62 [.60, .64]
LM-D 12.78 4.05 −0.12 −0.19 0.00 24.00 13.43 4.07 −0.22 −0.12 0.00 25.00 0.65 [.63, .67]

Note. M = mean; SD = standard deviation; S = skewness; K = kurtosis; MMSE = Mini-Mental State Examination; DS-F = Digit Span Forward; DS-B =
Digit Span Backward; TMT = Trail Making Test; BNT = Boston Naming Test; LM-I = Logical Memory Immediate Recall; LM-D = Logical Memory
Delayed Recall.
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associated with performance on Backward Digit Span, Digit
Symbol Coding, TMT-A and B, both semantic fluency tasks,
the BNT, and both Logical Memory subtests. For Backward
Digit Span, Digit Symbol Coding, TMT-A and B, and
semantic fluency, the post-baseline assessment interval had a
more pronounced effect than the influence of practice. On the
other hand, practice effects outweighed maturation effects on
the BNT and both Logical Memory subtests. Therefore, lit-
erature on practice effects may be augmented by considera-
tion of test–retest intervals (e.g., Duff, Callister, Dennett, &
Tometich, 2012).
These linear mixed effects models were used to calculate a

standard error for predicted test scores at an examinee’s
second visit. These standard errors are used, along with the
variability in predicted test scores, to generate 90% reliable
change intervals, which provide a range of difference scores
that fall within the test’s margin of error while accounting for
several important covariates and sources of variability. The
results provide empirical data on change scores from baseline
to approximately 1-year follow-up in a robust sample of
participants who underwent at least three approximately
annual evaluations and were never diagnosed with any form
of cognitive impairment at any visit. Using regression meth-
ods that account for maturation effects (i.e., aging), practice
effects, regression to the mean, baseline test scores, and
demographic variables, we present data for eleven different
UDS neuropsychological test variables that can be used to
calculate a predicted follow-up test score and 90% reliable
change intervals for the difference between observed and
predicted follow-up scores. Follow-up test score changes that
fall outside of these intervals can be interpreted as reflecting
“true” change with a magnitude that is larger than would
be expected based on the measurement error of the test. To
augment these reliable change intervals, we also present data
on the frequency with which score changes were observed in
this robust sample. Because statistically significant changes
in test scores may often be very frequent in a clinical sample,
interpreting RCIs along with base rate data can assist with the
interpretation of score changes in the context of how com-
monly or rarely such a change score is expected to occur in a
normative sample.
By way of an example, consider a 73-year-old, college-

educated Caucasian man evaluated using these UDS
measures, with scores and percentiles (calculated using Shirk
et al., 2011) presented in the first two columns of Table 6. If
we were to determine “impairment” by using a global cutoff
of Z = −1.5 (7th percentile), we would find no scores below
that cutoff and therefore there are no impaired cognitive
domains at this initial visit. Thirteen months later, he is seen
for his first follow-up, reports no functional problems, and his
neuropsychological test scores are provided in the second
two columns of that table. Using the same standard for
“impairment,”we would say that he is now impaired on Digit
Symbol Coding and TMT-B and exhibits difficulty with
complex processing speed. However, using the RCIs devel-
oped above and as obtained from the Web-based calculator,
we can see that he exhibited decline in excess of the 90%T
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interval of change (change Z-score >± 1.645) on MMSE,
animal naming, vegetable fluency, and the BNT. Even
though he is not “impaired” in the language domain using the
fixed Z-score criterion, he displayed decline on three
language-domain tasks relative to the baseline exam,
suggesting that this might be a domain of clinical interest. In
contrast, while Digit Symbol Coding and TMT-B both
technically declined into the impaired range, neither test
showed reliable change across visits and therefore,
despite the newly developed “impairment” on these tests, this
cannot be interpreted as a decline relative to the visit 1
baseline.

All demographic variables were found to contribute to the
prediction of follow-up scores, with some (e.g., age, educa-
tion) more robust than others (e.g., sex). It should be noted
that these results were obtained from a sample of older adults
who were diagnosed as cognitively healthy at their baseline
visit. Therefore, the results presented in this study, especially
the data used to predict follow-up test scores (Table 3) cannot
be generalized beyond this population. It would be a misuse
of the data to attempt to predict follow-up test scores for
individuals with cognitive impairment at baseline. Similarly,
the results will not generalize to individuals whose baseline
test scores are not included in the test score intervals

− −

− −

− −

Fig. 1. Predicted test scores (black circles) and 90% reliable change intervals (dotted red lines) for each test across visits 2 to 7 based on
linear mixed effects regression.
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presented in Table 2, or to people whose demographic
variables or test–retest intervals were not observed in the
current study.
This study is limited in several ways. First, the data in the

current sample were obtained from the NACC, which com-
piles data from 34 past and present ADCs across the United
States. Each ADC may differ somewhat in its recruitment
methods, especially for cognitively healthy individuals. The
sample used in this study was not recruited for the purposes
of producing normative data (e.g., random sampling was not
used), and valid concerns may be raised about the external
validity of these findings. The sample was also highly edu-
cated (M = 15.80; SD = 2.79) and was under-representative

of racial and ethnic minorities. In contrast, the sample is very
large, geographically diverse, and continued follow-up
beyond the two visits used in this study gives confidence
that the participants were not in the early stages of a neuro-
degenerative disease at the time the data were collected.
Several of the neuropsychological test variables in the UDS
have non-normal distributions. As discussed above, truncated
distributions may be associated with heteroscedasticity
(Figure 2), which could contribute to an underestimate of
the residual variance for tests with floor or ceiling effects
(i.e., MMSE, TMT, BNT).
Another limitation of the results is the finding that most of

the test variables included in the current study possessed

Fig. 2. Residuals versus fitted plots at visit 2 for each test based on linear mixed effects regression.
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test–retest reliabilities below.70 (Table 2). These findings are
roughly consistent with 1-year test–retest reliability estimates
derived from meta-analysis (Calamia, Markon, & Tranel,
2013). The change in mean scores from baseline to follow-up
is likely to be reflective of the magnitude of history and
maturational influences acting across the two time points.
The strength of the correlation between test scores at two
successive time points may be indicative of individual dif-
ferences in variability of change (Salthouse & Tucker-Drob,
2008). The low test–retest correlations could be attributed to
random error, real change in the construct validity of the test
between the two time points, or measurement error. Although
maturational influences may affect within-person change in
test scores, we also show that practice effects contribute to

change in performance on most tests (Salthouse & Tucker-
Drob, 2008). As might be expected, tests involving attention,
processing speed, mental efficiency, and working memory
were more susceptible to maturational influences (i.e., longer
test–retest intervals), whereas tests involving episodic and
semantic memory were more susceptible to practice effects.
Although a minority of the tests in the UDS battery are

current and in common use in clinical settings (i.e., TMT,
animal fluency, BNT), these results may still be valuable to
both clinicians and researchers who perform cognitive
evaluations of older adults. While newer editions of these
tests have been published in recent years (e.g., the WAIS and
WMS have twice been updated), it is unclear whether these
updates have led to substantial improvements in the long-
itudinal measurement properties of these tests for the
assessment of elderly individuals. The results of the current
study can be valuable in that there is a paucity of longitudinal
data that have been published in robust samples, especially
for modern versions of these tests. The lack of available
robust longitudinal data for some modern tests (e.g.,
WAIS-IV) could affect validity when interpreting changes in
test scores without access to appropriate data. Although the
tests used in this study may be older versions, they should not
necessarily be considered obsolete due to the fact that they
are being used in large, modern, federally funded research
projects on cognitive aging and neurodegenerative disease
(e.g., the NACC UDS). In fact, one could argue that the
availability of robust longitudinal data make these tests more
appropriate than updated versions for serial assessment of
older adults, especially if one takes the perspective that
research evidence, and not test publishers, should dictate the
selection of tests and test norms used by neuropsychologists
(Adams, 2000; Bush, 2010; Silverstein & Nelson, 2000;
Strauss, Spreen, & Hunter, 2000).
Many of the UDS neuropsychological tests have marginal

test–retest reliability for measuring change in cognition
across approximately annual evaluations (Strauss, Sherman,
& Spreen, 2006). Although the lengthy interval between
baseline and follow-up testing (M = 14.62 months; SD =
5.20) would be expected to cause a decrease in test–retest
reliability relative to shorter intervals, these reliability data
are thought to possess better external validity than reliability
coefficients obtained at shorter intervals because approxi-
mately 1 year is believed to be a typical (or even shorter than
typical) retest interval for older adults who are cognitively
healthy at baseline. Because of these undesirable test–retest
reliability values, the margin of error required to detect reli-
able change can be quite large for some tests (Table 4).
Although this margin of error may not be sufficiently precise
to detect subtle changes, these results may nevertheless be
valuable for detecting more obvious cognitive decline across
an approximately 1-year period. The results presented here
suggest that there may be great value in focusing on test–
retest reliability in the development of new cognitive tests,
but interpretation of score changes must also account for
demographic variables, past exposure to tests, and test–retest
intervals.

Table 4. Reliable change intervals from baseline to the first annual
follow-up visit for the average participant in the study sample

Test SEE 90% PI MOE 90% RCI MOE

MMSE 0.93 [ −0.67, 1.07] [ −2.20, 2.60]
DS-F 1.13 [ −1.77, 0.84] [ −3.62, 2.69]
DS-B 1.24 [ −0.83, 2.20] [ −2.87, 4.25]
Digit Symbol 4.19 [ −12.27, 0.55] [ −19.16, 7.44]
TMT-A 7.81 [ −6.15, 13.05] [ −19.00, 25.90]
TMT-B 24.06 [ −15.26, 38.10] [ −54.83, 77.67]
Animals 3.08 [ −4.15, 3.55] [ −9.23, 8.63]
Vegetables 2.55 [ −5.86, −0.45] [ −10.06, 3.75]
BNT 1.30 [ −2.01, 1.69] [ −4.14, 3.82]
LM-I 2.13 [ −2.43, 2.90] [ −5.93, 6.40]
LM-D 2.17 [ −3.92, 1.78] [ −7.49, 5.35]

Note. SEE = standard error of the estimate; PI MOE = Prediction Interval
Margin of Error; RCI MOE = Reliable Change Interval Margin of Error;
MMSE = Mini-Mental State Examination; DS-F = Digit Span Forward;
DS-B = Digit Span Backward; TMT = Trail Making Test; BNT = Boston
Naming Test; LM-I = Logical Memory Immediate Recall; LM-D = Logical
Memory Delayed Recall.

Table 5. UDS test score changes from baseline to the first annual
follow-up visit corresponding to various base rates

Base rates (cumulative percentages)

Test 1% 5% 16% 50% 84% 95% 99%

MMSE −4 −2 −1 0 1 2 3
DS-F −4 −3 −2 0 2 3 4
DS-B −4 −3 −2 0 2 3 4
DSC −14 −9 −5 0 5 9 16
TMT-A 28 15 7 −1 −9 −17 −34
TMT-B 100 46 20 −1 −22 −50 −107
LM-I −7 −5 −3 1 4 6 8
LM-D −7 −5 −3 1 4 6 8
Animals −11 −8 −4 0 4 8 11
Vegetables −9 −6 −4 0 4 6 9
BNT −4 −2 −1 0 2 3 6

Note. MMSE = Mini-Mental State Examination; DS-F = Digit Span
Forward; DS-B = Digit Span Backward; DSC = Digit Symbol Coding;
TMT = Trail Making Test; LM-I = Logical Memory Immediate Recall;
LM-D = Logical Memory Delayed Recall; BNT = Boston Naming Test.
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