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In this paper we present an experimental and theoretical study of weak bubble
plumes in unstratified and stationary water. We define a weak bubble plume as
one that spreads slower than the linear rate of a classic plume. This work focuses
on the characteristics of the mean flow in the plume, including centreline velocity,
plume spreading and entrainment of ambient water. A new theory based on diffusive
spreading instead of an entrainment hypothesis is used to describe the lateral spreading
of the bubbles and the associated plume. The new theory is supported by the
experimental data. With the measured data of liquid volume fluxes and the new
theory, we conclude that the weak bubble plume is a decreasing entrainment process,
with the entrainment coefficient α in the weak bubble plume decreasing with height z,
following α∼ z−1/2, and taking on values much smaller than those in a classic bubble
plume. An additional non-dimensional diffusion coefficient, Êt ∼ EtU2

s /B0, is also
needed to describe the evolution of the volume and kinematic momentum fluxes for
the mean flow in the weak bubble plume. Here, Et is the effective turbulent diffusion
coefficient, Us is the terminal rise velocity of the bubbles, and B0 is the kinematic
buoyancy flux of the source. Finally, we provide a unified framework for the mean
flow characteristics, including volume flux, momentum flux and plume spreading for
the classic and weak bubble plumes, which also provides insight on the transition
from classic to weak bubble plume behaviour.

Key words: multiphase flow

1. Introduction
Multiphase plumes create important flow fields in a variety of natural and

engineered fluid systems. In an unbounded domain, the drag force resulting from
the relative movement of the buoyant dispersed-phase bubbles, drops or particles
generates motion in the ambient continuous phase. For a point release in a stagnant
ambient reservoir, the group effect of the dispersed phases may generate large-scale
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motion (i.e. larger than a particle wake) in the continuous phase, creating entrainment
of ambient fluid due to velocity shear at the edge of the continuous-phase motion, and
resulting in the development of a coherent plume of particles and continuous-phase
fluid. Such multiphase plumes (referred to herein as classic multiphase plumes)
include air bubble plumes for lake aeration (Wuest, Brooks & Imboden 1992) or
for reservoir destratification (Asaeda & Imberger 1993; Lemckert & Imberger 1993;
Schladow 1993), and subsea accidental oil and gas blowouts (Yapa & Zheng 1997;
Zheng & Yapa 1998; Yapa, Zheng & Nakata 1999; Johansen 2000), among many
others. In contrast, some multiphase releases are distributed or have relatively weak
volume flow rate, yielding very low void fraction. As a result, the group effect of the
dispersed phase and the turbulence of the continuous phase in the plume are weak,
the ambient entrainment and transport are low, the mass and momentum carried in the
plume are limited, and therefore a coherent plume may not form. In these cases, the
plume spreading may be governed by different physics than in classic plumes. Here,
we define such multiphase flows with low release rate and weak entrainment as weak
multiphase plumes (Leitch & Baines 1989). One example of a weak bubble plume
is natural gas seepage at low volume flux emanating from the ocean floor (Wang
& Socolofsky 2015b; Wang et al. 2016). This paper uses laboratory experiments to
quantify new aspects of the fundamental flow behaviour of weak bubble plumes,
including the mean velocity, lateral spreading rate and entrainment process.

Understanding the physics of a weak bubble plume is important to predict the
dynamics of natural gas seeps. Most of these seeps form weak bubble plumes due to
the low flow rates of hydrocarbon bubbles that emanate from cracks on the seafloor.
These plumes are ubiquitous on the continental margins and supply a considerable
amount of methane to the methane budget in the oceans (Westbrook et al. 2009;
Brothers et al. 2013; Talukder et al. 2013; Skarke et al. 2014; Weber et al. 2014;
Johnson et al. 2015; Ruppel & Kessler 2017). Therefore, understanding weak bubble
plumes helps to predict the characteristics of hydrocarbon bubbles in the oceans
(e.g. bubble rise velocity) and the associated interaction between them and the
ambient water (e.g. dissolution, transport). This information controls the lifetime
of the dispersed phase and the vertical distribution of methane in the ocean water
column.

Commonly, Lagrangian particle models are applied to predict the fate of individual
natural gas bubbles during their ascent in the ocean, and the results of these models
have been used to compare with the measured maximum height of rise of bubbles in
flares observed above natural seeps (McGinnis et al. 2006; Romer et al. 2012). These
models ignore entrainment and the vertical velocity of water in the plume and treat the
bubble rise velocity as its terminal velocity in stationary water. Hence, an objective of
this paper is to understand the velocity field of the continuous phase in a weak bubble
plume and to assess the validity of the assumptions in present seep flare models.

One comprehensive investigation describing the behaviour of weak bubble plumes
was carried out by Leitch & Baines (1989) – at gas flow rate at the source
Qg(0)= 0.025–0.375 NL min−1 (normal litres per minute) at standard temperature and
pressure. They found that the weak bubble plume does not spread out linearly as in a
classic plume, but rather follows the relationship bg ∼ z1/2, where bg is the Gaussian
half-width of the plume and z is the vertical coordinate, positive upwards. Based
on their experimental data, Leitch & Baines (1989) concluded that the entrainment
process for classic plumes is not applicable in a weak bubble plume. However, their
study only spanned a short range of height (60.5 m), which limits our ability to
understand how weak bubble plumes evolve over large distances. In addition, an
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explanation of the physical mechanism responsible for the square-root spreading rate
of the weak bubble plume with height is still lacking. Moreover, the physics of plume
spreading, entrainment and the velocity field in weak bubble plumes remains unclear.

In contrast to weak bubble plumes, classic bubble plumes have been extensively
studied (Ditmars & Cederwall 1974; Milgram 1983; Asaeda & Imberger 1993;
Socolofsky & Adams 2002, 2003, 2005; Crounse, Wannamaker & Adams 2007).
The physics of entrainment is fundamental to the integral analysis of plumes, and
was originally developed for single-phase buoyant plumes by Morton, Taylor &
Turner (1956). A classic single-phase plume is self-similar, spreads linearly with
height above the source (e.g. half-width bg ∼ z for point source plumes), and
turbulent entrainment determines the increase of the liquid volume flux Q(z) in
the plume, parametrized by an entrainment coefficient α and scaled with the plume
centreline velocity Uc. Multiphase plumes are not strictly self-similar, exhibiting
variable entrainment coefficients (Milgram 1983; Seol et al. 2007), but retain many
features of an integral plume.

The main aspect of a multiphase plume that causes it to deviate from self-similarity
is the relative velocity, or slip velocity, Us of the dispersed phase. In a single-phase
plume, the plume properties depend on the initial kinematic buoyancy flux B0 =

gQ(0)(ρ0− ρ)/ρ and the length scale z, the distance from the plume source. Here, g
is the acceleration of gravity, ρ0 is the average density of the discharged fluids (equal
to the particle density ρp for a pure dispersed-phase plume), ρ is the density of the
ambient fluid, and ρ is a characteristic density of the receiving reservoir (e.g. using
the Boussinesq approximation in density stratification). In a multiphase plume, Us

and B0 can be combined to form another length scale (e.g. B0/U3
s ), and this second

length scale breaks the requirements for self-similarity. This dispersed-phase length
scale appears in various forms proposed in Mcdougall (1978), Schladow (1992) and
Asaeda & Imberger (1993). Bombardelli (2004) proposed the length scale D, which
has subsequently been used in other studies (Garcia & Garcia 2006; Bombardelli
et al. 2007), given as

D=
B0

4πα2U3
s

, (1.1)

where α= 0.083 is the pure plume entrainment coefficient. Bombardelli et al. (2007)
use an integral model to show that all multiphase plumes reach an asymptotic state
(i.e. they forget their initial geometry) for z/D> 5, where the normalized velocity of
the continuous-phase mean flow collapses onto a universal curve. However, there is
little experimental data within this asymptotic regime. In addition, it is not known
whether this asymptotic solution for the mean velocity would still hold when z/D
approaches values that are orders of magnitude higher than 5, as occurs in natural
seeps in the oceans.

The above observations lead to a key question: Does the bubble plume act as
a coherent plume when z/D � 5, or in general when z/D � O(1)? Two scenarios
can lead to large z/D: (1) a bubble plume rising in an infinite vertical environment,
i.e. z→∞; and (2) a bubble plume having a very small gas flow rate, i.e. B0→ 0.
In the first scenario, when a bubble plume rises towards large z/D, the void fraction
decreases and becomes very small as the plume spreads out. Eventually, bubbles
become independent of any group effects and the bubble plume may no longer
behave as a classic plume. In the second scenario, the initial void fraction is very
low due to low Qg(0), and the plume may not behave as a classic plume even close
to the bubble source. To maximize z/D in this study, we design a set of experiments
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Characteristics of weak bubble plumes in water 105

to investigate the weak bubble plume with two different small flow rates (giving
small B0) in a very deep laboratory tank (giving large z).

The focus of this paper is to quantify the characteristics of the mean flow in a
weak bubble plume for two flow rates in the laboratory and to derive a theory to
interpret the underlying plume physics. Importantly, we show that weak plumes lack
entrainment and grow by different physics than classic plumes. Section 2 describes
the experimental set-up and the data analysis approach. In § 3, we present the direct
measurement results, including the shape of the time-averaged flow velocity, the void
fraction and the bubble rise velocity profiles, as well as the plume spreading. In § 4,
we develop a theory to describe the mean flow parameters in the weak bubble plume,
and validate the theory to the measurement data. This section provides a detailed
analysis of the weak bubble plume in terms of the spreading rate of the bubble plume,
the scaling of the flow velocity and the entrainment coefficient. In § 5, we present
a unified scaling framework for the classic and weak bubble plumes, which also
provides insight on the intermediate plume behaviour. By synthesizing the data and
analyses, we show that the value of z/D determines the regime of the bubble plumes,
i.e. classic plume regime with entrainment growth occurs at small z/D (e.g. previous
studies where z/D < 5), weak plume regime with diffusive growth occurs at large
z/D (e.g. the data in this study, where z/D > 20), and the transition occurs in the
regime of z/D∼O(10). Section 6 summarizes our conclusions.

2. Methods
2.1. Experimental set-up

In order to study the dynamics of bubble plumes for z/D� 5, the experiments were
conducted in the large-scale wave basin of the Offshore Technology Research Center
(OTRC) at Texas A&M University. The wave basin is 30.5 m wide and 45.7 m
long, with a primary water depth of 5.8 m. A rectangular pit (9.1 m × 4.6 m2) is
located in the centre of the basin, having a maximum water depth of 16.8 m. Air
was supplied to a straight tube nozzle with an inner diameter of 0.4 mm, placed
on the bottom of the pit to create a freely rising bubble plume. The confinement
ratio of the plume in the pit was greater than 1 × 104, which is large enough to
consider the plume as unconfined. Two designed gas flow rates, Q1= 0.25 NL min−1

and Q2 = 1.2 NL min−1 at standard temperature and pressure (STP) conditions,
were maintained using a fine adjustable needle valve and were measured using a
mass-based gas flow meter (GFM 171, Aalborg Instruments & Controls, Inc.). The
mass flow rates were also estimated from image data, which agree with the values
measured with the flow meter (within 5 % difference). The length scale D for these
plumes ranged from 0.02 m at the low gas flow rate to 0.08 m at the higher gas
flow rate. Table 1 summarizes the experimental conditions.

Figure 1 shows a schematic of the experimental set-up and photographs of the
measurement instruments. An underwater stereo imaging system (Wang & Socolofsky
2015a) and an acoustic Doppler velocimeter (ADV, Vectrino II profiler, Nortek),
mounted on a rigid frame (see figure 1b), were used to measure the bubble
characteristics and the centreline water velocity. The entire frame was installed at five
different heights above the bottom (0.5, 3, 7, 12, and 16 m) to acquire the measured
data. The frame is sufficiently large compared to the cross-sectional footprint of the
bubble plumes; hence there was no obstructive effects of the frame on the dynamics
of bubble plumes.

The stereo imaging system was used to quantify the bubble size, void fraction
and rise velocity of the bubbles in the plume. The imaging system contains two
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Parameter Symbol Value Unit

Release depth h 16.8 m
Pit dimensions L×W 9.1× 4.6 m2

Basin water density ρ 998.3 kg m−3

Gas flow rates {Q1,Q2} {0.25, 1.2} NL min−1

Nozzle diameter d0 0.4 mm
Released gas — air —
Gas density at release ρp 3.07 kg m−3

Initial kinematic buoyancy fluxes B0 {1.60, 7.67} × 10−5 m4 s−3

Median gas bubble sizes d50 {3.8, 4.1} mm
Gas bubble slip velocities Us {0.22, 0.22} m s−1

Characteristics length scales D {0.017, 0.083} m
Measurement heights z {0.5, 3, 7, 12, 16} m

TABLE 1. Experimental conditions.

high-speed cameras (Vision Research Miro M340) with a 12-bit light intensity depth.
These two cameras were synchronized to take images at different angles so that
three-dimensional coordinates of bubbles in the scene can be determined with the
precalibration of the imaging system. The bubble images were post-processed using
the algorithms for bubble identification and particle tracking (Wang & Socolofsky
2015a). The image data were recorded in a burst mode. In each burst, cameras
started with a trigger signal and stopped recording images once the internal memory
of the cameras was filled. With the same internal storage (12 GB) of each camera
and the same resolution of the camera (2560 pixel × 1600 pixel), the sampling rate
determines the total duration of each burst. Faster sampling would yield a shorter
sampling duration and vice versa. We have used two sample rates of 200 Hz and
24 Hz, which gave approximately 11 and 92 s burst duration. For each sample rate,
three to five bursts were repeated, resulting in a total sample duration of 6 to 8 min,
or approximately 17 600 to 24 000 images at each measurement height, which is
adequate to obtain statistically converged results. Figure 2 shows two sample raw
images from the left-hand camera at the two designed gas flow rates.

The ADV profiler was used to measure all three components of the velocity
vector of the water in the centre of the bubble plume. This ADV profiler measures
simultaneously the velocities of a 3.5 cm long line profile at a resolution of 0.1 cm in
the radial dimension of the bubble plumes. The peak value of the measured velocities
in the line profile is then taken as the centreline velocity of the plume. The noise
in the ADV measurements was from two sources of error: (1) the inherent Doppler
noise of the acoustic measurements, and (2) the spikes due to the interception of
bubbles in the path of acoustic beams between the transmitter and the sample volume.
The inherent Doppler noise only affects the Reynolds stresses and high-order velocity
statistics, and the mean flow is unbiased (Voulgaris & Trowbridge 1998). Because
this study focuses on the mean vertical velocity of the plumes, all the spikes have
been removed in the post-processing of data. The bubble images were recorded at
the same time as the ADV sampling to synchronize the measurements of the two
instruments. Considering the wandering of the bubble plume, we started to record the
ADV data while the centre of the plume wandered to the location of the ADV sample
area and stopped sampling while the plume moved out of the sample area. Owing to
the pristine water clarity in the basin, seeding particles (mean diameter of 50 µm at
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ADV probe
PVC pipe

Lights

Back
plate

Back plate

16.8 m

1 m

5.8 m

9.1 m

Adjustble
frame height

Stereo
cameras

Stereo cameras

Particle
seeding

PVC pipe for
particle seeding

Vectrino profiler

SeaLite lights

d = 0.5 cm

2 cm

(c)

(b)

(a)

FIGURE 1. (Colour online) Presentation of experimental set-up. (a) Sketch of the set-up
(not drawn to scale). (b) Photo of the frame with the installed instruments. The bubble
plume is located in the centre between the cameras and the back-plate during the
measurement. (c) The PVC pipe used for particle seeding.

approximately 1 % volume concentration) were premixed with water and seeded into
the ADV sampling region during the experiment. The injection of particles created
a secondary flow to the plume, as the premixed particle solution was fed using a
submersible pump and was seeded horizontally from 31 holes (with 0.5 cm diameter
and 2 cm spacing) in a PVC pipe (see close-up view in figure 1c). The distance
between the seeding pipe and the centreline of the plumes was approximately 20 cm.

A test case without the bubble plume but with particle seeding was carried out to
examine the velocity contribution of the seeding flow. The result shows that the mean
vertical velocity generated by the seeding flow was below 0.1 cm s−1, whereas the
horizontal seeding speed was approximately 5 cm s−1. Because the centreline water
velocities due to the bubble plume measured in this study were in the range of 2
to 8 cm s−1, we conclude that the mean vertical velocity due to the seeding was
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(a) (b)

FIGURE 2. Raw sample images obtained by the stereo camera system at z= 3 m above
the orifice; only the left camera view is shown: (a) Q1 = 0.25 NL min−1; (b) Q2 =

1.2 NL min−1.

negligible. Although the 5 cm s−1 horizontal speed of the seeding particles is not
small, this cross-flow was only applied over a short region and only affected the flow
locally. The main effect of the seeding cross-flow velocity is to displace the bubble
plume centreline in the cross-flow direction at the measurement height. Because
this occurred locally, the bubble plume dynamics up to the measurement point were
unaffected by the seeding. We analyse the ADV strip of data to ensure that the ADV
measurements always exhibit a peak velocity denoting the plume centreline within
its 3.5 cm profile and confirmed from the camera images that the bubble plume
centreline coincided with the ADV measurement volume. Therefore, we were able
to account for the displacement caused by the seeding particles so that the induced
cross-flow of the seeding was negligible on the observational results.

2.2. Data processing
2.2.1. Air void fraction

From the image data, we distinguish the gas phase from the water phase by
transforming the original bubble image into a binary image, where the gas phase is
denoted as 1 and the water phase is denoted as 0 (Wang & Socolofsky 2015a). Thus,
the planar cross-sectional void fraction can be calculated

χ(r)= Tg(r)/Ttotal, (2.1)

where Tg(r) is the number of pixels occupied by the gas phase in each column of the
image, and Ttotal is the total number of pixels in the vertical direction; r represents
the distance to the plume centreline in the image plane. The time-averaged result is
obtained by averaging over the entire image dataset at each measurement height.

2.2.2. Time-averaged water flow velocity
A main objective of these experiments is to quantify the continuous phase

(i.e. water) mean flow characteristics of the plume caused by the rising bubbles.
The procedure used to obtain the time-averaged flow velocity profile is illustrated
in figure 3. The water velocities are expected to vary in the plume and to have
their maximum value at the centreline of the plume. The centreline velocity was
directly measured, denoted as UADV (same as the maximum profile velocity Um in
the discussion of the plume later), which is the peak value in the 3.5 cm profile of
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Seeding flow

Plume centreline

Measurement region
of ADV (3 cm) Measured bubble rise

velocity by cameras

U = Ub(r) - Us

US = Ub(0) - UADV

Ub

Mean flow velocity

r

r

Air bubbles

x
yz

Maximum value in

ADV profile, UADV

FIGURE 3. (Colour online) Sketch of time-averaged flow velocity calculation.

measured vertical velocity from the ADV. Since we measured the bubble rise velocity
in the cross-section of the plume with the stereo cameras, Ub(r), the cross-sectional
profile of mean water velocities can be calculated from UADV and Ub(r). First, we
calculate the bubble slip velocity using Us = Ub(0)− UADV . These slip velocities are
found to be consistent with the range predicted by equations in Clift, Grace & Weber
(1978) at all elevations. In our experiment, most bubbles are in the 3.5–4.5 mm
range, where the bubble slip velocities are almost constant over a wide range of
bubble sizes (Clift et al. 1978). Hence, the profile of mean water velocities can be
calculated using U(r)=Ub(r)−Us.

The validity of this calculation is based on the following assumptions: (1) The
slip velocities of the bubbles are statistically the same across the entire cross-section.
Because all bubbles have similar sizes in the cross-section, their slip velocities are
expected to be similar. (2) The differences of velocity values are negligible at slightly
different z for the locations of the camera and the ADV. (3) The seeding flow effect
on the mean vertical velocity profile is small, which has been discussed above in § 2.1.

2.2.3. Plume width
A Gaussian profile has been commonly used to describe the mean flow profile of

a classic bubble plume (Milgram 1983), following

U(r, z)=Um(z) exp(−r2/b2
g), (2.2)

χ(r, z)= χm(z) exp(−r2/b2
χ), (2.3)

where bg and bχ are the characteristic half-widths of the plume in terms of water
velocity and void fraction. From the obtained profiles of water velocity and void
fraction, the Gaussian distribution was fitted to the data, where bg and bχ can be
determined from the fitting. The results are presented in § 3.2.
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Wobbling
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Spherical
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M = 2.5 ÷ 10-11
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Q2

101100

Eo
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10-1

104

103

102

101

FIGURE 4. (Colour online) Shape regime of the observed bubbles. The curves are
reproduced after figure 2.5 in Clift et al. (1978).

3. Observation results
3.1. Bubble shape regime

From the image data, we measured the median bubble sizes to be 3.8 and 4.1 mm
for Q1 and Q2, respectively (see table 1). These bubbles appear to be ellipsoidal and
wobbling in the video data. The quantitative presentation of bubble shape regime can
be illustrated by three non-dimensional parameters: Reynolds number Re = ρdUs/µ
(where d is bubble diameter and µ is the dynamic viscosity of water), Morton number
M= gµ41ρ/ρ2σ 3 (where 1ρ = (ρ − ρp) and σ is the interfacial tension), and Eötvös
number Eo= g1ρd2/σ . Values for our experiments are shown in figure 4 along with
the shape regime classification in Clift et al. (1978). Figure 4 demonstrates that the
observed bubbles are in the ellipsoidal wobbling regime of the bubble theory. Bubbles
at natural seeps have also been observed to have similar shapes and sizes (Wang et al.
2016).

3.2. Velocity and void fraction profiles
In figure 5, we examine the shapes of the mean velocity and void fraction profiles in
the weak bubble plume. The horizontal coordinate for the velocity and void fraction
is normalized at each height by bg and bχ , respectively. Likewise, the velocity and
void fractions are normalized by their centreline values Um and χm, respectively. The
irregular spacing of the velocity data is due to the fact that the velocity profile is
computed from the bubbles, and the bubbles occupy discrete points and are not evenly
distributed in the plume. Because the bubbles are mainly located inside the plume, the
velocity data for |r/bg|> 1.5 had few data points and were not statistically converged;
therefore, they are not included in the figures or analysis. Despite the scatter, all data
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3210-1-2-3
r/bg
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0.1

0

FIGURE 5. (Colour online) Self-similarity of the weak bubble plume: (a) mean velocity
profile (error bars show standard deviation of the data); (b) mean void fraction profile.

appear consistent with the Gaussian distribution, with the goodness of fit R2
= 0.73

and 0.95 for velocity and void fraction, respectively.
The data in figure 5 confirm the Gaussian profile shapes assumed in (2.2) and (2.3)

for continuous-phase velocity and void fraction in a weak bubble plume. Although the
profile shapes are preserved with height, the scales used in the non-dimensionalization
(bg, bχ , Um and χm) are not constant with height; hence, this result is not a
confirmation of self-similar behaviour. Rather, these results give an analytical equation
summarizing the results at each measurement height. Using the Gaussian distribution,
the net upward volume flux Q in the plume is obtained as

Q=
∫
∞

0
U(r)2πr dr=πb2

gUm. (3.1)

The validity of this relation is built upon the assumption of negligible gas void fraction
in the plume (e.g. 0.1 % and 0.16 % in the lowest measurement location for Q1 and
Q2, respectively). With the spreading of the bubbles in the water column, the values
of void fraction decrease substantially at high locations. Equation (3.1) was used in
the analysis by Leitch & Baines (1989) for a similar weak bubble plume, but they did
not obtain the velocity profiles to validate the Gaussian distribution. We analyse the
volume flux profile Q(z) in § 4.2, where we compare entrainment models.

3.3. Plume width and spreading rate
The spreading rate in the lateral direction of a classic bubble plume has been shown
to be similar to that for single-phase round plumes (Ditmars & Cederwall 1974),
following a linear spreading behaviour given by

dbg

dz
= β, (3.2)

where β ≈ 0.1 (Fisher et al. 1979).
Figure 6 shows the measured relationship between the plume half-widths bg and

bχ with the height z above the orifice in our experiments. In the linear scale plot
(figure 6a), a reference line for linear spreading with β = 0.1 is shown as the dashed
line. Comparing the measured data with the linear growth prediction, the spreading
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FIGURE 6. (Colour online) Half-widths of the plume at different heights above the orifice.
The two solid lines without symbols represent the best fit to the data of bχ (red line,
bχ = 0.021z1/2

− 0.002) and bg (blue line, bg = 0.028z1/2
+ 0.006). (a) Linear scale plot,

where the dashed line represents the linear spreading rate in (3.2). (b) Log–log scale plot,
where the dashed line represents the slope of a diffusive spreading process.

of the weak plume is much slower than bg = 0.1z in the current experiment. This
indicates that the physical mechanism causing the spreading of the weak bubble
plume differs from that for the single-phase plume and from that of the classic
bubble plume. Leitch & Baines (1989) also observed a much weaker growth rate
than β = 0.1 in their experiment for the cases of gas flow rate > 0.36 NL min−1.
Leitch & Baines (1989) suggested that the liquid volume flux is mostly contributed by
the entrainment into the near wake of individual bubbles in the weak bubble plume,
instead of the entrainment process by eddies in the turbulent shear layer of a classic
bubble plume. While this may explain the flow rate, this mechanism does not directly
explain the spreading rate of the plume. Also, for the lowest measurement point in
our measurements (z= 0.5 m), the data seem to track the bg = 0.1z line, suggesting
that a linear spreading region may still exist close to the bubble source. Hugi (1993)
also showed a linear spreading rate of a bubble plume close to the source following
bg = 0.1z that transitioned to a spreading rate that decreases further away from the
source.

If we plot the plume half-width as a function of height in log–log space (figure 6b),
the weak plume spreading follows bg ∼ z1/2, albeit with considerable scatter of the
data deviating from the best-fitting lines (especially for Q2). The scatter of the data
is almost inevitable due to the experiments being conducted at similar to field scale
and due to the small values of the state variables under these weak gas flow rate
conditions. The deviation of the data from the 1/2 power law growth lines could
have been improved by increasing measurement locations in the experiment, which
was not feasible due to our experimental constraints. The z1/2 growth rate we argued
for here has also been observed in Leitch & Baines (1989) (bg = 0.2z1/2), but the
mechanism responsible for the 1/2 power law relationship has not been postulated.
This observation suggests that the spreading of weak bubble plumes cannot be
explained by the traditional bubble plume theory; hence, a new theory is needed to
explain the physics of weak bubble plumes.
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4. Theory of time-average dynamics of weak bubble plumes
The experimental results show that velocity and void fraction spread out with height

and have a Gaussian lateral distribution, but that the spreading rates are different from
the linear spreading rates for classic bubble plumes. Hence, we do not expect the
integral plume equations with a constant, standard entrainment coefficient to be able
to describe these results. Moreover, the much smaller spreading rates of weak bubble
plumes (figure 6) suggest that a different physical process from the constant shear
entrainment process in the classic plume is responsible for the weak plume dynamics.
In this section, we derive a new theory to predict the bubble plume spreading and the
integral plume volume flux that is applicable to weak plumes.

4.1. Lateral spreading rates
As shown in figure 6(b), the spreading of the weak bubble plume above z = 0.5 m
height follows bg ∼ z1/2. This region of the bubble plume behaviour is in the range
of z/D > 29 (at low gas flow rate) and z/D > 6.0 (at high gas flow rate), which are
both in the asymptotic regime defined by Bombardelli et al. (2007). In this region,
the measured centreline water velocities are between 3 and 7 cm s−1 and the bubble
rise velocities are nearly constant at 22 cm s−1. This allows us to substitute time and
height by z=Ubt, where Ub is the mean net rise velocity U(r)+Us of bubbles, taken
as approximately constant. Then, we have the plume spreading as bg ∼ t1/2, which is
consistent with a diffusive process at constant diffusivity.

To model this diffusion process for plume spreading, we apply the far-field Taylor
spreading theory (Taylor 1921) with an effective lateral diffusion coefficient Et and
solve for a point source:

db2
g

dt
= βt = 2Et ⇒ bg = (2Ett)1/2. (4.1)

If we use the bubble slip velocity Us to approximate Ub since the vertical liquid
velocities are relatively small, we can convert the Lagrangian equation (4.1) to an
Eulerian expression, given by

db2
g

dz
= βt = 2EtU−1

s ⇒ bg =
√

2E1/2
t z1/2U−1/2

s . (4.2)

The measured plume width can be used with this equation to estimate Et. We perform
a regression to the measured data on the width of the plumes, which follow a linear
spreading process with bg = 0.1z for z/D < 5 from a point source, followed by a
diffusive process with db2

g/dz= 2Et/Us for z/D > 5. From the regression to the data
for bg, we obtain Et = 8.65× 10−5 m2 s−1 for Q1 and 1.07× 10−4 m2 s−1 for Q2; for
fitting to data for bχ , we obtain Et = 3.98× 10−5 m2 s−1 at the lower gas flow rate
and 5.02× 10−5 m2 s−1 at the higher release rate (see also table 2).

The differences in Et estimated from bg and bχ relate to the different spreading
rates for velocity and concentration. This effect is normally quantified by the spreading
ratio λb, given by

λb =
bχ
bg
. (4.3)

Here, we can estimate λb by
√

Eχ/Eg, as well as from the direct calculation from
the definition; the values for our data are reported in table 2. These values can
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Effective diffusion coefficient
(unit: ×10−6 m2 s−1)

Q1 Q2

Eg, Et fitted from bg 86.5 106.7
Eχ , Et fitted from bχ 39.8 50.2
λb =

√
Eχ/Eg, velocity spreading ratio 0.68 0.71

λb = bχ/bg, velocity spreading ratio 0.69 0.66
DT,z, bubble rising direction 7.7± 2.2 18.5± 3.0
DT,x, seeding flow direction 3.3± 0.3 5.8± 0.3
DT,y, binormal direction 6.2± 2.0 13.3± 3.2
DE, bubble excursion 31.0± 31.9 38.5± 37.1

TABLE 2. Effective lateral diffusion coefficient from the data fit and estimated from two
different mechanisms. For DT and DE, mean ± standard deviation calculated from data for
all heights are shown.

be compared to those reported by Socolofsky & Adams (2005), who computed λb

between bχ and bc, the half-width of the concentration distribution. If we use the
single-phase relationship bc = 1.2bg, our values of λb reported here are similar to
those in Socolofsky & Adams (2005) for bubble plumes with very weak entrained
fluid velocity. Hence, the differences in the observed values of Et for fitting to bg

and bχ also match expectations for weak bubble plumes.
The turbulent dispersion in natural or engineered water systems can be described by

an analogy to Fickian or molecular diffusion, and the diffusion coefficient is termed
‘turbulent diffusivity’ in turbulent flows. Since the ambient water is stagnant in the
current experiment, the turbulent diffusion coefficient in the background is likely to
be very low. Therefore, the diffusive process of the bubble spreading may be the
result of two mechanisms: (1) the turbulent wake flow behind the leading bubbles;
and (2) the lateral excursion of the bubbles, considering the zigzag or helical paths
of these ellipsoidal wobbling bubbles (Wang et al. 2016).

Here, we estimate the effective lateral diffusion coefficient for each of the above
mechanisms. First, we estimate the turbulent diffusivity (DT) in the wake flow
in three directions (i.e. bubble rising direction z, seeding flow direction x, and
binormal direction y). We applied an approach derived from Taylor’s theory following
Holtappels & Lorke (2011), giving turbulent diffusivity DTi = u′iLi = u′2i Ti, where u′

is the turbulent velocity scale, L is the integral length scale, T is the integral time
scale and i indicates the direction. In this work, u′i is the standard deviation of the
velocity measured by the ADV and Ti is calculated by taking the integral of the
autocorrelation function of the ADV data on the centreline (Tennekes & Lumley
1972; Holtappels & Lorke 2011). The estimated turbulent diffusivity is shown in
figure 7. It is seen that DT for Q2 is higher than that for Q1 in all three directions,
and DT,z is slightly larger than those in the other two directions. Overall, on the
horizontal directions, DT is in the range of 10−6 m2 s−1, and is approximately an
order of magnitude smaller than Et estimated from the plume spreading data.

The effective diffusion coefficient due to the second mechanism of bubble wobbling
can be estimated from the product of the distance and velocity scales of the lateral
excursion of the bubble motion:

DE = LEUE, (4.4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

46
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.461


Characteristics of weak bubble plumes in water 115

0 5 10 15
z (m)

10-4

10-5

10-6

D
T,

y (
m

2  s-
1 )

0 5 10 15

10-4

10-5

10-6

D
T,

x (
m

2  s-
1 )

0 5 10 15

Q1
Q2

10-4(a)

(b)

(c)

10-5

10-6

D
T,

z (
m

2  s-
1 )

FIGURE 7. (Colour online) Turbulent diffusivity at different heights for Q1 and Q2,
estimated using Taylor’s theory (Holtappels & Lorke 2011). Symbols present the data in
the bubble plumes; the solid and dashed black lines represent the mean value and standard
deviation of the diffusivity in a test run without the bubble plume but with the seeding
flow.

where LE is the mean of bubble lateral excursion distance and UE is the mean lateral
velocity of the bubble excursion. The three-dimensional measurements of bubble
location from the stereo camera data provide the information to compute these scales,
and the calculated effective diffusion coefficients are reported in table 2. The Et

calculated by fitting the void fraction is closer to DE than DT . In addition, the
similar Et for both gas flow rates shown in the data may be well explained by the
bubble excursion, which is determined by the bubble sizes, and is independent of
the initial gas flow rate at these low flow rates. Here, we conclude that the bubble
lateral excursion is probably a major contributing mechanism that is responsible
for the spreading of the weak bubble plume in stagnant water, and the effective
diffusion coefficient is determined by the extent and velocity of the lateral bubble
motion. In more turbulent water systems, the turbulent diffusion may have a more
profound contribution to the bubble plume spreading, but this is subject to further
studies beyond our present scope. In any case, by these analyses, we conclude that a
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Q1
Q2
Milgram83
MV82
FS80
Eq. 4.7, adapted from Bombardelli et al. (2007)
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FIGURE 8. (Colour online) Normalized centreline water velocity Um (with respect to the
bubble slip velocity, Us) versus height z above the orifice (with respect to the length
scale D), where D is the length scale defined in Bombardelli et al. (2007). The Q1 and
Q2 in the legend are the data of the present study. Milgram83, MV82 and FS80 represent
the data summarized in Milgram (1983), including those from Fannelop & Sjoen (1980)
(shown as FS80) and Milgram & Van Houten (1982) (shown as MV82). The dashed lines
show the slopes of −1/3 and −1/2 for classic and weak plumes, respectively.

weak bubble plume spreads out by a diffusion process acting on the dispersed-phase
particles.

4.2. Plume centreline velocity
The evolution of the centreline velocity with distance along the plume axis in a classic
single-phase plume has been well documented. Fisher et al. (1979) show that the
centreline velocity scales with z−1/3 in a continuous-phase plume. For classic bubble
plumes, Bombardelli et al. (2007) showed that

Um

Us
∼

( z
D

)−1/3
, (4.5)

for an integral bubble plume model for z/D< 5. This scaling is usually assumed to be
valid in a classic bubble plume (Lemckert & Imberger 1993). The data of Fannelop
& Sjoen (1980), Milgram & Van Houten (1982) and Milgram (1983) are close to
this scaling, although they do not collapse onto it (see figure 6a in Bombardelli et al.
(2007) and figure 8 in the present paper).

Bombardelli et al. (2007) obtained an analytical solution for the centreline velocity
for z/D� 1 in a classical integral bubble plume model, namely

Um

Us
= 3

( z
D

)−1/2
, for z/D� 1. (4.6)
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Bombardelli et al. (2007) also used numerous simulation results to obtain the
asymptotic equation:

Um

Us
= 2

(
1.9(z/D)−1

1+ 0.563(z/D)1/2

)1/3

, for z/D> 5. (4.7)

Figure 8 shows that the non-dimensional relationship between the centreline velocity
in the plume and the height above the orifice for our data (z/D> 5) and the literature
data (z/D < 5) falls in the vicinity of the prediction line given by (4.7). Our data
and the data from the literature span the value of z/D over four orders of magnitude.
Although the discrepancy from the prediction line (4.7) grows for z/D< 0.5, it does
pass through our weak bubble plume data and matches the observations over nearly
the entire range of z/D. Thus, we will consider (4.7) valid for classic and weak bubble
plumes.

This result also seems to suggest that a classic integral model can quantitatively
predict the centreline velocity in both classic and weak bubble plumes. However, this
asymptotic solution is solved on the basis of a linear spreading hypothesis or constant
entrainment coefficient hypothesis (see also later discussion in § 4.4). As a result, it
cannot predict the correct plume spreading for the weak bubble plume (see figure 6a),
because the integral model with constant α will follow bg = βz. Hence, the classic
integral theory for a bubble plume is incapable of predicting the correct evolution of
the liquid volume flux Q = πb2

gUm in weak bubble plumes (z/D > 5) since it will
estimate a correct Um while significantly overestimating bg.

4.3. Liquid volume flux
In a general case, the relationship between Q and z in a plume is expected to follow
a power law Q ∼ zm (Leitch & Baines 1989). Because dQ/dz ∼ zm−1 represents the
increase of liquid volume flux over height, which is due to the entrainment of ambient
water, the value of m can be understood as follows:

(i) m> 1, Q increases faster than linearly (i.e. increasing entrainment);
(ii) m= 1, Q increases linearly (i.e. constant entrainment);

(iii) m< 1, Q increases slower than linearly (i.e. decreasing entrainment);
(iv) m= 0, Q does not change (i.e. no entrainment); and
(v) m< 0, Q decreases (i.e. detrainment).

From (4.5) and (3.2), the liquid volume flux in a classic integral model of a bubble
plume can be derived as

Q=πb2
gUm ∼πβ2UsD1/3z5/3. (4.8)

Equation (4.8) suggests that in a classic plume Q increases faster than linearly as
m = 5/3. Most of the literature data for bubble plumes (Fannelop & Sjoen 1980;
Milgram & Van Houten 1982; Milgram 1983) have m values slightly smaller than
5/3, with the majority of these data observed in the classic bubble plume regime,
below the asymptotic region (i.e. z/D < 5). This is a result of the presence of D,
which violates the requirements for self-similarity, and expresses itself through a non-
constant entrainment coefficient (or spreading rate β). Milgram (1983) developed a
detailed theory for the entrainment coefficient in classic bubble plumes (see § 4.4),
but most of the variability is near the source, and many successful models employ
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constant entrainment coefficients (Asaeda & Imberger 1993; Bombardelli et al. 2007;
Socolofsky, Bhaumik & Seol 2008).

Using the operational definition Q=πb2
gUm, we can derive an equivalent expression

in the weak bubble plume regime from our data. We select the diffusion growth
process for plume spreading and substitute (4.2) for bg. For the centreline velocity,
we use the asymptotic solution at large z/D� 1 (4.6). This yields

Q= 6πEtz1/2D1/2. (4.9)

From these fitted equations, Q scales with z1/2 in the weak plume, which demonstrates
a decreasing entrainment of ambient water (i.e. m<1). Therefore, the weak and classic
bubble plumes have different entrainment processes (increasing and decreasing) and
follow different scaling laws (m = 1/2 and m = 5/3). In the intermediate range of
z/D∼O(1), m is expected to be in the range between 1/2 and 5/3.

Here, we also consider the similar laboratory measurements in weak bubble plumes
by Leitch & Baines (1989). They observed the same bubble spreading rate (bg∼ z1/2)
but report a different m (m = 1 in their work instead of m = 1/2 in this study).
This discrepancy follows from their observation of Um(z) ∼ z0 instead of Um(z) ∼
z−1/2. Their observation may represent an accurate measurement, which the scatter in
figure 8 allows, or may result from their shallow experimental water depth (i.e. 0.5 m),
which may not allow adequate development of the velocity gradient to observe the
−1/2 power law. In our experiments, the observations were conducted over 16 m of
water depth, and the −1/2 power law is consistent across this whole water depth,
linking our experiments to results reported in Milgram & Van Houten (1982). Hence,
we conclude that m= 1/2 is the more accurate estimate of the entrainment process in
a weak bubble plume.

4.4. Apparent entrainment coefficient
In single-phase jets and plumes, an integral model is usually closed using an
entrainment hypothesis or a spreading hypothesis, and the two hypotheses are
equivalent (Lee & Chu 2003) (see also appendix A). A similar spreading hypothesis
was recently adapted to a particle plume (Lai et al. 2016). The equivalence of these
two hypotheses can be summarized as follows:

entrainment hypothesis ( for Gaussian profile)
dQ
dz
= 2πbgαUm, (4.10)

is equivalent to

jet


linear spreading βj =

dbg

dz
,

dimensional analysis Um =

(
M0

z2

)1/2

,

(4.11)

plume


linear spreading βp =

dbg

dz
,

dimensional analysis Um =

(
B0

z

)1/3

,

(4.12)

where M0 is the initial kinematic momentum flux of the jet. Thus, linear spreading
of the single-phase jet and plume is mathematically equivalent to the entrainment

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

46
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.461


Characteristics of weak bubble plumes in water 119

hypothesis with a constant entrainment coefficient α. The entrainment hypothesis
states that the growth of the liquid volume flux is due to the shear entrainment of
ambient liquid at the edge of the jet or plume with the entrainment velocity Ue, where
Ue is proportional to the centreline velocity multiplied by the entrainment coefficient
α (Turner 1986). Because the classic bubble plume spreads out linearly, similar to
single-phase jets and plumes, the entrainment hypothesis in single-phase jets and
plumes is adopted for many integral models of the classic bubble plume (Asaeda &
Imberger 1993; Bombardelli et al. 2007; Socolofsky et al. 2008; Dissanayake, Gros
& Socolofsky 2018).

For the weak bubble plume, a formulation of the integral plume equations with a
constant entrainment breaks down. Instead, we derive the gradient of liquid volume
flux from a spreading hypothesis, following the same procedure as in single-phase flow
(see appendix A) to obtain

dQ
dz
=

1
2
πβbUm, (4.13)

with βb = db2
g/dz. This equation differs fundamentally from the constant entrainment

hypothesis (i.e. equation (4.10)). The form of (4.13) also suggests that the characteristic
length scale where entrainment occurs is not bg. We suspect that there is no
entrainment at the edge of the weak bubble plume, giving Ue = 0. Instead, the
growth of the liquid volume flux in the weak bubble plume is due to the increasing
width of the plume as the result of diffusive spreading of the bubbles and the
changing wake flow below the leading bubbles as they spread out. This hypothesis is
also consistent with ideas in Leitch & Baines (1989), who attributed the flow rate in
a weak bubble plume to the individual wakes behind bubbles.

Although we conclude for a weak bubble plume that there is no entrainment
velocity in the normal sense of a plume, the equation for the growth rate of the
liquid volume flux can be treated mathematically in the same manner as a classic
plume, but with a different interpretation of the entrainment coefficient. If we combine
(4.10) and (4.13), we can obtain the relationship

α =
βb

4bg
. (4.14)

Here, we name α the ‘apparent entrainment coefficient’, as it represents the
mathematical formulation of entrainment, but in a system that does not obey the
entrainment hypothesis. This equation predicts that α is not a constant and is
proportional to the turbulent diffusivity causing the spread of the bubbles (βb) and
inversely proportional to the width of the plume (bg(z)). Using the definitions of βb
and bg(z) in (4.2), we obtain

α = 2−3/2E1/2
t U−1/2

s z−1/2, (4.15)

and (4.13) becomes (this is also the direct derivative of (4.9))

dQ
dz
= 3πEtz−1/2D1/2. (4.16)

Equation (4.15) predicts that the apparent entrainment coefficient α decreases with
height following α ∼ z−1/2 in the weak bubble plume. In a single-phase round jet
or plume, the constant Gaussian entrainment coefficients are α = 0.057 and 0.083,
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Local bubble Froude number, FB
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FIGURE 9. (Colour online) The relationship between α and local bubble Froude number,
defined after Milgram (1983), where α is the entrainment coefficient in the classic bubble
plume and is the apparent entrainment coefficient in the weak bubble plume. The dashed
line represents the saturation curve proposed by Milgram (1983).

respectively (Lee & Chu 2003). Although integral models for classic bubble plumes
also usually assume constant entrainment, many experimentalists have found that
α is not a constant in bubble plumes, and this arises because the classic bubble
plume is not strictly self-similar. Milgram (1983) used a saturation growth curve
to describe the relationship between the entrainment coefficient and a local bubble
Froude number (defined by FB = Q2/5

b χ 1/3g3/101ρ1/2σ−1/2, where Qb is gas volume
flux). In his empirical fit to data, the entrainment coefficient approaches a plateau
at 0.16 when the local bubble Froude number increases, which occurs close to
the release (e.g. z/D→ 0). Figure 9 compares our data with this empirical curve,
where we computed the apparent entrainment coefficient α at mid-points between
measurements using (4.10). The apparent entrainment coefficients in our experiment
are approximately an order of magnitude smaller than entrainment coefficients reported
by previous authors for larger z/D and show remarkable correspondence with the
empirical fit of Milgram (1983).

Milgram (1983) interpreted the local bubble Froude number FB as a ratio between
the mixing length scale of turbulence in the plume and the characteristic length scale
of bubble–bubble separation. The turbulence and the bubble–bubble separation change
as the plume develops away from the source, and the resulting bubble Froude number
is a complex nonlinear function of z. However, this scaling law is hidden within the
z dependence of the parameters that make up FB (e.g. χ , Qb and 1ρ). Our analysis
also predicts that α ∼ z1/2 in a weak bubble plume. Hence, it is useful to evaluate
the relationship between entrainment coefficient or apparent entrainment coefficient
and the height above the source in the full range of the available bubble plume data.
Figure 10 shows the relationship between α and z/D over a span of four orders
of magnitude of z/D, including both classic and weak bubble plumes. The constant
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FIGURE 10. (Colour online) The relationship between α and the normalized height. The
data key follows figure 8 with two additional datasets from Seol et al. (2007) (shown as
SBBS07) and Hugi (1993) (shown as Hugi93). Hugi’s data are directly digitized from the
figure in Hugi (1993) and are regrouped into two regimes: (1) z/D in the same regime
as our data, and (2) z/D smaller than those of our data. The solid line is the reference
of α∼ z−1/2. The constant entrainment coefficient in a continuous-phase plume (i.e. 0.083)
and the upper bound of a classic bubble plume (i.e. 0.16) suggested by Milgram (1983)
are plotted as dashed lines.

entrainment coefficient in a continuous-phase plume, 0.083, and the plateau value in
Milgram (1983), 0.16, are shown for reference. A reference line of α ∼ z−1/2 is also
shown, and our data agree well with this theoretical relationship in the region z/D> 5.

These data have had different interpretations in past papers, each supported by part
of the current complete dataset of observations. An asymptotic limit of entrainment
coefficient is recognized in the classic bubble plume as z→ 0 but the value seems
not to be universal. Ditmars & Cederwall (1974) suggested 0.082 (which does appear
to be the correct bound as D→∞, consistent with Us → 0) and Milgram (1983)
proposed 0.16 (which here appears as a peak near z/D ∼ O(0.1)). In addition, Seol
et al. (2007) suggested a lower limit of entrainment coefficient (i.e. 0.04) for bubble
plumes, a conclusion dominated by a single dataset of Hugi (1993). Our data show
significantly smaller α compared to the cases with orders of magnitude smaller z/D
in the literature and invalidate the asymptotic assumption in Seol et al. (2007). Our
α values are also smaller than Hugi (1993) (except for one data point), although both
datasets are in a similar range of z/D. The scattering of data for z/D> 5 might be
due to the relatively large uncertainty associated with measuring dQ/dz from a finite
difference approximation using an integral quantity, an error which should be less in
our deep tank (16 m) compared to Hugi (3 m). Hence, despite the scatter, the bulk
of the data seem to support a decreasing trend of α versus z/D that is consistent with
our scale relationship α ∼ z−1/2 at large z/D.
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5. Unified scaling framework for classic and weak bubble plumes
From the above analysis, it is seen that the classic and weak bubble plumes are

fundamentally different. In short, the weak bubble plume does not have classic
shear entrainment, but rather spreads out by diffusion of the bubbles and has
increasing plume volume flux due to changes in the wakes behind individual
bubbles. A hypothetical, apparent entrainment coefficient for a weak bubble plume
is a function of distance along the plume z and is much smaller than for classic
bubble plumes; this results in much lower spreading. Although the centreline velocity
is within the prediction range of the relationship suggested by Bombardelli et al.
(2007) (i.e. equation (4.7)), any model with a typical constant entrainment coefficient
will overestimate the plume spreading, following the power law bg ∼ z instead of
the correct diffusive spreading rate bg ∼ z1/2. If we simply decrease the constant
entrainment coefficient in the model to match the correct apparent entrainment
coefficient in the weak bubble plume, the model would fail to predict the velocity
of the plume. Moreover, the linear spreading region governed by an approximately
constant entrainment coefficient occurs in a narrow range of z/D < 0.5. Hence, no
integral model with a constant entrainment coefficient can accurately predict the liquid
volume flux and plume width of a weak bubble plume for z/D�1, and it is necessary
to include bubble diffusion in the plume spreading through the parameter Et.

In this section we derive empirical scaling laws that unite the classic and weak
bubble plume dynamics. For this, we classify bubble plumes into three regimes:
(1) The classic bubble plume regime has a relatively stable entrainment coefficient,
and the plume spreads out linearly, which is an increasing entrainment process.
(2) The weak bubble regime has very small entrainment coefficient proportional to
z1/2, and the plume spreads out following a diffusive process, which is a decreasing
entrainment process. (3) The intermediate bubble plume regime, between the classic
and weak bubble plumes, can be considered as a transition process that smoothly
connects the above two plume regimes. We separate the classic and weak bubble
plumes by the region of z/D ∼ O(10), which is where the intermediate regime will
dominate.

We compare the behaviour of the bubble plumes in the classic and weak regimes
using dimensional analysis. In a bubble plume, the length scale is usually normalized
with D and the velocity scale is normalized with Us. Therefore, the non-dimensional
liquid volume flux and kinematic momentum flux can be written as

Q̂=
Q

UsD2
, (5.1)

M̂ =
M

U2
s D2

, (5.2)

where M=πb2
gU2

m/2. These non-dimensional equations are equivalent to Q̂∼QU5
s /B

2
0

and M̂ ∼MU4
s /B

2
0.

In classic bubble plumes, the plume behaviour is predicted by the relationship of Q̂
and M̂ with the non-dimensional height above the source z/D (denoted in this section
as ẑ). As shown in § 4.1, for a weak bubble plume, an additional parameter should be
considered, i.e. the effective diffusion coefficient, Et, which can be normalized as

Êt =
Et

DUs
, (5.3)

which is equivalent to Êt ∼ EtU2
s /B0.
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Eq. 5.5
Eq. 5.6
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FIGURE 11. (Colour online) Non-dimensional bubble plume half-width bg/D versus non-
dimensional height z/D. We include lines for (5.4) to (5.6). See figure 8 for data key.

Using these scales, the spreading of the bubble plume can be written as

classic bubble plume
bg

D
= β ẑ, where β = 0.1, (5.4)

weak bubble plume
bg

D
=
√

2Êt
1/2

ẑ1/2, (5.5)

where (5.5) is derived from (4.2). To examine the behaviour of plumes in these two
different regimes, figure 11 presents the measured data with reference lines for the
scaling laws in (5.4) and (5.5). The data from previous authors collapse onto the (5.4)
line and the data in this work collapse onto the (5.5) line with Êt = 0.01. This latter
curve intercepts the (5.4) line at z/D = 5. To obtain a universal empirical equation,
we can fit an asymptotic relationship to unite the two relationships, yielding

bg

D
=

0.1ẑ
1+ c1ẑ1/2

, (5.6)

where the coefficient c1= 0.53 is obtained by regression and having a goodness of fit
R2
= 0.98. This curve is also shown in figure 11.
We continue the scale analysis to predict liquid volume flux Q̂ and momentum flux

M̂ for the classic and weak bubble plumes. For the classic bubble plume, we use the
asymptotic solutions of Bombardelli et al. (2007) for bg and Um, presented previously
here as (4.7) and (5.4). In the normalized format, we have

Q̂= 2πβ2

(
1.9ẑ5

1+ 0.563ẑ1/2

)1/3

, (5.7)
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FIGURE 12. (Colour online) Non-dimensional parameters versus height in bubble plume
models: (a) volume flux; (b) kinematic momentum flux. See figure 11 for data key.

M̂ = 2πβ2

(
1.9ẑ2

1+ 0.563ẑ1/2

)2/3

. (5.8)

From the weak bubble plume theory, we use (4.6) and (5.5), giving

Q̂= 6πÊtẑ1/2, (5.9)
M̂ = 9πÊt. (5.10)

Figure 12 shows these relationships along with the measured data.
Equations for classic and weak bubble plumes show significantly different

behaviour in figure 12 (i.e. different power laws of the dash-dotted and dashed lines).
Bombardelli et al.’s (2007) asymptotic solution tracks the volume and momentum
fluxes in the classic bubble plume regime but overestimates the fluxes in the weak
bubble plume regime. This is because the linear spreading theory overestimates the
plume width in the weak bubble plume (z/D� 1). In contrast, the lines for the weak
bubble plume at large ẑ and with Êt = 0.01 are close to our data, but the data do not
exactly match the slopes of these theoretical lines, with the deviation being larger
for M̂.

In figures 11 and 12, the behaviour in the weak bubble plume regime is controlled
by the effective diffusion coefficient, Êt (i.e. different dashed lines). Here we
show that Êt = 0.01 conforms the closest to our data for weak bubble plumes in
stationary water. As discussed in § 4.1, the dimensional Et is mainly determined
by the wobbling motion of these ellipsoidal bubbles. In natural and engineered
gas-in-water systems, bubbles sizes are commonly in the range of 2 to 10 mm,
and these bubbles have similar bubble shape, rising trajectory and rise velocity
(e.g. Clift et al. 1978). Therefore, we expect a small variation of Et in any weak
bubble plume, and we believe that the two flow rates in our experiments created
bubbles that are representative of typical cases. Likewise, slip velocity is constant
near 20 cm s−1 over a wide range of bubble sizes (Clift et al. 1978). Therefore,
variation of the non-dimensional parameter Êt is probably caused by changes only
in D, or correspondingly ẑ, and does not depend on the dimensional parameter Et.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

46
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.461


Characteristics of weak bubble plumes in water 125

For instance, when B0 decreases, D decreases, hence, Êt increases. Propagating this
behaviour through our equations, we expect that different values of Êt will fit the
data at different z/D. Hence, we might expect that, in the weak bubble plume regime,
lines of constant Êt may not track the data over large regions of ẑ. This is consistent
with our data’s deviation from the red dashed lines in figures 11 and 12.

The data spanning over five orders of magnitude of ẑ show that the bubble
plume follows a stable entrainment process in the classic bubble plume regime,
and transitions to the weak bubble plume regime occurring near the highest value
of ẑ in our dataset, where the constant entrainment coefficient is not applicable.
The non-constant entrainment coefficient and different spreading processes in two
regimes show significant differences from integral model predictions using constant
entrainment coefficient, and these differences are dominated by bubble lateral diffusion
in the weak bubble plume regime.

6. Conclusion
In this paper we presented an experimental study of a weak bubble plume in a large-

scale facility at two flow rates. A theory was proposed to describe the characteristics
of mean flow in the weak bubble plume and was validated with the data. We also
compared the weak bubble plume closely with the classic bubble plume, to examine
the similarity of the two plumes and the distinct features of the weak bubble plume.
In the end, we proposed a scaling framework to unify predictions for spreading rate
and volume and kinematic momentum fluxes in the classic and weak bubble plume
regimes, which provides insight on the transition region between them.

The weak bubble plume has Gaussian cross-sectional profiles of velocity and
cross-sectional void fraction at all heights measured above our point source diffuser.
Differently from the linear spreading of the classic bubble plume, the Gaussian-defined
plume radius bg for the weak bubble plume grows following a diffusive power law
bg∼ z1/2. The growth rate is determined by the effective diffusion coefficient Et, which
agrees with the apparent diffusion from the lateral wobbling of the rising bubbles.
The contribution to this growth rate from the turbulence behind the bubble wakes
is limited in stationary water. The entrainment in the weak bubble plume probably
occurs in the local wake of the bubbles instead of as a shear entrainment velocity at
the plume edge. The measured apparent entrainment coefficients α in the weak bubble
plume are not constant and correspond well with the predictive curve proposed by
Milgram (1983) as a function of local bubble Froude number. Theoretical analysis
shows α ∼ z−1/2 in the weak bubble plume, and this decay rate is supported by the
data.

The centreline water velocities, scaled with bubble slip velocity, track the asymptotic
solution proposed by Bombardelli et al. (2007), with Um ∼ z−1/2 in the weak bubble
plume. Taking the scaling laws for bg and Um together with the Gaussian profile, it
follows that the liquid volume flux in the plume scales as Q∼ zm where m= 1/2. This
predicts that the total liquid volume flux in the plume increases as the plume grows,
but that the entrained liquid volume flux decreases with height. This is different from
the single-phase plume and classic bubble plumes, which is an increasing entrainment
process (i.e. m= 5/3). The available data spanning classic to weak bubble plumes are
bounded by m= 1/2 and 5/3.

The classic integral models for bubble plumes do not predict the behaviour of
weak bubble plumes. With the traditional constant entrainment coefficient, the classic
integral model predicts the correct plume velocity but overestimates the plume width
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for the weak bubble plume due to its equivalent linear spreading hypothesis bg ∼ z.
Forcing a small constant entrainment coefficient in classic integral models would fail
to predict the velocity of the plume. Our analysis shows that an additional parameter,
the effective diffusion coefficient Et, is needed to correctly predict the behaviour of
the weak bubble plume.

Based on the data, the theory for weak bubble plumes proposed here, and
the previous theory and models for classic bubble plumes, we proposed a set of
non-dimensional scaling frameworks to describe the bubble plume spreading, liquid
volume flux and kinematic momentum flux for the entire regime of both classic and
weak bubble plumes. We expect the scaling to give insight for bubble plumes in
the transition regime between classic and weak bubble plumes. The validity of this
relationship in the transition regime is subject to future studies, especially in the
range of z/D ∈ [10, 100].
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Appendix A
In this appendix, we derive the gradient of liquid volume flux for classic

single-phase momentum jets, buoyant plumes and weak bubble plumes from a
spreading hypothesis, which we then compare to the format of the equivalent
entrainment hypothesis.

A.1. Single-phase point source momentum jet
In a self-similar pure momentum jet, the centreline velocity of the jet should be a
function of z and M0 only, where M0 is the initial momentum flux (Fisher et al. 1979).

Dimensional analysis gives

Um ∼

(
M0

z2

)1/2

. (A 1)

This shows that 1/Um = γ z, where γ is a constant. Taking a derivative with respect
to z, we obtain

dUm

dz
=−

Um

z
. (A 2)

The linear spreading hypothesis of a momentum jet gives

dbg

dz
= βj. (A 3)

For a point source, bg = βjz. Therefore, equation (A 2) becomes

dUm

dz
=−

Umβj

bg
. (A 4)
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Multiplying πbg to both sides of this equation yields

πb2
g

Um

dUm

dz
=−πβjbg. (A 5)

Moving πb2
g inside of the derivative, with Q=πb2

gUm, we have

dQ
dz
=πβjbgUm. (A 6)

This is equivalent to the entrainment hypothesis, i.e. equation (4.10), and we have
α = βj/2.

A.2. Single-phase point source buoyant plume
In a self-similar pure buoyant plume, the centreline velocity of the plume should be
a function of z and B0 only, where B0 is the initial buoyancy flux.

Dimensional analysis gives

Um ∼

(
B0

z

)1/3

. (A 7)

This shows that 1/Um = γ z1/3, where γ is a constant. Taking the z derivative, we
obtain

dUm

dz
=−

1
3

Um

z
. (A 8)

Note that this equation is in the same format as the equation for a jet (i.e.
equation (A 2)).

We still have a linear spreading hypothesis in the single-phase plume. Following the
same procedure for the plume from (A 3) to (A 6), we can derive the gradient of the
liquid volume flux for a single-phase point source plume as

dQ
dz
=

5
3
πβpbgUm. (A 9)

This is also equivalent to the entrainment hypothesis (4.10), and we have α = 5βp/6.

A.3. Weak point source bubble plume
In weak bubble plumes, the centreline velocity of the plume should be a function of
z, Et, B0 and Us. Bombardelli et al. (2007) showed (see (4.6)) that

Um ∼Us

( z
D

)−1/2
. (A 10)

This shows that 1/Um = γ z1/2, where γ is a constant. Taking the z derivative, we
obtain

dUm

dz
=−

1
2

Um

z
. (A 11)

This equation follows the same format as those in single-phase jets and plumes
(i.e. equations (A 2) and (A 8)).
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Differently from single-phase jets and plumes, the development of the weak bubble
plume follows a diffusive spreading instead of linear spreading process, namely

db2
g

dz
= βb, (A 12)

where βb = 2Et/Us is a constant. For a point source, we have z = b2
g/βb, which can

be substituted in (A 11) to give

dUm

dz
=−

1
2

Umβb

b2
g

. (A 13)

Multiplying πbg to both sides of this equation and reorganizing gives

dQ
dz
=

1
2
πβbUm. (A 14)

This equation is not in the format of the entrainment hypothesis, as bg is missing from
the right-hand side of the equation, and βb is of dimension L. We discuss the physical
interpretation of (A 14) in § 4.4.
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