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Crime prevention is a major goal of law-enforcement agencies. Often, these agencies have lim-

ited resources and officers available for patrolling and responding to calls. However, patrolling

and police visibility can influence individuals to not perform criminal acts. Therefore, it is

necessary for the police to optimize their patrolling strategies to deter the most crime. Previous

studies have created agent-based models to simulate criminal and police agents interacting in

a city, indicating a “cops on the dots” strategy as a viable method to mitigate large amounts

of crime. Unfortunately, police departments cannot allocate all of the patrolling officers to

seek out these hotspots, particularly since they are not immediately known. In large cities,

it is often necessary to keep a few officers in different areas of the city, frequently divided

up into beats. Officers need to respond to calls, possibly not of a criminal nature. Therefore,

we modify models for policing to account for these factors. Through testing the policing

strategies for various hotspot types and number of police agents, we found that the methods

that performed the best varied greatly according to these factors.

Key words: Agent Based Methods; Crime Models; Hot Spots; Policing Strategies

1 Introduction

Crime has been decreasing since the 1990s [16], nevertheless it still occurs. Law-

enforcement agencies facing budget freezes and cuts require them to manage their

resources more effectively [7,19]. We aim to optimize policing practices given resource con-

straints by simulating various strategies. Although criminal offenses vary, we will focus our

analysis on crimes that often cluster in time and space, such as residential burglaries [21].

Crime is not uniformly distributed throughout a city. Certain neighbourhoods exhibit

more criminal acts than others [13]. This behaviour can be explained by the criminal

opportunity theory [11]. This theory summarizes the likeliness of an individual committing

a criminal act, which depends on the individual’s self-interest, the network of the individual,

and the welcoming of criminal behaviour [11]. A person’s network can have a significant

impact on influencing other members of one’s network, such as family and friends, to

commit criminal acts. A person’s self-interest sparks when there is a tempting opportunity
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that entices one into criminal action. The theory also states that offenders are likely to

commit a crime if the risk of being caught is relatively low in comparison to the reward.

Another component in the criminal opportunity theory is target selection [11]. Crim-

inologists view target selection as a multi-level process in which an offender first seeks

a general target, such as neighbourhood, followed by a specific target or residence [20].

An offender often decides to select targets through everyday movement [6], tending to

commit criminal acts in familiar settings, particularly if previous offenses in the region

were successful. In regions with high crime rates, certain neighbourhoods exhibit a sense

of lawlessness, vulnerability, and a notion of crime tolerance [7, 19].

In the case of residential burglaries, the same location and its surrounding neighbours

are more likely to be burglarized again within a short time immediately following the

event. This behaviour is known as near-repeat victimization [13–15, 20, 27, 31]. The area

surrounding a recently burglarized home attracts more crimes, creating a hotspot, a

spatial region with a relatively higher crime rate [5, 10]. According to the “broken-

window” theory, regions of disorder and lack of maintenance signal to offenders that

criminal acts would likely go undetected, especially when compared to regions of order

and cleanliness [30]. Many researchers have sought to identify different types of hotspots,

both spatially and temporally, to assist police in identifying problematic areas [3, 8, 24].

Others have formulated theories to determine why hotspots form [6].

According to the criminal opportunity theory, the presence of a police officer has some

influence on whether a criminal offender commits a crime [11]. Thus, law-enforcement

agencies have police officers patrol a city in efforts to mitigate crime. Since it is unrealistic

to have a police officer at each location in a city, effective patrolling strategies are required.

Law-enforcement agencies have experimented with policing strategies. For example, police

officers in Minneapolis randomly patrolled 55 different hotspots during high-risk times,

not answering calls for service at times [26]. In 2015, the Los Angeles Police Department

used helicopters to patrol over the city. When there were more weekly helicopter patrols,

the number of reported crimes decreased compared to when there were less patrols [17].

Although more studies need to be done to conclude that there is a connection between

the helicopter patrols and reported crime numbers, the results of this experiment are very

promising. However, the presence of the police officers does not always help mitigate

crime. In Kansas City, police agencies experimented with unbiased patrolling routes and

did not yield a significant decrease in crime [29]. Simulated results verified how random

patrolling was ineffective in mitigating crime [15], confirming the observed case study in

Kansas City [29]. In another study where hotspot policing was experimented, 80% of

the test regions reported significant crime reduction, suggesting more targeted policing

strategies are more effective [4].

Computer simulations are effective tools in bridging theorized explanations and depic-

tions of crime patterns [2,9,23]. Simulations allow for the opportunity to experiment with

different environmental conditions. Several methods use agent-based models (ABM), a

method that consists of agent entities that interact and make decisions [15,27,31]. In crime

models, agents can represent police officers, criminals, victims, or other entities [9, 12].

Agents may make decisions on movement direction and actions. Furthermore, geographic

factors can be introduced into the model [12]. Simulations allow policing strategies to be

tested without having to use policing resources.
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Our work focuses on creating an ABM that incorporates realistic policing strategies,

including typical features of a patrolling police officer’s day. When police officers patrol,

they often have an assigned patrolling region called a beat [18]. Further, throughout the

day an officer will have to respond to calls or has interactions with individuals or criminals

that prevent further patrolling. These are features we will include in our model. We also

test the strategy of having multiple patrolling types simultaneously. We will introduce the

baseline models in Section 2 and our proposed methods in Section 3. We simulate each

of the patrolling strategies for varying numbers of police agents, testing how the methods

perform for cities with a limited number of police officers available for patrolling. The

results are presented in Section 4 with figures and tables demonstrating how each method

performed on crimes with different hotspot characteristics [27].

2 Agent-based methods for residential burglaries

We add more realistic features to existing ABM for residential burglaries [15, 21, 27, 31].

Short et al. developed a model to help explain how hotspots of criminal activities

form by having criminal agents move through a city, committing residential burglaries

and increasing the attractiveness of the region [27]. We discuss this model in detail

in Section 2.1. Police agents have been added to the Short et al. model in multiple

models [21, 27, 31]. We will modify the Jones et al. model, described in Section 2.2,

through the addition of features often seen during a patrolling police officer’s day. Our

proposed model is explained in Section 3.

2.1 Agent-based method of hotspot formation

The goal of [27] was to examine how macroscopic behaviour of residential burglaries

could be explained by behaviours of individuals at a microscopic level. Short et al. created

an ABM of criminal agents with biased movement and the ability to perform criminal

acts. They also derived the continuum limit and performed linear stability analysis to

further understand the behaviour of the model. This allowed them to determine different

parameter regimes that produce different hotspot types.

The criminal agents within the model move with bias towards attractive sites. At each

location, the agent has a choice of burglarizing, going home, or moving to a neighbouring

site. If an agent commits a crime or decides to return home, the agent is removed from

the grid. New agents are added to the system at a pre-determined rate, Γ .

The decision of where to move and whether to burglarize a residence at site s depends

on the attractiveness of the site, As(t). This attractiveness can be calculated by

As(t) = A0
s + Bs(t), (2.1)

where A0
s is the baseline attractiveness of the site and Bs(t) is the attractiveness incorpor-

ating near-repeat victimization. This Bs(t) attractiveness varies over time and depends on

the historical criminal activity during the course the simulation. If a criminal burglarizes

a site, the attractiveness of that site increases immediately, and then decays over time.
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This gives the update for Bs(t) as

Bs(t + δt) = Bs(t)(1 − ωδt) + θEs(t).

Here, δt is the time step, ω gives the time frame for the increased likelihood of a repeated

offense, and θ gives the amount of increase in attractiveness caused by a single burglary.

Additionally, Es(t) gives the number of events that occurred at site s during the timestep.

The neighbouring sites are also influenced by the criminal act since neighbouring

residences have a higher likelihood of being burglarized for a short time following the

event. This is incorporated by updating the attractiveness of the neighbouring sites for

the next time step according to

Bs(t + δt) =

[
(1 − η)Bs(t) +

η

z

∑
s′∼s

Bs′(t)

]
(1 − ωδt) + θEs(t). (2.2)

Here, η determines how influential are the neighbouring effects from the near-repeat

victimization, and z gives the number of neighbouring sites s′ of site s. The notation s′ ∼ s

refers to all sites s′ such that s′ is a neighbour of s.

The resulting model produced different types of behaviours, including no signific-

ant hotspots, stationary and dynamic hotspots, and hotspots of varying sizes [27]. In

Section 2.2, we describe how Jones et al. added police into this model with a few nota-

tional changes [15]. They applied their model to the three different behaviours of no

significant hotspots, small hotspots, and large hotspots.

2.2 Agent-based method of policing strategies

Jones et al. incorporate police agents into the Short et al. model [15, 27]. In order to

accomplish this, the criminal agents need to have some behaviour modification due to

police presence. The attractiveness of a site s is adjusted by decreasing As(t) depending

on the number of police agents at the site, κs(t), given by

Ãs(t) = e−χκs(t)As(t). (2.3)

The parameter χ indicates how much the police presence influences the attractiveness.

Using this Ãs(t), the probability that a criminal agent will burglarize the residence at site

s is given by

p̃s(t) =
εÃs(t)

1 + εÃs(t)
, (2.4)

where the parameter ε determines the likelihood of a crime occurring.

Other adjustments to the model were made using p̃s(t) in the update formula for Bs(t)

with δt = 1, giving

Bs(t + 1) =
[
Bs(t) +

η

4
ΔBs

]
(1 − ω) + θp̃s(t)ns(t). (2.5)
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Here, ns(t) gives the number of criminal agents located at site s, and

ΔBs =
∑
s′∼s

Bs′(t) − 4Bs(t)

is the discrete Laplacian applied to Bs on a 5-point stencil.

During the simulation, criminal agents move throughout the region. At each time step,

the agent first decides whether or not to return home depending on the number of police

agents at a given location. This probability is given by

Jκs(t)

1 + Jκs(t)
, (2.6)

where J is a parameter determining the influence of the police agents in the decision. If

the agent decides not to return home, it then decides whether to commit a crime with

probability p̃s(t). If a crime is not committed, the criminal agent at site s moves to a

neighbouring location x with probability

Ãx(t)∑
s′∼s

Ãs(t)
. (2.7)

Similar to [27], criminal agents are added to the simulation at rate Γ .

Now that the behaviour rules for the criminal agents with police presence have been

established, the police agents must decide how they will move throughout the region. This is

where different patrolling strategies are implemented. The methodology proposed in [15]

include random walks (RW-J), cops on the dots (CoD-J), and peripheral interdiction

(PI-J), which will be described next.

2.2.1 Random walk patrolling (RW-J)

Random walk (RW) patrolling represents a policing strategy where there is no bias in

movement. This type of movement is simulated by giving each police agent an equal

probability of moving to any of its neighbouring sites. We will refer to this patrolling

strategy with the Jones et al. implementation as RW-J.

2.2.2 Cops on the dots patrolling (CoD-J)

Cops on the dots (CoD) patrolling is essentially hotspot policing. In this strategy, police

officers focus their time in hotspot regions where there is a higher level of criminal activity.

In simulations, the police agents are biased in movement into regions with higher levels

of attractiveness. The police agent at site s moves to a neighbouring location x with

probability

Ãx(t)∑
s′∼s

Ãs(t)
. (2.8)

The movement is similar to that of the criminal agents. We will refer to this patrolling

strategy with the Jones et al. implementation as CoD-J.
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2.2.3 Peripheral interdiction patrolling (PI-J)

Peripheral interdiction (PI) patrolling is a strategy where police officers patrol around a

hotspot as opposed to entering a hotspot directly. It was theorized by Jones et al. that

this strategy would have the best results with large hotspots [15]. They implemented the

strategy by having police agents move with bias proportional to

e−|c1Bs′ −c2|, (2.9)

where c1 and c2 are chosen by the model parameters. These movement rules bias the

police agents to a particular attractiveness level of the neighbouring sites.

2.3 Continuum PDE models of ABM policing strategies

To better understand agent-based methods, continuum models are often derived, giving

other techniques to analyze the dynamics of the model for different parameter regions.

Short et al. derived the continuum equations for equation (2.2), obtaining

∂B

∂t
= η∇2B − B + ρA

∂ρ

∂t
= ∇ ·

[
∇ρ − 2ρ

A
∇A

]
− ρA + B̄

after non-dimensionalizing [27]. Here, the B̄ gives the spatially averaged attractiveness, and

ρ(x, t) gives the density of criminals. Noting the similarity to the Keller–Segel aggregation

model for chemotaxis, Rodriguez et al. verified local existence and uniqueness of solutions

[25].

Incorporating the behaviour modification into the Short et al. model, Jones et al.

derived the continuum equations for equation (2.5) [15],

∂B

∂t
=

η

4
ΔB − ωB + θρεÃ

∂ρ

∂t
= [−εA − Λ − Jκ] ρ + Γ +

1

4
Δρ − 1

2
∇ · [ρ∇ logA] .

The number of police agents, κ(x, t), is determined by the strategy. For the random walk

patrolling (RW-J), the continuum equation for κ is

∂κ

∂t
=

1

4
Δκ.

For the cops on the dots patrolling (CoD-J), the continuum equation is

∂κ

∂t
=

1

4
Δκ − 1

2
∇ · (κ∇ logA) .

As noted by Jones et al., there are difficulties in deriving the continuum equations for

the peripheral interdiction patrolling (PI-J) strategy. Since many of our methods use

either a combination with a modified peripheral interdiction patrolling strategy or have
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nontrivial new behaviours, we will only include the agent-based formulations of our

policing strategies.

2.4 Other ABM models with policing strategies

Other researchers have modified the Jones et al. approach or viewed different strategies [21,

28,31]. Sutanto examined four different tactics, including an active response (police placed

in high-attractiveness areas), stationary police (police are equally distributed through

space on a grid), specified patrolling (police target areas between grid locations), and

concentrated police (police are distributed in varying levels) [28]. Zipkin et al. modified

the deterrence term to the cops on the dots (CoD) strategy for the continuum limit [31].

Nam implemented the strategies of Jones et al. and added three additional routines,

including police agents moving as if they were criminal agents, police moving according

to a previous state of the system, and finally by specified patterns like spirals [21].

3 Police beat ABM with response to calls

While previous extensions of the Jones et al. model focus on adding different routines, we

modify the model by adding in features often seen in a typical patrol. In particular, we

allow police agents to respond to calls. Further, they are allowed to return home or to the

station, thus removing them from patrolling. We also restrict police agents’ movements to

particular beats. In addition to the police agents’ presence deterring criminal agents at a

location, we allow for neighbouring locations to have some deterring effect as well. The

details of these changes are given in Sections 3.1–3.4.

We will test our ABM with the same strategies as [15] but with the modifications of

police-agent behaviour. Further, we add a few more policing strategies, including mixed

patrols. Sections 3.5–3.6 provide the details for these new routines.

3.1 Police beats

Cities are often partitioned into beats and districts for patrolling and reporting purposes.

For our ABM, we assign each police agent a beat number, allowing movement only within

this particular beat. The criminal agents are still free to travel anywhere in the region.

One advantage to having beats is to ensure that all regions of the grid maintain a certain

number of police agents. This will help to minimize any crime that is displaced due to

policing hotspots. In our simulations, we chose four beats, similar to the four quadrants

of a grid. All beats are squares of equal size.

3.2 Response to calls

Part of a patrolling officer’s job is to respond to calls and address suspicious activity [22].

In a study in Indianapolis and St. Petersburg, the time spent by a patrol officer was

recorded and categorized for a typical shift [22]. The average number of encounters per

8 hours depended on the officer assignment and ranged from 9 to 11. These encounters

ranged from brief to casual to full encounters, each requiring different lengths of time.
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An officer will not continuously be on patrol duty. Officers work according to shifts and

also will have responsibilities at other locations, such as the police station [22]. Thus, we

include removal of police agents from our simulation to represent cessation of patrolling.

For our model, when a police agent and criminal agent are at the same location, we say

that an interaction has occurred. In order to address the situation with the criminal agent,

the police agent remains at that location for some period of time before returning to

patrol. Removal from active patrol occurs after a number of interactions, sampled from a

normal distribution where the mean is determined by the average number of encounters

a typical police officer has on a given shift.

A police agent is added to the simulation when another police agent is removed from

patrol duty. This new agent has the same assigned beat as the removed agent. Initial

simulations had police agents added at the centre of the grid, connecting the four beats,

as though there were a police station at this location. Results from these simulations

produced a low level of criminal activity immediately surrounding the centre of the grid,

but the remainder of the region had higher criminal activity. Having all agents patrol

immediately around the station seemed unreasonable as police agents may decide to head

to a location far from the station before initiating patrols, similar to a Lévy flight [7].

Thus, we have the police agents added to random locations within their designated beat.

3.3 Neighbouring deterrent effect

The Jones et al. model only included a deterrent effect at the location of the police

agent [15]. However, if a criminal agent notices there is a police agent at the neighbouring

site, then the criminal agent should be less likely to commit a crime than when there

are no police agents present. Thus, we include a neighbouring deterrent effect for the

8 neighbouring locations: north, northeast, east, southeast, south, southwest, west, and

northwest.

The neighbouring deterring effect Ds(t) for a site s is given by

Ds(t) = κs(t) +
∑
s′∼s

κs′ (t)e|s−s′ |2/ν , (3.1)

where ν determines the decay. Then, the attractiveness from Jones et al. is modified to

Ãs(t) = e−χDs(t)As(t). (3.2)

If there are no police agents at the neighbouring sites, then this is the original Ãs(t) from

equation (2.3).

3.4 Other modifications

We made some slight modifications to the movement dynamics. We allow agents to move

to any of the eight neighbouring nodes, as opposed to only the directions north, south,

east, and west. By allowing the agents to move in more directions, we must change the

discrete Laplacian to use a 9-point stencil rather than a 5-point stencil.

https://doi.org/10.1017/S0956792515000571 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000571


Modelling policing strategies 487

3.5 Patterned patrol (PAT)

In addition to the three strategies of Jones et al. [15], we implemented another policing

strategy, patterned patrol (PAT). This patrolling method allows police agents to cover the

entire grid to search for criminal activity. The police agents traverse the beat or grid in

vertical lines, initially heading eastward until they reach the edge of the region and change

direction to the west. Similarly, when the agents reach the western edge of the region,

they change their direction back to the east.

Often, police departments have officers patrol via bicycles or by foot, and some exper-

iments with bicycle patrols have shown decreases in certain criminal acts [1]. To further

simulate more realistic patrolling, we enable police agents to have two different speeds.

This would account for the possibility of patrolling via different means. Since patterned

patrolling is the only strategy that we are examining that gives the police agents a specified

route, this will be the only method we allow agents to have different speeds.

3.6 Mixed patrols

The four main strategies for patrolling under the new features of the ABM are random

walk (RW), cops on the dots (CoD), peripheral interdiction (PI), and patterned patrol

(PAT). The strategies from Jones et al. are implemented similarly but with the modific-

ations outlined in the previous sections. We also performed mixed patrols where half of

the police agents are patrolling according to one strategy, and the other half of the police

agents are patrolling according to another. The different possible combinations are RW

– CoD, RW – PI, RW – PAT, CoD – PI, CoD – PAT, and PI – PAT.

3.7 Implementation

To test the methods, we first compare the results to that of Jones et al. [15]. The

parameters used in our implementation are listed in Table 1, which are the same values

used in their simulations. The time step in the Short et al. method was δt = 0.01, which

could be interpreted in units of days [27]. This time step was modified in Jones et al. to

be δt = 1, which is to be interpreted as a unit of time in which agents are updated [15].

Since we are modifying the Jones et al. model, we have taken δt = 1 as well. We used

a 100 × 100 grid with 64,000 iterations. Pseudo-code for the algorithm is presented in

Algorithm 1. Depending on the method, the hotspot parameter regime, and the number

of police agents, a single simulation could take a few minutes or a few hours.

We applied all methods to preexisting hotspots of three different hotspot parameter

regimes, namely no significant hotspots, small hotspots, and large hotspots. The pre-

existing hotspots shown in Figure 1 were generated using our implementation of Jones et

al. with no police agents.

4 Results

We compare the different methods that we implemented among each other as well as to

Jones et al. [15]. By comparing to Jones et al., we test for differences with the new model’s

features. For a reasonable comparison, we used the same number of police agents as their
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Table 1. This table provides the parameters and the values used in our simulations, taken

from [15].

Hotspot type Parameters Values

No significant

hotspots

ω 0.0004

γ 0.00025

ε 0.02

λ 0.000625

Small

hotspots

ω 0.003

γ 0.004

ε 0.008

λ 0.004

Large

hotspots

ω 0.0001875

γ 0.00025

ε 0.0005

λ 0.000625

All types

θ 1

A0 0.1

η 0.05

l 1

χ 4.60517

J 0.66

c1 1

c2 0.05

μw 5

σw 0.7

μi 26

σi 10

ν 5.77

Figure 1. These plots give the pre-existing hotspots used for the three different parameter regimes

that produce no significant hotspots, small hotspots, and large hotspots. The pre-existing hotspots

were generated using the Jones et al. model with no police agents, which is equivalent to the Short

et al. model [15,27]. (Left) No significant hotspots. (Middle) Small hotspots. (Right) Large hotspots.

simulations, 300. We also varied the number of police agents between 0 to 400 in running

each method five times. Further, we ran all methods for 150 police agents 100 times in

the small hotspot parameter regime to analyze the variability among runs. These results

are presented in Table 4 in Section 5.5.

The Bave value is the average value of Bs(t) over the entire grid at the end of one

simulation. This value indicates the level of criminal activity and is a good metric to
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compare the amount of crime between methods. We performed comparisons for all of the

methods with and without beats to determine the effect police beats has on the overall

level of criminal activity.

Algorithm 1 Police Patrolling Agent-Based Model Pseudo-Code

1: Input: ω, γ, ε, λ, θ, A0, η, l, χ, J, μi, σi, μw, σw , ν, # of police agents, pre-existing hotspot map,
policing strategy

2: for <each police agent> do
3: if beats then
4: Randomly place police agents within their assigned beat.
5: else
6: Randomly place police agents.
7: end if
8: Sample ycop from Y ∼ N(μi, σi).
9: Set Tw = 0, police agent’s waiting-time counter.

10: Set Ti = 0, police agent’s interaction counter.
11: end for
12: Set B0 = pre-existing hotspot map.
13: Calculate κs(t), number of police agents at site s.
14: Calculate As(t), equation (2.1).
15: Calculate Ds(t), equation (3.1).
16: Calculate Ãs(t), equation (3.2).
17: for <each iteration> do
18: Introduce criminal agents at rate Γ .
19: for <each criminal agent> do
20: Calculate equation (2.6), P (going home|neighbouring police agents)
21: Sample x1 from Unif(0, 1).
22: if x1 < P (going home|neighbouring police agents) then
23: Remove the criminal agent from the system.
24: else Calculate equation (2.4), P (committing a crime).
25: Sample x2 from Unif(0, 1).
26: if x2 < P (committing a crime) then
27: Remove the criminal agent from the system.
28: else
29: Calculate equation (2.7).
30: Sample from Unif(0, 1) and move the criminal agent to site s′ based on probability

relative to equation (2.7).
31: end if
32: end if
33: end for
34: Calculate ns(t), number of criminal agents at site s.
35: for <each police agent> do
36: if ns(t) > 0 then
37: Ti = Ti + ns(t)
38: if Ti � ycop then
39: if beats then
40: Randomly place agent within assigned beat.
41: else
42: Randomly place police agent.
43: end if
44: Sample ycop from Y ∼ N(μi, σi).
45: Set Ti = 0.
46: end if
47: end if
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48: if Tw == 0 then
49: if ns(t) > 0 then
50: Sample wcop from W ∼ N(μw, σw).
51: Tw = Tw + 1.
52: else
53: Move police agent according to policing strategy.
54: end if
55: else if Tw > 0 && Tw < wcop then
56: Tw = Tw + 1.
57: end if
58: if Tw � wcop then
59: Tw = 0.
60: Move police agent according to policing strategy.
61: end if
62: end for
63: Update κs(t).
64: Update Bs(t), equation (2.5).
65: Update As(t), equation (2.1).
66: Update Ds(t), equation (3.1).
67: Update Ãs(t), equation (3.2).
68: end for
69: Output: Bs(t), ns(t)

4.1 Criminal activity for 300 police agents

Our first comparison is to that of Jones et al. [15]. Their results indicate that the criminal

activity does not improve with more police agents performing the random patrol strategy.

However, for the CoD and PI strategies, more police agents indicate lower criminal

activity.

In order to give a full comparison of all strategies with 300 police agents, we include

the Bs(t) plots for the final iteration of the simulation in Figure 2. Further, we include a

table with all of the mean Bave values for all simulations with 300 police agents in Table 2.

The appendix contains additional figures with the results for our methods without beats

and 300 police agents, allowing for a better comparison with Jones et al. and the impact

of beats.

4.2 Varying number of police agents for small hotspots

One of our primary goals is to determine which methods are useful for agencies with

limited resources. Therefore, we compare all of the methods by varying the number of

police agents from 0 to 400. We only include the results for the small hotspots here in

Figures 3 and 4; the remaining figures can be found in the appendix.

4.3 Criminal activity for 150 police agents

Noticing that there is a difference in the performance for the methods when there are

fewer police agents, we do a further analysis of all methods on all hotspot types with

only 150 police agents. The results are included in the Table 3.

https://doi.org/10.1017/S0956792515000571 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000571


Modelling policing strategies 491

Figure 2. Each sub-plot gives the Bs(t) values of the final iteration, indicating the level of criminal

activity. Darker colours (blue) indicate less criminal activity, whereas light colours (yellow) indicate

higher amounts of criminal activity. All simulations were run with 300 police agents using pre-

existing small hotspots. These simulations included police beats. Figures without police beats are

included in the appendix. From left to right, top row: (a) RW, (b) CoD, (c) PI, (d) PAT. Middle

row: (e) RW-CoD, (f) RW-PI, (g) RW-PAT, (h) CoD-PI. Bottom row: (i) CoD-PAT, (j) PI-PAT.

5 Analysis

In this section, we will describe the results produced from the computer simulations done

in Section 4. We notice a trend throughout all discussed methods. Less criminal activity is

correlated with more criminals. This means that the police agents are effective in deterring

crime, but not in reducing the number of criminal agents ready to commit criminal acts.

This is similar to the results of Jones et al. [15].

5.1 Comparison to existing ABM patrolling methods

We next compare our results to the Jones et al. methods. When looking at the 300 police

agent results in Table 2, we notice that the order of RW, CoD, and PI without beats has

a similar ranking as Jones et al. in our implementations. Further, our strategies actually

had lower criminal activity than in the Jones et al. methods, except for the CoD with
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Table 2. This table provides the mean Bave value and the number of criminals for each

method, averaged over five runs, using a total of 300 police agents. Cave is the average

number of criminals. The methods were applied to pre-existing hotspots of three different

types: no significant hotspots, small hotspots, and large hotspots. The previous methods listed

are taken from [15], labelled RW-J, CoD-J, and PI-J, representing the random walk, cops

on dots, and peripheral interdiction, respectively. The remaining results were taken from our

methods, which includes responding to calls and neighbouring deterrent effects; the methods

are random walk (RW), cops on dots (CoD), peripheral interdiction (PI), patterned patrol

(PAT), and a hyphen between two methods indicates a mixed method between the two.

300 police agents

No significant Small Large

hotspots hotspots hotspots

Method Bave Cave Bave Cave Bave Cave

P
re

v
io

u
s

m
et

h
o
d
s RW-J 0.3104 156 0.9814 1068 0.0081 279

CoD-J 0.2545 151 0.2888 1756 0.0071 245

PI-J 0.3900 99 0.4904 2473 0.0680 239

W
it
h
o
u
t

b
ea

ts

RW 0.1896 139 0.6676 1108 0.0055 216

CoD 0.1613 121 0.3506 1768 0.0052 181

PI 0.3079 77 0.3602 1750 0.0495 185

PAT 0.1424 110 0.5504 1112 0.0045 166

RW-CoD 0.1713 125 0.4355 1531 0.0050 179

RW-PI 0.1785 133 0.6796 1050 0.0051 177

RW-PAT 0.1723 114 0.6483 1114 0.0049 164

CoD-PI 0.1647 120 0.4514 1397 0.0050 177

CoD-PAT 0.1693 128 0.3827 1579 0.0048 174

PI-PAT 0.1690 120 0.7365 1003 0.0048 185

W
it
h

b
ea

ts

RW 0.1973 131 0.6511 1131 0.0058 216

CoD 0.1576 123 0.3537 1712 0.0051 178

PI 0.3128 76 0.3658 1740 0.0506 169

PAT 0.1361 115 0.6121 1087 0.0042 148

RW-CoD 0.1652 131 0.4741 1471 0.0053 198

RW-PI 0.1700 121 0.6913 1097 0.0052 193

RW-PAT 0.1810 127 0.6470 1091 0.0049 182

CoD-PI 0.1711 125 0.4588 1379 0.0050 180

CoD-PAT 0.1758 131 0.4343 1484 0.0052 211

PI-PAT 0.1924 120 0.7438 993 0.0047 167

small hotspots. The neighbouring deterrent effect seems to lower the amount of criminal

activity. However, the removal of police agents from small hotspots seems to increase the

criminal activity when using the CoD strategy. The temporary removal and replacement

of police agents would allow the criminal agents to act while the police agents travel to

the hotspots.

In further comparisons with the Jones et al. methods for 150 police agents, we notice

there is a marked difference between the rankings for the three strategies. For Jones et

al. runs, the CoD-J strategy always had the best performance. With our implementation
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Figure 3. Single strategies for small hotspots. We evaluate our single patrolling strategies for small

hotspots. This figure gives the mean values for Bave for five runs for varying numbers of police

agents. This plot gives the following strategies with beats and without beats: cops on the dots

(CoD), peripheral interdiction (PI), random walk (RW), and patterned patrol (PAT). The remaining

hotspot cases are presented in the appendix.
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Figure 4. Mixed strategies for small hotspots. We evaluate our mixed patrolling strategies for small

hotspots. This figure gives the mean values for Bave for five runs for varying numbers of police

agents. This plot gives the following mixed strategies with beats and without beats: RW–CoD,

RW–PI, RW–PAT, CoD–PI, CoD–PAT, PI–PAT. The remaining hotspot cases are presented in the

appendix.

without beats for CoD, RW, and PI, the RW method performed the best when there

were no significant hotspots and for large hotspots, and the PI method did the best for

the small hotspots. This indicates that for a smaller number of police agents, the CoD

strategy is not ideal.
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Table 3. This table provides the mean Bave value and the number of criminals for each

method, averaged over five runs, using a total of 150 police agents. Cave is the average

number of criminals. The methods were applied to pre-existing hotspots of three different

types: no significant hotspots, small hotspots, and large hotspots (shown in Figure 1). The

previous methods listed are taken from [15], labelled RW-J, CoD-J, and PI-J, representing

the random walk, cops on dots, and peripheral interdiction, respectively. The remaining results

were taken from our methods, which includes responding to calls and neighbouring deterrent

effects; the methods are random walk (RW), cops on dots (CoD), peripheral interdiction

(PI), patterned patrol (PAT), and a hyphen between two methods indicates a mixed method

between the two.

150 police agents

No significant Small Large

hotspots hotspots hotspots

Method Bave Cave Bave Cave Bave Cave

P
re

v
io

u
s

m
et

h
o
d
s RW-J 0.4759 166 1.1476 1125 0.4755 162

CoD-J 0.4169 157 0.6587 1375 0.0158 501

PI-J 0.4701 133 0.6807 1366 0.1268 465

W
it
h
o
u
t

b
ea

ts

RW 0.3513 149 1.0050 1039 0.0137 446

CoD 0.3757 165 0.7800 1440 0.0144 448

PI 0.4350 116 0.5889 3325 0.1165 437

PAT 0.3245 144 0.9315 1041 0.0102 345

RW-CoD 0.3613 153 0.8751 1286 0.0142 450

RW-PI 0.3491 161 1.0259 1037 0.0125 424

RW-PAT 0.3684 167 0.9960 1051 0.0112 404

CoD-PI 0.3736 156 0.8745 1206 0.0153 490

CoD-PAT 0.3806 158 0.8337 1262 0.0124 411

PI-PAT 0.3745 154 1.0451 1005 0.0124 402

W
it
h

b
ea

ts

RW 0.3590 159 0.9900 1084 0.0139 461

CoD 0.3598 155 0.8189 1421 0.0145 479

PI 0.4207 107 0.5907 3415 0.1178 437

PAT 0.3129 144 0.9669 1079 0.0103 352

RW-CoD 0.3414 153 0.8425 1301 0.0135 448

RW-PI 0.3485 155 1.0160 1031 0.0141 466

RW-PAT 0.3597 160 0.9988 1058 0.0115 388

CoD-PI 0.3718 157 0.8953 1184 0.0140 463

CoD-PAT 0.3756 159 0.8441 1272 0.0130 433

PI-PAT 0.3911 152 1.0579 1039 0.0117 393

5.2 Single strategies

The PAT without beats performed the best in our implementation of the four single

strategies with no significant hotspots and large hotspots for both 150 and 300 police

agents. However, it was not as successful for the small hotspots in both cases.

We now examine the differences between the four single strategies with and without

beats. The rankings of these four strategies are identical for each hotspot type for the

150 and 300 police agents. Further, there is no clear distinction of an improvement in the

level of criminal activity with or without police beats. This is seen in Figure 3 where the
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methods are run for various numbers of police agents. The methods with beats perform

very similarly to the methods without beats for all numbers of police agents.

The visualization of the four single strategies in the first row of Figure 2 demonstrate

how the different methods with beats deter criminal activity. For the RW strategy, it ap-

pears that there is no significant reduction in the hotspot activity. The CoD strategy elim-

inated many of the hotspots. For the PI patrolling, all of the hotspots appear to have been

eliminated, but the crime has been spread throughout the region. The PAT strategy appears

to do only slightly better than the RW strategy partially eliminating a few hotspots.

5.3 Mixed strategies

For the mixed strategies, we see a similar relationship for the methods with and without

beats in both the Table 2 and Figure A 4 in the appendix. When there were no significant

hotspots, the best mixed strategies were RW-CoD and RW-PI for 150 police agents, both

with and without beats. For the 300 police agents, the best three strategies without beats

were CoD-PI, CoD-PAT, and PI-PAT. However, the best two strategies with beats were

RW-CoD and RW-PI. Overall, the differences between the Bave values were relatively

small, indicating the best method was not overwhelmingly better. For the small hotspots,

RW-PI and PI-PAT had the worst results for both 150 and 300 police agents. The mixed

strategies with CoD performed the best here. This is quite the opposite from the large

hotspots, which had the best results for RW-PAT and PI-PAT. The overall differences

between the Bave values were relatively small. In analyzing the mixed strategies from the

plots in the second and third rows of Figure 2, we see that the strategies perform similarly

to those of the single strategies.

5.4 Overall comparisons

Comparing all the methods, the patterned patrolling performed the best with and without

beats when there were no significant hotspots for both 150 and 300 police agents. For

small hotspots, the PI performed the best for 150 police agents, with or without beats,

but the CoD performed the best for 300 police agents. Thus, having less police agents or

different hotspot types would suggest the need for a different patrolling strategy.

5.5 Variation among runs

In order to better understand the variation among runs, we took 150 police agents and

ran each method 100 times for only the small hotspot regime. The standard deviations for

the Bave of these runs are located in Table 4. For all of the runs, the standard deviations

are less than 0.035. In our analysis for the small hotspot regime, the variation among runs

is large enough to change the order of two closely performing methods, but not large

enough to drastically change the order. For example, for 150 police agents, the mean

Bave difference between the top two strategies is 0.2, giving PI a strong lead. Overall, the

variation among runs for the small hotspots does not greatly affect the rankings.

As a further comparison, we looked at 100 runs of the RW method with beats for the

three different hotspot regimes. When there are no significant hotspots, the Bave standard
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Table 4. This table provides the standard deviations of the Bave value and the number of

criminals for each method over 100 runs. The methods were applied to pre-existing small

hotspots with 150 police agents. The methods are random walk (RW), cops on dots (CoD),

peripheral interdiction (PI), patterned patrol (PAT), and a hyphen between two methods

indicates a mixed method between the two. We also include RW-J, CoD-J, and PI-J for

comparison.

150 police agents with small hotspots

Without beats With beats

Method Bave Criminals Bave Criminals

RW-J 0.0124 33.818 — —

CoD-J 0.0253 45.182 — —

PI-J 0.00530 57.279 — —

RW 0.02023 42.503 0.01614 36.397

CoD 0.02977 60.072 0.03109 58.412

PI 0.01363 141.325 0.01377 149.182

PAT 0.01575 35.059 0.02075 39.709

RW-CoD 0.0308 66.488 0.03412 73.590

RW-PI 0.01922 34.872 0.01786 32.622

RW-PAT 0.0224 45.905 0.02523 46.531

CoD-PI 0.03062 49.451 0.03328 52.943

CoD-PAT 0.03322 63.609 0.01843 37.124

PI-PAT 0.01723 36.074 0.01762 36.710

deviations for 150 and 300 police agents were 0.0155 and 0.0118, respectively. For the

small hotspots, the standard deviations are 0.0161 and 0.0224 for 150 and 300 police

agents, respectively. For the large hotspots, the standard deviations for 150 and 300 police

agents were 0.000982 and 0.000336, respectively. Given the proximity of the mean Bave

values for the large hotspots for both 150 and 300 police agents, the ranking of these

methods might change only slightly since the standard deviations are also quite small.

Further, the gap in the mean Bave values for the best and worst methods for both 150 and

300 police agents are large in comparison to the standard deviations. Therefore, we do not

expect the stochasticity in the model to produce a largely different ranking of the methods.

6 Conclusion

In this study, we extended an existing ABM for police patrolling strategies in order

to include more realistic patrolling features [15]. The features that we introduced were

police beats, responding to calls, and the neighbouring deterring effect. We tested our

methods for varying numbers of police agents to determine the best strategies for agencies

with limited resources. We used Jones et al. as a baseline to compare our models to see

the differences between the new features. The results were mostly consistent, except for

simulations with 150 police agents in the small hotspot regime. Here, the PI strategy

performed better than CoD, which was the best method from Jones et al. simulation.

We also implemented a new strategy for patterned patrols (PAT). Additionally, we

tested mixed strategies with half of the police agents moving according to one strategy
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and the other half another strategy. Overall, the methods that performed the best varied

depending on the type of hotspots and the number of police agents. The mixed strategies

did not perform the best, but were often better than many of their single strategies.

Further, mixed strategies often performed well when one of their single strategies run

alone performed poorly.

The best policing strategy varied depending on the number of police agents and the

type of hotspots. From the simulations, we found that for the case of no significant

hotspots, patterned patrols were the best, followed by cops on the dots and mixed cops

on the dots strategies. The worst strategy was peripheral interdiction. In the case of small

hotspots, peripheral interdiction was the best strategy when there were fewer than 300

police agents, and cops on the dots was the best strategy when there were at least 300

police agents. Mixed strategies with cops on the dots also performed well, but the random

walk and the patterned patrols performed poorly, even when mixed with the peripheral

interdiction strategy. For the large hotspots, patterned patrolling as a single or mixed

strategy performed the best. The peripheral interdiction strategy performed the worst,

which is interesting since Jones et al. theorized that it would be the best strategy for large

hotspots. Overall, when there are small concentrated regions of crime, placing agents on

or near those regions have the most impact on the criminal activity. When there are large

spread out hotspots or no significant hotspots, a more thorough search of the region

(such as patterned patrol) will have the larger impact on the criminal activity.

This model can be improved by varying A0 in order to account for the baseline

attractiveness that varies through space. We could further incorporate transportation

hubs to facilitate movement of agents, similar to automobiles, buses, and trains that

transport individuals farther distances. Further, we could include other types of agents,

such as victims or individuals that have calls needing police assistance. We would like to

apply these models to cities to see if we can observe the same levels of criminal activity.
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[16] Kearney, M. S., Harris, B. H., Jácome, E. & Parker, L. (2014) Ten economic facts about crime

and incarceration in the United States. The Hamilton Project, Washington, DC.

[17] Mather, K. & Winton, R. (2015) LAPD uses its helicopters to stop crimes before they start.

Los Angeles Times, March 7.

[18] Mitchell, P. S. (1972) Optimal selection of police patrol beats. J. Criminal Law Criminology

Police Sci. 63(4), 577–584.

[19] Mohler, G. O., Short, M. B., Brantingham, P. J., Schoenberg, F. P. & Tita, G. E. (2011)

Self-exciting point process modeling of crime. J. Am. Stat. Assoc. 106(493), 100–108.

[20] Moreto, W. D., Piza, E. L. & Caplan, J. M. (2014) “A plague on both your houses?”: Risks,

repeats and reconsiderations of urban residential burglary. JQ: Justice Q. 31(6), 1102–1126.

[21] Nam, S. H. (2012) Optimal Temporal-Spatial Deployment of Urban Law Enforcement Personnel:

Theory, Analysis and Implementation, PhD thesis, Princeton University.

[22] Parks, R. B., Mastrofski, S. D., Dejong, C., & Gray, M. K. (1999) How officers spend their

time with the community. Justice Q. 16(3), 483–518.

[23] Pitcher, A. B. (2010) Adding police to a mathematical model of burglary. Eur. J. Appl. Math.

21(4–5), 401–419.

[24] Ratcliffe, J. H. (2004) The hotspot matrix: A framework for the spatio-temporal targeting of

crime reduction. Police Practice Res. 5(1), 5–23.

[25] Rodriguez, N. & Bertozzi, A. L. (2010) Local existence and uniqueness of solutions to a PDE

model for criminal behavior. Math. Models Methods Appl. Sci. 20(supp01), 1425–1457.

[26] Sherman, L. W. & Weisburd, D. (1995) General deterrent effects of police patrol in crime “hot

spots”: A randomized, controlled trial. Justice Q. 12(4), 625–648.

[27] Short, M. B., D’Orsogna, M. R., Pasour, V. B., Tita, G. E., Brantingham, P. J., Bertozzi, A. L. &

Chayes, L. B. (2008) A statistical model of criminal behavior. Math. Models Methods Appl.

Sci. 18(supp01), 1249–1267.

[28] Sutanto, A. (June 2011) Optimal police patrol, RWTH Aachen University Center for Compu-

tational Engineering Sciences – Undergraduate Research Opportunities Program.

[29] Taylor, B., Koper, C., & Woods, D. (2011) A randomized controlled trial of different policing

strategies at hot spots of violent crime. J. Exp. Criminology 7(2), 149–181.

[30] Wilson, J. Q. & Kelling, G. L. (1982) Broken windows. Atlantic Mon. 249(3), 29–38.

[31] Zipkin, J. R., Short, M. B. & Bertozzi, A. L. (2014) Cops on the dots in a mathematical model

of urban crime and police response. Discrete Continuous Dyn. Syst. 34(2014), 1479–1506.

https://doi.org/10.1017/S0956792515000571 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792515000571


Modelling policing strategies 499

Appendix A

This appendix contains the images of our agent-based methods without beats for 300

police agents and small hotspots. We include the Bs(t) plots for the final iteration of the

simulation in Figure A 1. This appendix also contains the plots of the different methods

as the number of police agents are varied from 0 to 400, located in Figures A 2–A 5. The

results here are for the hotspot parameter regimes that give no significant hotspots and

large hotspots. Small hotspot results are located in Figures 3 and 4.

Figure A 1. Each sub-plot gives the Bs(t) values of the final iteration, indicating the level of

criminal activity. Darker colours (blue) indicate less criminal activity, whereas light colours (yellow)

indicate higher amounts of criminal activity. All simulations were run with 300 police agents using

pre-existing small hotspots. These simulations do not have police beats. Figures with police beats

are included in Figure 2. From left to right, top row: (a) RW, (b) CoD, (c) PI, (d) PAT. Middle row:

(e) RW-CoD, (f) RW-PI, (g) RW-PAT, (h) CoD-PI. Bottom row: (i) CoD-PAT, (j) PI-PAT.
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Figure A 2. Single strategies for no significant hotspots. We evaluate our single patrolling strategies

for no significant hotspots. This figure gives the mean values for Bave for 5 runs for varying numbers

of police agents. This plot gives the following strategies with beats and without beats: cops on the

dots (CoD), peripheral interdiction (PI), random walk (RW), and patterned patrol (PAT).
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Figure A 3. Mixed strategies for no significant hotspots. We evaluate our mixed patrolling strategies

for no significant hotspots. This figure gives the mean values for Bave for five runs for varying

numbers of police agents. This plot gives the following mixed strategies with beats and without

beats: RW–CoD, RW–PI, RW–PAT, CoD–PI, CoD–PAT, PI–PAT.
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Figure A 4. Single strategies for large hotspots. We evaluate our single patrolling strategies for

large hotspots. This figure gives the mean values for Bave for five runs for varying numbers of police

agents. This plot gives the following strategies with beats and without beats: cops on the dots

(CoD), peripheral interdiction (PI), random walk (RW), and patterned patrol (PAT).
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Figure A 5. Mixed strategies for large hotspots. We evaluate our mixed patrolling strategies for

large hotspots. This figure gives the mean values for Bave for five runs for varying numbers of police

agents. This plot gives the following mixed strategies with beats and without beats: RW–CoD,

RW–PI, RW–PAT, CoD–PI, CoD–PAT, PI–PAT.
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