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An analytical simplified model to
characterize focused aperture antennas

antonio garci’a-pino

This paper presents an analytical model to characterize the radiation pattern of focused aperture antennas. The model is
based on the classic parabolic on pedestal distribution for amplitude, but in this work the focusing phase term is considered
and applied in the Fresnel region. The model is useful for millimeter and submillimeter wave imaging radar systems that
usually work in the Fresnel region of the antenna. Analytical closed expressions are developed to predict the available reso-
lution (transversal beamwidth) and operating range (axial beamwidth) of such systems. The effects of the first- and
second-order phase distributions on the aperture have also been also studied in order to show the scanning effect, the
axial refocusing, and the astigmatic beam degradation.
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I . I N T R O D U C T I O N

Inverse scattering techniques at millimeter and submillimeter
frequencies have been successfully used in a wide range of
applications such as medical diagnosis [1], detection and iden-
tification of buried objects [2], and security scanners for
detecting concealed threats in close range [3]. In the band
between 100 GHz and 1 THz, through-clothing imaging is
feasible due to the transmissive behavior of materials, such
as paper, plastic, wood, and clothing tissues [4, 5]. Active
submillimeter-wave imaging systems are capable to achieve
images with resolution of about 1 cm at standoff ranges
from 5 to 100 m [6–8].

Current submillimeter imaging systems require the use of
focused aperture antennas to concentrate the transmitted
energy in a small region at the desired distance [8]. Instead
of radiating in the far field, as most of the conventional aper-
tures, these systems usually work in the Fresnel region of the
antenna. Owing to the technological difficulty of having focal
plane arrays at these frequencies, mechanical fast beam scan-
ning has been proposed to interrogate the area of interest. In
[8–10] multi-reflector antenna systems were used to accom-
plish that by substituting the paraboloidal main reflector for
an ellipsoidal-based one, which concentrates the transmitted
energy in a focal region.

The characterization of the focused beams produced by this
kind of antennas is of maximum interest for imaging applica-
tions. For instance, the transversal beamwidth gives a better
available resolution, whereas the longitudinal beamwidth

determines the range of distances where the system is
usable. Furthermore, the beam aberrations that occur while
the beam is scanned characterize the resolution degradation
across the transversal field of view of the system.

The basic theory of focused aperture is well known, and it
has been extensively reported in publications on Antennas
[11–15], as well as on Optics [16–20]. The most classical pub-
lication on focused aperture antennas is by Sherman [11], who
analyzed the diffraction fields of continuous, rectangular aper-
tures when the system is focused in the Fresnel region.
A theorem was proven which establishes that the far-field
properties of conventional apertures with uniform phase are
the same as the ones of the focused apertures across the
focal plane. Graham showed in [12] that the axial field
pattern of focused aperture antennas can be analyzed and
synthesized in the same manner as the angular pattern of
the far field apertures. In [13], Hansen studied the effects of
amplitude tapering in the focused aperture lobes of the axial
patterns. Shafai et al. provided in [14] some tables with
beam characteristics for defocused parabolic reflectors. In
[15] the effect of phase errors in circular apertures focused
in the Fresnel zone is investigated. In the field of Optics, Li
and Wolf studied in [16] the diffraction of a converging,
monochromatic spherical wave through a circular aperture
to find the deviation between the point of maximum field
intensity and the geometric focus. This deviation is referred
as the focal shift and it was predicted for circular apertures
in terms of a parameter known as the Fresnel number,
which relates the dimensions of the system and the wave-
length. The focal shift was then obtained for rectangular aper-
tures by Hansen in [13]. Some other works were devoted to
study the focal shifts in converging electromagnetic waves
by a simplified mathematical model [17], in terms of the
state of coherence of the focused wave [18], by the
Kirchhoff theory [19], and by the Rayleigh theory [20].
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This paper presents a novel analytical model of focused
beams due to circular apertures. The model is used to calculate
closed expressions to approximately predict the main beam
parameters. It is the first time these results are obtained for
focused apertures. The analytical model is based on a general-
ization of the parabolic on pedestal amplitude distribution
described in [21]. In this case, the necessary focusing phase
is introduced in the model. Both transversal and axial patterns
admit analytical integration and can be straightforwardly
obtained with this model. The main contribution of the
paper is to provide design formulas to characterize the main
parameters of the focused beams in terms of the taper illumin-
ation at the rim of the aperture.

The paper is organized as follows: in Section II, the focused
aperture electromagnetic model is reviewed and a closed for-
mulation for the transversal and axial patterns of the electro-
magnetic beam for focused circular apertures is developed.
Some numerical results of the focused beams in an imaging
radar application are presented in Section III, addressing the
practical calculations of the axial and transversal beamwidths
in terms of the analytical design formulas. The effects of quad-
ratic phase errors in the focused apertures are discussed in
Section IV; this is of special interest due to the presence of
such errors in the confocal reflector systems implementing
focused apertures. Finally, the conclusions are reported in
Section V.

I I . B A S I C F O R M U L A T I O N F O R
F O C U S E D A P E R T U R E S

A) Electric field in the Fresnel region of an
aperture
Let us consider an antenna with the aperture in the XY plane,
as in Fig. 1. Every aperture point �r ′ is excited by an electric
field �Ea. According to the second principle of equivalence,
based on the electric conductor equivalent [22], the electro-
magnetic field produced by the aperture can be modeled as
the radiation of an equivalent magnetic surface current
�MS = −2ẑ × �Ea. The electric field produced at any observa-
tion point �r = xx̂ + yŷ + zẑ by a magnetic source can be
represented by the following expression [23]:

E
Q

( r
Q) =

∫∫
S′

(�R × �MS)
(1 + jkR)e−jkR

R3
dS′, (1)

where �R = �r − �r ′, R = �r − �r ′| |, and k represents the wave-
number. If the distance from the aperture to the observation
point is much larger than one wavelength (kR≫1), the electric
field of equation (1) can be approximated as:

E
Q

( r
Q) = j

2l

∫∫
S′

(R̂ × �MS)
e−jkR

R
dS′, (2)

where R̂ = �R/R. Let us consider the particular case of a circu-
lar aperture of radius a with amplitude and phase of the illu-
mination dependent on the radial coordinate r. If the
polarization is uniform and characterized by the unit vector
ê, contained in the aperture plane, the cross product in equa-
tion (2) can be expressed as:

R̂ × �MS =
2E0eac(r)

R
zê − (ê · �R)ẑ
[ ]

, (3)

where eac(r) is a complex normalized function that represents
the aperture illumination distribution and E0 is the maximum
value of the electric field on the aperture. By combining equa-
tions (2) and (3), it is proved that the longitudinal component
of the field (along the Z-axis) is cancelled in the boresight dir-
ection (r̂ = ẑ), while the transversal component (parallel to ê),
which is dominant near the Z-axis, can be expressed as:

ET

Q

( r
Q) = jE0z

l
ê
∫∫

S′
eac(r)

e−jkR

R2
dS′. (4)

The distance from the observation point to each aperture
point can be approximated using a series expansion and
keeping the second-order terms of the ratio �r ′/r

( )
, being

r = �r| |:

R = r 1 − r̂ · �r
′

r
+ 1

2

�r ′

r

∣∣∣∣
∣∣∣∣

2

− 1
4

�r ′ · r̂
r

( )2[ ]
. (5)

In the far field or the Fraunhofer region (r . 2D2/l), only the
first two terms are relevant. In focused apertures for milli-
meter and submillimeter bands it is recommended to use
the approximation of the Fresnel region, consisting of using
only R ¼ r in the denominator of equation (4) and all the
terms in equation (5) for the exponential function.
However, when the region of interest is near the boresight dir-
ection, the last term of equation (5) can be neglected, since �r ′

and r̂ are almost perpendicular to each other. At the same
time, r can be approximated as z. With such approximations,
the transversal electric field can be expressed as:

ET

Q

( r
Q) = jE0

l

e−jkz

z
ê
∫∫

S′
eac(r) e−jk(r2/2z) ejk(r̂·�r ′)dS′. (6)

Equation (6) can be seen as the far field from an aperture
which is perturbed by a quadratic phase error that is different
for each observation plane with constant z. Since the distribu-
tion is circularly symmetric, equation (6) can be expressed by
a single integral in the variable r in terms of the Bessel

Fig. 1. Focused aperture antenna showing the focal point F and the focused
beam around it.
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function of the first kind and zero order J0(x) [21]:

ET

Q

( r
Q) = jE0

l

e−jkz

z
ê2p

∫a

0
eac(r) e−jk(r2/2z)

J0(kr sin u)r dr.

. (7)

B) Focused aperture
The focused aperture is characterized for having a phase dis-
tribution of the form k

��������
r2 + z2

0
√( )

− z0, which is enforced to
produce a coherent sum of electromagnetic field contributions
at a focal point F placed at a distance z0 in the direction of the
aperture axis. In practical situations, a phase distribution like
that can be provided, for example, by an ellipsoidal reflector
with the feed at the aperture plane and the secondary focus
at F [9]. By considering the diffracted fields, a focused spot
beam, as seen in Fig. 1, will be produced around F. When
the focal point is placed at the Fresnel region, it is possible
to approximate the phase distribution by a series expansion
keeping only the second-order term kr2/z0. Using such
approximation, the electric field in equation (7) reduces to:

ET

Q

( r
Q) = jE0

l

e−jkz

z
ê
∫a

0
eac(r) ejk(r2/2)((1/z0)−(1/z))

J0(kr sin u)r dr ,

(8)

where ea(r) is now an amplitude distribution with real values.
By inspecting equation (8) it can be stated that, for focused
apertures, the electric field near the axis in the focal plane
(z ¼ z0) has the same properties as the far field, as shown by
Shermann [11]. The conventional aperture with uniform
phase is the limit case, when the focal point tends to be at
infinity.

C) Parabolic distribution with taper
illumination at the edge
In practical applications, focused apertures are implemented
by reflector antennas or arrays with tapered amplitude
distributions. This kind of distribution can be represented as
[21]:

fa(r) = p + (1 − p) 1 − r2

a2

( )
= 1 − (1 − p)

r2

a2
. (9)

In the focal plane, the formulation of the electric field is the
same as that of the far field of the uniform phase apertures.
Therefore, closed expressions for the electric field, in terms
of Bessel functions, can be obtained. In planes different
from the focal one, according to equations (6) and (8), the dif-
fracted field is equivalent to the far field affected by a quadratic
phase error with root mean square value that increases with
the distance from the focal plane.

1) transversal patterns in the focal plane

The transversal patterns in the focal plane are characterized by
the far field form of the radiated field for symmetric circular

distributions [21]:

ET

Q

( r
Q) = jE0

l

e−jkz

z
ê 2p

∫a

0
p + (1 − p) 1 − r2

a2

( )[ ]

J0(kr sin u) r dr.

(10)

Taking into account the properties of the Bessel functions
[24], the transversal electric field can be expressed as:

ET

Q

( r
Q) = jE0

l

e−jkz

z
ê 2p a2

· p
J1(u)

u
+ (1 − p)

2 J2(u)
u2

[ ]
, (11)

where

u = ka
��������
x2 + y2√

r
. (12)

2) axial pattern

In the case of the Z axis, since J0(0) ¼ 1, the condition
r̂ · �r ′ = 0( ), and using the expression of the tapered distribu-

tion in equation (9), equation (8) becomes:

ET

Q

( r
Q) = jE0

l

e−jkz

z
ê 2p

∫a

0
1 − (1 − p)

r2

a2

[ ]

ejk(r2/2)((1/z0)−(1/z)) r dr.

(13)

This expression has an analytical solution using the integrals
of the form


xneaxdx [25]. It is convenient to define the fol-

lowing auxiliary variables:

N0 = a2

l z0
; N = a2

l z
; v = p(N0 − N). (14)

The first one, N0, is the so-called Fresnel number for the focus-
ing aperture, as introduced by Li in [16], while N and v depend
also on the observation point z. Using such variables, and the
analytical solutions of the integrals


xneaxdx, the axial field of

equation (13) can be written as:

ET

Q

(z) = jE0e−jkz ê (pN0 − v)

ejv − 1
jv

− (1 − p)
(1 − jv) ejv − 1

v2

{ }
.

(15)

The relationship between the actual distance variable z and the
auxiliary one, v, is given by the following expressions:

v = p N0 1 − z0

z

( )
; z = z0

1 − (v/pN0)
. (16)

I I I . N U M E R I C A L R E S U L T S A N D
F O C U S E D B E A M D E S I G N
F O R M U L A S

To illustrate the pattern characteristics of the focused aperture
antennas, an aperture model of a reflector antenna similar to

an analytical simplified model to characterize focused aperture antennas 43

https://doi.org/10.1017/S1759078714001196 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078714001196


the one presented in [10] has been used. It consists of an aper-
ture with diameter 60 cm used to focus a beam at 8 m stand-
off. The frequency considered in this study is 300 GHz (l ¼
1 mm) instead of the 600 GHz case considered in [10].

Figure 2 shows the calculated electric field amplitude for
the selected geometry. The beam is shown in an area of
200 × 200 cm centered in the focus placed at (0, 0, 8) m.
The beam has a very narrow beamwidth in X, while it is
much wider in the Z direction. From the point of view of
the applications requiring focusing, such as the imaging
radar, this means that some margin exists (between 750 and
850 cm) for the standoff distance in which the imaging
radar is usable. In Fig. 2(a) the electric field has been com-
puted using equation (8) with an aperture model, while in
Fig. 2(b) an equivalent problem has been solved using a
Physical Optics code [26] to obtain the scattered field of an
ellipsoidal reflector with the same aperture area and an inter-
focal length of 8 m. The reflector illumination is also pre-
sented in Fig. 2(b). Good agreement between the analytical
and computational models is obtained.

In Fig. 3, the beam is represented in a non-equal scale of
6 × 300 cm, showing the label of the relative amplitude of
the electric field. The reference level of magnitude 1 has
been taken at the focal point in the Z axis at 8 m from the
aperture. The level of relative magnitude 0.7 for the electric
field allows obtaining the 23 dB beamwidth. It is remarkable
that the maximum is not exactly at the focal point, but it is
slightly displaced towards the aperture. This effect is known
as the focal shift [13, 16–20]. It can be qualitatively deduced
by inspecting equation (15): although the factor in brackets
is an even function with its maximum at v ¼ 0, when multi-
plying it by (pN0 2 v) the maximum is shifted to a negative
value of v. This means that the maximum value appears
closer to the aperture than the nominal distance z0.

Figure 4 shows the axial pattern along the Z-axis, where the
focal shift effect can be observed. Two cases have been plotted
in Fig. 4: the uniform amplitude distribution (p ¼ 1) and the
tapered distribution with 10 dB decay at the edge of the aper-
ture (p ¼ 0.316). In both cases the results of the analytical
expression in equation (15) have been compared with the
results of the numerical computation of the integral in equa-
tion (13).

Figure 5 shows the transversal patterns (for uniform amp-
litude distribution) at different Z values between 7 and 9 m,
including the focal plane (8 m) and the plane of the
maximum electric field (7.92 m). The effect of the filled
nulls associated to the quadratic error described in equation
(6) can be observed.

Figure 6 shows the transversal pattern in the focal plane for
different values of the taper value p. As expected, the narrow-
est beamwidth occurs for the uniform case (p ¼ 1) while the
beamwidth increases for smaller values of p.

In the following subsections some guidance for the compu-
tation of main beam parameters for focused aperture design is
given.

A) Axial focal shift
The width of the lobes of the electric field described by equa-
tion (15) and illustrated in Fig. 4 has an inverse linear

Fig. 2. Focused beam in real dimensions for an aperture size of 60 cm at
300 GHz with a focal distance z0 ¼ 8 m and a taper edge illumination of
210 dB. (a) Using the analytical model; (b) results using the ICARA
Physical Optics code with an ellipsoidal reflector with the same aperture
area and inter-focal length of 8 m. Reflector illumination is presented in the
top left corner.

Fig. 3. Focused beam in non-equal dimensions showing relative electric field
intensity for an aperture size of 60 cm at 300 GHz with a focal distance z0 ¼

8 m and a taper edge illumination of 210 dB.
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relationship with N0: the greater N0, the narrower lobes. The
deviation of the maximum can be obtained by finding numer-
ically the v-coordinate, vp, of the maximum of the electric field
described by equation (13). Figure 7(a) represents the product
(vp

.N0) as a function of N0 for different values of p. For
growing values of N0, the product of N0 times the beam
shift vp tends to be constant. The value of such constant has
been found to be bp times (12/p), where bp is a factor depend-
ing on p. As a consequence:

vp = bp
12
pN0

. (17)

A simple exponential approximation has been found for bp

(when N0 is large enough) as follows:

bp = 1 + e−5p

2
. (18)

In Fig. 7(b) the value of bp is represented for different values of
N0 as a function of p. The value of the exponential approxima-
tion for bp is also plotted, showing that it is a good approxima-
tion when N0 ≥ 10. For smaller values, the bp factor can be
obtained from Fig. 7(a). Taking into account equations (17)
and (18), and the relationship between z and v established
in equation (16), the z coordinate of the maximum, zp, can
be calculated. The relative beam shift can be written as:

zp − z0

z0
= −1

1 + p2N2
0/12 bp

( ) . (19)

The previous expression is a generalization of that reported in
[16], referred as “focal shift” for the uniform case (bp ¼ 1).

B) Axial beamwidth
The 3 dB beamwidth of the axial pattern has been also numer-
ically obtained. Figure 8(a) shows the axial beamwidth in the
variable v (BWv) as a function of N0 for different values of p.
The beamwidth tends to be constant when N0 . 20. This con-
stant is minimum for the uniform illumination (p ¼ 1), with a
value of BWv

(p¼1) ¼ 5.56. For other values of p, the beamwidth
can be expressed as BWv ¼ bv

.5.56, where bv is represented in
Fig. 8(b) and can be approximated as:

bv = 1 + e−5p

4
. (20)

The beamwidth in terms of z can be approximately established
with the transformation expressed in equation (16) by consid-
ering that the beamwidth is approximately symmetric about
the peak value vp. Under this assumption:

BWZ

z0
= (BWV/N0p)

1 − 12 bp/p2N2
0

( )( )2−(BWV/2N0p)2 . (21)

For high values of N0, equation (21) is simplified to

BWZ

z0
� BWV

N0p
. (22)

Fig. 4. Axial beam pattern showing the beam shift for the uniform case (p ¼ 1)
and the 210 dB tapered illumination (p ¼ 0.316).

Fig. 5. Transversal pattern in different planes with constant z value for the
uniform amplitude case (p ¼ 1).

Fig. 6. Transversal patterns in the focal plane for different edge taper
illumination.
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By substituting equation (20) in equation (22), the axial beam-
width in terms of z can be written as:

BWZ

z0
� 5.56

N0p
1 + e−5p

4

( )
. (23)

C) Transversal beamwidth
The 3 dB beamwidth of the transversal pattern in the focal
plane can be first studied in terms of the variable u, as
defined in equation (12). Since the pattern of equation (11)
is normalized and equivalent to that of the far field response,
the beamwidth in terms of u is uniquely determined depend-
ing only on p. Figure 9 shows the transversal beamwidth bu,
numerically computed and approximated by the following
polynomial approximation between the value extremes of

3.227 (for p ¼ 1) and 3.982 (for p ¼ 0):

bu = 3.972 − 1.73 p2 + 1.612 p − 0.633 p3. (24)

The beamwidth in terms of the transversal variable (x or y) is:

BWT = bul

2p a
z0 = bt

l

2a
z0, (25)

where bt ¼ bu/p varies from 1.027 to 1.268. Equation (25) has
been reported in the literature using the same approximation
used for the beamwidth of apertures in the far field (see for
example [10]).

Fig. 7. Focal shift for focused apertures: (a) product of the peak value vp times
N0 and (b) beam shift factor bp.

Fig. 8. Axial 3 dB beamwidth for focused apertures: (a) beamwidth in the v
variable and (b) beamwidth factor bv.
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I V . I M P A C T O N T H E B E A M O F T H E
P H A S E D I S T R I B U T I O N

As stated in Section II.B, a phase distribution across the aper-
ture of the form in equation (9) is needed to focus the beam at
a distance z0. Another phase function can be added to model
antenna misalignments or another intentionally implemented
effect such as the beam scanning or axial refocusing. The
impacts of the main phase effects on the focused beam are
summarized next. According to [27], the phase across the
aperture of a reflector antenna could be expressed (using
only the first and second-order terms) as:

F(r,w) � − 2p
l

L(r,w);

L(r,w) = L0 +
DS

z0
r cos(w− fS)

+ DQ

2z2
0
r2 + DA

2z2
0
r2 cos 2(w− fA) + · · · .

(26)

The constant value L0 represents the main path length from
the antenna phase center to the focal point at the observation
region.

The next term, characterized by DS and wS means a beam
scanning at the focal plane of distance DS in the direction
determined by wS. Simultaneously, the beam is tilted axially
toward the direction from the aperture center to the displaced
main beam. As a consequence, the transversal electric field
intensity is slightly diminished. Figure 10 shows an example
of beam deviation of 30 cm in the X direction for the numer-
ical example of Section III with uniform amplitude.

The quadratic term DQ, since is of the same form than the
focusing phase kr2/2z0, produces an axial focal shift. The new
focal location z0

′ is determined by:

1
z′0

= 1
z0

− 2DQ

z2
0

⇒ z′0 = z0

1 − (DQ/z0)
. (27)

For positive values of DQ, the focal plane is shifted farther

from the aperture (z0
′ . z0) and for negative values of DQ

the displaced focal plane is closer to the aperture (z0
′ . z0).

The effect of the astigmatic term DA is equivalent to a posi-
tive focal shift for the plane determined by the angle wA and
wA + p, whereas a negative focal shift occurs for the cross
plane described by wA + p/2 and wA + 3p/2. The result con-
sists of crossed elliptical beams at each side of the focal plane
and a wider beam in the focal point. Figure 11 shows this effect
with the numerical example of Section III by introducing an
astigmatism coefficient of DA ¼ 30 cm. The astigmatism
effect moves the focal location to 8.312 m in one plane and
7.711 m in the other plane.

V . C O N C L U S I O N

The focused aperture antenna model is of great interest for
radar imaging applications in millimeter and submillimeter
bands. An analytical model has been introduced to achieve
closed expressions to predict the main parameters of the

Fig. 9. Transversal 3 dB beamwidth for focused apertures in the focal plane in
terms of the variable u. Solid line: numerically computed by equation (11);
Circles: polynomial approximation of equation (24).

Fig. 10. Scanned beam 30 cm up along the X axis: (a) ZX cut showing the
beam deviation and tilting and (b) YX cut showing the beam deviation.
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spot beams that are generated in these systems: focal shift,
axial beamwidth (useful to establish the range limits), and
transversal beamwidth (useful to predict the available

resolution). The impact of first and second-order phase distri-
butions has been also addressed showing the scanning and
axial refocusing effects, as well as the astigmatic aberration
for focused spot beams.
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Yolanda Rodrı́guez Vaqueiro and Mr. Kyle Swartz for their
help in the production of some of the figures and the
English proof reading.

R E F E R E N C E S

[1] Fear, E.; Li, X.; Hagness, S.; Stuchly, M.: Confocal microwave
imaging for breast cancer detection: localization of tumors in three
dimensions. IEEE Trans. Biomed. Eng., 49 (8) (2002), 812–822.

[2] Quivira, F.; Fassbender, K.; Martinez-Lorenzo, J.A.; Rappaport, C.
M.: Feasibility of tunnel detection under rough ground surfaces
using underground focusing spotlight synthetic aperture radar, in
Proc. IEEE Int. Technologies for Homeland Security (HST) Conf.,
2010, 357–362.

[3] Sheen, D.; McMakin, D.; Hall, T.: Three-dimensional millimeter
wave imaging for concealed weapon detection. IEEE Transact.
Microw. Theory Tech., 49 (9) (2001), 1581–1592.

[4] Siegel, P.: Thz technology. IEEE Trans. Microw. Theory Tech., 50th
Anniversary Issue, 50 (3) (2002), 910–928.

[5] Appleby, R.; Wallace, H.B.: Standoff detection of weapons and
contraband in the 100 GHz to 1 THz region. IEEE Trans.
Antennas Propag., 55 (11) (2007), 2944–2956.

[6] Sheen, D.M.; Hall, T.E.; Severtsen, R.H.; McMakin, D.L.; Hatchell,
B.K.; Valdez, P.L.J.: Active wideband 350 GHz imaging system for
concealed-weapon detection, in Society of Photo-Optical
Instrumentation Engineers (SPIE) Conf. Series, vol. 7309, May 2009.

[7] Weg, C.A.; Von Spiegel, W.; Henneberger, R.; Zimmermann, R.;
Loeffler, T.; Roskos, H.G.: Fast active THz cameras with ranging cap-
abilities. J. Infrared Millim. Terahertz Waves, 30 (12) (2009), 1281–
1296. Dec 2009, 33rd Int. Conf. Infrared, Millimeter, and Terahertz
Waves, Pasadena, CA, SEP, 2008.

[8] Cooper, K.; Dengler, R.; Llombart, N.; Thomas, B.; Chattopadhyay,
G.; Siegel, P.H.: Thz imaging radar for standoff personnel screening.
IEEE Trans. Terahertz Sci. Technol., 1 (1) (2011), 169–182.

[9] Llombart, N.; Cooper, K.B.; Dengler, R.J.; Bryllert, T.; Siegel, P.H.:
Confocal ellipsoidal reflector system for a mechanically scanned
active terahertz imager. IEEE Trans. Antennas Propag., 58 (6)
(2010), 1834–1841.

[10] Garcia-Pino, A.; Llombart, N.; Gonzalez-Valdes, B.; Rubiños-Lopez, O.:
A bifocal ellipsoidal Gregorian reflector system for THz imaging appli-
cations. IEEE Trans. Antennas Propag., 60 (9) (2012), 4119–4129.

[11] Shermann III, J.W.: Properties of focused apertures in the Fresnel
region. IRE Trans. Antennas Propag., 10 (4) (1962), 399–408.

Fig. 11. Astigmatic beams in different planes: (a) 7.711 m, (b) 8 m and
(c) 8.312 m.

48 antonio garci’a-pino

https://doi.org/10.1017/S1759078714001196 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078714001196


[12] Graham, W.J.: Analysis and synthesis of axial field patterns of
focused apertures. IEEE Trans. Antennas Propag., 31 (4) (1983),
665–668.

[13] Hansen, R.C.: Focal region characteristics of focused array antennas.
IEEE Trans. Antennas Propag., 33 (12) (1985), 1328–1337.

[14] Shafai, L.; Kishk, A.A.; Sebak, A.: Near field focusing of apertures and
reflector antennas, in IEEE WESCANEX 97 Communications,
Power and Computing Conf. Proc., Winnipeg, Canada, 22–23 May
1997, 246–251.

[15] Aleksieieva, A.; Dolzhikov, V.V.: Field fluctuations in the Fresnel
zone of a circular focused aperture in the presence of phase errors,
in 3rd European Conf. Antennas and Propagation (EUCAP 2009),
Berlin, 23–27 March 2009, 3121–3125.

[16] Li, Y.; Wolf, E.: Focal shifts in diffracted converging spherical waves.
Opt. Commun., 39 (4) (1981), 211–215.

[17] Parker Givens, M.: Focal shifts in diffracted converging spherical
waves. Opt. Commun., 41 (3) (1982), 145–148.

[18] Friberg, A.T.; Visser, T.D.; Wang, W.; Wolf, E.: Focal shifts of con-
verging diffracted waves of any state of spatial coherence. Opt.
Commun., 196 (2001), 1–7.

[19] Li, Y.: Focal shifts in diffracted converging electromagnetic waves. I.
Kirchoff theory. J. Opt. Soc. Am. A, 22 (1) (2005), 68–76.

[20] Li, Y.: Focal shifts in diffracted converging electromagnetic waves. II.
Rayleigh theory. J. Opt. Soc. Am. A, 22 (1) (2005), 77–83.

[21] Milligan, T.: Modern Antenna Design, McGraw-Hill Book
Company, New York, 1985.

[22] Balanis, C.A.: Antenna Theory, Analysis and Design, 3rd ed., Section
12.2 “Field equivalence principle: Huygens’ principle”. Wiley,
New York, 2005.

[23] Balanis, C.A.: Advanced Engineering Electromagnetics, Section 6.8
“Near Field”. Wiley, New York, 1989.

[24] Abramovitz, M.; Stegun, I.: Handbook of Mathematical Functions,
Dover Publications Inc., New York, 1964.

[25] Tallarida, R.J.: Pocket Book of Integral and Mathematical Formulas,
3rd ed., Chapman Hall, London, 1999.

[26] Martinez-Lorenzo, J.A.; Garcı́a Pino, A.; Vega, I.; Arias, M.; Rubiños,
O.: ICARA: induced-current analysis of reflector antennas. IEEE
Antennas Propag. Mag., 47 (2) (2005), 92–100.

[27] Dragone, C.: A first-order treatment of aberrations in cassegrainian
and gregorian antennas. IEEE Trans. Antennas Propag., 30 (3)
(1982), 331–339.

Antonio Garcia-Pino was born in Val-
demoro, Madrid, Spain, in 1962. He re-
ceived his M.S. degree in 1985 and Ph.D.
degree in 1989, both in Telecommunica-
tions Engineering from the Polytechnic
University of Madrid (UPM). From
1985 to 1989 he was with the Radiation
Group of UPM as a Research Assistant.
He joined the Department of Technolo-

gies of Communications at the University of Vigo (Spain) as
Associate Professor in 1989, becoming full Professor in
1994. During 1993 he was a Visiting Researcher at the
Center for Electromagnetics Research, Northeastern Univer-
sity, Boston. His research interests include shaped reflector
antennas for communication and radar applications and
THz technology. He became a senior member of IEEE in
2005. From 2003 to 2006, he was responsible for doctoral
studies, and from 2006 to 2010 he was Vice-Rector of Aca-
demic Organization and Faculty, at the University of Vigo.

an analytical simplified model to characterize focused aperture antennas 49

https://doi.org/10.1017/S1759078714001196 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078714001196

	An analytical simplified model to characterize focused aperture antennas
	INTRODUCTION
	BASIC FORMULATION FOR FOCUSED APERTURES
	Electric field in the Fresnel region of an aperture
	Focused aperture
	Parabolic distribution with taper illumination at the edge
	Transversal patterns in the focal plane
	Axial pattern


	NUMERICAL RESULTS AND FOCUSED BEAM DESIGN FORMULAS
	Axial focal shift
	Axial beamwidth
	Transversal beamwidth

	IMPACT ON THE BEAM OF THE PHASE DISTRIBUTION
	CONCLUSION
	ACKNOWLEDGEMENT


