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Point-particle direct numerical simulations have been employed to quantify the turbulence
modulation and particle responses in a turbulent particle-laden jet in the two-way coupled
regime with an inlet Reynolds number based on bulk velocity and jet diameter (Dj) of
∼10 000. The investigation focuses on three cases with inlet bulk Stokes numbers of
0.3, 1.4 and 11.2. Special care is taken to account for the particle–gas slip velocity and
non-uniform particle concentrations at the nozzle outlet, enabling a reasonable prediction
of particle velocity and concentration fields. Turbulence modulation is quantified by the
variation of the gas-phase turbulent kinetic energy (TKE). The presence of the particle
phase is found to damp the gas-phase TKE in the near-field region within 5Dj from the
inlet but subsequently increases the TKE in the intermediate region of (5–20)Dj. An
analysis of the gas-phase TKE transport equation reveals that the direct impact of the
particle phase is to dissipate TKE via the particle-induced source term. However, the
finite inertia of the particle phase affects the gas-phase velocity gradients, which indirectly
affects the TKE production and dissipation, leading to the observed TKE attenuation and
enhancement. Particle response to the gas-phase flow is quantified. Particles are found
to exhibit notably stronger response to the gas-phase axial velocity than to the radial
velocity. A new dimensionless figure is presented that collapses both the axial and radial
components of the particle response as a function of the local Stokes number based on
their respective integral length scales.
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1. Introduction

Particle-laden turbulent flows are encountered widely, including in various industrial
(Balachandar & Eaton 2010; Nathan et al. 2018) and biomedical applications (Nurkiewicz
et al. 2008; Mallik, Mukherjee & Panchagnula 2020; Chen, O’Mahony & Barber 2021).
Some industrial examples include the production of cement, lime and alumina, solid fuel
combustion, sprays and the particle-based solar energy receivers and reactors that are
under development. Applications in the biomedical area include aerosol drug delivery,
particle-laden inks in bioprinting, inhalation exposure systems and transmission of disease
through coughs and sneezes (Mittal, Ni & Seo 2020; Chong et al. 2021). In particle-laden
turbulent flows, multi-scale turbulence interacts with particles, which in turn leads
to complex phenomena such as enhanced or reduced particle dispersion and particle
clustering (Lau, Frank & Nathan 2019). Improved understanding of these interactions will
aid in achieving design objectives such as process optimisation, efficiency improvements
and scale-up of new technology, which in turn requires the reliable prediction of heat and
mass transport in flows carrying particles or droplets in suspension.

In a free shear particle-laden jet, which is a canonical flow, the characteristic flow
time scale varies in space as the shear-driven turbulence evolves and decays, resulting in
spatially varying local Stokes numbers, defined as the ratio of particle to flow characteristic
time scales. Moreover, the greater inertia of particles relative to a single-phase flow
increases the influence on the downstream dynamics of particle-laden jets of the
accumulated effects of the turbulent structure in the supply pipes upstream of the nozzle
exit (Ball, Fellouah & Pollard 2012). The combined, coupled effects of turbulence–particle
interaction, turbulence modification, particle dispersion and clustering, together with the
evolving turbulence scales with downstream distance, are complex and remain poorly
understood.

Previous experimental studies have made significant strides in improving our
understanding of turbulence–particle interaction in particle-laden turbulent jets. Early
studies identified the key dimensionless parameters such as mass loading (Modarress,
Tan & Elghobashi 1984), particle to jet diameter ratio (Tsuji et al. 1988) and Stokes
number (Hardalupas et al. 1989) in these flows. Furthermore, previous studies of
particle dispersion (Crowe, Gore & Troutt 1985), particle-phase mass flux and number
density distributions (Fan, Zhao & Cen 1997; Aísa et al. 2002), gas-phase turbulence
intensity (Hetsroni 1989) and gas- and particle-phase velocity statistics (Sakakibara,
Wicker & Eaton 1996; Fan, Zhao & Cen 1992; Longmire & Eaton 1992), have
provided valuable insights for model development and industrial design. However, most
of these experimental studies employed poly-dispersed particles, which results in the
flow simultaneously having multiple particle response times. Although turbulent flows
necessarily have multiple length scales, which fluctuate in time and space, it is possible
to identify the dominant flow time scales, leading to a single characteristic value of the
Stokes number for a given particle size. However, multiple particle sizes result in multiple
values of the local characteristic Stokes number, owing to the squared dependence of
the Stokes number on the particle diameter. This complicates analyses of these flows
on a fundamental level, as the effect of Stokes number cannot be isolated from other
controlling parameters. Moreover, the inflow conditions, i.e. the gas- and particle-phase
velocities, together with the particle number density, were mostly not well characterised,
making it difficult to generalise the conclusions of these studies as the evolution of
the particle-laden jet is closely related to its inlet conditions. Recent experiments in a
particle-laden turbulent round jet (PLRJ) were conducted to address these issues through
the use of well-characterised inflow conditions and mono-dispersed particles (Lau &
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Nathan 2014, 2016). By simultaneously measuring the particle velocity and number
density, the effects of inlet Stokes number on particle-phase reorganisation and velocity
decay were investigated quantitatively. These studies found that there were local humps in
the centreline concentration of particles, which were explained by a combination of the
axial velocity decay together with the radial migration of the particle phase, providing
a better understanding of the particle migration in space. More interestingly, it was
inferred from the evolution of the axial and radial particle root mean square (r.m.s.)
velocity that particles tend to respond preferentially to the gas-phase velocity in the axial
direction compared with the radial direction. However, these experiments do not provide
simultaneous measurements of the gas- and particle-phase quantities that are needed
to provide critical quantitative information on the level of direction-dependent particle
response, turbulence modulation, as well as the evolution of the local Stokes number. This,
in turn, hinders the advancement of our fundamental understanding of these flows.

As a complement to experiments, direct numerical simulation (DNS) provides a
unique capability to resolve fine-scale structure and to fully capture the spatially
three-dimensional and time-evolving details of key variables such as the instantaneous
gas- and particle-phase velocities as well as the particle number density, which are
needed to understand the turbulence–particle interaction. To model the dynamics of the
particle phase, a point-particle assumption is often utilised together with DNS (PP-DNS),
following the pioneering work by Riley and Patterson (1974). This approach circumvents
the difficulties of directly solving the fundamental transport equation for the particle and
gas phases together with the interfacial conditions by treating each particle as a point
source. An appropriate particle acceleration model is therefore needed to represent the
integrated hydrodynamic stress on a particle. Such models usually involve the assumption
of low-to-moderate particle Reynolds numbers (such that no vortex shedding around
the particle occurs), uniform flow seen by the particle, a spherical particle shape, etc.
Notwithstanding limitations in knowledge of the conditions under which the assumptions
begin to break down, PP-DNS has been widely applied to investigate turbulence–particle
interaction in homogeneous isotropic turbulence (HIT) (Squires & Eaton 1990, 1991;
Elghobashi & Truesdell 1992; Druzhinin & Elghobashi 1999; Ferrante & Elghobashi
2003) and turbulent channel/pipe flows (McLaughlin 1989; Kontomaris, Hanratty &
McLaughlin 1992; Pan & Banerjee 1996; Vreman 2007; Zhao, Andersson & Gillissen
2013; Zhao, George & van Wachem 2015). These studies have demonstrated the usefulness
of PP-DNS in predicting particle-laden flows in one-way (McLaughlin 1989; Squires &
Eaton 1990, 1991; Elghobashi & Truesdell 1992; Kontomaris et al. 1992), two-way (Pan &
Banerjee 1996; Druzhinin & Elghobashi 1999; Ferrante & Elghobashi 2003;Vreman 2007;
Zhao et al. 2013) and four-way (Zhao et al. 2015) coupled regimes. These PP-DNS studies
also provided quantitative analysis on the energy spectrum of the gas-phase turbulence
and the vortical structure of the flow field, demonstrating the power of PP-DNS to reveal
details of turbulence–particle interaction that are challenging to resolve using experimental
methods alone.

Compared with the wide application in HIT and turbulent channel flows, the
applications of PP-DNS in particle-laden turbulent jets have been relatively limited to
date. Yuu, Ikeda & Umekage (1996) performed PP-DNS of a particle-laden jet in the
two-way coupled regime with a low inlet Reynolds number (ReD, based on the jet
diameter and inlet velocity) of 1700. It was shown that the presence of the particle phase
resulted in a reduction of the gas-phase turbulence intensity by 20–50 % in the near
and intermediate field before 15Dj. This work was further extended by Li et al. (2011),
to investigate the effect of the Stokes number on vortical structures of the gas-phase

950 A3-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

76
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.764


H. Zhou and others

flow field. Picano et al. (2010) and Casciola et al. (2010) performed PP-DNS of a
one-way coupled particle-laden jet at ReD = 4000. Their work revealed that the particle
transport in the intermediate field (before particles end up behaving as Lagrangian tracers)
has a significant ‘memory’ of the initial conditions of the flow. These studies have
greatly enhanced the understanding of the particle response and turbulence modulation
in particle-laden jets. However, for a two-way coupled particle-laden jet, the interaction of
turbulence and particles results in flow phenomena that are not currently fully understood,
including near-field particle reorganisation, direction-dependent response of particles and
anisotropic modulation of the gas-phase turbulence, which warrants further investigation at
the fundamental level. In particular, the particle number density distribution at the nozzle
exit is typically non-uniform, resulting in particle reorganisation in the near field. However,
almost all previous studies assumed a uniform particle distribution, which hinders
quantitative comparison with experiments in terms of particle number density distribution
and investigation of their reorganisation downstream. Additionally, turbulent jets feature
different integral length scales in the axial and radial directions. In a particle-laden
jet, this results in a direction-dependent response of particles, and subsequently, an
anisotropic modulation of the gas-phase turbulence. The level of direction-dependent
particle response, as well as the variation of the integral length scale due to the presence
of the particle phase, requires further quantification. Furthermore, turbulent jets produce
inhomogeneous shear-driven turbulence, in which the role of the particle phase on the
gas-phase turbulent kinetic energy (TKE), either as a production source or a dissipative
sink, is not as obvious as in the configuration of HIT (Druzhinin & Elghobashi 1999;
Ferrante & Elghobashi 2003) or homogeneous shear flow (Gualtieri et al. 2013). In
particular, the effect of particle reorganisation and direction-dependent particle response
on turbulence modulation has barely been investigated.

The present investigation aims to tackle these issues by performing PP-DNS directly
comparable to a laboratory particle-laden turbulent jet. Specifically, PP-DNS is carried
out for the Adelaide PLRJ (Lau & Nathan 2014, 2016), which is in the two-way coupled
regime with a ReD of the order of 10 000. The inflow conditions are specified to account
for the gas–particle slip velocity and the non-uniformity of the particle number density.
Quantitative comparisons of the near-field particle reorganisation of particle concentration
fields, as well as the particle velocity decay in the intermediate field (before particles
end up behaving as Lagrangian tracers) are carried out. A budget analysis on the
gas-phase TKE transport equation is carried out to reveal the role of the particle phase in
turbulence modulation in both the near (5Dj) and intermediate-field ((5–20)Dj) regions.
A comparison is also made between the integral length scales in the axial and radial
directions, based on which the characteristic axial and radial Stokes numbers are computed
to explain the direction-dependent particle response. The paper is organised as follows.
The simulation approach and detailed configurations, especially the inlet conditions, are
described in § 2. A quantitative comparison with the experiment, as well as an analysis
of self-similarity, turbulence modulation and direction-dependent particle response are
presented in § 3. Conclusions are presented in § 4.

2. The PP-DNS of the Adelaide particle-laden round jet

2.1. Adelaide PLRJ
The details of the experimental arrangement have been reported previously and readers
are referred to Lau & Nathan (2016) for the schematic plot of the experimental set-up,
therefore only a brief description is included here. The Adelaide PLRJ is a turbulent round
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StD StL at inlet StL at 30Dj Maximum centreline Stη Minimum centreline Stη

0.3 0.38 0.03 1.57 0.43
1.4 1.77 0.15 5.66 2.22
11.2 14.2 1.66 50.4 16.4

Table 1. Characteristic Stokes numbers (Appendix A).

jet of air seeded with solid spherical particles surrounded by a weak co-flow of air. The
air–particle mixture is injected downwards vertically into a confined wind tunnel from a
2080 mm long pipe with diameter Dj = 12.7 mm. The particles are made of poly (methyl
methacrylate) with a material of density ρp = 1200 kg m−3. The standard deviation of the
particle diameter (dp) is less than 5 %, resulting in a nearly mono-dispersed particle size
distribution.

The selected flow conditions result in three exit Stokes numbers (StD) of 0.3, 1.4 and
11.2, with StD defined as τp/τg,D, where τp = ρpd2

p/(ρg18νg) is the characteristic time
scale of the particle response and τg,D = Dj/Ug,x−b−e is the inflow time scale based
on the jet bulk velocity (Ug,x−b−e) and the jet diameter (Dj). Here, ρg = 1.2 kg m−3

and νg = 1.5 × 10−5 m2 s−1 represent the density and the kinematic viscosity of air at
293 K, respectively. Two other alternative definitions of the Stokes number that may
be relevant to the present study are the Stokes number based on the Kolmogorov time
scale, i.e. Stη = τp/τη, where τη is the local Kolmogorov scale of the gas phase, and the
Stokes number based on the mean centreline velocity (〈Ug,x−c〉) and velocity half-width
(R0.5Ug,x−c), i.e. StL = τp/τg,L = (ρpd2

p/(18νgρg))/(2R0.5Ug,x−c/〈Ug,x−c〉). These latter two
Stokes numbers are computed a posteriori based on the results of the numerical
simulations. Table 1 presents the values of StL at the inlet and at the end of domain
(x/Dj = 30), respectively, as well as the maximum and minimum Stη along the centreline.
As shown, StL at x/Dj = 30 decreases to 0.03, 0.15 and 1.66 for StD = 0.3, 1.4 and 11.2,
respectively. The maximum centreline Stη is 1.57, 5.66 and 50.4 for StD = 0.3, 1.4 and
11.2, respectively, while the minimum centreline Stη is 0.43, 2.22 and 16.4. More details
are presented in Appendix A.

The mass loading φm, defined as the ratio of particle-to-air mass flow rate (φm =
ṁp/ṁg), was controlled by calibrated screw feeders and was fixed at 0.4 for all three
cases. Here, it should be noted that φm is sufficiently high for the particle phase to
exert a significant influence on the surrounding fluid, while the particle-phase volume
fraction is sufficiently low (∼10−4) for particle collisions to be neglected, resulting in
the flow being in the two-way coupled regime (Elghobashi 1991, 2006). The particle
velocity and number density were measured using particle image velocimetry and planar
nephelometry, respectively. The mono-dispersed particle size distribution, together with
the well-characterised inflow profiles of particle velocity and number density, make this
experimental set-up an ideal configuration for quantitative numerical investigation.

2.2. Point-particle DNS
The point-particle approach in the Eulerian–Lagrangian framework was employed
to capture the turbulence–particle interaction. The transport equations of the mass,
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momentum and total energy for the gas phase are

∂ρg

∂t
+ ∂ρgUg,i

∂xi
= 0, (2.1)

∂ρgUg,i

∂t
+ ∂ρgUg,iUg,j

∂xj
= − ∂p

∂xi
+ ∂τij

∂xj
+ Fp,i, (2.2)

∂ρgeg

∂t
+ ∂Ug,j(ρgeg)

∂xj
= −∂pUg,j

∂xj
+ ∂τijUg,i

∂xj
− ∂qj

∂xj
+ Ug,jFp,j, (2.3)

where subscripts ‘g’ and ‘p’ represent gas and particle phase, respectively. Here, ρg
represents the material density of the gas phase, Ug,i is the ith component of the
gas-phase velocity, p and τij represent the pressure and shear stress tensor of the gas
phase, respectively, eg is the total energy (kinetic energy plus internal energy) and qj is
the jth component of the heat flux. Einstein notation is applied to the repeated indices.
Note that the influence of particle volume on gas-phase continuity and momentum is
neglected as the particle-phase volume fraction is negligibly low, around ∼10−4. As a
result, equations (2.1)–(2.3) are essentially the same as the single-phase Navier–Stokes
equations, except for the Fp,i term, which represents the feedback force from the particle
phase. A kernel-estimation-based method is employed to compute Fp,i at position x

Fp,i(x) =
Np∑

k=1

∫
D

(
m0

p

dU(k)
p,i

dt

)
P{x − x′}δ(x′ − x(k)

p ) dx′ =
Np∑

k=1

(
m0

p

dU(k)
p,i

dt

)
P{x − x(k)

p },

(2.4)

where the superscript ‘k’ represents the kth particle, Np represents the total number of
particles, D represents the entire domain, m0

p represents the mass of an individual particle
and δ is the Kronecker delta. Here, P{x − x′} represents a mollification kernel. The
application of the mollification kernel avoids the oscillatory nature of the particle-in-cell
method, which may induce numerical instability, especially where high-order central
difference schemes are employed (Pepiot & Desjardins 2012). The point-particle force is
projected onto the Eulerian grid smoothly and conservatively via a polynomial P{x − x′}
which approximates a Gaussian shape, yet is continuous

P{x − x′} = C × ζ(x − x′), (2.5)

ζ(x − x′) = [s2(s2 − 2) + 1]2, s = min(|x − x′|/Δ, 1.0), (2.6)

C = 1/

∫
D

ζ(x − x′) dx′, (2.7)

where Δ represents the grid width. Therefore, the mollification kernel essentially
represents a sphere centred at each particle location and clipped at a radius of Δ. Similar
formulations of P{x − x′} have been successfully employed by other researchers (Pepiot &
Desjardins 2012), albeit in a fluidised bed configuration rather than a jet. Note that, in terms
of code implementation, the source is distributed in a way corresponding to (2.5)–(2.7) but
in a discrete manner.

The particle trajectory is computed by time integrating the equation of motion, which
was originally developed by Basset, Boussinesq and Oseen (Basset 1888), and was later
derived again from first principles by Maxey and Riley (Maxey & Riley 1983). The full
equation of motion includes the drag force, buoyancy force, lift force, added mass force,
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Basset history force and the force by the undisturbed velocity field (often referred to as
the pressure gradient force). However, for small particles (dp ∼ O(lη), where lη is the
Kolmogorov scale) with a large density relative to the gas phase, as used in the current
configuration (ρp/ρg = 1000), it is well established that the drag force is dominant (Maxey
& Riley 1983; Armenio & Fiorotto 2001). The effect of gravity is neglected because the
Froude number computed based on the inlet jet velocity and the length of domain of
interest (i.e. 30Dj) is O(10) for experiment and O(100) for simulation, illustrating that
the effect of gravity can be safely ignored in both experiment and simulation. Particle
collisions are also negligible as the volume fraction of the particle phase is ∼10−4. With
these simplifications, the resulting equations of motion for the particle phase are

mp
dUp,i

dt
= FD,i, (2.8)

dxp,i

dt
= Up,i, (2.9)

where Up,i is the ith component of the particle-phase velocity. Here, FD,i represents the
drag force, and is computed based on the formulation proposed by Schiller and Naumann
(1935),

FD,i = 3πμgdp(Us,i − Up,i)(1 + 0.15Re0.687
p ), Rep = dp|U s − Up|

νg
. (2.10)

This formulation extends the viscous drag to a higher Reynolds number, and it has been
widely applied to predict the drag force when the particle Reynolds number (Rep) is
less than 100, where the effect of vortex shedding behind the particle is expected to be
negligible (Balachandar & Eaton 2010). For the current cases considered, Rep is ∼O(10),
which justifies the application of the Schiller–Naumann drag. The parameter Us,i in
(2.10) denotes the ith component of the undisturbed gas velocity seen by the particle,
which is approximated by the interpolated gas-phase velocity at the particle location
via a fourth-order Lagrange polynomial interpolation scheme. Note that the use of the
mollification kernel does not affect the way that Us,i is computed, but rather distributes
the drag force (FD,i) to the grid nodes within the mollification kernel via a discrete and
conservative operation.

The point-particle DNS was performed using the massively parallel code, S3D (Chen
et al. 2009), which is a well-validated code with strong scalability that has been
successfully applied to a series of turbulent reacting flows (Chen et al. 2009; Wang
et al. 2017). In S3D, each message passing interface (MPI) process is responsible for
a piece of the three-dimensional (3-D) domain, i.e. solving the transport equation for
the grid points and particles within the domain. Note that all MPI processes have the
same number of grid points, but the number of particles is not necessarily the same.
Inter-processor communication is only between the nearest neighbours in a 3-D topology,
and all-to-all communications are only required for monitoring and synchronisation ahead
of input/output. The code has demonstrated scaling to well over 100 000 CPU cores
(Chen et al. 2009). The transport equations of the gas-phase continuity and momentum
are discretised in Cartesian coordinates using an eighth-order central difference scheme.
The solution is advanced in time by employing a fourth-order, six-stage, low-storage
Runge–Kutta method (Kennedy, Carpenter & Lewis 2000). The particle equations are
integrated in a fully coupled way together with the gas phase in the Runge–Kutta stages.
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StD ρg/ρp φm Dj/dp Ma ReD

Simulations 0.3 1/1000 0.4 1.3 × 103 0.5 10 000
1.4 1/1000 0.4 6.4 × 102 0.5 10 000

11.2 1/1000 0.4 2.3 × 102 0.5 10 000
Experiments 0.3 1/1000 0.4 1.3 × 103 0.035 10 000

1.4 1/1000 0.4 6.4 × 102 0.035 10 000
11.2 1/1000 0.4 3.2 × 102 0.035 20 000

Table 2. Operating conditions for each case of the PP-DNS and experiment.

2.3. Simulation configuration
The PP-DNS of three PLRJ cases with the inlet Stokes numbers (StD) of 0.3, 1.4
and 11.2 were carried out. The DNS configuration was designed to match the critical
non-dimensional parameters of the experiment, i.e. the mass loading rate (φm), inlet
Stokes number (StD = τp/τg,D = (ρpd2

p/(18ρgνg))/(Dj/Ug,x−b−e), where Ug,x−b−e is the
gas-phase axial component of the bulk velocity at the pipe exit) and inlet Reynolds
number (ReD = Ug,x−b−eDj/νg) such that the level of turbulence–particle interaction is
maintained. The Mach number (Ma = Ug,x−b−e/a, where a is the speed of sound) in the
experiments is 0.035, corresponding to an essentially incompressible flow. As it would be
very costly to simulate a flow with such a low Mach number using a compressible solver,
the Mach number in the DNS is set to 0.5, as a balance between reducing the computational
cost and minimising the compressible effects, which are of the order of (γ –1)(Ma/2)2,
where γ represents ratio of the specific heat at constant pressure to that at constant volume.
This is achieved in practical terms by scaling all physical length scales down, e.g. the jet
and particle diameters, and velocity scales up, e.g. the jet and particle velocities, resulting
in different Mach numbers but the same Stokes and Reynolds numbers. Note that, in the
experiments, the particle-laden case StD = 11.2 has an inlet Reynolds number of 20 000.
However, in the DNS, the corresponding Reynolds number is set to 10 000 to reduce the
computational cost (noting that a DNS with ReD = 20 000 would be at least eight times
more expensive than with 10 000), and to allow a comparison between the different Stokes
number cases while keeping the Reynolds number constant. It is worth noting that the
influence of Reynolds number on the jet dynamics is expected to be small in this high ReD
range (Pitts 1991; Ball et al. 2012), and therefore the jet development in the simulations at
ReD = 10 000 is expected to be similar had the simulations be performed at ReD = 20 000.
To make this change of ReD (i.e. from 20 000 to 10 000) while preserving StD at 11.2, the
ratio Dj/dp is changed by ∼1.4×, however, as dp is still much smaller than Dj, changes
to this ratio are not expected to significantly influence the flow features. In addition to
the three particle-laden cases, a simulation has also been performed for a single-phase
jet under the same Reynolds number as the particle-laden jets but without injecting any
particles. This provides a baseline to quantify any difference in the flow field due to the
presence of the particle phase. Table 2 presents the operating conditions for which the
simulations and experiments were performed.

The 3-D Cartesian domain extends to 30Dj × 25Dj × 25Dj in the streamwise and the
two lateral directions. A uniform grid spacing of �x = 0.02Dj was employed in the
streamwise direction, while an algebraically stretched mesh is applied in the other two
directions. The stretched mesh maintains a uniform spacing of �y = �z = 0.02Dj within
a 10Dj × 10Dj region around the centreline (5Dj on each side of the centreline), and
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Figure 1. Schematic plot for the computational domain and grid configuration.

is gradually stretched outside this region such that the maximum stretching rate near
the side boundaries is below 3 %. This results in 1500 × 750 × 750 grid points in total.
The schematic plot of the computational domain and grid configuration are presented in
figure 1.

The Kolmogorov length scale, i.e. lη = (ν3
g/εk)

1/4 where εk is the dissipation rate of
gas-phase TKE, has its minimum value in the shear layer (Wang et al. 2017). Near to
the shear layer, lη ranges from 0.25Δ (near field) to 0.8Δ (30Dj downstream), therefore,
the global minimum of lη is ∼0.25Δ, occurring within the shear layer in the near field.
Apart from the shear layer region in the near field, the grid resolution satisfies Δ/lη < 3.0.
Grid convergence tests with 1.5× finer resolution have also been carried out to ensure that
the first and second moments of the statistics are grid independent (see Appendix C for
the details of grid convergence test). The ratio of grid width over particle diameter, i.e.
Δ/dp is approximately 30, 15 and 5 for the particle-laden jet of StD = 0.3, 1.4 and 11.2,
respectively. Considering that Δ is larger than dp, the size of the mollification kernel was
set to 1.0 (see (2.6)). Therefore, the use of mollification kernel is similar to a trilinear
extrapolation, a widely applied scheme in a situation where particle diameter is smaller
than the grid width (Tang et al. 2018). Simulations were run for at least 10 flow-through
times, with the first 4 flow-through times used to reach a statistically stationary state, and
the other 6 or more flow-through times utilised for time averaging. Spatial averaging over
the azimuthal direction was also performed to reduce the statistical error. To collect the
statistics of the particle phase, the entire computational domain is binned into 720 × 360
(in axial and radial directions, respectively) zones. These parameters for the statistics have
been tested to ensure statistical convergence.

2.4. Boundary conditions
To quantitatively reproduce the distribution of particle velocity and number density of a
given flow, it is essential, although non-trivial, to specify the appropriate instantaneous
distributions of both the inflow velocity and number density. This implies injecting
particles in such a way that both of these distributions match the experiment in the
Adelaide PLRJ. However, given the limitations in understanding of the exit flow-field
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Figure 2. The specified inflow conditions to the computational domain, showing (a) spatial distribution of
∼2000 particles injected at the inlet, StD = 0.3 (left), StD = 11.2 (right); (b) radial profiles of the normalised
mean particle number density at the inlet. Experimental data from Lau & Nathan (2016).

distribution at this level of detail in the experimental flow, together with the significant
computational expense of computing the inflow through the full supply system, it was
decided to develop a new approach to specify the inflow condition in greater detail than
has been done before.

Almost all previous numerical studies of particle-laden jets have assumed uniform
particle number density distributions at the nozzle exit. However, the experimental
measurement on Adelaide PLRJ shows that the particle number density distribution at the
jet emerging from a long pipe is far from uniform (Lau & Nathan 2016). Considering that
the particle distribution at the pipe exit is not a free variable, but a result of the dynamics
of the particle-laden pipe flow upstream of the exit, it is unlikely to be appropriate to
de-couple the effect of exit conditions from that of other parameters, e.g. StD. Therefore, in
the present simulation, the particle distribution at the inlet was matched to the distribution
measured experimentally. This was achieved by computing the probability density function
of the particle-phase radial distribution (fR(r)) for injection, where fR(r) × dr represents
the probability of a particle being injected at the radial location r. Based on its definition,
fR(r) is proportional to the product of the ensembled averaged mean axial particle velocity
and the mean number density at the inlet, i.e. fR(r) ∼ 〈Up,x−e(r)〉 × 〈Θe(r)〉, both of
which have been measured in the experiment. On this basis, particles were injected with
their radial locations determined using the inverse transform sampling method to match
fR(r), and with their azimuthal locations determined by a random variable uniformly
distributed between 0 and 2π. Figure 2(a) presents the spatial distribution of ∼2000
particles injected at the inlet for StD = 0.3 and 11.2, respectively. Figure 2(b) presents
the generated radial profiles of the normalised mean particle number density (〈Θ〉/Θb−e),
where Θb−e represents the bulk number density at the inlet. As shown, the generated
profiles closely match the measured profiles, capturing the effect of the Stokes number on
the non-uniform mean particle distribution, i.e. for StD = 0.3 and 1.4, particles concentrate
near the edge of the jet (r/Dj ∼ 0.5), while for StD = 11.2, particles concentrate near to
the jet centreline.

To specify the instantaneous distributions of inlet particle- and gas-phase velocity
with ensemble averaged mean and r.m.s. profiles matching those of the experiment, the
instantaneous velocity is decomposed into Ui(r, θ; t) = Ui,base(r) + Ui,fluc(r, θ; t), where
r and θ represent the radial and circumferential directions, Ui,base(r) is a radially varied
but temporally constant profile matching the mean velocity in the experiments, while
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Ui,fluc(r, θ; t) varies both spatially and temporally with a zero mean and with r.m.s. values
that match the experiment. To generate Ui,fluc, the Passot–Pouquet energy spectrum (Passot
& Pouquet 1987) is employed to produce a homogeneous isotropic fluctuating velocity

(u′
HIT(x, y, z)), which has a zero mean and a manually prescribed r.m.s. (

√
〈u′2

HIT〉, where
〈 〉 represents the ensemble average operator). The turbulent velocity u′

HIT is then scaled
by a function that depends on the radial distance to match the measured radial profiles of
the r.m.s. velocity for particle and gas phases, respectively. Finally, the scaled fluctuating
velocity is fed to the inlet as Ui,fluc by converting the spatial coordinate x to time t based
on Taylor’s frozen turbulence hypothesis.

Figure 3(a) presents the inlet radial profiles of the mean and r.m.s. velocity of the
particle phase, which were extracted from the simulations. As shown, these generated
profiles match the experimental measurement reasonably well. Figure 3(b) presents the
similar plot for the gas phase, which also exhibits reasonable agreement with experiment.
Note that, for all three particle-laden cases, the inlet gas-phase velocity profiles were
specified to match the ‘single-phase’ experimental measurement, in which the jet was
seeded with tiny alumina particles with StD ∼ 0.01 such that these particles are expected
to faithfully follow the flow field. The particle mass loading rate was maintained at 0.4,
which is the same as the particle-laden cases. Nevertheless, the measured single-phase
velocity is expected to be a reasonable approximation of the gas-phase velocity in the
particle-laden jet.

The other boundaries employ non-reflecting outflow boundary conditions (Sutherland
& Kennedy 2003; Yoo et al. 2005); particles are removed from the computation if they
cross those boundaries.

3. Results and discussion

In this section, a quantitative comparison between the PP-DNS and experiment is reported,
which is followed by an investigation of turbulence modulation and particle response.

3.1. Particle velocity and number density
To illustrate the qualitative differences between the particle-laden jets at the three different
Stokes numbers, figure 4 presents a slice of the spatial distribution of particles at a single
time instance overlapped with the magnitude of the instantaneous gas-phase vorticity.
As can be seen, particle clustering in the particle-laden jets with StD = 0.3 and 1.4 is
more significant than for StD = 11.2. For StD = 0.3 and 1.4, there is visual evidence of
particles tending to concentrate in regions of low vorticity, consistent with expectation
(Eaton & Fessler 1994). However, there are also exceptions. For these two images, particles
within the first few diameters of the inlet are observed to exhibit notable radial dispersion
in response to the shear layer roll-ups (Mi, Nobes & Nathan 2001), indicating a strong
response to the gas-phase flow field. Meanwhile, for StD = 11.2, the particle locations
show much less visual correspondence to the vorticity distribution. Also, for this high
Stokes number case, particle clustering is less apparent than at StD = 0.3 and 1.4, and there
is almost no radial dispersion within the first few jet diameters, where particles exhibit
ballistic behaviour due to their large relaxation time scale compared with the local flow
time scale. The observable radial dispersion only starts to occur after 15Dj, consistent with
the decrease in the local Stokes number with axial distance (Lau & Nathan 2016). More
work is required to confirm or refine these visual observations with statistical analysis.
Appendix D presents the investigation based on a Voronoi diagram, which provides a
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Figure 3. (a) Inlet radial profiles of particle-phase mean axial velocity (〈Up,x〉) and r.m.s. axial velocity

(
√

〈U′2
p,x〉). (b) Inlet radial profiles of gas-phase mean axial velocity (〈Ug,x〉) and r.m.s. axial velocity (

√
〈U′2

g,x〉).
Experimental data from Lau & Nathan (2016).

more quantitative analysis of particle clustering and preferential concentration in the
low-vorticity region.

Figure 5 presents the predicted spatial distribution of the ensemble averaged mean
particle number density in comparison with the experiment (Lau & Nathan 2016). For each
image pair, the experimentally measured distribution is shown on the left, while the DNS
is on the right. The particle number density was measured by using planar nephelometry,
which infers the relative particle number density from the intensity of the measured Mie
scattering signal (Birzer, Kalt & Nathan 2012). The particle number density in the DNS

was computed as being 〈Θ(x)〉 = ∑Nt
i=1 [

∑N(i)
p

k=1 G(x − x(k,i)
p )]/Nt, where Nt is the number

of time instances used for the statistics, N(i)
p is the number of particles at the ith time

instance, x(k,i)
p represents the location of the kth particle at the ith time instance and

G(x − x′) represents a top hat function, which is essentially a cube centred at the location
x with its volume corresponding to the local grid cell. As shown, the spatial distribution
of the particle number density is well reproduced by the simulations. Specifically, both
experiments and the simulations show that, for the two lower Stokes number cases, i.e.
StD = 0.3 and 1.4, the region of peak particle number density shifts from the jet edge
towards the centreline as the flow convects downstream. Furthermore, the simulations
match the experiments in showing that the axial decay rate of particle number density
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Figure 4. Instantaneous spatial distributions of particles overlaid with the vorticity magnitude normalised by
a frequency defined by the inflow jet bulk velocity and jet diameter.
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Figure 5. Comparison of the measured (left) and simulated (right) spatial distributions of the mean particle
number density (〈Θ〉) for three values of Stokes number. Experimental data from Lau & Nathan (2016).

decreases as StD increases. As the only force term included in the equations of motion
is the drag force, the close match between the experiment and simulation implies that
incorporating only the drag force is sufficient to reasonably predict the large-scale features
of the particle-phase motion for all particle-laden jets considered in this work.

Figure 6 presents the radial profiles of the mean particle number density at three axial
locations, x/Dj = 5.0, 10.0 and 25.0. As can be seen, the radial profiles of 〈Θ〉/〈Θc〉
for all three Stokes number cases were reproduced quantitatively by the simulations for
most cases, although there are some differences. The relative error is less than 12 % in
general. Moreover, Gaussian fits are applied to the measured profiles in the experiment,
as it is well established that the passive scalar profile of a single-phase jet approaches
a Gaussian in the far field (Pope 2000). For StD = 0.3, the radial profiles of 〈Θ〉/〈Θc〉
at all three axial locations match the Gaussian profiles reasonably well, especially for
x/Dj > 5.0. Consistent with the findings in the experiment, the simulation results show
that, for the case of StD = 0.3, the particles quickly reorganize from being preferentially
concentrated at the jet edge (see figure 2b) to being preferentially concentrated towards the
jet centreline within the first ∼5 diameters of the inlet. For StD = 11.2, the radial profiles
exhibit notable deviation from a Gaussian even at downstream distances of x/Dj = 25.0.
These profiles show a steep decline with radial distance near the jet centreline followed
by a long tail. In fact, these profiles resemble more the right half of a log-normal profile
rather than a Gaussian profile. These findings indicate that the particle number density
profile approaches a Gaussian at increasing axial distances as the inlet Stokes number
increases, which is consistent with Lau & Nathan (2016).
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Figure 6. Measured and simulated radial profiles of the mean particle number density (〈Θ〉) at three different
axial locations. Experimental data from Lau & Nathan (2016).
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Figure 7. Radial profiles of the particle-phase mean axial velocity (〈Up,x〉) at three different axial locations.
Experimental data from Lau & Nathan (2016).

Figure 7 presents the radial profiles of the particle-phase mean axial velocity (〈Up,x〉)
at x/Dj = 5.0, 10.0 and 30.0. As shown, the mean particle-phase velocity is reasonably
reproduced by the PP-DNS, especially for the low Stokes number cases, i.e. StD = 0.3 and
1.4. However, for the high Stokes number case of StD = 11.2, the PP-DNS predicts slightly
wider radial profiles of 〈Up,x〉 near to the shear layer at x/Dj = 5.0 and 10.0. The slight
overprediction of the particle-phase velocity spread may be attributed to the limitation of
the point-particle method, as illustrated in Appendix A. The Stokes number based on the
Kolmogorov scale is over 30 before x/Dj = 10.0, therefore, the point-particle assumption
may not be strictly valid at x/Dj = 5.0 and 10.0 for the case of StD = 11.2. At x/Dj = 30.0,
the numerical and experimental data exhibit better agreement for the case of StD = 11.2.
This is consistent both with the quadratic decrease in Stokes number and with the decrease
in volumetric loading with the axial distance, both of which will increase the validity of
the point-particle approximation.

Figure 8 presents the radial profiles of the particle-phase r.m.s. axial velocity at x/Dj =
5.0, 10.0 and 30.0, respectively. As expected, the prediction of the r.m.s. velocity is in
general less accurate than that of the mean velocity. For StD = 0.3, the relative error is in
general less than 10 % at the two selected locations. The relative error increases with the
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Figure 8. Radial profiles of the particle-phase r.m.s. axial velocity at three different axial locations.
Experimental data from Lau & Nathan (2016).

inlet Stokes number, for StD = 1.4 and 11.2, the maximum relative errors at the selected
locations are approximately 20 % and 35 %, respectively. For all three cases, the relative
error in r.m.s. velocity at x/Dj = 10.0 is, in general, larger than that at x/Dj = 30.0. This
again points to the limitation of the point-particle assumption.

Notwithstanding the potential role of the point-particle approximation, the synthesised
inflow turbulence based on the Passot–Pouquet energy spectrum and Taylor’s frozen
turbulence hypothesis may also be a source of difference between the numerical simulation
and the experimental measurement. Nevertheless, the error in the r.m.s. Up,x is expected
to have a minor impact on the rest of the analyses. Specifically, for the results presented
in § 3.2, the first-order impact of particles on the gas-phase TKE is via the mean drag
force determined by the gas- and particle-phase mean velocity, which is illustrated to be
reasonably well reproduced, as shown in figure 7. In addition, the influence of the r.m.s.
Up,x on the conditional mean velocity statistics, as well as the integral length scale, is
also minor, therefore, the error in r.m.s. Up,x has a minor impact on the particle response
presented in § 3.3. In general, the PP-DNS results provides a reasonable baseline for the
subsequent analysis of turbulence–particle interactions in terms of turbulence modulation
and particle response.

3.2. Modulation of turbulence
To investigate turbulence modulation, figure 9 presents the axial evolution of the mean
slip velocity to illustrate the region where the particle phase lags or leads the gas
phase. The mean slip velocity is computed as 〈Uslip,x〉 = 〈Ug,x|x = xp〉 − 〈Up,x〉, where
〈Ug,x|x = xp〉 represents the conditionally averaged gas-phase velocity at the particle
location. Figure 9(a) presents the centreline slip velocity, which is positive in the near-field
region. This is because the centreline mean velocity of the gas phase is slightly higher than
that of the particle phase at the pipe exit, as a result of the dynamics of the particle-laden
pipe flow (Lau & Nathan 2014, 2016). The positive slip velocity illustrates that the particle
phase lags the gas phase in the near-field region. Downstream of the inlet plane, due
to particle inertia, the particle-phase velocity decays at a lower rate than the gas phase.
Therefore, the particle-phase velocity eventually exceeds the gas-phase velocity, resulting
in a negative slip velocity further downstream. The slip velocity eventually approaches
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Figure 9. Axial evolution of the slip velocity (〈Uslip,x〉) at the centreline (a) and the velocity half-width
location (b). The inset is a zoom in plot for 0 < x/Dj < 2.

zero in the far field as the local Stokes number decreases, resulting in the particles more
faithfully following the flow. Figure 9(b) presents the slip velocity at the location of the
gas-phase velocity half-width, which is negative throughout the domain illustrating that,
for all three particle-laden jets, the particle phase leads the gas phase at the velocity
half-width location within the first 30Dj from the inlet. Both figure 9(a,b) illustrate that,
in the region where the particle phase leads, the higher Stokes number case exhibits a
greater (in magnitude) slip velocity due to the higher particle inertia. This results in a
larger positive momentum transfer to the gas phase via 〈Fp,x〉 (see (2.2)), and therefore, a
slower decay of the mean gas-phase velocity for the higher Stokes number cases.

To quantify the modulation on turbulence due to the presence of the particle
phase, figure 10(a) presents the axial evolution of the normalised gas-phase TKE (k =
〈u′

g,iu
′
g,i〉/2) at the velocity half-width location (R0.5Ug,x−c) for the single-phase jet together

with the particle-laden jet at all three Stokes numbers. Compared with the single-phase
jet, the gas-phase TKE in the particle-laden jet is damped for x < 5Dj for all three Stokes
numbers. The low Stokes number cases, i.e. StD = 0.3 and 1.4, yield much more significant
damping relative to StD = 11.2. Specifically, StD = 0.3 and 1.4 reduce the peak value of
TKE by approximately 30 % compared with the single phase, while StD = 11.2 results in
only minor damping of less than 5 %. In the intermediate region, 5Dj < x < 20Dj, the
gas-phase TKE in the particle-laden jet is greater than that of the single-phase jet for all
Stokes numbers. The level of increase appears to be less dependent on the Stokes number,
i.e. 15 %–25 % for all the three cases considered. The increase of the gas-phase TKE
persists to the end of the computational domain as the presence of the particle phase slows
down the decay of the gas-phase TKE owing to the higher particle inertia (see figure 14
for further discussion).

Figure 10(b,c) presents the normalised variance of the gas-phase velocity component
in the axial and radial directions. For x < 5Dj, the presence of the particle phase damps
the fluctuating velocity in both the axial and radial directions, especially for low Stokes
number cases. For example, the peak values of 〈u′2

g,r〉 and 〈u′2
g,x〉 for the StD = 0.3 and

1.4 cases are approximately 40 % and 20 % lower than the corresponding peak values
for the single-phase case. The significant radial damping in this region (x < 5Dj) may
be attributed to the reorganisation of the particle concentration towards a Gaussian-like
profile (Lau & Nathan 2016), with this reorganisation being expected to occur at a greater
rate for the two lower Stokes number cases due to the highly non-Gaussian initial particle
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Figure 10. Axial variation of the normalised gas-phase TKE, variance of axial and radial velocities (〈u′2
g,x〉

and 〈u′2
g,r〉) at the velocity half-width location (R0.5Ug,x−c ), for the single-phase case and the particle-laden cases

StD = 0.3, 1.4 and 11.2. The y-axis is normalised by the square of the inflow jet bulk velocity.

distributions for these cases (see figure 5). In the intermediate region of 5Dj < x < 20Dj,
the presence of the particle phase increases both 〈u′2

g,x〉 and 〈u′2
g,r〉. However, 〈u′2

g,x〉 is
increased more significantly. For all three particle-laden jets, the increase of 〈u′2

g,x〉 is
around 35 %, which is notably larger than the 20 % increase for 〈u′2

g,r〉. The preferential
increase of the gas-phase fluctuating velocity in the axial direction is consistent with
the preferential axial response of the particle phase owing to the lower characteristic
Stokes number in axial direction (see § 3.4 for detailed discussion). The increase of
〈u′2

g,x〉 and 〈u′2
g,r〉 persists to the end of the computational domain. As far as turbulence

anisotropy is concerned, the single-phase jet exhibits significant anisotropy, as indicated
by 〈u′2

g,x〉/〈u′2
g,r〉 being larger than unity. Specifically, the ratio of 〈u′2

g,x〉/〈u′2
g,r〉 at the velocity

half-width location is ∼1.4, which is consistent with previous single-phase experimental
measurements (Hussein, Capp & George 1994). The presence of the particle phase causes
the preferential damping of 〈u′2

g,r〉 in the near field and the preferential increase of 〈u′2
g,x〉

in the intermediate region which, therefore, results in an overall higher anisotropy than for
the single-phase jet. For example, the anisotropy indicated by the ratio of 〈u′2

g,x〉/〈u′2
g,r〉 at

the velocity half-width location of x = 20Dj is 1.6, 1.9 and 2.0 for StD = 0.3, 1.4 and 11.2,
respectively.

Given the strong spatial variation in the gas-phase TKE, figure 11 presents the
normalised TKE radial at three representative locations corresponding to the near,
intermediate and ‘far’ fields, i.e. x/Dj = 1.5, 15.0 and 25.0, respectively. Note that
previous work (Mi et al. 2001) has shown that true similarity of the far field for both
the mean and r.m.s. quantities for a single-phase jet is not reached until x/Dj = 70,
although the equivalent data are not available for a two-phase jet. As shown, compared
with the single-phase jet, the gas-phase TKE is in general damped in the near field of the
particle-laden jets, especially for StD = 0.3 and 1.4, and then increased in the intermediate
field, consistent with the results presented in figure 10. The increase of the gas-phase TKE
persists to the end of the computational domain, for example, at x/Dj = 25, the increase
in the magnitude of the peak TKE for StD = 0.3 is around 10 % of its single-phase counter
part, while that for StD = 1.4 and 11.2 is more than 20 %.

In addition to TKE, the radial profiles of Reynolds stress components, 〈u′
g,xu′

g,x〉,
〈u′

g,ru′
g,r〉 and 〈u′

g,xu′
g,r〉, are presented to provide more details about the modulation

of turbulence. Figure 12 presents the radial profiles of the gas-phase Reynolds
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Figure 11. Radial profiles of the normalised gas-phase TKE at x/Dj = 1.5, 15.0 and 25.0, for the single-phase
case and the particle-laden cases for StD = 0.3, 1.4 and 11.2. The TKE is normalised by the square of the inflow
jet bulk velocity.
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Figure 12. Radial profiles of the normalised Reynolds stresses, i.e. 〈u′
g,xu′

g,x〉, 〈u′
g,ru′

g,r〉 and 〈u′
g,xu′

g,r〉 at
x/Dj = 1.5 (a) and 25 (b), for the single-phase jet and the particle-laden jets StD = 0.3, 1.4 and 11.2. The
y-axis is normalised by the square of the inflow jet bulk velocity.

stress components, 〈u′
g,xu′

g,x〉, 〈u′
g,ru′

g,r〉 and 〈u′
g,xu′

g,r〉 at x/Dj = 1.5 and 25. As can be
observed, the variation of the Reynolds stress due to the presence of the particle phase
strongly depends on the inlet Stokes number.

The results at x/Dj = 1.5 show that the profiles of the Reynolds stresses for all Stokes
number cases, as well as the single-phase case, have a peak in the shear layer (r/Dj = 0.5),
consistent with expectation. Furthermore, the three components of Reynolds stress in the
particle-laden jets are lower than the single-phase jet. This illustrates that the presence of

950 A3-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

76
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.764


H. Zhou and others

r/Dj r/Dj r/Dj r/Dj

T
K

E
 b

u
d
g
et

s/
(U

3 g,
x–

b–
e/

D
j)

0

0.02

–0.02

0.01

–0.01

StD = 0.3 StD = 1.4 StD = 11.2Single phase

Pk’ (3.2)

Sk’ (3.4)

εk’ (3.3)

εk + Sk

0.03

0.04

0.5 1.00 0.5 1.00 0.5 1.00 0.5 1.0 1.50

Figure 13. Radial profiles of the normalised TKE budgets at x/Dj = 1.5, for the single-phase case and the
particle-laden cases StD = 0.3, 1.4 and 11.2. The y-axis is normalised by a rate defined by the inflow jet bulk
velocity and jet diameter (U3

g,x−b−e/Dj).

StD = 0.3 StD = 1.4 StD = 11.2Single phase

Pk’ (3.2)

Sk’ (3.4)

εk’ (3.3)

εk + Sk

(×10–4)

0

5

–5

–10

T
K

E
 b

u
d
g
et

s/
(U

3 g,
x–

b–
e/

D
j)

r/Dj

1 20

r/Dj

1 20

r/Dj

1 20

r/Dj

1 2 30
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particle-laden cases StD = 0.3, 1.4 and 11.2. The y-axis is normalised by a rate defined by the inflow jet bulk
velocity and jet diameter (U3
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particles damps the Reynolds stresses, with the damping of 〈u′
g,ru′

g,r〉 is more significant
than that of 〈u′

g,xu′
g,x〉 and 〈u′

g,xu′
g,r〉. Taking StD = 1.4 as an example, the peak values of

〈u′
g,xu′

g,x〉 and 〈u′
g,xu′

g,r〉 are 21 % and 26 % lower than the single-phase jet, respectively,
while the peak value of 〈u′

g,ru′
g,r〉 is as much as 37 % lower than the single-phase jet. These

findings are consistent with previously published experimental results, which showed that
particles tend to preferentially respond to the axial fluctuations in the gas-phase velocity
compared with the radial fluctuations (Lau & Nathan 2014). As the inlet Stokes number is
increased, the three Reynolds stress components approach the corresponding ones in the
single-phase jet, illustrating that larger particles have less impact on the gas-phase velocity
in the near-field region. This is attributed to the decrease of the overall particle drag as the
inlet Stokes number is increased (as later analysed in figure 13).
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At x/Dj = 25, the three Reynolds stress components in the particle-laden jet are higher
than those in the single-phase jet for all Stokes numbers. This is because the Reynolds
stress decays more slowly in the particle-laden jet than the single-phase jet due to the
greater inertia in the former. The peak magnitude of the Reynolds stress consistently
increases with the inlet Stokes number, which is consistent with the later findings from
figure 14. In addition, the increase of 〈u′

g,xu′
g,x〉 and 〈u′

g,xu′
g,r〉 is more significant than that

of 〈u′
g,ru′

g,r〉. Taking StD = 1.4 as an example, the peak value of 〈u′
g,ru′

g,r〉 is 40 % higher
than the single-phase jet, while the peak values of 〈u′

g,xu′
g,x〉 and 〈u′

g,xu′
g,r〉 are as much as

55 % and 50 % higher than the single-phase jet, respectively.
To better explain the modulation of turbulence by the presence of the particle phase, a

budget analysis of TKE is carried out. The transport equation of the gas-phase TKE (k) in
particle-laden flows yields (Pope 2000; Li et al. 2019):

∂k
∂t

= −〈Ug,i〉 ∂k
∂xi

+ Pk + εk + Sk + Dk, (3.1)

where Pk represents the production term, εk represents the dissipation term and Sk is
a source term due to the presence of the particle phase. The other terms, i.e. turbulent
convection, viscous diffusion and pressure transport are lumped to Dk,

Pk = −〈u′
g,iu

′
g,j〉

∂〈Ug,i〉
∂xj

, (3.2)

εk = −2νg〈s′
g,ijs

′
g,ij〉 = −νg

〈
∂u′

g,i

∂xj

(
∂u′

g,i

∂xj
+ ∂u′

g,j

∂xi

)〉
, (3.3)

Sk = 〈f ′
i u′

g,i〉, (3.4)

Dk = −1
2

〈∂u′
g,ju′

g,iu′
g,i〉

∂xj
− 1

ρg

∂〈p′
gu′

g,j〉
∂xj

+ νg
∂2k

∂xj∂xj
, (3.5)

where u′
g,i and f ′

i represents fluctuating components of the velocity and the
particle-induced force, while Ug,i represents the total instantaneous gas-phase velocity
component. Einstein notation is applied to the repeated indices. Note that the influence
of the particle volume on the gas-phase TKE is neglected as the particle-phase volume
fraction is negligibly low, i.e. ∼10−4. The dissipation term (εk) is computed as the
dissipation rate based on the total instantaneous velocity (Ug) minus the dissipation rate
based on the mean velocity (〈Ug〉). The lumped diffusion term (Dk) is mostly responsible
for spatially transferring TKE within the gas-phase itself, while not making a direct
contribution to turbulence increase or reduction (Li et al. 2019). In the following, the
budget analysis mostly focuses on the source and sink terms, i.e. Pk, εk and Sk. As
illustrated in (3.1), the gas-phase TKE is influenced by the particle phase directly via
the source term Sk, and indirectly via Pk and εk through the particles’ influence on the
gas-phase velocity field.

Figure 13 presents the radial profiles of the normalised TKE budget in the jet near
field, x/Dj = 1.5. As can be seen, the production and dissipation terms reach their peak
magnitudes near to the shear layer region (∼r/Dj = 0.5) for both the single-phase jet and
the particle-laden jets. Compared with the single-phase jet, the presence of particles results
in a notably reduced production term (Pk), especially for cases with small particles, i.e.
StD = 0.3 and 1.4. This is because the presence of particles reduces the spatial gradient
of the gas-phase mean velocity. More specifically, the gas velocity within the upstream
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pipe is lower than the particle phase in the near-wall region (r/Dj > 0.4), due to viscous
drag from the pipe wall, but higher than the particle phase in the core of the jet. Once the
particle-laden flow leaves the pipe, the particle phase retains a similar velocity due to its
higher inertia. Therefore, in the near-field region, the particle phase lags the gas phase in
the high-speed jet core, but leads it near to the low-speed jet edge, resulting in a decrease of
the main component of the velocity gradient, i.e. ∂〈Ug,x〉/∂r, relative to the single phase,
and thus to a decrease in Pk.

It can also be seen that the peak magnitudes of Pk and εk are notably reduced for the low
Stokes number cases of StD = 0.3 and 1.4, but almost unchanged for the highest Stokes
number case (StD = 11.2). The stronger reduction of Pk and εk by the smaller particles
can be qualitatively explained by calculating the magnitude of the particle drag force (F p).
By definition, |F p| ∼ m0

p × Θb/τp × |U slip| × Θ∗, where |U slip| is the magnitude of
the local slip velocity and Θ∗ is the local particle number density normalised by the bulk
number density (Θb). The product of the first three terms scales as 1/d2

p, so that |F p| ∼
|U slip| × Θ∗/d2

p. At the location of x/Dj = 1.5 and r/Dj = 0.5, even though StD = 11.2
has a value of |U slip| that is some 15 times greater than for StD = 0.3, this is more than
offset by the fortyfold increase in d2

p. Moreover, StD = 0.3 has a value of Θ∗ which is
2.5 times greater than for StD = 11.2. Combining all these, |F p| for StD = 0.3 is around
6 times higher than for StD = 11.2 in the near field, which explains why smaller particles
have a stronger impact on the gas-phase velocity in the near-field region and thus also a
stronger reduction of Pk and εk.

The particle-induced source term (Sk) is negative for all three particle-laden cases,
indicating that the direct impact of the particle phase is to dissipate the gas-phase TKE.
The previous analysis also applies here to explain that the magnitude of Sk for StD = 11.2
is much smaller than that for StD = 0.3 and 1.4. It is worth noting that, for the low Stokes
number cases StD=0.3 and 1.4, the magnitude of Sk is comparable to that of the dissipation
term (εk), illustrating that the particles under these conditions play an important role in
dissipating TKE. That is, in addition to the reduction of εk due to the presence of the
particle phase, further dissipation of similar order is provided through Sk. Nevertheless, the
total dissipation, i.e. εk + Sk is approximately the same as that of εk for the single-phase
jet. Meanwhile, the production term is reduced in particle-laden jets due to the decrease of
the mean velocity gradient. Therefore, the reduction of the near-field TKE in particle-laden
jets is mostly due to the reduction of the overall production, rather than the increase of the
total dissipation. Furthermore, the level of reduction for Pk increases monotonically as the
inlet Stokes number is reduced. This explains why StD = 0.3 yields the most significant
damping, while StD = 11.2 yields the least damping for gas-phase TKE in the near field.
Note that figure 13 only presents the source terms, i.e. Pk, εk and Sk for clarity, and
this results in obviously imbalanced TKE budgets. Figure 25 in Appendix B presents the
balanced TKE budgets by including the lumped diffusion term (Dk) and the transport term
due to mean convection.

Figure 14 presents the radial profiles of the normalised TKE budget at the downstream
location of x/Dj = 25. For the single-phase jet, the production term reaches its peak
magnitude near to the shear layer, while the dissipation term exhibits a flat profile from the
centreline to the shear layer region, consistent with previous measurements in a turbulent
single-phase jet (Hussein et al. 1994). Compared with the single-phase case, the peak
magnitudes of Pk and εk are increased in particle-laden jets. This is because the particle
phase leads the gas phase downstream of 25 Dj (see figure 9), increasing the momentum
of the gas phase. The positive momentum transfer slows down the decay of the gas-phase
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velocity and its gradients. This, then, results in greater values of Pk and εk at a given
downstream location than for the single-phase case. Since the higher Stokes number case
yields a slower decay of both the gas-phase velocity and its gradients, owing to the higher
particle inertia, this explains the consistent increase in the peak magnitudes of Pk and εk
with the inlet Stokes number.

The particle-induced source term (Sk) remains negative at 25Dj for all three
particle-laden cases. It is worth noting that the particle phase leads the gas phase at
25Dj, as illustrated by the negative mean slip velocity shown in figure 9. However, Sk
remains negative. This seemingly counterintuitive finding is because the mean slip velocity
determines the mean quantities, e.g. mean drag and mean kinetic energy, but not the
fluctuating quantities such as Sk, which is defined as the product of fluctuating drag and
fluctuating gas-phase velocity (Sk = 〈f ′

i u′
g,i〉). By its definition, there is not a one-to-one

correspondence between the sign of the mean slip velocity and the sign of Sk. The negative
Sk illustrates that the particle phase continues to play a role in dissipating gas-phase TKE.
This confirms that there is no positive TKE transfer from the particle to the gas phase.
Instead, the increase of the intermediate-field TKE in particle-laden jets also results mostly
from the slower decay of the gas-phase velocity. As discussed above, a higher Stokes
number case maintains the axial momentum of the gas phase for a longer distance which,
in turn, results in the StD = 11.2 case yielding the most prominent increase, while the
StD = 0.3 case yields the least increase for the gas-phase TKE in the intermediate field.

3.3. Direction-dependent response of the particle phase
Figure 15 presents scatter plots of the instantaneous axial particle-phase velocity as a
function of the gas-phase velocity at the corresponding particle location. Data are reported
at the velocity half-width location (r = R0.5Ug,x−c) at x/Dj = 15. Also drawn is a reference
line of Up,x = Ug,x, representing the perfect response of particles to the flow field. As
expected, particles of StD = 0.3 and StD = 1.4 exhibit notably stronger response than
those of StD = 11.2. It can be seen that the data are skewed, with the particle phase
tending to lead the gas phase, which is expected to occur at the velocity half-width location
throughout the computational domain (see figure 9). Furthermore, the skewness increases
with StD.

The probability density function (PDF) of the Up,x/Ug,x is shown in figure 16. Data
are reported at the velocity half-width locations at x/Dj = 5.0, 15.0 and 25.0. Consistent
with the findings from figure 15, the PDF in StD = 0.3 is very narrow, with values close
to 1.0, while the PDF becomes boarder with an increase in the Stokes number given an
axial distance, consistent with the fact that the particle response increases as the Stokes
number is reduced. The trend in skewness observed in figure 15 is better illustrated here.
Specifically, the distribution of Up,x/Ug,x is skewed to the side greater than unity. This
can be explained by figure 9, in which the particle phase is shown to lead the gas phase in
the intermediate-field region owing to the higher particle inertia there, resulting in a large
number of samples having Up,x/Ug,x greater than unity. Since larger particles have higher
inertia, this explains why the distribution of Up,x/Ug,x is more skewed in the particle-laden
jet with higher inlet Stokes number. The skewness reduces with downstream distance
following the corresponding decrease in local Stokes number.

To quantify the level of particle response, the conditionally averaged particle velocity
(〈Up,i|Ug,i〉) is plotted as a function of the gas velocity at the particle location for a series of
axial distances and at radial locations corresponding to the velocity half-width. To compute
〈Up,i|Ug,i〉 numerically, Ug,i is divided into 100 bins, and the ensemble average of Up,i
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Figure 15. Scatter of the instantaneous particle velocity versus the gas velocity at the corresponding particle
location. Samples were taken at the velocity half-width location at x/Dj = 15, with a sampling region of 0.2Dj
and 0.5Dj in the r and x directions, respectively.
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Figure 16. Probability density function of the ratio Up,x/Ug,x. Samples were taken at the velocity half-width
location at x/Dj = 15, with a sampling region of 0.2Dj and 0.5Dj in the r and x directions, respectively.

is calculated within each bin. A perfect particle response would result in 〈Up,i|Ug,i〉 =
Ug,i. In figure 17(a), 〈Up,x|Ug,x〉 is plotted against Ug,x to present the particle response
in the axial direction, while in figure 17(b), 〈Up,r|Ug,r〉 is plotted against Ug,r to present
the particle response in the radial direction. The linear regression for each direction was
also calculated, such that the slope, i.e. KUx = arg minK ‖ KUg,x + bx − 〈Up,x|Ug,x〉‖2 or
KUr = arg minK ‖ KUg,r + br − 〈Up,r|Ug,r〉‖2, measures how strongly the particle-phase
velocity is correlated to the gas-phase velocity in the corresponding direction, with a value
of unity meaning perfect correlation, and a value of zero meaning no correlation. It can be
seen that both the axial and radial particle responses increase consistently with the axial
distance, as indicated by the observation that KUx and KUr approach unity. This is expected
because the local Stokes number decreases with the square of axial distance.
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Figure 17. Conditionally averaged particle velocity as a function of gas velocity at the corresponding particle
location for a series of axial distances and at radial locations corresponding to the velocity half-width (where
the sampling region is 0.2Dj and 0.5Dj in the r and x directions, respectively). (a) Axial velocity component;
(b) radial velocity component. The dashed black lines are linear fits of the data. The dot-dashed lines represent
the reference of unity slope.

Figure 18 presents the axial variation of the dimensionless particle response indicated
by KUx and KUr . Figure 18(a) presents the values of KUx and KUr obtained at the velocity
half-width location for the three particle-laden jets. As can be observed, for a given axial
distance, the values of KUx and KUr approach unity with a decrease in the values of the
inlet Stokes number. Moreover, KUx and KUr both increase with axial distance, which is
as expected given that the local Stokes number decreases with x−2. Furthermore, KUx is
closer to unity than KUr for a given axial distance in all three particle-laden jets, illustrating
the direction-dependent response of particles to the axial gas-phase velocity component in
comparison with the radial component. For example, for StD = 0.3, mx exceeds 0.95 as
near to the inlet plane as x/Dj = 5, indicating a close response to the axial gas-phase
velocity. However, KUr is only 0.8 at the same axial distance (x/Dj = 5), and only exceeds
0.95 for x > 20Dj. Interestingly, the value of KUr is as low as ∼0.07 in the near field for
the case where StD = 11.2. This implies that the particles have a near-zero correlation to
the radial gas velocities near the inlet, particularly for large Stokes numbers.

Figure 18(b) presents the corresponding results sampled along the centreline as for those
presented along the half-width in figure 18(a). Comparing these figures shows that some
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Figure 18. Axial variation of the particle response, as indicated by KUx and KUr . Samples taken from (a) the
velocity half-width; and (b) the centreline.

differences in the particle response, as indicated by KUx and KUr , occur for the two radial
locations. This is as expected since the particle response depends on the characteristic
flow time scale and the local particle concentration, both of which vary radially. However,
the key conclusions remain the same, i.e. the particle response improves with an increase
in axial distance and a decrease in Stokes number, with the particle phase preferentially
responding more to the axial velocity than the radial velocity. The preferential axial
response implies a larger characteristic time scale of the gas-phase flow field in the axial
direction than in the radial direction (Lau & Nathan 2016), which results in a smaller
characteristic Stokes number in the axial direction.

To compute the characteristic Stokes number in the axial and radial directions (Stlt,x and
Stlt,r ), the characteristic flow time scale in these two directions is defined based on the axial
and radial integral length scales, respectively, i.e. Stlt,x(x) = τp/(lt,x(x, 0)/〈Ug,x−c(x)〉)
and Stlt,r(x) = τp/(lt,r(x, 0)/〈Ug,x−c(x)〉), where lt,x(x, 0) and lt,r(x, 0) represent the
axial and radial integral length scales on the centreline, and 〈Ug,x−c(x)〉 is the
centreline mean axial velocity. The integral length scale is computed by integrating the
velocity auto-correlation function, i.e. lt,x(x, r) = ∫∞

0 R11(�x; x, r)(d�x) and lt,r(x, r) =∫∞
0 R12(�r; x, r)(d�r). Following the definition of the velocity auto-correlation function

(Pope 2000), R11(�x; x, r) and R12(�r; x, r) are computed as

R11(�x; x, r) = 〈u′
g,x(x + �x, r)u′

g,x(x, r)〉/〈u′
g,x(x, r)u′

g,x(x, r)〉, (3.6)

R12(�r; x, r) = 〈u′
g,x(x, r + �r)u′

g,x(x, r)〉/〈u′
g,x(x, r)u′

g,x(x, r)〉, (3.7)

where u′
g,x(x, r) is the gas-phase fluctuating axial velocity at the location (x, r). Figure 19

presents the velocity auto-correlation functions on the centreline at x/Dj = 20.0, i.e.
R11(�x; 20Dj, 0) and R12(�r; 20Dj, 0). It is known that statistical error can pollute
auto-correlation functions at large separation distances, which prevents the accurate
calculation of the integral length scale where integration to infinity is used. Therefore,
exponential fits were employed for the raw data following previous work (Bewley, Chang
& Bodenschatz 2012). As can be seen, StD = 0.3 yields a slightly broader distribution
of R11, while StD = 1.4 and 11.2 yield notably narrower R11 than for the single-phase jet.
Specifically, R11 drops to below 0.1 for �x/Dj > 1.7, 1.9, 0.74, and 0.92 in the single-phase
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Figure 19. Log-normal fitted velocity auto-correlation functions on centreline at x/Dj = 20.0, where markers
represent the raw data and lines represent the exponential fit: (a) R11(�x; 20Dj, 0); (b) R12(�r; 20Dj, 0).
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Figure 20. Axial variations of three measures of the centreline integral length scale: (a) axial integral length
scale (lt,x); (b) radial integral length scale (lt,r); (c) ratio of lt,r/lt,x.

jet and the particle-laden jet with StD = 0.3, 1.4 and 11.2, respectively. The same trend is
observed for R12. Furthermore, R12 is notably narrower than R11, with the former dropping
to below 0.1 for �r/Dj > 0.54, 0.72, 0.32, and 0.34 in single-phase jet and particle-laden
jets with StD = 0.3, 1.4 and 11.2, respectively. The narrower R12 compared with R11,
implies that the integral length scale in radial direction (lt,r) is smaller than its axial
counterpart (lt,x). This is illustrated further in figure 20.

Figure 20(a,b) presents the axial evolution of the centreline integral length scales in
the axial and radial directions, respectively, i.e. lt,x(x, 0) and lt,r(x, 0). Since lt,x and lt,r
are determined from the integration of a two-point correlation function, its statistical
convergence requires many more sample points than do single-point quantities. Although
the results presented in figure 20 have not reached full statistical convergence, the
convergence in figure 20(a,b) is sufficient to show that lt,x is larger than the corresponding
lt,r throughout the entire domain. Furthermore, the particle-laden case with StD = 0.3
generally follows that of the single-phase jet, while the cases of StD = 1.4 and 11.2
exhibit notably different profiles at 15.0 < x/Dj < 25.0 compared with their single-phase
counterpart. Moreover, figure 20(c) shows that the ratio of lt,r/lt,x is mostly below 0.5
at all selected locations. The larger integral length scale in the axial direction results in a
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Figure 21. Axial variation of the characteristic local Stokes number based on the integral scale in the axial
and radial directions, Stlt,x and Stlt,r : (a) StD = 0.3 and 1.4; (b) StD = 11.2.

smaller characteristic Stokes number in the axial direction compared with that in the radial
direction. As an indicator of isotropy, lt,r/lt,x = 0.5 corresponds to isotropic turbulence
(Pope 2000). Due to the anisotropic nature of the shear-driven turbulence in a turbulent
jet, lt,r/lt,x is mostly below 0.5.

Figure 21 presents the axial variation of the local Stokes numbers based on the integral
scale in the axial and radial directions, i.e. Stlt,x and Stlt,r , respectively. The dashed lines
are quadratic functions to show that Stlt,x and Stlt,r reduce quadratically with axial distance.
As a result of the larger integral length scale in the axial direction, Stlt,x is in general less
than half that of the corresponding Stlt,r . This explains the preferential particle response in
the axial direction.

Figure 22 combines the results of all three Stokes number cases and presents the
particle response indicated by KUx and KUr as a function of the axial and radial Stokes
numbers (Stlt,x and Stlt,r ), respectively. Specifically, figure 22(a,b) presents the KUx and KUr
computed from particles at the centreline and velocity half-width locations, respectively.
As can be seen, the two profiles of KUx versus Stlt,x and of KUr versus Stlt,r collapse
reasonably well, especially for local Stokes numbers less than 20. This illustrates that
the current definitions of Stlt,x and Stlt,r qualitatively describe the particle response in the
sense that the particle phase would exhibit a similar level of response in the axial and radial
directions given the same Stlt,x and Stlt,r , i.e. the particle response itself is independent of
the direction, and the differences in particle behaviour are attributable to differences in
the fluid time scale in the axial and radial directions. Nevertheless, despite the use of
these directional Stokes numbers, KUx still has greater values than KUr , particularly at
high Stokes numbers, implying that the directional Stokes numbers used here do not fully
capture the anisotropy in the flow. This implies that the particle response as indicated by
KUx and KUr depends on additional parameters to the local flow time and length scales,
such as the local mass loading and the history of particle–fluid interaction. Additionally,
it should also be noted that, in a turbulent jet, a range of turbulence scales are present
at any given location within the flow. Therefore, while the local Stokes number is one
measure of the particle response, it is necessary to incorporate additional parameters to
fully characterise the particle response.
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Figure 22. Particle response indicated by KUx and KUr as a function of Stlt,x and Stlt,r , respectively. Samples
taken from (a) the centreline; and (b) the velocity half-width location.

4. Conclusions

Point-particle DNSs have been carried out for the Adelaide particle-laden round jet, which
is in the two-way coupled regime with a jet Reynolds number of the order of 10 000.
A particle injection method is proposed such that the inflow conditions of the jet in
terms of particle number density and velocity match the experimental measurements.
The investigation focussed on three cases with inlet Stokes numbers of 0.3, 1.4 and 11.2.
The particle reorganisation in the near field, as well as the spatial distribution of the
mean particle number density, the mean and r.m.s. particle velocity, are reasonably well
reproduced by simulations, although some significant differences persist. Nevertheless, the
agreement is sufficient for the subsequent analysis on turbulence modulation and particle
response based on the simulation results.

The extent of turbulence modulation is quantified by the gas-phase TKE. Compared with
the single-phase jet, the gas-phase TKE is generally damped in the near field (x < 5Dj)
of these particle-laden jets, especially for StD = 0.3 and 1.4, and then increases in the
intermediate field (5Dj < x < 20Dj). The increase of the gas-phase TKE persists to the
end of the computational domain, i.e. 30Dj. The presence of the particle phase causes the
preferential damping of 〈u′2

g,r〉 in the near field and the preferential increase in 〈u′2
g,x〉 within

the intermediate field, resulting in an overall higher anisotropy than the single-phase jet.
A budget analysis of the production (Pk), dissipation (εk) and particle-induced source

(Sk) terms of the gas-phase TKE was also carried out. Upstream from 1.5Dj, the peak
magnitudes of Pk and εk are reduced in particle-laden jets compared with the single-phase
jet. This is explained by the reduced gradient of the gas-phase velocity in the near field,
where the particle phase lags the gas phase in the high-speed core but leads the gas phase in
the low-speed jet edge due to its higher inertia. Despite a reduction in gas-phase dissipation
of kinetic energy, εk, by the presence of the particle phase, the particles introduce an
additional dissipation term, Sk, so that the total dissipation, i.e. εk + Sk, is of a similar
magnitude to εk for the single-phase jet. However, Pk is reduced in the particle-laden jets
relative to the single-phase counterpart due to the decrease of the mean velocity gradient.
Therefore, the reduced near-field TKE in the particle-laden jets is attributable mostly to
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the reduction of the overall production, rather than to any increase of the total dissipation.
Downstream of 25Dj, the particle-laden jets exhibit greater values of Pk and εk than does
the single-phase jet. This is because the particle phase leads the gas phase here owing
to the greater particle inertia, which transfers momentum to the gas phase, reducing the
decay of the gas-phase velocity and its gradients. The particle-induced source term remains
negative, confirming that there is no direct injection of TKE from the particle phase but,
instead, the increase in the far-field TKE in particle-laden jets results mostly from the
reduced velocity decay of the gas phase.

The correlation between the particle-phase velocity and the gas-phase velocity, i.e. the
particle response, was quantified by calculating the slope of the linear regressions of
〈Up,x|Ug,x〉 as a function of Ug,x and of 〈Up,r|Ug,r〉 as a function of Ug,r, i.e. KUx and
KUr , where a value of unity implies perfect correlation, and a value of zero implies no
correlation. It is found that KUx and KUr approach unity as the axial distance increases,
which is as expected given that the local Stokes number decreases with x−2. More
interestingly, particles exhibit a significantly stronger response to the gas-phase velocity
in the axial direction than in the radial direction. To explain this, the characteristic Stokes
number in the axial and radial directions, i.e. Stlt,x and Stlt,r , is defined based on the
centreline integral length scale in the corresponding directions (lt,x and lt,r) and the
centreline mean velocity (〈Ug,x−c〉). The ratio of lt,r to lt,x was found to be mostly below
0.5 due to the anisotropic nature of the shear-driven turbulence. The greater value of lt,x
leads to a smaller value of Stlt,x than for Stlt,r , which explains the preferential particle
response to the axial gas-phase velocity component.

A new dimensionless figure is presented that collapses the local normalised particle
response as a function of the local Stokes number based on the integral length scale.
Both the axial and radial components of the normalised particle response, as indicated
by KUx and KUr , collapse reasonably well with their respective local Stokes number, i.e.
Stlt,x and Stlt,r . This provides a new qualitative measure of the particle response in a sense
that the particle phase would exhibit a similar level of response in the axial and radial
directions given the same Stlt,x and Stlt,r , i.e. the particle response itself is independent of
the direction, and the differences in particle behaviour are attributable to differences in the
fluid time scale in the axial and radial directions.
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Appendix A. Self-similarity

New data are presented of the self-similarity of the gas-phase quantities in particle-laden
jets. These complement previous experimental work on particle-laden jets (Lau & Nathan
2014, 2016), and on the self-similar behaviour of the particle-phase quantities. The
axial variation of the mean centreline gas-phase velocity (〈Ug,x−c−e〉/〈Ug,x−c〉) and the
half-width of the gas-phase mean velocity (R0.5Ug,x−c/Dj) are presented in figure 23.
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Figure 23. Axial profiles of (a) gas-phase mean axial velocity on the centreline (〈Ug,x−c〉); and (b) half-width
based on gas-phase mean axial velocity (R0.5Ug,x−c ). Dotted cyan: linear fits.

As can be seen, all three cases exhibit an approximately linear decay of the centreline
velocity and a linear spread of the velocity half-width between approximately 15Dj
and 30Dj. Both the velocity decay and the jet spreading rates decrease consistently
with an increase in the inlet Stokes number from 0.3 to 11.2, consistent with previous
measurements of the particle phase (Lau & Nathan 2014, 2016). For StD = 0.3, 1.4 and
11.2, the coefficients of velocity decay (K1) are 8.12, 8.88 and 12.48, respectively, while
the coefficients of jet spreading (K2) are 0.081, 0.073 and 0.051, respectively. Note that
the equivalent values reported in single-phase jets (Bogusławski & Popiel 1979; Xu &
Antonia 2002) are K1 ∈ [5.90, 6.50] and K2 ∈ [0.070, 0.086]. Therefore, compared with
a single-phase jet, the presence of the particle phase causes a greater change in K1 than
in K2, implying that the presence of the particle phase has less influence on the gas-phase
spreading rate than on the decay rate.

Figure 24(a,b) presents the corresponding axial evolution of the local Stokes number,
which is defined as StL = τp/τg,L = (ρpd2

p/(18νgρg))/(2R0.5Ug,x−c/〈Ug,x−c〉). Since
〈Ug,x−c〉 decays approximately linearly with 1/x, while R0.5Ug,x−c spreads approximately
linearly with x, the local Stokes number decays quadratically with the axial distance, as
illustrated by the quadratic fits in figure 24(a,b). For StD = 0.3, the local Stokes number
decreases from 0.38 at the inlet to 0.03 at 30Dj, while for StD = 1.4, StL decreases from
1.80 at the inlet to 0.15 at 30Dj. For StD = 11.2, StL decreases from 14.2 at the inlet
and remains greater than unity throughout the computational domain. Figure 24(c,d)
presents the axial evolution of the centreline Stokes number based on the Kolmogorov
scale ( Stη = τp/τη, where τη is the local Kolmogorov scale of the gas phase). As shown,
Stη exhibits some non-monotonic variation within the first 10Dj from the inlet, and there
is no simple correlation between Stη and StL in this region. Over the range of Dj, Stη also
exhibits quadratic decay with the axial distance. The quadratic decay of Stη is as expected
because a scaling analysis yields Stη/StL ∝ Re0.5

D (Casciola et al. 2010), while StL ∝ x−2.
It is worth noting that, in a particle-laden jet, as the local Stokes number is spatially

varying, the mean and r.m.s. quantities only approach the self-similar state in the far
field where the local Stokes number approaches zero such that the particle-laden jet
behaves like a single-phase jet. Moreover, for the particle-laden jets considered in this
work, the presence of the co-flow further hinders true self-similarity being achieved, as
true self-similarity only occurs for a jet issuing into a stationary medium. Therefore, it
is important to appreciate that the results shown above only present a quasi-self-similar
behaviour.
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Figure 24. Axial variation of the local Stokes number (StL) and Stokes number based on the Kolmogorov
scale (Stη): (a,c) StD = 0.3 and 1.4; (b,d) StD = 11.2. Dotted cyan: quadratic fits.

Appendix B. Gas-phase TKE budgets

Figure 25 presents the full gas-phase TKE budgets at x/Dj = 1.5 and 25, respectively. In
addition to the source terms, i.e. production (Pk), dissipation (εk) and particle-induced
source (Sk) presented in § 3.2, the transport term due to mean convection (Tk =
−〈Ug,i〉(∂k/∂xi)), as well as the lumped diffusion term (Dk) composed of turbulent
diffusion (−1

2(〈∂u′
g,ju

′
g,iu

′
g,i〉/∂xj)), pressure diffusion (−(1/ρg)(∂〈p′

gu′
g,j〉/∂xj)) and

viscous diffusion (νg(∂
2k/(∂xj∂xj))), are shown.

Specifically, figure 25(a) presents the TKE budgets at upstream of x/Dj = 1.5. As can
be observed, both the lumped diffusion term (Dk) and the transport term due to mean
convection (Tk) play important roles in balancing the TKE budgets. Figure 25(b) presents
the TKE budgets at downstream of x/Dj = 25. As shown, for the single-phase jet, the
positive production term (Pk) reaches its local peak near to the shear layer, while the
negative dissipation term (εk) exhibits a flat profile from centreline to shear layer region
and then approaches zero as the radial distance increases. The mean flow convection (Tk)
is mostly positive, the peak magnitude of Tk occurs near to the centreline with a peak
value similar to the peak magnitude of the production term. By comparison, the lumped
diffusion (Dk) is mostly negative, reaching its peak magnitude near to the shear layer, with
the peak magnitude being ∼50 % of the peak production. These findings are consistent
with the known dynamics of single-phase turbulent jets (Pope 2000). For particle-laden
jets, the presence of the particle phase varies the spatial gradient of the gas-phase velocity,
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Figure 25. Radial profiles of the normalised TKE budgets, i.e. production (Pk), dissipation (εk),
particle-induced source (Sk), mean convection (Tk) and lumped diffusion (Dk) at x/Dj = 1.5 (a) and 25 (b), for
the single-phase case and the particle-laden cases StD = 0.3, 1.4 and 11.2. The y-axis is normalised by a rate
defined by the inflow jet bulk velocity and jet diameter (U3

g,x−b−e/Dj).

and therefore, affects all of the gas-phase TKE budgets, including the production (Pk),
dissipation (εk), mean transport (Tk) and lumped diffusion (Dk) terms.

Appendix C. Sensitivity to grid resolution and Mach scaling

A grid convergence test was conducted by comparing the results from the simulation
with the baseline grid resolution and one with 1.5× finer resolution. Considering that
the velocity gradient has its maximum value at the inlet plane, the simulation results are
expected to be most sensitive to grid resolution in the near-field region. Figure 26 presents
the radial profiles of the mean gas-phase velocity (〈Ug,x〉), the TKE, the TKE production
term (Pk) and the particle-induced TKE source term (Sk) at x/Dj = 5. As shown, the
first moment statistics indicated by 〈Ug,x〉 are very similar. The second moment statistics
indicated by TKE, Pk and Sk also only exhibit minor differences due to grid resolution.

Moreover, figure 27 presents the normalised differences in 〈Ug,x〉, TKE, Pk and Sk at
the velocity half-width locations of x/Dj = 5 and 10. The normalised difference in terms
of variable φ is computed as �φ(r, x) = |φbase(r, x) − φfine(r, x)|/|φfine(r, x)|, where the
subscripts ‘base’ and ‘fine’ represent the prediction with the baseline and 1.5× finer grid
resolution, respectively. As can be observed, the difference at x/Dj = 10 is in general
smaller than that at x/Dj = 5, justifying that the results of the simulations are typically
more sensitive to grid resolution in the near field. The differences in terms of the first
moment statistics are less than 1 %, while the second moment statistics exhibit larger
differences of up to 5.2 %. However, the differences remain less than 5 % in general,
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Figure 26. Radial profiles of normalised gas-phase mean axial velocity (〈Ug,x〉/Ug,x−b−e), TKE
(TKE/U2

g,x−b−e), TKE production (Pk/(U3
g,x−b−e/Dj)) and particle-induced TKE source (Sk/(U3

g,x−b−e/Dj))
at x/Dj = 5, for the prediction with the baseline grid and 1.5× finer grid.
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Figure 27. Normalised difference between baseline grid and 1.5× finer grid, in terms of gas-phase mean
axial velocity (〈Ug,x〉), TKE, TKE production (Pk) and particle-induced TKE source (Sk) at x/Dj = 5 and 10.

illustrating that a reasonable grid convergence can be obtained with the baseline grid
resolution.

As mentioned in § 2.3, Mach scaling was applied to reduce the computational cost,
resulting in an inflow Mach number of 0.5. To access the effect of compressibility,
addition simulations with a lower inflow Mach number of 0.125, where compressible
effects are expected to be small, were performed on a shorter computational domain for
demonstration purposes; note that the other critical non-dimensional parameters, e.g. inlet
Reynolds and Stokes numbers, remain unchanged.

Figure 28 presents the radial profiles of the gas-phase mean velocity and TKE predicted
with inflow Mach numbers of 0.5 and 0.125. As shown, the differences between the two
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Figure 28. Radial profiles of gas-phase mean axial velocity (〈Ug,x〉/Ug,x−b−e), TKE (TKE/U2
g,x−b−e) at

x/Dj = 5, 10 and 15, for inflow Ma = 0.5 and 0.125.

cases are small, illustrating that the compressible effects with Ma = 0.5 on the mean and
fluctuating gas-phase velocity field can be safely ignored.

In addition, figure 29 presents the radial profiles of the particle-phase mean velocity
and number density predicted with inflow Mach numbers of 0.5 and 0.125. As can be
observed, the differences in particle-phase quantities due to the inlet Mach number are
minor, illustrating that the compressible effects with Ma = 0.5 on particle drag can also be
safely ignored. The findings from figures 28 and 29 illustrate that the compressible effects
on both gas- and particle-phase are in general minor, justifying the scaling operation to
inflow Ma = 0.5.

Appendix D. Particle clustering

The brief analysis of particle clustering presented in § 3.1 is mostly based on visual
evidence, a Voronoi diagram approach (Monchaux, Bourgoin & Cartellier 2010) is
therefore employed to perform a more quantitative analysis. In this approach the domain is
divided into cells defined based on particle positions and, therefore, the Voronoi cell area
provides a measure of the local particle concentration.

The PDF of the Voronoi area is calculated to quantify the clustering of particles.
Figure 30 presents the PDF of the logarithmic normalised Voronoi area (V∗ = log(V),
where V = A/〈A〉, with A and 〈A〉 being the Voronoi area and its mean, respectively)
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Figure 29. Radial profiles of particle-phase mean axial velocity (〈Up,x〉/Ug,x−b−e) and number density
(〈Θ〉/Θb−e) at x/Dj = 5, 10 and 15, for inflow Ma = 0.5 and 0.125.

at x/Dj = 15. In comparison, the PDF of a Gaussian distribution having the same mean
and r.m.s. as V∗, as well as the PDF of a random Poisson process (RPP), are shown as
reference, the latter represents the scenario where particles are randomly distributed in
space with no clustering. As can be observed, the PDF of the logarithmic Voronoi area
(V∗) is very close to a Gaussian distribution, illustrating that the PDF of the Voronoi area
(V) itself is close to a log-normal distribution. In comparison with the PDF for a RPP, the
PDFs for all three particle-laden jets are broader, illustrating the deviation from random
distribution due to particle clustering. These are consistent with the findings in Monchaux
et al. (2010). The span of V is over five orders of magnitude, indicating the presence of
extremely large and small Voronoi cells, which is also an indicator of significant particle
clustering. Furthermore, the r.m.s. of V∗ for StD = 0.3, 1.4 and 11.2 is 1.2, 1.6 and 0.9,
respectively, illustrating that, at the axial location of x/D = 15, StD = 1.4 exhibits the
strongest particle clustering, followed by StD = 0.3 and then StD = 11.2. Note that the
r.m.s. of V∗ for a RPP is around 0.5, the larger r.m.s. of V∗ found in particle-laden jets
again illustrates the presence of particle clustering.

To quantify the correlation between particle clusters and low fluid vorticity regions,
figure 31 presents the scatter of the normalised vorticity magnitude (|ω∗| = |ω|/〈|ω|〉)
versus the normalised particle number density (Θ∗ = Θ/〈Θ〉), where 〈Θ〉 and 〈|ω|〉 are
the ensemble averaged number density and vorticity magnitude of all samples. Note that Θ
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Figure 30. The PDF of the logarithmic normalised Voronoi area (log(V)) at x/Dj = 15, in comparison with
the PDFs of the corresponding Gaussian distribution and a RPP.
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Figure 31. Scatter plots of the logarithmic normalised particle number density (log(Θ∗)) versus normalised
vorticity magnitude (|ω∗|) at x/Dj = 15, and the conditional mean of 〈|ω∗| | log(Θ∗)〉.

is computed as the inverse of the local Voronoi area. Samples presented in figure 31 were
taken at the axial location of x/Dj = 15. As illustrated by the conditional mean of |ω∗| on
Θ∗, i.e. 〈|ω∗| | Θ∗〉, for the two particle-laden jets with small inlet Stokes numbers, i.e.
StD = 0.3 and 1.4, it is apparent that the particle number density is negatively correlated
with the vorticity magnitude, illustrating that particles tend to concentrate in low-vorticity
regions, consistent with expectation (Squires & Eaton 1991). Meanwhile, for StD = 11.2,
the particle number density exhibits much less correspondence to the vorticity magnitude
due to the relatively large particle inertia. The findings from figure 31 are consistent with
the visual evidence presented in figure 4.
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