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associated resonances
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Quadratic nonlinear interactions between two colliding internal gravity wave beams
in a uniformly stratified fluid, and the resulting radiation of secondary beams with
frequencies equal to the sum and difference of those of the primary beams, are
discussed. The analysis centres on oblique collisions, involving beams that propagate
in different vertical planes. The propagation directions of generated secondary beams
are deduced from kinematic considerations and the use of radiation conditions, thus
extending to oblique collisions previously derived selection rules for plane collisions.
Using small-amplitude expansions, radiated-beam profiles at steady state are also
computed in terms of the characteristics of the colliding beams. It is pointed out
that, for certain oblique collision configurations, radiated beams with frequency equal
to the difference of the primary frequencies have unbounded steady-state amplitude.
This resonance, which has no counterpart for plane collisions, is further analysed via
the solution of an initial-value problem; ignoring dissipation, the transient resonant
response grows in time like t1/2, a behaviour akin to that of forced waves at cut-off
frequencies.
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1. Introduction
Internal gravity wave beams are time-harmonic plane-wave disturbances with a

general spatial profile in continuously stratified fluids. According to the dispersion
relation of this anisotropic wave motion, the frequency of a sinusoidal plane wave
depends solely on the orientation of the wavevector relative to the vertical, and energy
is transported along, rather than perpendicularly, to the wave crests. As a result,
a two-dimensional, spatially localized time-harmonic source, instead of cylindrical
wavefronts, gives rise to an X-shape pattern comprising four wave beams that stretch
radially outwards from the source (see, for example, Lighthill 1978, § 4.4). This rather
unusual wave pattern, known as ‘St Andrew’s Cross’, was generated in the laboratory
by Mowbray & Rarity (1967) using as source an oscillating cylinder in a stratified
fluid tank, thereby also producing the first experimental documentation of internal
wave beams.

More recent studies of internal wave beams are motivated mostly by ocean-related
problems. In this context, a matter of considerable interest is the interaction of the
barotropic tide with sea-floor topographic features and the associated transfer of energy
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to internal waves, a process that is believed to be important in deep-ocean mixing.
The role of internal wave beams in this so-called tidal conversion was brought out by
Bell (1975). Based on the linearized governing equations, he studied the generation
of internal waves by a time-harmonic current of uniformly stratified fluid of infinite
depth, representing the tide, over locally confined topography of small steepness. The
far-field response according to this simple model comprises radiating wave beams at
the tidal frequency and its harmonics below the buoyancy frequency of the background
flow. Later, Khatiwala (2003) accounted for the effects of a finite ocean in Bell’s
model, and Lamb (2004) carried out fully numerical simulations of tidal flow over a
ridge of finite steepness. The latter study first directed attention to the significance of
nonlinear interactions between internal wave beams. Such interactions may occur close
to boundaries where an incident and reflected beam meet, and give rise to additional
reflected beams with frequencies equal to the harmonics of that of the incident beam.
In addition, nonlinear interactions are possible in the interior of the flow where two
wave beams of different frequencies may collide, resulting in the radiation of new
beams with frequencies equal to the sum and difference of those of the colliding
beams. These nonlinear mechanisms are also evident in later numerical simulations
(Gerkema, Staquet & Bouruet-Aubertot 2006) as well as in laboratory experiments
(Peacock & Tabaei 2005; Zhang, King & Swinney 2007) and field observations
(Stashchuk & Vlasenko 2005).

In the further development of the theory, Tabaei, Akylas & Lamb (2005) studied
nonlinear interactions of wave beams in a stationary uniformly stratified fluid. Using
small-amplitude expansions, they computed steady-state profiles of radiated secondary
beams resulting from reflections at a sloping boundary and from collisions of two
freely propagating beams. An essential element in this steady-state analysis is the use
of suitable radiation conditions, to ensure that the primary and the emitted secondary
beams transport energy in accordance with causality. As a result of these conditions,
not all secondary beams that are geometrically admissible may be excited by quadratic
interactions. For beam collisions, in particular, Jiang & Marcus (2009), by examining
in detail the restrictions imposed by radiation conditions, derived a set of rules for
predicting which secondary beams, of the eight in total that are possible geometrically
in each collision configuration, can in fact be generated by quadratic interactions. We
remark that some of these restrictions were overlooked in table 1 and in figures 6 and
7 of Tabaei et al. (2005). However, (5.9) and (5.14) in Tabaei et al. (2005), which
provide explicit expressions for the radiated-beam profiles, observe the appropriate
radiation conditions and are consistent with the selection rules of Jiang & Marcus
(2009).

In contrast to the studies cited above, which assume two-dimensional flow and
hence planar interactions of internal wave beams, the present paper is concerned with
three-dimensional interactions due to collisions of beams that propagate in different
vertical planes. As revealed by recent laboratory experiments and direct numerical
simulations, oscillatory flow over a three-dimensional bottom obstacle can generate
second-harmonic wave beams not only along, but also perpendicularly to the flow
direction (King, Zhang & Swinney 2010). This suggests that oblique beam collisions
of the type discussed here may arise from the interaction of the tide with complex
three-dimensional topography.

In oblique collisions, quadratic interactions again give rise to new beams with
frequencies equal to the sum and difference of those of the colliding beams, but
the propagation directions of the radiated beams are not obvious. Using kinematic
arguments and suitable radiation conditions, we first determine the propagation
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direction of each emitted secondary beam, thus extending to oblique collisions the
selection rules derived in Jiang & Marcus (2009) for plane collisions. Attention is
then focused on computing steady-state profiles of secondary beams, employing small-
amplitude expansions along the lines of Tabaei et al. (2005). Sample computations
suggest that, as the degree of obliqueness of a collision is varied, radiated beams
with frequency equal to the sum of the frequencies of the colliding beams are
strongest for a plane collision. On the other hand, it turns out that radiated beams
with frequency equal to the difference of the primary frequencies have unbounded
steady-state amplitude for certain oblique orientations of the colliding beams. This
interesting feature of oblique collisions is further analysed by solving an initial-value
problem that mimics the gradual development of secondary beams, following the
collision of the two primary beams. At the critical conditions where the steady-state
beam amplitude is unbounded, ignoring dissipation, the transient response grows in
time like t1/2, a resonance similar to that found for forced waves at cut-off frequencies
in simpler problems (Aranha, Yue & Mei 1982; Akylas 1984). Resonant collisions
of internal wave beams may thus prove to be an efficient mechanism for significant
energy exchange between colliding and radiated beams.

The present analysis can be readily extended to include the effects of background
rotation, which may influence collisions of tidally generated wave beams.

2. Preliminaries
Employing the same scalings as in Tabaei & Akylas (2003), the equations governing

inviscid, incompressible, uniformly stratified Boussinesq flow take the dimensionless
form

∇ ·u= 0, (2.1)

ρt + u ·∇ρ − w= 0, (2.2)

ut + u ·∇u=−∇p− ρez. (2.3)

Here, u = (u, v,w) is the velocity field, p and ρ are the reduced pressure and density,
respectively, and ez is a unit vector pointing upwards along the vertical (z) direction.
Under the assumed flow conditions, the Brunt–Väisälä frequency is constant and has
been normalized to unity.

From the equation system (2.1)–(2.3), by straightforward manipulation, it follows
that

∇2wtt +∇2
Hw=R, (2.4)

where

R =∇2
H{u ·∇ρ − (u ·∇w)t} + {∇H · (u ·∇uH)}zt, (2.5)

uH = (u, v) being the velocity, ∇H = (∂/∂x, ∂/∂y) the gradient and ∇2
H = ∂2/∂x2 +

∂2/∂y2 the Laplacian in the horizontal plane. Note that the linear part of (2.4) involves
only the vertical velocity w, and the nonlinear terms have been grouped together
on the right-hand side. This equation will prove particularly useful in the ensuing
analysis.

The left-hand side of (2.4) confirms that the frequency ω of sinusoidal plane waves
obeys the well-known dispersion relation of internal gravity waves,

ω2 = sin2θ, (2.6)
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where θ denotes the angle of inclination to the vertical of the wavevector k =
k(sin θ cosφ, sin θ sinφ, cos θ). Since ω is independent of the wavevector magnitude
k and the azimuthal angle φ, the group velocity cg = ∇kω is orthogonal to the phase
velocity c = (ω/k2)k and cg lies in the same vertical plane as c. Moreover, as it turns
out, c and cg have opposite vertical components:

cg · c= 0, (2.7a)
(c+ cg) · ez = 0. (2.7b)

The fact that ω is independent of k makes it possible to construct plane wave beams,
by superposing sinusoidal plane waves with wavevectors k pointing along a fixed
direction:

u= U(η)e−iωt + c.c., ρ = R(η)e−iωt + c.c., (2.8)

where c.c. denotes the complex conjugate and

U =
∫ ∞

0
Û(k)eikη dk, R=

∫ ∞
0

R̂(k)eikη dk, (2.9)

with

Û = A(k)(− cot θ cosφ,− cot θ sinφ, 1), (2.10a)

R̂= i
sin θ

A(k). (2.10b)

This class of wave disturbances is uniform in the along-beam direction, which
coincides with cg, and the velocity and density profiles (2.9) are functions of the
cross-beam coordinate η = x sin θ cosφ + y sin θ sinφ + z cos θ alone. Also, in view of
(2.1), u is perpendicular to k and hence to the cross-beam direction as well; as a result,
the nonlinear terms in (2.2)–(2.3) and (2.4) vanish, and uniform wave beams of the
form (2.8) are exact nonlinear solutions irrespective of the spectral amplitude A(k) in
(2.10) (McEwan 1973; Tabaei & Akylas 2003).

The choice of the range of integration over k in (2.9) is in keeping with uni-
directional transport of energy. For each sinusoidal plane wave partaking in a beam,
the direction of energy propagation is along the group velocity cg, which obeys
conditions (2.7); letting k→−k, in particular, cg→−cg. Therefore, fixing the sign of
ω, uni-directional beams, which transport energy in one direction, involve sinusoidal
plane waves with wavenumbers of the same sign only.

Although an isolated uniform beam is a nonlinear solution, this is no longer true
for the superposition of non-collinear beams because of nonlinear interactions that
come into play in the region where these beams overlap. The present study focuses
on the effects of quadratic nonlinear interactions between two colliding wave beams
of small amplitude, in the three-dimensional configuration where the beam propagation
directions lie in different vertical planes; collisions of this type will be referred to as
oblique.

3. Kinematics
Consider two uni-directional plane wave beams approaching each other at angles

θ1 and θ2 (0 < θ1, θ2 < π/2) to the horizontal, their corresponding frequencies being
ω1 = sin θ1 > 0 and ω2 = sin θ2 > 0, according to (2.6). As our interest centres on
oblique collisions, the propagation directions of the two beams (specified by the
directions of the group velocities cg1 and cg2) are taken to be in different vertical
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Oblique collisions of internal wave beams 341

FIGURE 1. Geometry of collision of two uniform wave beams approaching each other at
angles θ1 and θ2 to the horizontal. The colliding beams have propagation directions (specified
by the corresponding group velocities cg1 and cg2) that lie in different vertical planes. The
azimuthal angle φ controls the obliqueness of the collision, with φ = 0,π corresponding to
plane collisions in the xz-plane. The beam of frequency ω1 = sin θ1 > 0 is taken to propagate
downwards in z while the beam of frequency 0< ω2 = sin θ2 < ω1 propagates downwards (as
shown here) or upwards in z.

planes, and the azimuthal angle φ controls the degree of obliqueness of the collision
(figure 1).

More specifically, the two colliding beams comprise sinusoidal plane waves with
frequencies ω1 and ω2 and wavevectors

k1 = k1(− sin θ1, 0, cos θ1) (k1 > 0), (3.1a)
k2 = k2(− sin θ2 cosφ,− sin θ2 sinφ,± cos θ2) (k2 > 0). (3.1b)

Recalling conditions (2.7) obeyed by the group and phase velocities, the wavevectors
in (3.1) are such that the beam of frequency ω1 propagates downwards in z while
the beam of frequency ω2 propagates downwards or upwards in z when the vertical
wavevector component in (3.1b) is positive (upper sign) or negative (lower sign),
respectively. Also, without any loss, the angle φ is taken in the range

0 6 φ 6 π, (3.2)

with φ = 0 and φ = π corresponding to plane collisions in the xz-plane. Finally, it
is assumed throughout that θ1 > θ2 and hence ω1 > ω2. (Details for other collision
configurations can be worked out along similar lines.)

In the region where the two uniform beams overlap, quadratic nonlinear interactions
generate the sum and difference of the colliding-beam frequencies,

ω+ = ω1 + ω2, ω− = ω1 − ω2, (3.3)

along with sums and differences of the wavevectors (3.1):

k+ = k1 + k2, k− = k1 − k2. (3.4)
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We now inquire whether, on kinematic grounds, these frequencies and corresponding
wavevectors are compatible with disturbances radiating in the far field, away from the
interaction region of the colliding beams.

3.1. Beams with frequency ω+

According to (2.6), for disturbances with frequency ω+ to radiate, it is necessary that
ω+ < 1. Assuming this to be the case, we write

ω+ = sin θ1 + sin θ2 = sin θ+ (0< θ+ < π/2), (3.5)

where θ+ is the propagation angle to the horizontal of internal waves of frequency ω+.
Turning to the associated wavevectors k+, it follows from (3.1) and (3.4) that

k+ = (−k1 sin θ1 − k2 sin θ2 cosφ,−k2 sin θ2 sinφ, k1 cos θ1 ± k2 cos θ2) (3.6)

with k1 > 0 and k2 > 0. It is convenient to express this set of wavevectors in the form

k+ = κ(sin θ+ cosψ, sin θ+ sinψ,m) (κ > 0), (3.7)

where, from (3.6),

m= sin θ+

sinφ
(cot θ1 sin(ψ − φ)∓ cot θ2 sinψ) (3.8)

and

k1 = κ sin θ+ sin(ψ − φ)
sinφ sin θ1

, k2 =−κ sin θ+ sinψ
sinφ sin θ2

. (3.9)

Given that sinφ > 0 in view of (3.2) and κ > 0, the conditions k1 > 0 and k2 > 0
require

π<ψ < π+ φ. (3.10)

Among the waves with frequency ω+ and wavevector k+ in the form (3.7), those
that can propagate in the far field must also be compatible with the internal-wave
dispersion relation (2.6). This implies

m2 = cos2θ+. (3.11)

Moreover, causality requires that radiating waves transport energy away from the wave
source. Hence, the vertical component of the group velocity must be positive for waves
radiating in z> 0 and negative for waves radiating in z< 0. Making use of (2.7b), this
radiation condition then specifies the sign of the vertical component of k+:

m=∓ cos θ+ (z ≷ 0). (3.12)

For waves propagating in z> 0, in particular, combining (3.8) with (3.12) yields

F+∓(ψ)≡ cot θ1 sin(ψ − φ)∓ cot θ2 sinψ + sinφ cot θ+ = 0, (3.13)

where, in line with (3.1b), the upper (lower) sign applies when the beam with
frequency ω2 propagates downwards (upwards) in z. For given ω1 and ω2, the angles
θ1, θ2 and θ+ are fixed, and (3.13) determines ψ as a function of the angle 0< φ < π
that controls the obliqueness of the collision. Thus, upon varying κ > 0 in (3.7), each
root ψ of (3.13) in the range (3.10) furnishes a uniform beam that radiates in z > 0,
with the angle ψ measuring the obliqueness of this beam relative to the xz-plane.
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FIGURE 2. Obliqueness angle ψ of induced secondary beam with frequency ω+, as a
function of the angle 0◦ < φ < 180◦ that controls the obliqueness of the collision (see
figure 1): (a) beam radiating in z > 0; (b) beam radiating in z < 0. The colliding beams
propagate at angles θ1 = 35◦ and 0◦ < θ2 < 24.41◦ such that ω+ < 1.

Save for the special cases φ = 0, π corresponding to plane collisions, ψ is found
by solving numerically (3.13) subject to (3.10). When both colliding beams propagate
downwards in z, as sinφ > 0, sinψ < 0 and sin(ψ − φ) > 0, there are no acceptable
solutions of F+−(ψ) = 0, so no secondary beams with frequency ω+ that radiate in
z > 0 are possible. On the other hand, when the beam with frequency ω2 propagates
upwards, there is one acceptable root of F++(ψ) = 0, and hence one secondary beam
radiating in z > 0, for each 0 < φ < π. Computed values of ψ as a function of φ for
θ1 = 35◦ and θ2 in the range 0< θ2 < 24.41◦, where ω+ < 1, are plotted in figure 2(a).

The possibility of secondary beams with frequency ω+ radiating in z < 0 can be
examined in a similar way. In this instance, from (3.8) and (3.12), one obtains the
following equation for ψ :

G+∓(ψ)≡ cot θ1 sin(ψ − φ)∓ cot θ2 sinψ − sinφ cot θ+ = 0, (3.14)

where again the upper (lower) sign applies when the beam with frequency ω2

propagates downwards (upwards) in z. Qualitatively, the results are similar to those
found above for secondary beams radiating in z > 0: no secondary beam is possible
when both colliding beams propagate downwards in z and one such beam is generated
for each 0 < φ < π when the beam of frequency ω2 propagates upwards in z.
Computed values of ψ as a function of φ are plotted in figure 2(b) for θ1 = 35◦

and θ2 in the range 0< θ2 < 24.41◦, where ω+ < 1.
The results obtained here for obliquely colliding beams may be viewed as

generalizations of the selection rules derived by Jiang & Marcus (2009) for plane
collisions (φ = 0,π) of two beams. These rules can be readily deduced from (3.8),
(3.9) and (3.12) in conjunction with the conditions k1 > 0 and k2 > 0. Specifically, in
the case of secondary beams radiating in z> 0, it follows from (3.8) and (3.12) that

sinψ
sinφ

= cosψ cot θ1 − cot θ+

cot θ1 cosφ ∓ cot θ2
, (3.15a)

sin(ψ − φ)
sinφ

= − cot θ+ cosφ ± cot θ2 cosψ
cot θ1 cosφ ∓ cot θ2

. (3.15b)
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In view of (3.9), k1 > 0 and k2 > 0 then require

cosψ cot θ1 − cot θ+

cot θ1 cosφ ∓ cot θ2
< 0, (3.16a)

− cot θ+ cosφ ± cot θ2 cosψ
cot θ1 cosφ ∓ cot θ2

> 0. (3.16b)

In a similar way, for secondary beams radiating in z < 0, making use of (3.8), (3.9)
and (3.12), one finds that the conditions k1 > 0 and k2 > 0 translate to

cosψ cot θ1 + cot θ+

cot θ1 cosφ ∓ cot θ2
< 0, (3.17a)

cot θ+ cosφ ± cot θ2 cosψ
cot θ1 cosφ ∓ cot θ2

> 0. (3.17b)

In both (3.16) and (3.17), the upper (lower) sign holds when the beam of frequency ω2

propagates downwards (upwards) in z.
It is now straightforward to check on a case-by-case basis whether conditions (3.16)

and (3.17) can be met for plane collisions in the xz-plane, by taking φ = 0 (the beam
with frequency ω2 is incident from the first or fourth quadrant) or φ = π (this beam is
incident from the second or third quadrant) and ψ = 0 (a secondary beam is radiated
in the first or fourth quadrant) or ψ = π (a secondary beam is radiated in the second
or third quadrant). In agreement with Jiang & Marcus (2009), for θ1 > θ2, we find that
secondary beams can be found in the second and third quadrants (ψ = π) only; they
arise when the beam of frequency ω2 propagates upwards in z and is incident from
either the third (φ = π) or fourth (φ = 0) quadrant.

3.2. Beams with frequency ω−

Since 0 < ω− = ω1 − ω2 < 1, internal waves with frequency ω− can always propagate
at an angle θ− to the horizontal fixed by the dispersion relation (2.6):

ω− = sin θ1 − sin θ2 = sin θ− (0< θ− < π/2). (3.18)

Moreover, from (3.1) and (3.4), the associated set of wavevectors k− is

k− = (−k1 sin θ1 + k2 sin θ2 cosφ, k2 sin θ2 sinφ, k1 cos θ1 ∓ k2 cos θ2) (3.19)

with k1 > 0 and k2 > 0.
As in the analysis of beams with frequency ω+ earlier, we now write

k− = κ(sin θ− cosψ, sin θ− sinψ,m) (κ > 0), (3.20)

where, from (3.19),

m= sin θ−

sinφ
(cot θ1 sin(ψ − φ)∓ cot θ2 sinψ), (3.21)

and

k1 = κ sin θ− sin(ψ − φ)
sinφ sin θ1

, k2 = κ sin θ− sinψ
sinφ sin θ2

. (3.22)

Given that 0 6 φ 6 π and κ > 0, it follows from (3.22) that the conditions k1 > 0 and
k2 > 0 here confine ψ in the range

φ < ψ < π. (3.23)
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FIGURE 3. Obliqueness angle ψ of induced secondary beams with frequency ω−, as a
function of the angle 0◦ < φ < 180◦ that controls the obliqueness of the collision (figure 1):
(a,b) beams radiating in z > 0; (c,d) beams radiating in z < 0. The colliding beams
propagate at angles θ1 = 35◦ and θ2 < θ1: (a,c) θ2 = 14◦ (ω2/ω1 = 0.422); (b,d) θ2 = 19◦
(ω2/ω1 = 0.568). The critical φ = φc and the corresponding ψ = ψc are marked in (b,d).

The next step is to ensure that the wavevectors k− in (3.20) and the frequency
ω− = sin θ− satisfy the dispersion relation (2.6). In addition, causality requires that
radiating waves transport energy to the far field; thus, the vertical component of the
group velocity must be positive for waves that are found in z > 0 and negative for
waves that are found in z< 0. Imposing these conditions specifies m in (3.20):

m=∓ cos θ− (z ≷ 0). (3.24)

Now, for waves found in z> 0, combining (3.24) with (3.21) yields

F−∓(ψ)≡ cot θ1 sin(ψ − φ)∓ cot θ2 sinψ + sinφ cot θ− = 0, (3.25)

the upper (lower) sign being valid when the beam of frequency ω2 propagates
downwards (upwards) in z. For each 0 < φ < π, this equation subject to the constraint
(3.23) determines ψ , which, in view of (3.20), measures the obliqueness relative to the
xz-plane of the induced beam in z> 0.

In general, (3.25) is solved numerically. It turns out that the number of acceptable
roots, and hence the number of possible secondary beams, depends crucially on the
frequency ratio ω2/ω1 and the angle φ which controls the obliqueness of the collision.
Clearly, when the colliding beam with frequency ω2 propagates upwards in z so the
lower sign in (3.25) applies, F−+(ψ) = 0 has no acceptable roots as sin(ψ − φ) > 0,
sinψ > 0 and sinφ > 0; thus, no secondary beams are found in z > 0. On the other
hand, if the beam with frequency ω2 is assumed to propagate downwards in z so the
upper sign in (3.25) applies, two possibilities arise. First, if ω2/ω1 < (1/2) (ω− > ω2),
one beam is found for each 0 < φ < π, as illustrated in figure 3(a) for θ1 = 35◦,
θ2 = 14◦ (ω1/ω2 = 0.422). Secondly, if 1/2 < ω2/ω1 < 1 (ω− < ω2), there is a critical
value of φ = φc above which no beams are found, but below which F−−(ψ) = 0
has two acceptable roots so that two secondary beams are possible, as illustrated in
figure 3(b) for θ1 = 35◦, θ2 = 19◦ (ω2/ω1 = 0.568).
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FIGURE 4. Critical obliqueness angle φc (—) of collision and corresponding obliqueness
angle ψc (– –) of induced secondary beam with frequency ω−, as the frequency ratio
ω2/ω1 is varied: (a) beam radiating in z > 0; (b) beam radiating in z < 0. The colliding
beams propagate at angles θ1 = 35◦ and θ2 in the range 16.666◦ < θ2 < θ1 such that
1/2< ω2/ω1 < 1.

For waves that propagate in z< 0, the lower sign in (3.24) is appropriate, and (3.25)
is replaced by

G−∓(ψ)≡ cot θ1 sin(ψ − φ)∓ cot θ2 sinψ − sinφ cot θ− = 0. (3.26)

In this instance, it turns out that there are no acceptable roots, and hence no beams
are generated in z < 0, when the beam of frequency ω2 propagates downwards in
z, so the upper sign is valid in (3.26). If, however, this beam propagates upwards
in z, again, depending on the frequency ratio ω2/ω1 and the obliqueness angle φ,
there are two distinct scenarios: if ω2/ω1 < 1/2, one beam is generated in z < 0 for
each 0 < φ < π, while if 1/2 < ω2/ω1 < 1, either two or no beams arise, respectively,
depending on whether φ is below or above a certain critical value φc. Figure 3(c,d)
illustrates these two possibilities for θ1 = 35◦, θ2 = 14◦ (ω2/ω1 = 0.422) and θ1 = 35◦,
θ2 = 19◦ (ω2/ω1 = 0.568).

Figure 4 shows how the collision obliqueness φc and the corresponding obliqueness
angle ψc of the emitted beam at critical conditions vary with the frequency ratio
ω2/ω1, for θ1 = 35◦ and 16.666◦ < θ2 < 35◦. For each θ2 in this range, two different φc

are possible in general, corresponding to the case that the colliding beam of frequency
ω2 = sin θ2 propagates downwards or upwards in z and the radiated beam is found,
respectively, in z > 0 (figure 4a) or z < 0 (figure 4b). In both of these configurations,
φc decreases as ω2/ω1 is increased, with φc → 0◦, ψc → 90◦ as ω2/ω1 → 1. Also,
in the other extreme, ω2/ω1 → 1/2, it follows from (3.25) and (3.26) that φc and
ψc approach a common value specified by cosφc = ± cos θ1/ (3+ cos2θ1)

1/2, where
the upper (lower) sign refers to the beam radiated in z > 0 (z < 0). It should be
noted that the limit ω2/ω1→ 1 is associated with hydrostatic beams (ω− = 0) and the
limit ω2/ω1→ 1/2 with subharmonic beams (ω− = ω2 = (1/2)ω1). As will be seen
later (figure 7), close to these limiting collision configurations, the resonant response
approaches zero.

The selection rules derived in Jiang & Marcus (2009) for plane collisions are
deduced by combining (3.21) and (3.24) to solve for sinψ/ sinφ and sin(ψ −φ)/ sinφ,
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and then making use of (3.22) and (3.23) to ensure that k1 > 0 and k2 > 0. Carrying
out this programme yields

cosψ cot θ1 − cot θ−

cot θ1 cosφ ∓ cot θ2
> 0, (3.27a)

− cot θ− cosφ ± cot θ2 cosψ
cot θ1 cosφ ∓ cot θ2

> 0, (3.27b)

and

cosψ cot θ1 + cot θ−

cot θ1 cosφ ∓ cot θ2
> 0, (3.28a)

cot θ− cosφ ± cot θ2 cosψ
cot θ1 cosφ ∓ cot θ2

> 0, (3.28b)

for wave beams with frequency ω− radiating in z > 0 and z < 0, respectively. In both
(3.27) and (3.28), the upper (lower) sign is to be used when the colliding beam of
frequency ω2 propagates downwards (upwards) in z. For plane collisions (φ = 0,π), it
is straightforward to check, on a case-by-case basis, whether these conditions can be
satisfied when ψ = 0 or ψ = π, thus recovering the selection rules of Jiang & Marcus
(2009).

Based on the above kinematic arguments, an interesting feature of oblique collisions
when ω2/ω1 > 1/2 is the existence of a critical obliqueness, φ = φc, that marks the
borderline between two or no secondary beams with frequency ω− being radiated
in the far field. Mathematically, φ = φc is akin to a cut-off condition, as ψ = ψc

is a double root of F−−(ψ) = 0 in (3.25) or G−+(ψ) = 0 in (3.26), and the response
switches from propagating to evanescent at φ = φc. As is well known, a similar
situation arises in simpler wave propagation problems at cut-off frequencies. Also, as
the group velocity is zero there, forced waves at cut-off frequencies feature unbounded
steady-state amplitude owing to the accumulation of energy in the forcing region, and
nonlinear effects are particularly important near such resonances (see, for example,
Aranha et al. 1982 and Akylas 1984). In § 4 below, we shall compute the steady-state
profiles of secondary beams resulting from oblique collisions and confirm that, here
too, the amplitude of the beam of frequency ω− becomes unbounded when φ = φc. A
physical explanation of this resonance, in terms of the energy radiated by the beam of
frequency ω−, is presented in § 7.

4. Steady-state secondary beams
We now turn to a quantitative study of quadratic interactions between colliding wave

beams, for the purpose of computing the amplitudes of the resulting secondary beams.
To this end, following Tabaei et al. (2005), we introduce the perturbation expansions

u= εu(1) + ε2u(2) + · · · , ρ = ερ(1) + ε2ρ(2) + · · · . (4.1)

The leading-order terms represent the superposition of the two primary beams with
frequencies ω1 and ω2 considered earlier (figure 1):

u(1) = {U1(η1)e−iω1t + c.c.
}+ {U2(η2)e−iω2t + c.c.

}
, (4.2a)

ρ(1) = {R1(η1)e−iω1t + c.c.
}+ {R2(η2)e−iω2t + c.c.

}
, (4.2b)

0 < ε � 1 being an amplitude parameter that controls the strength of these beams.
(For example, we may define ε = U∗/N0D∗, in terms of the peak velocity U∗ and the
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characteristic width D∗ of the beams, N0 being the Brunt–Väisälä frequency.) In line
with (2.8)–(2.10), the beam profiles

U1 =
∫ ∞

0
Û1(k1)eik1η1 dk1, R1 =

∫ ∞
0

R̂(k1)eik1η1 dk1, (4.3a)

U2 =
∫ ∞

0
Û2(k2)eik2η2 dk2, R2 =

∫ ∞
0

R̂(k2)eik2η2 dk2, (4.3b)

are functions of
η1 =−x sin θ1 + z cos θ1, η2 =−x sin θ2 cosφ − y sin θ2 sinφ ± z cos θ2. (4.4)

Also,

Û1 = A1(k1)(cot θ1, 0, 1), Û2 = A2(k2)(± cot θ2 cosφ,± cot θ2 sinφ, 1) (4.5)

and

R̂1 = i
sin θ1

A1(k1), R̂2 = i
sin θ2

A2(k2). (4.6)

Note that, in keeping with the proper radiation conditions, the cross-beam coordinates
(4.4) and the range of integration in (4.3) are consistent with the earlier choice of
wavevectors k1 and k2 in (3.1). Also, as before, the upper (lower) sign in (4.4) and
(4.5) applies when the beam with frequency ω2 is taken to propagate downwards
(upwards) in z.

Upon substituting (4.2) into the governing equations (2.1)–(2.3), quadratic
interactions give rise to O(ε2) terms with frequencies ω+ and ω−, which are confined
within the region of overlap of the two colliding beams. These quadratic terms force
O(ε2) corrections, denoted by u(2) and ρ(2) in (4.1), which, if permitted by the
radiation conditions, propagate in the far field as secondary beams with frequencies
ω+ and ω−.

To compute the O(ε2) response, we shall employ (2.4), whose linear part involves
the vertical velocity w and the right-hand side R comprises only nonlinear terms.
Making use of the leading-order solution (4.2)–(4.6), it follows from (2.5) that

R = ε2{R+e−iω+t + c.c.} + ε2{R−e−iω−t + c.c.} + · · · , (4.7)

where

R+ = i∇2
H

{(
ω+ + 1

ω2

)
U1 ·∇W2 +

(
ω+ + 1

ω1

)
U2 ·∇W1

}
− iω+{∇H · (U1 ·∇U2H + U2 ·∇U1H)}z, (4.8a)

R− = i∇2
H

{(
ω− − 1

ω2

)
U1 ·∇W∗2 +

(
ω− + 1

ω1

)
U∗2 ·∇W1

}
− iω−

{
∇H · (U1 ·∇U∗2H + U∗2 ·∇U1H)

}
z
, (4.8b)

using the same notation as in (2.5) and with ∗ denoting the complex conjugate. The
correction to the vertical velocity, w(2), is then posed as

w(2) = {W+e−iω+t + c.c.} + {W−e−iω−t + c.c.}, (4.9)

and, combining (2.4) with (4.7), W± satisfy

−ω±2W±zz +
(

1− ω±2
)
∇2

HW± =R±, (4.10)

with ω± = sin θ±.
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The forced equations (4.10) are solved by transform methods, following the
approach taken in Tabaei et al. (2005) for plane collisions. Briefly, taking the Fourier
transform in x and y,

W̃±(k, l; z)= 1
4π2

∫ ∞
−∞

∫ ∞
−∞

e−i(kx+ly)W± dx dy, (4.11)

W±(x, y, z)=
∫ ∞
−∞

∫ ∞
−∞

ei(kx+ly)W̃± dk dl, (4.12)

where W̃± satisfy

W̃±zz + (k2 + l2)cot2θ±W̃± =− R̃±

sin2θ±
. (4.13)

Moreover, consistent with (3.12) and (3.24), W̃± obey the radiation conditions

W̃± ∼ exp{−i (k2 + l2)
1/2

cot θ±z} (z→∞), (4.14a)

W̃± ∼ exp{i (k2 + l2)
1/2

cot θ±z} (z→−∞). (4.14b)

Equations (4.13) subject to (4.14) are readily solved by variation of parameters,

W̃± = −i
sin 2θ±κ

{
exp

{
iκ cot θ±z

}∫ ∞
z

R̃±(k, l; z′) exp
{−iκ cot θ±z′

}
dz′

+ exp
{−iκ cot θ±z

}∫ z

−∞
R̃±(k, l; z′) exp

{
iκ cot θ±z′

}
dz′
}
, (4.15)

where κ = (k2 + l2)
1/2, and upon inserting (4.15) in (4.12), we obtain W±. As our

interest here is in radiating beams in the far field, we shall only quote the asymptotic
expressions of W± as |z| →∞:

W± ∼ −i
sin 2θ±

∫ ∞
−∞

∫ ∞
−∞

dk dl
ei(kx+ly)

κ
exp

{−iκ cot θ±z
}

×
∫ ∞
−∞

R̃±(k, l; z′) exp
{

iκ cot θ±z′
}

dz′ (z→∞), (4.16a)

W± ∼ −i
sin 2θ±

∫ ∞
−∞

∫ ∞
−∞

dk dl
ei(kx+ly)

κ
exp

{
iκ cot θ±z

}
×
∫ ∞
−∞

R̃±(k, l; z′) exp
{−iκ cot θ±z′

}
dz′ (z→−∞). (4.16b)

We now compute R̃± in terms of the specific profiles (4.3) of the two colliding
beams. Substituting (4.3) in (4.8), R± can be written as

R± =
4∑

n=1

R±n , (4.17)

where each term in the above sum takes the form

R±n =
∫ ∞

0
Q±n (k1)eik1η1 dk1

∫ ∞
0

S±n (k2)e±ik2η2 dk2, (4.18)

with Q±n and S±n being known functions that depend on the specific choices of A1(k1)
and A2(k2) in (4.5). (Explicit expressions for Q±n and S±n are given in the Appendix.)
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We shall first determine the contribution to the far-field response (4.16) of each
term in (4.17) separately. Starting with R+n , it follows from (4.18) and (4.4), upon
performing the integrations over x and y in the Fourier transform defined in (4.11), that

R̃+n =
eiαz

sin θ1 sin θ2 sinφ
Q+n

(
l cotφ − k

sin θ1

)
S+n

(
− l

sin θ2 sinφ

)
, (4.19)

where

α = cot θ1(l cotφ − k)∓ l
cot θ2

sinφ
, (4.20)

and the upper (lower) sign holds when the beam of frequency ω2 propagates
downwards (upwards) in z. Also, in a similar way, one finds that the Fourier transform
of R−n is

R̃−n =
eiαz

sin θ1 sin θ2 sinφ
Q−n

(
l cotφ − k

sin θ1

)
S−n

(
l

sin θ2 sinφ

)
. (4.21)

Upon inserting (4.19) and (4.21) in (4.16), the integration over z′ in these
expressions can be readily carried out, and collecting the contributions of all terms
in (4.17) yields

W± ∼ −2πi
sin θ1 sin θ2 sinφ sin 2θ±

4∑
n=1

W±n , (4.22)

where

W±n =
∫ ∞
−∞

∫ ∞
−∞

dk dl
ei(kx+ly)

κ
I ±

n exp
{−iκ cot θ±z

}
(z→∞), (4.23a)

W±n =
∫ ∞
−∞

∫ ∞
−∞

dk dl
ei(kx+ly)

κ
J ±

n exp
{

iκ cot θ±z
}

(z→−∞). (4.23b)

Here,

I ±
n = Q±n

(
l cotφ − k

sin θ1

)
S±n

(
∓ l

sin θ2 sinφ

)
δ
(
α + κ cot θ±

)
, (4.24a)

J ±
n = Q±n

(
l cotφ − k

sin θ1

)
S±n

(
∓ l

sin θ2 sinφ

)
δ
(
α − κ cot θ±

)
, (4.24b)

where δ denotes the Dirac delta function and κ = (k2 + l2)
1/2.

It remains to carry out the integrations over k and l in (4.23). To this end, it is
convenient to work with polar coordinates:

(k, l)= κ(cosχ, sinχ) (0 6 κ <∞, 0 6 χ 6 2π). (4.25)

Note that, as k1 > 0 and k2 > 0 in (4.18), Q±n and S±n in (4.24) contribute to the
integrals in (4.23) only when l cotφ − k > 0 and ∓l > 0; these conditions restrict χ in
the range

π6 χ 6 π+ φ (4.26)
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for the response with frequency ω+ (when the upper sign in (4.24) holds), and in the
range

φ 6 χ 6 π (4.27)

for the response with frequency ω− (when the lower sign in (4.24) holds).
Using (4.25), the arguments of the delta functions in (4.24) may be expressed as

α + κ cot θ± = κ

sinφ
F±∓(χ), (4.28a)

α − κ cot θ± = κ

sinφ
G±∓(χ), (4.28b)

in terms of the functions F±∓ and G±∓ defined earlier in (3.13), (3.14), (3.25) and (3.26).
Hence,

δ
(
α + κ cot θ±

)= sinφ

κ
∣∣F±∓′(ψ)∣∣δ(χ − ψ), (4.29a)

δ
(
α − κ cot θ±

)= sinφ

κ
∣∣G±∓′(ψ)∣∣δ(χ − ψ), (4.29b)

where ψ , generically, denotes the value(s), in the appropriate range (4.26) or (4.27),
of χ for which the argument of each delta function in (4.24) vanishes. These ψ
are precisely the roots of the equations F±∓(ψ) = 0 and G±∓(ψ) = 0 in (3.13), (3.14),
(3.25) and (3.26), which determine the obliqueness relative to the xz-plane of possible
secondary beams in the far field according to the earlier kinematic analysis. Also, the
prime in (4.29) indicates the derivative of F±∓ and G±∓.

Finally, returning to (4.23) and performing the integration over χ , we obtain the
far-field response. Specifically, from (4.22)–(4.24), making use of (4.25) and (4.29),
the contribution of each root ψ to the far-field disturbance is a uniform beam

W± ∼
∫ ∞

0
Ŵ±(k)eikη± dk, (4.30)

whose profile depends on the cross-beam coordinate

η± = x sin θ± cosψ + y sin θ± sinψ − z cos θ± (z> 0), (4.31a)
η± = x sin θ± cosψ + y sin θ± sinψ + z cos θ± (z< 0). (4.31b)

Here,

Ŵ±(k) = − 2πi
sin θ1 sin θ2 sin 2θ±

1

k
∣∣F±∓′(ψ)∣∣

4∑
n=1

Q±n

(
k

sin θ± sin(ψ − φ)
sinφ sin θ1

)
× S±n

(
∓k

sin θ± sinψ
sinφ sin θ2

)
(z→∞), (4.32a)

Ŵ±(k) = − 2πi
sin θ1 sin θ2 sin 2θ±

1

k
∣∣G±∓′(ψ)∣∣

4∑
n=1

Q±n

(
k

sin θ± sin(ψ − φ)
sinφ sin θ1

)
× S±n

(
∓k

sin θ± sinψ
sinφ sin θ2

)
(z→−∞). (4.32b)

Based on (4.9) and (4.30)–(4.32), one may now compute the profiles of the radiated
secondary beams in terms of the characteristics of the colliding beams. Here, ψ
denotes the obliqueness angle of each radiated beam obtained from F±∓(ψ) = 0
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or G±∓(ψ) = 0, consistent with the kinematic analysis in § 3. For oblique collisions
at the critical angles φ = φc, in particular, where ψ = ψc is a double root so
F−−(ψc) = F−−

′
(ψc) = 0 or G−+(ψc) = G−+

′
(ψc) = 0, expressions (4.32) reveal that the

steady-state amplitude of the radiated beam with frequency ω− is unbounded. In § 6,
we shall return to this resonance to examine the transient evolution of the response at
critical conditions.

5. Numerical results
Here we report on sample computations of secondary beams due to oblique

collisions, in an effort to shed light on how obliqueness influences the intensity of
these beams. Specifically, we shall present numerical results for the energy flow rate
associated with secondary beams. From Tabaei et al. (2005), the energy flow rate,
averaged over a time period 2π/ω, in a uniform beam of the form (2.8)–(2.10) can be
expressed as

F = 4π
cot θ
sin θ

∫ ∞
0

|A(k)|2
k

dk. (5.1)

Therefore, in view of (4.3), (4.9) and (4.30), the average energy flow rate in a
secondary beam of frequency ω±, normalized with the average energy flow rate in the
colliding beam of frequency ω1, is ε2F±, where

F± = cot θ± sin θ1

cot θ1 sin θ±

∫ ∞
0
|Ŵ±(k)|2 dk/k∫ ∞

0
|A1(k)|2 dk/k

, (5.2)

with Ŵ±(k) given by (4.32).
The two colliding wave beams are taken to have the same Gaussian streamfunction

profiles as in Tabaei et al. (2005), which translates to the choices

A1(k1)= i

√
1

8π
sin θ1k1e−k2

1/8, A2(k2)= i

√
1

8π
sin θ2k2e−k2

2/8 (5.3)

for the spectral amplitudes in (4.5). Based on the expressions given in the Appendix, it
is then straightforward to compute the functions Q±n and S±n in (4.32) and thereby F±

in (5.2).
Figure 5 shows plots of the average energy flow rate F+ in radiated beams of

frequency ω+, as a function of the angle 0◦ < φ < 180◦ that controls the obliqueness
of the collision, for θ1 = 35◦ and θ2 in the range 0◦ < θ2 < 24.41◦ where 0 < ω+ < 1.
As φ is varied, for both the beam radiated in z > 0 (figure 5a) and the beam
radiated in z < 0 (figure 5b), the maximum of F+ is realized for a plane collision
(φ = 0◦ or φ = 180◦). Also, it is interesting that the energy flow rate in the beam
radiated in z < 0 can be nearly zero, and this minimum occurs when φ is roughly 90◦

irrespective of the incidence angle θ2, as indicated in figure 5(b).
Similar overall behaviour is exhibited by the average energy flow rate F−

associated with radiated beams of frequency ω−, in the case 0 < ω2/ω1 < 1/2 where
no resonances are possible. Figure 6 shows plots of F− as a function of φ for
θ1 = 35◦ and 0◦ < θ2 < 16.666◦ where 0 < ω2/ω1 < 1/2. Again, for each θ2 in this
range, the maximum F− arises at a plane collision (φ = 0◦ or φ = 180◦) for both
the beam found in z > 0 (figure 6a) and the beam found in z < 0 (figure 6b). It is

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

39
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.395


Oblique collisions of internal wave beams 353

45
90

135
180

0

20

40

(a)

10

20

0

30

0
45

90
135

180
20

40

(b)

50

25

75

0

100

FIGURE 5. Average energy flow rate F+ associated with induced secondary beam of
frequency ω+, as a function of the angle 0◦ < φ < 180◦ that controls the obliqueness of
the collision (see figure 1): (a) beam radiating in z > 0; (b) beam radiating in z < 0. The
colliding beams propagate at angles θ1 = 35◦ and 0◦ < θ2 < 24.41◦ such that ω+ < 1.
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FIGURE 6. Average energy flow rate F− associated with induced secondary beam of
frequency ω−, as a function of the angle 0◦ < φ < 180◦ that controls the obliqueness of the
collision (see figure 1): (a) beam radiating in z> 0; (b) beam radiating in z< 0. The colliding
beams propagate at angles θ1 = 35◦ and 0◦ < θ2 < 16.666◦ such that 0< ω2/ω1 < 1/2; in this
frequency range, no resonances are possible.

worth noting that the maximum F− in the latter case is significantly larger than in the
former; however, F− for the beam found in z< 0 again turns out to be nearly zero for
oblique collisions with φ around 90◦, regardless of the incidence angle θ2.

The results presented above for the incidence angle θ1 = 35◦ are typical of secondary
beams with frequency ω+, and of secondary beams with frequency ω− in the case
that the frequency ratio of the colliding beams is in the range 0< ω2/ω1 < 1/2. When
1/2 < ω2/ω1 < 1, though, F− is dominated by the resonances that occur for oblique
collisions at critical conditions. We shall return to this issue at the end of § 6.

6. Resonant collision
As remarked in § 4, when the frequencies of the colliding wave beams are such

that 1/2 < ω2/ω1 < 1, the steady-state amplitude of the induced beam with frequency
ω− = ω1 − ω2 is unbounded for certain oblique collision configurations. To clarify the
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nature of this resonance phenomenon, we now examine the transient evolution of the
O(ε2) radiated disturbance at critical conditions.

Returning to (2.4), the portion of the forcing term R in (4.7) with frequency ω−,
ε2{R−e−iω−t + c.c.}, is assumed to be switched on impulsively at t = 0. The induced
O(ε2) perturbation to the vertical velocity, ε2{w− + c.c.}, is then governed by

∇2w−tt +∇2
Hw− =R−e−iω−t (t > 0), (6.1a)

w− = w−t = 0 (t = 0), (6.1b)

assuming that the motion starts from rest. This initial-value problem mimics, albeit in
a rough sense, the gradual development of disturbances with frequency ω−, following
the collision of the two primary beams at t = 0. Compared with the steady-state
analysis of § 4, the present approach, while mathematically more involved, has the
advantage that it is also applicable at critical obliqueness where the steady-state
response is singular.

The problem (6.1) is solved by taking Fourier transform in x, y and z,

˜̃w−(k, l,m; t)= 1
2π

∫ ∞
−∞

e−imzw̃− dz, (6.2)

w̃−(k, l; z, t) being the Fourier transform in x and y as defined in (4.11), so

w−(x, y; z, t)=
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ei(kx+ly+mz) ˜̃w− dk dl dm. (6.3)

Thus, ˜̃w− satisfies

˜̃w−tt +Ω2 ˜̃w− =−
˜̃R−
|k|2 e−iω−t (t > 0), (6.4a)

˜̃w− = ˜̃w−t = 0 (t = 0), (6.4b)

where

Ω2 = k2 + l2

|k|2 , (6.5)

with |k|2 ≡ k2 + l2 + m2. Solving (6.4) for ˜̃w− then yields

˜̃w− =
˜̃R−
|k|2

{
e−iω−t

ω−2 −Ω2
+ 1

2Ω

(
eiΩt

ω− +Ω −
e−iΩt

ω− −Ω
)}

. (6.6)

Here, in view of (4.17) and (4.21),

˜̃R− =
4∑

n=1

˜̃R−n (6.7)

where

˜̃R−n =
1

sin θ1 sin θ2 sinφ
Q−n

(
l cotφ − k

sin θ1

)
S−n

(
l

sin θ2 sinφ

)
δ (m− α) , (6.8)

and α is given in (4.20).
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We now invert the Fourier transform ˜̃w− to obtain w− according to (6.3). Inserting
(6.6) in (6.3) and performing first the integration over m, we find

w̃− =
4∑

n=1

w̃−n , (6.9)

where

w̃−n =
R̃−n

k2 + l2 + α2

{
e−iω−t

ω−2 − Ω̃2
+ 1

2Ω̃

(
eiΩ̃t

ω− + Ω̃ −
e−iΩ̃t

ω− − Ω̃

)}
, (6.10)

with

Ω̃2 = k2 + l2

k2 + l2 + α2
, (6.11)

and R̃−n is given in (4.21). Next, to carry out the integrations over k and l, we
introduce polar coordinates (κ, χ) according to (4.25), with χ again in the range
φ 6 χ 6 π so that the arguments of Q−n and S−n in expression (4.21) for R̃−n are
positive. After some algebra, it is found that

w− =
4∑

n=1

w−n , (6.12)

where

w−n =
sinφ

sin θ1 sin θ2

∫ ∞
0

dκ
κ

∫ π
φ

dχ exp
{

iκ
(

x cosχ + y sinχ + z
α̃

sinφ

)}
×Q−n

(
κ

sin(χ − φ)
sin θ1 sinφ

)
S−n

(
κ

sinχ
sin θ2 sinφ

)
1(

α̃2 + sin2φ
)

×
{

e−iω−t

ω−2 − Ω̃2
+ 1

2Ω̃

(
eiΩ̃t

ω− + Ω̃ −
e−iΩ̃t

ω− − Ω̃

)}
, (6.13)

with

Ω̃2 = sin2φ

sin2φ + α̃2
(6.14)

and

α̃ = sinφ
κ
α = cot θ1 sin(χ − φ)∓ cot θ2 sinχ. (6.15)

Formally, of the three time-dependent terms in the curly brackets in expression (6.13),
the term proportional to e−iω−t corresponds to the result of the steady-state analysis,
while the terms that involve e±iΩ̃t derive from satisfying the initial conditions (6.1b).
As indicated below, however, separating the response into steady-state and transient
components requires careful interpretation of the various integrals in (6.13).

Consider first the integral over χ in (6.13). Attention is focused on possible zeros
on the real χ -axis of the denominators of the terms in the curly brackets. Within the
integration range φ 6 χ 6 π, such zeros are associated with poles of the integrand on
the integration path, which are key to determining the far-field response in forced wave
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problems (see, for example, Lighthill 1978, § 4.9). Specifically, making use of (6.14)
and (6.15), the denominator of the term involving e−iω−t in (6.13) can be written as

ω−2 − Ω̃2 = sin2θ−

sin2φ + α̃2

(
α̃2 − sin2φcot2θ−

)
. (6.16)

Hence, the zeros of interest here are the real roots, within the range φ 6 χ 6 π, of

α̃2 − sin2φcot2θ− = F−∓(χ)G
−
∓(χ)= 0, (6.17)

F−∓ and G−∓ being the functions encountered earlier in (3.25) and (3.26); these zeros
thus coincide with the roots χ = ψ of F−∓(ψ) = 0 and G−∓(ψ) = 0, which determine
the obliqueness relative to the xz-plane of steady-state beams found in z> 0 and z< 0,
respectively. Note that, at χ = ψ , the term proportional to e−iω−t in (6.13) has a pole
on the integration path and the corresponding integral, on its own, is singular. This
difficulty stems from the fact that the steady-state response is not well defined if no
suitable radiation conditions are imposed. On the other hand, as a whole, the integral
over χ in (6.13) is not singular because the pole at χ = ψ of the term involving e−iω−t

is cancelled by the other terms in the curly brackets.
In order to extract the steady-state far-field response from the full unsteady solution

(6.12)–(6.13), one may first deform the integration path in (6.13) away from the
real χ -axis so that the integrals over χ corresponding to each of the terms in the
curly brackets are no longer singular, and then evaluate these integrals by residue
calculus and the method of stationary phase. Details of this rather lengthy procedure
will not be pursued here, as the secondary beams radiated in the far field were
obtained more directly in § 4 from the steady-state solution after imposing suitable
radiation conditions. We shall make use of the unsteady solution (6.12)–(6.13), though,
to examine the asymptotic behaviour of the far-field disturbance under resonant
conditions, where the steady-state analysis breaks down.

As noted earlier, at critical obliqueness (φ = φc), F−−(ψ)= 0 in (3.25) or G−+(ψ)= 0
in (3.26) has a double root, ψ = ψc, so F−−

′
(ψc) = 0 or G−+

′
(ψc) = 0 as well. As a

result, the terms involving e−iω−t and e−iΩ̃t in (6.13) feature a double pole at χ = ψc:

ω−2 − Ω̃2 =−sin2θ−cos2θ− (χ − ψc)
2+ · · · , (6.18)

ω− − Ω̃ =− 1
2 sin θ−cos2θ−(χ − ψc)

2 + · · · . (6.19)

Moreover, since

∂Ω̃

∂χ

∣∣∣∣∣
c

= ∂α̃

∂χ

∣∣∣∣
c

= 0, (6.20)

χ = ψc is a point of stationary phase when the integrals over χ in (6.13) are evaluated
asymptotically in the far field, t→∞ and |z| →∞. An analogous situation, where a
double pole coincides with a point of stationary phase, arises in a classical problem
of water waves, namely in the disturbance induced by a moving external pressure
distribution oscillating at resonant frequency. In this simpler setting, the far-field
behaviour of the resonant response is deduced from the integral representation of
the full unsteady solution by expanding the integrand in the neighbourhood of the
double pole (Akylas 1984).

Taking a similar approach here, it is argued that the dominant contribution to
the integral over χ in (6.13) at critical obliqueness (φ = φc) comes from the
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neighbourhood of χ = ψc. Accordingly, setting χ = ψc + s and using (6.18)–(6.20),
the various parts of the integrand are expanded around s= 0 as follows:

exp
{

iκ
(

x cosχ + y sinχ + z
α̃

sinφc

)}
= exp

(
iκη−c / sin θ−

)
× exp {iκs (−x sinψc + y cosψc)} + · · · , (6.21)

where

η−c = x sin θ− cosψc + y sin θ− sinψc ∓ z cos θ− (z ≷ 0) (6.22)

denotes the cross-beam coordinate of a beam of frequency ω− and obliqueness ψc

radiated in z ≷ 0;

Q−n

(
κ

sin (χ − φc)

sin θ1 sinφc

)
S−n

(
κ

sinχ
sin θ2 sinφc

)
1(

α̃2 + sin2φc

)
= sin2θ−

sin2φc

Q−n

(
κ

sin (ψc − φc)

sin θ1 sinφc

)
S−n

(
κ

sinψc

sin θ2 sinφc

)
+ · · · ; (6.23)

e−iω−t

ω−2 − Ω̃2
=− e−iω−t

sin2θ−cos2θ−
1
s2
+ · · · ; (6.24)

and finally

e−iΩ̃t

2Ω̃
(
ω− − Ω̃

) =− e−iω−t

sin2θ−cos2θ−

exp
(
− i

2
sin θ−cos2θ−s2t

)
s2

+ · · · . (6.25)

Combining (6.21)–(6.25) with (6.13), we thus find

w−n ∼
e−iω−t

sin θ1 sin θ2cos2θ− sinφc

×
∫ ∞

0

dκ
κ

exp
(
iκη−c / sin θ−

)
Q−n

(
κ

sin (ψc − φc)

sin θ1 sinφc

)
S−n

(
κ

sinψc

sin θ2 sinφc

)
×
∫ ∞
−∞

ds

s2
exp {iκs (−x sinψc + y cosψc)}

×
{

exp
(
− i

2
sin θ−cos2θ−s2t

)
− 1
}
. (6.26)

Note that, in line with the stationary-phase approximation, the integration over s in
(6.26) extends from −∞ to ∞; as the main contribution to this integral comes from
the vicinity of the stationary point s = 0 where (6.21)–(6.25) are valid, the rest of the
integration range is relatively unimportant.

To interpret the far-field disturbance, it is helpful to replace the integration variable s
in (6.26) with

σ = st1/2. (6.27)
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After some manipulation, it then follows from (6.12) and (6.26) that the overall
response {w− + c.c.} takes the form{

w− + c.c.
}∼ t1/2e−iω−t

∫ ∞
0

Ŵ−c (k; ξ)eikη−c dk + c.c., (6.28)

where

Ŵ−c =
1

sin θ1 sin θ2cos2θ− sinφc

J(k; ξ)
k

×
4∑

n=1

Q−n

(
k

sin θ− sin(ψc − φc)

sin θ1 sinφc

)
S−n

(
k

sin θ− sinψc

sin θ2 sinφc

)
. (6.29)

Here

J =
∫ ∞
−∞

dσ
σ 2

exp
(
ikσξ sin θ−

){
exp

(
− i

2
sin θ−cos2θ−σ 2

)
− 1
}
, (6.30)

with

ξ = −x sinψc + y cosψc

t1/2
. (6.31)

According to (6.28), the far-field response at φ = φc is a beam-like disturbance
with constant frequency ω− and obliqueness ψc relative to the xz-plane, but varying
profile and amplitude. Similarly to forced waves at a cut-off frequency (Aranha et al.
1982; Akylas 1984), the beam amplitude grows in time like t1/2, which explains the
unbounded response found in the steady-state analysis in § 4. This resonant behaviour
can be traced back to conditions (6.20) at φ = φc, which are analogous to the
group velocity being zero at cut-off frequencies (see also § 7 below for a physical
interpretation of the resonance conditions in the present setting). Moreover, the beam
profile in (6.28) is not only a function of the cross-beam coordinate η−c , but also
evolves spatially and temporally in a self-similar fashion via ξ in (6.31); this similarity
variable accounts for the presence of slow modulations in the transverse direction. At
any fixed position, the modulations eventually disperse out, since ξ → 0 as t→∞,
and J(κ; ξ) in (6.30) approaches a constant:

J0 =
∫ ∞
−∞

dσ
σ 2

{
exp

(
− i

2
sin θ−cos2θ−σ 2

)
− 1
}

=−√π(i+ 1)
√

sin θ− cos θ−. (6.32)

As a result, after a long time, the resonant response locally tends to a plane beam with
uniform profile, while the amplitude continuously grows in time like t1/2.

From these findings, the average energy flow rate in the emitted resonant wave
beam, normalized with the average energy flow rate in the colliding beam of frequency
ω1, is expected to grow linearly with time, like ε2F−

c t. We may estimate F−
c based

on (5.2) by replacing Ŵ−(k) with Ŵ−c (k; ξ = 0), as given by (6.29) with J = J0

according to (6.32). Figure 7 shows F−
c corresponding to the critical angles φc

displayed in figure 4, for 1/2 < ω2/ω1 < 1. The colliding beams are taken to have
the same Gaussian profiles as in (5.3). Both plots in figure 7 are bell-shaped curves,
approaching zero in the subharmonic (ω2/ω1→ 1/2) and the hydrostatic (ω2/ω1→ 1)
limits. The peak value of F−

c is found at ω2/ω1 = 0.563 (φc = 27.61◦) for the beam
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FIGURE 7. Normalized energy flow rate F−
c associated with secondary beam due to resonant

oblique collisions at the critical angles φc displayed in figure 4, as the frequency ratio
ω2/ω1 is varied: (a) beam radiating in z > 0; (b) beam radiating in z < 0. The colliding
beams propagate at angles θ1 = 35◦ and θ2 in the range 16.666◦ < θ2 < θ1 such that
1/2< ω2/ω1 < 1.

radiated in z> 0 (figure 7a) and at ω2/ω1 = 0.616 (φc = 55.49◦) for the beam radiated
in z < 0 (figure 7b). It should be noted that in the latter case the response curve
is broader and the corresponding peak significantly taller than in the former case,
indicating that the resonance associated with the beam radiated in z < 0 is relatively
stronger. We recall that, in the range 0 < ω2/ω1 < 1/2 where no resonances are
possible, the steady-state beam radiated in z < 0 again typically turns out to be
stronger than the one radiated in z> 0 (figure 6).

7. Physical interpretation of resonance
Based on the above mathematical analysis of oblique beam collisions, resonance

occurs when the obliqueness angle of an emitted secondary beam with frequency ω−,
happens to be a double root, ψ = ψc, of equation F−−(ψ) = 0 in (3.25) or G−+(ψ) = 0
in (3.26), so F−−

′
(ψc) = 0 or G−+

′
(ψc) = 0, respectively. These resonance conditions

may be understood on physical grounds by examining the transport of energy due to
the generated beam at resonance.

Returning to the kinematic considerations in § 3.2, a secondary beam of frequency
ω− and obliqueness ψ comprises plane waves with wavevectors k−, determined from
(3.20) together with (3.21) and (3.24)–(3.26). These wavevectors point in the same
direction, and the resulting beam propagates along

d− = k− × (k− × êz), (7.1)

where êz denotes a vertical unit vector pointing upwards. Recall that the along-beam
direction d−, as it is parallel to c−g , is also the direction in which energy is transported
by the beam.

As remarked earlier, secondary beams are generated by quadratic nonlinear
interactions of the two colliding primary beams in the region where these beams
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meet. This overlap region, which acts as the wave source, stretches along

d s = k1 × k2, (7.2)

k1 and k2 being the wavevectors (3.1) partaking in the primary beams. For given beam
frequencies ω1 and ω2 and obliqueness angle of the collision φ, the directions of k1

and k2, and hence d s, are fixed.
We shall demonstrate that, in a resonant collision,

d− × d s = 0, (7.3)

implying that the generated beam of frequency ω− propagates along the direction
of the source. Under resonant conditions, therefore, energy cannot escape from the
forcing region, causing the beam amplitude to grow in time continuously.

To prove (7.3) at resonance, using (7.1), (7.2) and standard vector identities, we find

d− × d s = B1k− + B2(k− × êz), (7.4)

where

B1 = (k2 · k−)(k1 · êz)− (k1 · k−)(k2 · êz), (7.5a)
B2 = k− · (k1 × k2). (7.5b)

Since k− = k1 − k2 in view of (3.4), however, B2 = 0. Moreover, using (3.1), (3.20),
(3.21) and (3.24), B1 can be expressed as

B1 = k1k2κ sin θ1 sin θ2 sin θ−(± cot θ2 cosψ − cot θ1 cos(ψ − φ)), (7.6)

where the upper (lower) sign is valid for beams of frequency ω− radiating in z > 0
(z< 0). Finally, recalling (3.25) and (3.26), it follows from (7.6) that

B1 =−k1k2κ sin θ1 sin θ2 sin θ−F−−
′
(ψ) (z> 0), (7.7a)

B1 =−k1k2κ sin θ1 sin θ2 sin θ−G−+
′
(ψ) (z< 0). (7.7b)

This establishes that B1 = 0 at a resonant obliqueness ψ = ψc, where F−−
′
(ψc) = 0

(z> 0) or G−+
′
(ψc)= 0 (z< 0), and hence (7.3) holds at resonance.

8. Concluding remarks
We have studied collisions of weakly nonlinear internal wave beams and the

attendant radiation of secondary beams due to quadratic nonlinear interactions, in
the general case where the colliding beams propagate in different vertical planes.
Based on wave kinematics and suitable radiation conditions, the propagation directions
of radiated beams in such oblique collisions were determined. We have also explored
the effects of obliqueness of a collision on the strength of radiated beams. Sample
computations indicate that, typically, the strongest secondary beams arise for a plane
collision of two beams. However, for certain oblique collision configurations, the
induced secondary beam with frequency equal to the difference of those of the
colliding beams has unbounded steady-state amplitude. This resonance phenomenon,
which has no counterpart for plane collisions, was examined by analysing the
transient development of the secondary beams triggered by a resonant collision. The
transient response at resonant conditions is a slowly varying beam-like disturbance
with modulated profile and amplitude that grows in time like t1/2. Similarly to the
forced response at a cut-off frequency, this continuously growing beam amplitude at
resonance is caused by the accumulation of energy in the vicinity of the wave source,
which here coincides with the interaction region of the colliding beams. As a result,
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nonlinear as well as viscous effects are expected to play an important part in the
transient evolution of the response near resonance. An asymptotic theory taking these
effects into account, as well as fully numerical and experimental investigations of
resonant collisions, would be highly desirable.

As noted in § 1, oblique collisions of wave beams could arise in the field from
the interaction of the tide with three-dimensional bottom topography. In this context,
the Earth’s rotation, which is a significant factor in tidal-conversion processes, may
influence the generation of secondary beams due to collisions of tidally induced beams.
The present theory can be readily extended to account for the effects of background
rotation. Briefly, for gravity–inertia waves owing to the combined action of buoyancy
and Coriolis effects, the dispersion relation (2.6) is replaced by

ω2 = sin2θ + f 2cos2θ, (8.1)

f being the ratio of the Coriolis parameter to the Brunt–Väisälä frequency (under
typical conditions in the ocean, f 6 0.1). Accordingly, a plane wave beam of frequency
ω (f < ω < 1) now propagates at a smaller angle θ to the horizontal,

sin θ =
√
ω2 − f 2√
1− f 2

. (8.2)

With this modification, the kinematic analysis of § 3 can be repeated along similar
lines, leading to equations analogous to (3.13), (3.14), (3.25) and (3.26) for the
obliqueness of radiated secondary beams. Details, including a discussion of the effect
of rotation on resonant collisions, will be reported elsewhere.
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Appendix. Forcing terms of secondary beams
By substituting the primary-beam profiles (4.3)–(4.6) into the forcing terms (4.18),

after some algebra, we find the following expressions for the functions Q±n and S±n
(n= 1, . . . , 4) in (4.18):

Q+n (k1)= C+n kn−1
1 A1(k1), S+n (k2)= k4−n

2 A2(k2) (n= 1, . . . , 4), (A 1)

where

C+1 = a1(sin θ1 + 2 sin θ2), (A 2a)

C+2 = ∓ cos θ2ω
+(a2 − a1 cos θ1)+ 2

(
ω+ + 1

ω2

)
a1 sin θ1 sin θ2 cosφ

±
(
ω+ + 1

ω1

)
a3sin2θ2, (A 2b)

C+3 = − cos θ1ω
+(a2 − a3 cos θ2)± 2

(
ω+ + 1

ω1

)
a3 sin θ1 sin θ2 cosφ

+
(
ω+ + 1

ω2

)
a1sin2θ1, (A 2c)

C+4 =±a3(sin θ2 + 2 sin θ1), (A 2d)
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with

a1 =− cot θ1 sin θ2 cosφ ± cos θ2, (A 3a)

a2 = ±2 cos θ1 cos θ2cos2φ − cot θ2 cos θ2 sin θ1 cosφ
− cot θ1 cos θ1 sin θ2 cosφ, (A 3b)

a3 =− cot θ2 sin θ1 cosφ ± cos θ1. (A 3c)

Also,

Q−n (k1)= (−1)n C−n kn−1
1 A1(k1), S−n = k4−n

2 A∗2(k2) (n= 1, . . . , 4), (A 4)

where

C−1 = a1(sin θ1 − 2 sin θ2), (A 5a)

C−2 = ∓ cos θ2ω
−(a2 − a1 cos θ1)+ 2

(
ω− − 1

ω2

)
a1 sin θ1 sin θ2 cosφ

±
(
ω− + 1

ω1

)
a3sin2θ2, (A 5b)

C−3 = − cos θ1ω
−(a2 − a3 cos θ2)± 2

(
ω− + 1

ω1

)
a3 sin θ1 sin θ2 cosφ

+
(
ω− − 1

ω2

)
a1sin2θ1, (A 5c)

C−4 =±a3(2 sin θ1 − sin θ2). (A 5d)

In (A 2), (A 3) and (A 5), the upper (lower) sign holds when the colliding beam of
frequency ω2 propagates downwards (upwards) in z.
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