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The work presents an experimental investigation into the motion of and hydrodynamic
forces along a single flexible stem in regular waves. The experiment covers a
large range in relevant non-dimensional parameters: the drag-to-stiffness ratio
CaL ∈ [0.003, 3.8], the inertia-to-stiffness ratio CaL/KC ∈ [4 × 10−5, 14.8], the
Keulegan–Carpenter number KC ∈ [3.8, 145] and the Reynolds number Re ∈
[230, 2900]. The two first parameters relate to the response of the stem in waves
and thus account for material properties, while the two last parameters are relevant
for hydrodynamic forces on the stem. The displacement of the stem was captured
with a digital video camera and the displacement along the stem was captured for
every 2.5 mm at 25 Hz. This unique laboratory data set allowed for the following
analyses: (i) Determination of the relevant non-dimensional parameter to predict the
stem motion and shape. (ii) A direct comparison between the measured force for
mimics of two lengths (0.15 m and 0.30 m) illustrating the force reduction potential
for flexible mimics. (iii) Direct evaluation of the average force coefficients CD (drag)
and CM (inertia) for the flexible stems. (iv) The distributed external hydrodynamic
loading and the internal shear forces were estimated from the laboratory experiments.
The distribution of the shear force helped to understand the breakage mechanisms
of flexible stems. (v) A linkage between phase lags and internal shear forces was
suggested. The data set is considered valuable as validation material for numerical
models of stem motion in waves.

Key words: coastal engineering, wave–structure interactions

1. Introduction
The understanding of the movement of and forces on submerged, flexible vegetation

is of importance in several aspects of coastal engineering. These aspects are for

† Email address for correspondence: niels.jacobsen@deltares.nl

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

73
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0003-2662-6282
mailto:niels.jacobsen@deltares.nl
https://doi.org/10.1017/jfm.2019.739


Wave-induced stem motion 1037

instance the attenuation of waves through a patch of vegetation (Möller et al. 2014),
wave-induced mean currents (Luhar et al. 2010) and the influence of the motion of
the vegetation on nutrient uptake (Mullarney & Pilditch 2017) and magnitude and
direction of sediment transport (Ros et al. 2014; Tinoco & Coco 2018).

The wave attenuation in vegetation fields has been studied extensively in medium
scale laboratory experiments (Dubi & Tørum 1994; Anderson & Smith 2014; Maza
et al. 2015; Losada, Maza & Lara 2016), large scale laboratory experiments (Möller
et al. 2014) and field campaigns (Vo-Luong & Massel 2008; Bradley & Houser 2009;
Jadhav, Chen & Smith 2013; Foster-Martinez et al. 2018). A quantification of the
wave damping has a direct relevance for the ability to predict wave conditions at the
toe of dikes or other coastal structures and, for instance, account for the influence of
vegetation on overtopping over dikes (EurOtop 2018; Vuik et al. 2018). A common
output from wave damping experiments is a bulk drag coefficient related to the amount
of dissipation under the assumption of validity of linear wave theory within the canopy.
The reported bulk drag coefficients are a function of the velocity attenuation within
the canopy (Jadhav et al. 2013; Jacobsen, McFall & van der A 2019), so they cannot
be used to express the actual force observed by the individual stem.

A spectral dissipation model for vegetation (Suzuki et al. 2012) is already included
in the spectral wave model SWAN, where the user should define the length, density
and bulk drag coefficient of the vegetation. The next improvement of practical
engineering models for spectral wave transformation is to include the effect of stem
flexibility on the wave damping under varying environmental conditions, e.g. changing
length and – possibly – changing drag coefficients with wave climate. Here, the
concept of effective length is a feasible approach (Luhar & Nepf 2016; Lei & Nepf
2019). The derivation of the effective length relies on the assumption that the drag
coefficient for a flexible stem is the same as the drag coefficient for a corresponding
rigid stem under the same hydrodynamic conditions. The length of the rigid stem,
which gives the same root force as measured for the flexible stem, is called the
effective length. Validity of the assumption of identical drag coefficients has not been
found documented in the literature, but a violation of the assumption could explain
why some stems have an effective length in excess of unity (e.g. Luhar & Nepf 2016;
Lei & Nepf 2019). One of the goals in this work is to derive force coefficients for
both flexible and rigid stems.

Ros et al. (2014) and Tinoco & Coco (2018) observed experimentally that the
presence of vegetation affects the suspended sediment concentration through a change
in the turbulent kinetic energy. Furthermore, Zhang & Nepf (2019) saw that generation
of wave orbital ripples was suppressed for high stem densities. Once in suspension,
the net suspended sediment transport is driven by the mean current, but so far the
mean current is mainly described with experiments (Luhar et al. 2010; Pujol et al.
2013; Abdolahpour, Hambleton & Ghisalberti 2017) and a single numerical study
(Chen & Zou 2019). A complete description of the mean current (forcing terms
and velocity profile) is still missing in the literature, but it is expected that the
gradient in the radiation stress tensor, the near-bed wave streaming stresses, the
wave-induced set-up and the mean force on the vegetation all contribute. The listed
properties, besides the mean vegetation force, are also relevant for the description
of the undertow in the surf zone (Deigaard & Fredsøe 1989; Deigaard, Justesen &
Fredsøe 1991; Guannel & Özkan-Haller 2014). Hence, the force on and the force
coefficients for the individual stem are of importance for the gradient in the radiation
stress tensor following wave damping and both the mean surface gradient and the
mean force on the vegetation (Dean & Bender 2006; Wu et al. 2011). Consequently,
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the mean sediment transport magnitudes will implicitly dependent on the stem motion
and the force on the stems.

The discussion above shows that the wave dissipation, the sediment transport and
mean flow within a canopy field all depend on the behaviour of the flexible stems
and the force distribution along the stem. The lack of experimental evidence of
the force coefficients on flexible stems was already discussed. With respect to the
description of the stem motion, three different sets of non-dimensional parameters
have been identified (Mullarney & Henderson 2010; Luhar & Nepf 2016; Leclercq
& De Langre 2018). Leclercq & De Langre (2018) proposed a classification of
stem motion in pure oscillatory flow and showed validation for a few cases, but the
extension of their classification to real waves is not described. Maza, Lara & Losada
(2013), Zeller et al. (2014) and Luhar & Nepf (2016) made visual observations of
the stem motion in waves, but only the intra-wave tip positions were extracted, so the
data are not useful for classification. The three sets of non-dimensional parameters
are revisited in this work, where novel experimental data are applied to determine
the most suitable non-dimensional parameters.

The present work will address the motion of a single stem under regular waves in
a controlled laboratory setting. The motion of the stems is recorded with a digital
video camera and the displacement, velocity and acceleration are digitized. This
gives a unique set of data to understand the interaction between the wave and stem:
displacements, phase lags, relative velocities and the force coefficient as a function
of non-dimensional parameters. Finally, the external loading along the stem and
the internal shear force are estimated directly from the laboratory experiment. The
data set is suitable for the validation of the numerical models for the motion of
flexible stems (e.g. Dijkstra & Uittenbogaard 2010; Luhar & Nepf 2016; Leclercq &
De Langre 2018). The experimental set-up and procedure are described in § 2. The
relevant non-dimensional parameters are discussed in § 3.1, while the remainder of
§ 3 is devoted to the experimental analysis. A discussion is presented in § 4 and it is
followed by conclusions in § 5.

2. Experimental campaign
The experimental investigation was performed in a wave flume at Delft University

of Technology (Laboratory of Fluid Mechanics). The flume is 41.5 m long, 0.8 m
wide and 0.9 m deep. The purpose of the investigation was to obtain a better
understanding of the motion and forcing of a single flexible stem under regular
waves. To this end, both point data (surface elevation, velocities and base forces) and
video recordings were acquired.

2.1. Layout and experimental conditions
The layout of the flume and the placement of the point measurement devices are
shown in figure 1. The false bottom in the middle of the flume was required to
install the force transducer. A total of seven wave gauges, one force transducer and
one EMF (electromagnetic flow meter) were used for point measurements. The EMF
was placed at different vertical elevations between 0.025 m to 0.325 m above the bed
to reconstruct the velocity profile over the height of the stem. Attention was paid to
minimizing wave reflection at the end of the flume by installing a gently sloped porous
absorber.

Both the EMF and the wave gauges were developed by Delft Hydraulics. The EMF
has a range of 0.0–2.5 m s−1 with an accuracy of 0.025 m s−1 and the wave gauge
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FIGURE 1. (Colour online) Layout of the wave flume with the location of the point
instruments. The stem is the green patch in front of the camera. WG, wave gauge. EMF,
electromagnetic flow meter.

Name H T Nw Ns ηt ηc H̄i εH σεH R̄η σRη
(m) (s) (−) (−) (m) (m) (m) (%) (%) (−) (−)

H040T10 0.04 1.0 59 18 −0.020 0.022 0.042 0.96 0.42 0.9989 0.0003
H040T20 0.04 2.0 73 19 −0.019 0.023 0.041 1.17 0.50 0.9996 0.0008
H070T15 0.07 1.5 63 18 −0.033 0.041 0.074 0.56 0.37 0.9994 0.0002
H070T25 0.07 2.5 67 18 −0.026 0.046 0.072 0.92 0.32 0.9997 0.0006
H110T20 0.11 2.0 75 17 −0.048 0.081 0.129 0.80 0.77 0.9991 0.0005
H110T30 0.11 3.0 77 18 −0.037 0.103 0.141 0.75 0.34 0.9994 0.0006
H160T20 0.16 2.0 73 17 −0.061 0.124 0.185 0.54 1.17 0.9973 0.0031
H160T35 0.16 3.5 79 16 −0.041 0.133 0.175 1.31 0.70 0.9994 0.0004

TABLE 1. Summary of the target wave conditions (columns 1, 2) and the achieved
conditions (columns 5, 6, 7). The water depth at the paddle was 0.65 m and 0.45 m at the
measuring location. The remaining columns address reproducibility of the wave conditions
(see text).

has an accuracy of 1 mm. The plastic mimics were mounted on a force transducer
with two screws. The force transducer was from Utilcell (Model 104) and had a range
of 1 to 3000 mN and an accuracy of 1 mN. All point measurements were sampled
at 100 Hz.

A total of eight wave conditions were studied, see table 1, where H is the regular
wave height and T is the wave period. The wave generation was performed with
a Bosch Rexroth generator with active reflection compensation and the water depth
in front of the paddle was 0.65 m. Each condition was repeated twice, there were
four mimics (see below and table 2) and three lengths of the mimic so in total 192
tests were conducted. For each condition, a single stem was mounted on the force
transducer and there were no neighbouring stems mimicking a canopy. The duration
of the tests varied, but approximately 40 wave periods were generated before the stem
motion was recorded. The quantities ηc and ηt (table 1) are the average crest and
trough elevations, respectively. The average is taken over Nw wave periods (table 1).

Four mimics with rectangular cross-section were used in the experimental campaign
to cover a large range of Cauchy numbers (§ 3.1). The mechanical properties and
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Width Thickness Young’s Length Natural Density Material
modulus period

Symbol δy δx E l Tn ρs

Name (mm) (mm) (N m−2) (m) (s) (kg m−3)

Mimic 1 10.0 0.15 8.7× 108
{0.15, 0.30} {4.03, 16.12} 950 Polypropylene

Mimic 2 10.0 0.50 3.3× 109
{0.15, 0.30} {0.34, 1.36} 1030 Polystyrene

Mimic 3 8.0 1.60 2.2× 109
{0.15, 0.30} {0.07, 0.26} 1090 ABS

Mimic 4 6.0 6.00 2.2× 109
{0.15, 0.30} {0.01, 0.03} 1090 ABS

TABLE 2. Mechanical properties of the plastic mimics (E and ρs according to
manufacturer). The motion of mimic 1 is not treated in this work. The plastic type is given
in last column. The natural period, Tn, is described in § 3.1. ABS, acrylonitrile butadiene
styrene.

dimensions of the mimics are provided in table 2: δy is the width facing the waves,
δx is the thickness, E is Young’s modulus, l is the length and ρs the stem density.
The force on the mimic was recorded for two values of the length (0.15 m and
0.30 m) and reference tests with no mimic. The tests with no mimic were performed
to evaluate whether there were any load recordings from the hydrodynamics on the
force transducer itself. This was not the case. Results regarding motion and forces
for mimic 2, 3 and 4 are presented in this work, while the motion of mimic 1 is
not analysed, because it could not be extracted with the developed tracking software
(see appendix B), due to heavy torsion of the stem. The velocities measured for
mimic 1 and no mimics are still used in the reconstruction of the velocity profile.
The numbering of mimics is retained to allow for consistency with the naming
methodology in the underlying data sets.

The adopted coordinate system (x, y, z) has the origin at the base of the stem; x is
positive in the wave propagation direction, z is positive upward and y is the horizontal
coordinate normal to the wave propagation direction (figure 1).

2.2. Synchronization
Synchronization of the data between individual tests is required to reconstruct the
velocity field from the Ns number of individual tests. (The value of Ns is reported
in table 1 and it is less than 24 for all wave conditions. This comes from the fact
some tests were too short to provide a velocity field overlapping the recording video
material.) The reconstructed velocity field is needed for the evaluation of relative
velocities and force coefficients. The synchronization ensures two aspects: (i) The
wave signal is reproducible. (ii) The time axes for all recordings and the video
footage are perfectly aligned; see details in appendix A.

The reproducibility is addressed through a zero-crossing analysis yielding individual
wave heights Hi of which there are Nw (table 1). The simple average of Hi, Hi, is
reported in table 1 and it is larger than the target at the paddle; an overprediction
which can be due to both shoaling over the false bottom and reflection. Similarly, the
zero-crossing wave period, Ti, was evaluated and the deviation from target was of the
order 10−4 s. The reproducibility of the individual wave conditions was evaluated with
the error

εH( j, k)=
(

Hi,j −Hi,k

Hi,j

)i

for { j, k} = 1, . . . ,Ns (2.1)
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Wave-induced stem motion 1041

between two tests, with indices j and k for the ith zero-crossing wave. The average
and standard deviation over all combinations of j and k are given in table 1 as εH and
σεH , respectively. The error is 1 % or less, so the reproducibility of the wave conditions
is confirmed.

The correlation coefficient between the surface elevation signals for tests j and
k was evaluated (Rη( j, k)) to verify synchronization between tests. The mean (Rη)
and standard deviation (σRη ) of Rη are provided in table 1. These two quantities are,
respectively, close to unity and zero, consequently all experiments (for a given wave
condition) are confirmed to be aligned in time.

The two velocity components were acquired at the same x-location as the force
transducer. The velocity profile was constructed from point measurements of u and
w from individual, synchronized tests.

The motion of the stems was captured with a digital video camera (Panasonic
DC-HS200) with a sampling frequency of 25 Hz. The local coordinate system was
obtained by capturing a gridded frame prior to execution of the tests. The coordinate
system had a resolution of approximately 2500 pixel m−1 in both horizontal and
vertical directions, which equals 0.4 mm pixel−1. The synchronization between the
video camera and the point measurements were achieved with a light-emitting diode
(LED), see details in § A.3.

3. Results

First, a discussion on relevant non-dimensional parameters is presented. Secondly,
the characteristic wave parameters are derived from the measurements. Thirdly, the
motion of the stems is described together with the focus on the relative motion
between stem and fluid. For instance, the relative velocity is defined as ur = u − us

and wr = w − ws, where the sub-indices r and s mean relative and stem velocities
respectively; u and w are the measured flow velocities in the direction of wave
propagation (x) and vertical (z) direction and y is the lateral direction.

Once the relative velocity and relative acceleration are evaluated, the average force
coefficients for the swaying vegetation are estimated for mimics 2, 3 and 4 (§ 3.4).
The average force coefficients are combined with the relative velocities to evaluate the
temporal variation of the force along the stem and estimate the internal shear force
(§ 3.5).

3.1. Non-dimensional considerations
The analysis of non-dimensional quantities is presented based on the Euler–Bernoulli
beam theory (small deflections). The unsteady Euler–Bernoulli beam theory with
constant EI reads

ρsδxδy
∂2xs

∂t2
+ EI

∂4xs

∂z4
= ρ

δ2
y

4
πCM

(
∂u
∂t
−
∂2xs

∂t2

)
+ ρδxδy

∂u
∂t

+
1
2
ρCDδy

∣∣∣∣u− ∂xs

∂t

∣∣∣∣ (u−
∂xs

∂t

)
. (3.1)

The left-hand side describes the acceleration of the stem and the internal elastic forces,
where ρs is the density of the stem, δx and δy are cross-sectional dimensions in the x
and y directions, xs is the stem deflection relative to x= 0 m in the global coordinate
system (figure 1) and t is time; E is Young’s modulus and I= 1/12δ3

xδy is the moment
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of inertia. The right-hand side describes the external forcing: the first term is the
inertia force; the second term is the Froude–Krylov force and the third term is the
drag force. Here, ρ is the density of water, CM is the inertia coefficient and CD the
drag coefficient.

Equation (3.1) is made non-dimensional with the following choice of non-
dimensional parameters: t∗= tω, x∗= x/aw, z∗= z/l and u∗= u/uw, where ω= 2π/T is
the cyclic frequency, uw a characteristic orbital velocity and aw= uw/ω a characteristic
wave orbital excursion. The experimental equivalents to uw and aw are defined below.
Equation (3.1) becomes

π2

2
CM

CaL
KC

(
∂u∗
∂t∗
−
∂2xs,∗

∂t2
∗

)
+ 2π

δx

∂y

CaL
KC

(
∂u∗
∂t∗
−
ρs

ρ

∂2xs,∗

∂t2
∗

)/
∂4xs,∗

∂z4
∗

+
1
2

CDCaL
∣∣∣∣u∗ − ∂xs,∗

∂t∗

∣∣∣∣ (u∗ −
∂xs,∗

∂t∗

)
, (3.2)

where

Ca=
ρδyu2

wl3

EI
, KC=

2πuw

ωδy
and L=

l
aw
=

lω
uw
. (3.3a−c)

Here, Ca is the Cauchy number and describes the ratio of external drag to internal
stiffness of the stem, KC is the Keulegan–Carpenter number describing the ratio of
drag-to-inertia and L describes the length of the stem to the wave orbital excursion.
Mullarney & Henderson (2010), their appendix A, arrived at a similar expression for
a circular cross-section, but neglected inertia terms throughout the bulk of their work
based on orders of magnitude considerations. Their stiffness parameter, S, is essentially
(CaL)−1 for a stem with circular cross-section of radius r0.

Luhar & Nepf (2016) applied x∗= x/l in their analysis of relevant non-dimensional
quantities and it led to an involved discussion on dominating quantities, since – for
instance – the drag term took the form

1
2

CDCa
∣∣∣∣u∗ − L

∂xs,∗

∂t∗

∣∣∣∣ (u∗ − L
∂xs,∗

∂t∗

)
. (3.4)

They divided the discussion into the regimes L� 1 and 1� L and they stated Ca as
the descriptive parameter for L� 1 and CaL for 1� L. The two L-regimes follow
from their choice in x∗ = x/l, meaning that the horizontal velocities u and ∂xs/∂t
were made non-dimensional with two different length scales: l and aw (uw = ωaw).
The scaling choices in the present work reduce the total number of combinations of
non-dimensional parameters to CaL and CaL/KC. The geometrical ratios δx/δy and
ρs/ρ are not considered further in this work.

Leclercq & De Langre (2018) adopted another set of non-dimensional parameters:
l as the length scale and Tn= l2√ma/EI as the time scale; Tn is the natural period of
the submerged stem, where ma=ρπδ2

y/4 is the added mass of the submerged stem for
a unit added mass coefficient. Leclercq & De Langre (2018) found that the product
of the natural period and cyclic wave frequency Tnω = 1 describes the transition
from ‘static’ regime to their ‘convective’ and ‘modal’ regimes for aw/l < 1. They
also defined a fourth regime named the ‘large-amplitude regime, static reconfiguration
with fast reversal’ for 1 < aw/l. Their classification means that the shape of stem
is independent of the magnitude of the oscillatory motion (aw). In addition to Tnω,
Leclercq & De Langre (2018) found the non-dimensional parameters L−1

= aw/l and
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2/πCDl/δy. It is easy to realize that L−1
= aw/l = δyKC/l. The values of Tn for the

present experiment are listed in table 2.
Leclercq & De Langre (2018) studied sinusoidal, oscillatory flow and found that the

amplitude of the displacement increased with increasing aw/l, while the overall shape
of the displacement was the same for constant Tnω. For constant values of aw/l, the
deflection pattern changed from the static regime to more complicated patterns with
multiple modes for increasing Tnω. They did not account for a mean deflection of the
stem.

The similarity between the non-dimensional quantities in Leclercq & De Langre
(2018), Luhar & Nepf (2016) and the present work is established here. Inserting Tn
in the expressions for CaL and CaL/KC gives

CaL= 8(Tnω)
2KC= 8(Tnω)

2 aw

l
l
δy

(3.5)

and
CaL
KC
=

2
π2
(Tnω)

2. (3.6)

It is seen that CaL is a product of all three of the non-dimensional quantities
suggested by Leclercq & De Langre (2018), while CaL/KC is proportional to the
square of Tnω. The classification by Leclercq & De Langre (2018) is a function
of Tnω and aw/l, respectively, therefore it is unlikely that a product of these two
parameters (as is the case for CaL) is a suitable non-dimensional parameter. This will
be verified in the following.

The transition from the ‘static’ to ‘convective’ and ‘modal’ regimes for Tnω = 1
corresponds to CaL/KC = 2/π2

= 0.20. The value of 0.20 is for an added mass
coefficient of 1.0.

3.2. Characteristic wave parameters
The characteristic orbital velocity, uw, and the wave excursion, aw, are used in the
non-dimensional parameters. The following describes how they are calculated from the
measured velocities. The characteristic velocity is defined as

uw =
√

2〈urms〉z, (3.7)

where urms is the root-mean-square velocity and 〈 〉z represents the depth-averaged
value over the distance l from the bed. The depth-averaged value is adopted because
it represents the dynamics over the full length of the stem better than the velocity at
one height in the water column.

The measured velocity signal is decomposed into a mean and a wave part in the
following manner:

u= ū+ ũ, (3.8)

where ū is the mean and ũ the wave component. Normally, a turbulent component is
also included in the splitting, but due to the internal filtering of the EMF (7 Hz), the
turbulence is assumed filtered out. The splitting in (3.8) is evaluated per vertical level
and similarly for the vertical velocity w= w̄+ w̃, where w̄= 0 m s−1.

The orbital excursion is evaluated directly from the measured velocities in the
following manner:

aw =
1

4mT

∫ t0+mT

t0

〈|ũ(t)|〉z dt. (3.9)
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FIGURE 2. (Colour online) The range of non-dimensional parameters tested. Markers and
colours have the same meaning in all panels.

This expression reduces to aw = uw/ω (linear wave theory), if ũ is purely sinusoidal;
m is an integer.

The values of aw, uw, 〈ũc〉z, 〈ũt〉z, 〈ū〉z are given in table 3 for all cases, and the
quantities are evaluated for the part of the velocity signal that overlaps the video
recordings; 〈ũc〉z and 〈ũt〉z are depth-averaged velocities evaluated under the crest and
trough of the wave, respectively. It is seen that the two cases with H=0.04 m and the
case with H = 0.07 s and T = 1.5 s are almost sinusoidal, since the crest and trough
velocities are practically identical. Higher harmonics in the velocity field are present
for all other wave conditions. The significance is that a sinusoidal flow would result
in a vanishing mean force on a rigid stem, but it will be described below how this is
not the case for flexible stems.

Furthermore, the non-dimensional numbers: Reynolds (Re = uwδy/ν), Keulegan–
Carpenter (KC), Cauchy (Ca), L, CaL and CaL/KC are tabulated; ν = 10−6 m2 s−1

is the kinematic viscosity of water. The non-dimensional parameters covered in this
work are depicted in figure 2.

In summary, it is seen from table 3 and figure 2 that the ranges for Ca and CaL
overlap each other for the three mimics; Ca is less than 0.01 for mimic 4, so it is
effectively stiff, and no video recordings were made. The significance of CaL and
CaL/KC for vegetation in waves was not identified upon design of the experiments,
where Ca and KC were taken as the descriptive non-dimensional quantities. This is
the reason that CaL has gaps over the full range, while Ca and KC do not.

3.3. The motion of flexible stems
3.3.1. Example of stem motion

Some examples of stem motion are depicted in figure 3. The depicted motion is
based on ensemble averaging over multiple wave periods. The examples allow for a
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Ca = 1.4
CaL = 4.6

CaL/KC = 0.06

Ca = 29.6
CaL = 101.4

CaL/KC = 1.74

FIGURE 3. (Colour online) Four examples of single stem motion based on the ensemble-
averaged displacement. All mimics have a length of l= 0.30 m. (a) Mimic 2, H= 0.04 m
and T = 2.0 s. (b) Mimic 2, H = 0.11 m and T = 3.0 s. (c) Mimic 3, H = 0.04 m and
T = 2.0 s. (d) Mimic 3, H = 0.11 m and T = 3.0 s. The full lines depict forward motion
(∂xs/∂t> 0) and dashed lines backward motion (∂xs/∂t) of the tip. The time step between
two lines is constant. The thick, dashed line is the mean position of the stem.

direct comparison of the effect of material and wave properties on the motion of a
single stem. The sets of panels (a,c) and (b,d) each have the same L= l/aw, so the
difference of the motion is uniquely ascribed to the difference in material properties,
which is captured by Ca and CaL/KC ∝ (Tnω)

2, and a small difference in KC, due
to a difference in δy between mimics. The stiffer the stem (the smaller Ca), the more
upright it is.

The motion in figure 3(a) is clearly asymmetric, while the velocity field is almost
sinusoidal (table 3). Since the hydrodynamic forcing is symmetric, the asymmetry
is mainly attributed to the Lagrangian motion of the stem in a spatially varying
velocity field, as discussed in Gijón Mancheño (2016). She discussed that the mean
forward bending is attributed to the co-following of the tip of the stem under the
crest, i.e. vaguely similar to Stokes drift. This effectively results in a mean force on
the stem and an associated mean deflection.

The stem motion in figure 3(c) is backward asymmetric. The mean deflection of the
stem was negative in stagnant water, which is why it is hypothesized that the plastic
material had anisotropic properties and was pre-tensioned into a slightly curving form.
It is deemed to have limited practical influence on the results. A comparison between
panels (c,d) (same mimic) shows that the latter is forward asymmetric, thus a certain
threshold of forcing had to be exceeded to overcome the hypothesized non-uniformity
in the mechanical properties of the material.

The mean position of the stems is also plotted in figure 3 and a forward mean
displacement is seen in panels (a,b). This finite mean displacement must be associated
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Mimic H T l aw uw 〈ū〉z 〈ũc〉z 〈ũt〉z Re× 10−3 KC Ca L CaL CaL/KC
(m) (s) (m) (cm) (cm s−1) (cm s−1) (cm s−1) (cm s−1) (−) (−) (−) (−) (−) (−)

2 0.04 1.0 0.15 0.6 3.8 0.1 3.8 −3.8 0.38 3.8 0.14 25.0 3.5 9.25× 10−1

3 0.04 1.0 0.15 0.6 3.8 0.1 3.8 −3.8 0.30 4.7 0.01 25.0 0.2 3.39× 10−2

4 0.04 1.0 0.15 0.6 3.8 0.1 3.8 −3.8 0.23 6.3 0.00 25.0 0.0 4.82× 10−4

2 0.04 1.0 0.30 0.7 4.4 −0.0 4.5 −4.4 0.44 4.4 1.55 42.4 65.9 1.48× 101

3 0.04 1.0 0.30 0.7 4.4 −0.0 4.5 −4.4 0.36 5.6 0.07 42.4 3.0 5.42× 10−1

4 0.04 1.0 0.30 0.7 4.4 −0.0 4.5 −4.4 0.27 7.4 0.00 42.4 0.1 7.71× 10−3

2 0.04 2.0 0.15 2.4 7.6 −0.2 7.8 −7.2 0.76 15.2 0.57 6.2 3.5 2.31× 10−1

3 0.04 2.0 0.15 2.4 7.6 −0.2 7.8 −7.2 0.61 19.0 0.03 6.2 0.2 8.44× 10−3

4 0.04 2.0 0.15 2.4 7.6 −0.2 7.8 −7.2 0.46 25.4 0.00 6.2 0.0 1.20× 10−4

2 0.04 2.0 0.30 2.5 7.7 −0.2 8.0 −7.3 0.77 15.4 4.68 12.2 57.0 3.69× 100

3 0.04 2.0 0.30 2.5 7.7 −0.2 8.0 −7.3 0.62 19.3 0.21 12.2 2.6 1.35× 10−1

4 0.04 2.0 0.30 2.5 7.7 −0.2 8.0 −7.3 0.46 25.7 0.00 12.2 0.0 1.92× 10−3

2 0.07 1.5 0.15 2.6 10.7 −0.6 10.9 −10.4 1.07 16.1 1.13 5.8 6.6 4.10× 10−1

3 0.07 1.5 0.15 2.6 10.7 −0.6 10.9 −10.4 0.86 20.1 0.05 5.8 0.3 1.50× 10−2

4 0.07 1.5 0.15 2.6 10.7 −0.6 10.9 −10.4 0.64 26.8 0.00 5.8 0.0 2.14× 10−4

2 0.07 1.5 0.30 2.7 11.2 −0.7 11.5 −10.8 1.12 16.7 9.77 11.3 110.2 6.59× 100

3 0.07 1.5 0.30 2.7 11.2 −0.7 11.5 −10.8 0.89 20.9 0.45 11.3 5.0 2.41× 10−1

4 0.07 1.5 0.30 2.7 11.2 −0.7 11.5 −10.8 0.67 27.9 0.01 11.3 0.1 3.43× 10−3

2 0.07 2.5 0.15 4.9 12.4 −0.6 15.1 −9.8 1.24 31.1 1.52 3.1 4.6 1.49× 10−1

3 0.07 2.5 0.15 4.9 12.4 −0.6 15.1 −9.8 0.99 38.9 0.07 3.1 0.2 5.46× 10−3

4 0.07 2.5 0.15 4.9 12.4 −0.6 15.1 −9.8 0.75 51.8 0.00 3.1 0.0 7.76× 10−5

2 0.07 2.5 0.30 5.0 12.7 −0.7 15.6 −9.9 1.27 31.8 12.67 6.0 75.9 2.39× 100

3 0.07 2.5 0.30 5.0 12.7 −0.7 15.6 −9.9 1.02 39.7 0.58 6.0 3.5 8.76× 10−2

4 0.07 2.5 0.30 5.0 12.7 −0.7 15.6 −9.9 0.76 52.9 0.01 6.0 0.1 1.25× 10−3

2 0.11 2.0 0.15 6.8 21.5 −1.4 24.4 −18.7 2.15 42.9 4.52 2.2 10.0 2.32× 10−1

3 0.11 2.0 0.15 6.8 21.5 −1.4 24.4 −18.7 1.72 53.6 0.21 2.2 0.5 8.51× 10−3

4 0.11 2.0 0.15 6.8 21.5 −1.4 24.4 −18.7 1.29 71.5 0.00 2.2 0.0 1.21× 10−4

2 0.11 2.0 0.30 7.0 22.0 −1.6 25.4 −19.1 2.20 44.1 38.13 4.3 164.3 3.73× 100

3 0.11 2.0 0.30 7.0 22.0 −1.6 25.4 −19.1 1.76 55.1 1.75 4.3 7.5 1.37× 10−1

4 0.11 2.0 0.30 7.0 22.0 −1.6 25.4 −19.1 1.32 73.4 0.03 4.3 0.1 1.94× 10−3

2 0.11 3.0 0.15 8.6 18.9 −0.9 28.8 −12.3 1.89 56.8 3.51 1.7 6.1 1.08× 10−1

3 0.11 3.0 0.15 8.6 18.9 −0.9 28.8 −12.3 1.51 70.9 0.16 1.7 0.3 3.97× 10−3

4 0.11 3.0 0.15 8.6 18.9 −0.9 28.8 −12.3 1.14 94.6 0.00 1.7 0.0 5.64× 10−5

2 0.11 3.0 0.30 8.7 19.4 −1.0 29.8 −12.6 1.94 58.2 29.56 3.4 101.4 1.74× 100

3 0.11 3.0 0.30 8.7 19.4 −1.0 29.8 −12.6 1.55 72.8 1.35 3.4 4.6 6.38× 10−2

4 0.11 3.0 0.30 8.7 19.4 −1.0 29.8 −12.6 1.16 97.0 0.03 3.4 0.1 9.07× 10−4

2 0.16 2.0 0.15 8.9 28.3 −2.5 34.2 −23.2 2.83 56.6 7.87 1.7 13.2 2.34× 10−1

3 0.16 2.0 0.15 8.9 28.3 −2.5 34.2 −23.2 2.27 70.8 0.36 1.7 0.6 8.56× 10−3

4 0.16 2.0 0.15 8.9 28.3 −2.5 34.2 −23.2 1.70 94.4 0.01 1.7 0.0 1.22× 10−4

2 0.16 2.0 0.30 9.2 29.2 −3.0 36.0 −23.7 2.92 58.4 66.99 3.3 219.5 3.76× 100

3 0.16 2.0 0.30 9.2 29.2 −3.0 36.0 −23.7 2.34 73.0 3.07 3.3 10.0 1.38× 10−1

4 0.16 2.0 0.30 9.2 29.2 −3.0 36.0 −23.7 1.75 97.3 0.06 3.3 0.2 1.96× 10−3

TABLE 3. For caption see next page.
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Mimic H T l aw uw 〈ū〉z 〈ũc〉z 〈ũt〉z Re× 10−3 KC Ca L CaL CaL/KC
(m) (s) (m) (cm) (cm s−1) (cm s−1) (cm s−1) (cm s−1) (−) (−) (−) (−) (−) (−)

2 0.16 3.5 0.15 12.0 24.2 −1.4 39.7 −17.6 2.42 84.9 5.77 1.2 7.2 8.50× 10−2

3 0.16 3.5 0.15 12.0 24.2 −1.4 39.7 −17.6 1.94 106.1 0.26 1.2 0.3 3.11× 10−3

4 0.16 3.5 0.15 12.0 24.2 −1.4 39.7 −17.6 1.45 141.5 0.01 1.2 0.0 4.43× 10−5

2 0.16 3.5 0.30 12.1 24.8 −1.7 41.4 −17.8 2.48 86.7 48.20 2.5 119.1 1.37× 100

3 0.16 3.5 0.30 12.1 24.8 −1.7 41.4 −17.8 1.98 108.4 2.21 2.5 5.5 5.03× 10−2

4 0.16 3.5 0.30 12.1 24.8 −1.7 41.4 −17.8 1.49 144.5 0.04 2.5 0.1 7.16× 10−4

TABLE 3. An overview of the characteristic wave parameters and the corresponding
non-dimensional parameters relevant for the motion of the stem and force coefficients.

with a mean force on the stems, so an equally large mean force is acting on the
water column. The increase in hydrodynamic forcing gives a significant increase in
tip displacement for mimic 3 (panels c,d), while a relatively smaller increase in tip
displacement for mimic 2 under the same forcing. This is attributed to the larger
mean displacement of the stem in panel (b), which limits the allowed oscillatory
displacement from the mean. It is seen below that the mean displacement complicates
a unified description of the stem motion.

Proper orthogonal decompositions (see appendix C) of the four examples are shown
in figure 4. It is seen that the motion of mimic 3 is described by the mean and a
single mode, while the displacement of mimic 2 also requires a second mode for an
accurate description. This is in line with the prediction by Leclercq & De Langre
(2018), who give an upper limit of CaL/KC = 0.20 for the static regime. The static
regime is defined as the quasi-static equilibrium between the internal elastic force and
the hydrodynamic forcing, so only one mode shape is required.

Four videos of the examples in figures 3 and 4 supplement this paper, see
appendix D.

3.3.2. Motion characteristics
The results presented above show that there is a trend for the stem to be

increasingly forward asymmetric when the value of Ca or CaL increases. The
variation with CaL/KC is less intuitive for understanding the displacements (figure 3),
but useful in understanding the relevance of a second mode shape (figure 4).

Some measures of the horizontal stem position, xs, are investigated in this section:
max〈x̃s〉, min〈x̃s〉, ∆〈x̃s〉 and 〈xs〉. Here, 〈〉 denotes ensemble averaging and 〈x̃s〉 =

〈xs〉 − 〈xs〉. The displacements are made non-dimensional with aw in accordance with
choice in § 3.1. The results are plotted as a function of CaL in figure 5 and CaL/KC
in figure 6, where xs is taken at the tip of the stem. A few of the data points are
marked with a white dot to indicate that 0.5< 〈xs〉/l, i.e. the mean tip displacement
exceeds 50 % of the stem length. A large mean deflection will be seen to limit the
magnitude of oscillatory displacements, because the tip displacement cannot exceed
100 % of the stem length.

The first observation is that CaL/KC describes the overall behaviour considerably
better than CaL if the data points with large mean displacement are neglected; see
the white dots. The difference is most noticeable in the range CaL ∈ [2, 20] and
CaL/KC ∈ [0.05, 1], where the data exhibit much less vertical scatter as a function
of CaL/KC. Data points for both mimic 2 with l = 0.15 m and mimic 3 with
l= 0.30 m overlap in these parameter intervals, but only CaL/KC leads to a collapse
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FIGURE 4. (Colour online) Four examples of single stem motion decomposed into
proper orthogonal decomposition (POD) modes. All mimics have a length of l= 0.30 m.
(a) Mimic 2, H = 0.04 m and T = 2.0 s. (b) Mimic 2, H = 0.11 m and T = 3.0 s.
(c) Mimic 3, H = 0.04 m and T = 2.0 s. (d) Mimic 3, H = 0.11 m and T = 3.0 s. Red
line, mean displacement. Full blue line, mode 1. Dashed blue line, mode 2. The percentage
describes the importance of the mode for the time varying motion.

of the data. This means that the natural period (CaL/KC∝ (Tnω)
2) is more important

than the drag force exerted on the stem; the latter scaling with CaL in (3.2). The
magnitude of the hydrodynamic forcing, incorporated by normalizing with aw, is
also justified. It is seen that ∆〈x̃s〉/aw reaches values of 4.0, so the acceleration of
the stem tip exceeds that of the water and the inertia force on the stem retards
the tip displacement under these conditions (see also supplementary video material
available at https://doi.org/10.1017/jfm.2019.739 and appendix D). Consequently, the
investigated stems seem to have an upper allowed acceleration, because of the added
mass effect. Leclercq & De Langre (2018), in their figure 4, showed that the tip
displacement converged to a asymptotic value of max xs/l ' 0.45 for aw/l = 0.27
for increasing ω. The ratio max xs/aw = 0.45/0.27 = 1.67, a similar result as in the
present study. Mimics 2 and 3 had a sufficiently large torsional stiffness to suppress
torsional motion, while mimic 1 (otherwise not analysed here) showed a large degree
of torsion during phases of large acceleration, thereby reducing the effect of added
mass.

The general picture is that there is no noticeable displacement of the stem up to
approximately CaL= 1.0, so at least the stem behaves as effectively rigid up to this
value (see figure 5). This is in line with figure 5 in Luhar & Nepf (2011) and figure
11 in Luhar & Nepf (2016), who investigated the concept of effective length for pure
current and waves, respectively.

For larger displacements, the displacements increase with increasing CaL/KC, yet
still with close to vanishing mean displacements up to CaL/KC= 0.8 (figure 6). For
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FIGURE 5. (Colour online) Characteristic measures of the motion of the tip of the stem
as a function of CaL. The data are for mimics 2 and 3. The red markers correspond to
the cases depicted in figure 3. The white dots indicate cases with 0.5< 〈xs〉/l.

CaL/KC> 0.8, max〈xs〉/aw and |min〈xs〉|/aw show some scatter in the range 0.5–2.0.
The cases with values different from approximately 2 related to a large value of 〈xs〉/l,
i.e. most of the deflection potential is already taken by the mean deflection (shown as
white dots).

It was investigated whether a better representation of the data could be achieved
by normalizing with l instead of aw, e.g. in line with the choice by Luhar & Nepf
(2016) and Leclercq & De Langre (2018). The results conclusively showed that aw
is the better horizontal length scale of the two. The non-dimensional scaling adopted
in the present work appears applicable to the description of flexible stems with small
mean deflections.
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FIGURE 6. (Colour online) Characteristic measures of the motion of the tip of the
stem as a function of CaL/KC ∝ (Tnω)

2. The data are for mimics 2 and 3. The red
markers correspond to the cases depicted in figure 3. The white dots indicate cases with
0.5< 〈xs〉/l.

3.3.3. Phase lags
The fluid and stem motions are not necessarily in phase, which was described

theoretically and verified against field measurements for weakly flexible vegetation
(Mullarney & Henderson 2010). The large flexibility in the present experiments
(e.g. figure 3b) and the presence of a second mode shape (figure 4b) mean that the
phase lag is not constant along the stem. This is easily seen in figure 3(b), where the
tip of the stem reaches an extreme forward position later than any point below the
inflection point at z ' 0.1 m. The tracking algorithm and the synchronization with
the velocity field allow for an evaluation of this phase lag. All cases where the tip
was displaced more than 3 mm (7.5 pixels) were included in the analysis. Cases with
smaller tip displacements were too noisy for accurate estimates.
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FIGURE 7. (Colour online) The variation of ϕs (a) and ϕc
s (b) over the length of the stem.

The lines match panels (a–d) in figure 3. l= 0.30 m.

Two phase lags were defined,

ϕs(s/l)=
360◦

T
(tu=max xw − txs=max xs) (3.10)

and

ϕc
s (s/l)= ϕs(s/l)−

360◦

T
max xs

c
, (3.11)

where xw is the water particle position, c is the wave celerity and s is a local
coordinate along the length of the stem with s/l = 0 at the base of the stem and
s/l=1 at the tip. Equation (3.10) defines the phase lag between the instances at which
xs is maximum and the time at which the fluid particle position (xw) is maximum
(evaluated at x = 0 m). Here, ϕc

s accounts for the fact that the stem reaches its
maximum position for x > 0 m, so it experiences a different velocity field than at
x= 0. The fluid particle position is evaluated as

xw(t)=
∫ t

0
ũ(τ ) dτ , (3.12)

where ϕs and ϕc
s are plotted over the length of the stem (figure 7) for the four

examples shown in figure 3. The results are plotted for s/l > 0.1. Generally, the
phase lag for mimic 2 has a gradually decreasing value of ϕs over the length of the
stem. For the stiffer mimic 3 with CaL/KC< 0.2, ϕs is practically constant over the
length of the stem. It is seen that the behaviour is qualitatively identical for ϕs and
ϕc

s , but differences of 15◦ are observed. The vertical variation in ϕc
s for mimic 2 is
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FIGURE 8. (Colour online) The phase lag between the maximum fluid particle
displacement and the maximum displacement of the stem, ϕc

s . The error bars show the
±σ range, where σ is the standard deviation. (a) The quantities are plotted as a function
of CaL. (b) The quantities are plotted as a function of CaL/KC.

attributed to the finite amount of energy on the second mode shape, while there is
no energy on the second mode shape for mimic 3, so the phase lag is constant.

In figure 8, ϕc
s is depicted for three points along the stem (s/l= {0.2, 0.6, 1.0}) as

a function of CaL and CaL/KC, respectively. Values of ϕc
s are found per wave period

and the mean and the standard deviation are calculated. Neither of the two parameters
CaL and CaL/KC gives a convincing relationship with the phase lag. Nonetheless,
it is seen that all points along the stem have the same phase up to CaL < 20 and
CaL/KC<0.5, so the stem shape must be described fully by a single mode shape. The
limit of CaL/KC' 0.5 corresponds fairly well with the theoretical limit of transition
away from the static regime proposed by Leclercq & De Langre (2018) (see § 3.1).

3.3.4. Relative velocities and accelerations
The relative velocities and accelerations between the orbital velocities and the stem

motion are evaluated in order to describe the motion, but also to evaluate the force
coefficients. The relative velocities and accelerations are defined as follows:

uc
r|t = u|t−1ts −

∂xs

∂t

∣∣∣∣
t

and
∂uc

r

∂t

∣∣∣∣
t

=
∂u
∂t

∣∣∣∣
t−1ts

−
∂2xs

∂t2

∣∣∣∣
t

. (3.13a,b)

Here, 1ts is xs/c and superscript c is used to indicate the Lagrangian correction. The
offset is introduced because the stem does not experience the velocity measured by
the EMF at x = 0 m. Therefore, when xs > 0 m, the stem is exposed to a velocity
that has already been recorded at x= 0 m. Similarly, the stem is exposed to velocities
yet to be recorded, when xs < 0 m. Similar expressions hold for wr and ∂wr/∂t. The
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FIGURE 9. (Colour online) Lissajous curves for (uc,wc), (us,ws) and (uc
r,wc

r). Lines are
ensemble averages. The small black/white dots on the curves mark time with a spacing
of 0.2 s. The coloured markers indicate the direction of the temporal axis. Mimic 2, l=
0.30 m, H = 0.11 m and T = 3.0 s. The aspect ratio is 1.0:0.8.

velocity and acceleration of the stem segments are evaluated with proper orthogonal
decomposition of the stem motion and algebraic differentiation (appendix C), while
the temporal derivatives of u and w are based on a simple central finite difference
scheme.

The orbital, stem and relative velocities are depicted in the following with Lissajous
curves (see figures 9 and 10). Here, u is plotted along the horizontal axis and w along
the vertical axis. Lissajous curves form an ellipse when u and w are 90◦ out of phase,
while the curve forms a line when u and w are in phase; (uc, wc) can be seen as a
closed curve, but the nonlinearity in the wave has shifted the curve towards the right
and wc

6=max wc when uc
= 0.

The curves in figures 9 and 10 are depicted for four points along the length of the
stem. The figures correspond to panels (b) (mimic 2) and (d) (mimic 3) in figure 3
and the only difference between the two sets of Lissajous curves is the stem properties
(H=0.11 m, T=3/0 s and l=0.30 m). A comparison between the two figures shows
that −min us <max us for mimic 2, while max us <−min us for mimic 3, i.e. either
the forward or backward velocity is the largest. The more flexible stem (smaller EI)
readily follows the flow, while the stiffer stem (larger EI) ‘shoots’ backward as soon
as the hydrodynamic loading decreases. This is caused by the elastic energy stored
in the stem during the forward motion (see also theoretical analysis in Mullarney &
Henderson 2010).

The figures show that uc
r is generally larger in the positive direction and the curve

(uc
r, wc

r) follows a relatively simple closed curve for s/l < 0.5. The pattern is more
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FIGURE 10. (Colour online) Lissajous curves for (uc,wc), (us,ws) and (uc
r,wc

r). Lines are
ensemble averages. The small black/white dots on the curves mark time with a spacing
of 0.2 s. The coloured markers indicate the direction of the temporal axis. Mimic 3, l=
0.30 m, H = 0.11 m and T = 3.0 s. The aspect ratio is 1.0:0.4.

complex higher on the stem (0.5< s/l). The fluid velocity governs the hydrodynamic
loading at the base of the stem, since us � uc

r and uc
r ' u. At the tip of the stem,

the combined stem velocity and phase difference results in a lowering of uc
r , so the

hydrodynamic loading at the tip is expected to be smaller than at the bed (figure 9).
Finally, it is seen for both mimics that max |uc

r|<max |uc
|, while max |wc

|<max |wc
r|

for mimic 2 and max |wc
r|<max |wc

| for mimic 3. Consequently, the flexibility of the
stem is expected to reduce the inline force. However, the vertical motion can cause
vertical tip velocities of the same order of magnitude as the horizontal, so a flexible
stem may still be subject to large forces in waves. How the vertical force transfers to
the root cannot be evaluated in this work, since a one-dimensional force transducer
was used. Nonetheless, given the large positive vertical velocity, an uprooting force is
expected.

3.4. Average force coefficients
The average force coefficients CD and CM are derived for mimics 2, 3 and 4. The
force coefficients are normally calculated based on a least-square method (e.g. Sumer
& Fredsøe 1999) with a representative velocity and acceleration. In the present case,
the stem moves in the fluid and thereby changes its exposed area to the flow. This is
illustrated in figure 11, where the maximum, Fc, and minimum, Ft, forces at the base
are compared for stem lengths l = 0.15 m and l = 0.30 m and identical conditions.
Fc and Ft were found with a zero-crossing analysis on the force time series. The
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FIGURE 11. (Colour online) The measured peak forces for mimics 2, 3 and 4. The
minimum force, Ft, is shown with empty markers and the maximum force, Fc, with filled
markers.

forces for mimic 4 are approximately a factor of 2 larger for l = 0.30 m than for
l = 0.15 m, while the forces do not scale linearly with l for mimics 2 and 3. The
more the doubling from 0.15 m to 0.30 m for mimic 4 is due to the increase of
orbital velocity with the distance from the bed; Ft shows a factor of 2 increase for
both mimics 3 and 4, which is attributed to the fact that the stem is more upright
under the wave trough than under the wave crest. The results for mimic 3 suggest
that the exposed length of the stem varies over one wave period, so the instantaneous
shape of the stem should be accounted for, when the force coefficients are evaluated.

The force coefficients are found by integration of (3.1) along the instantaneous
shape of the stem,

Fx =

∫ l

0
EI
∂4xs

∂z4
ds= ρδxδy

∫ l

0

(
∂uc

∂t
−
ρs

ρ

∂2xs

∂t2

)
ds

+ ρCM
πδ2

y

4

∫ l

0

∂uc
r

∂t
cos θs ds+

1
2
ρCDδy

∫ l

0
uc

r

√
uc,2

r +wc,2
r cos θs ds, (3.14)

where Fx is the force at the base. Here, cos θs accounts for the effective length of
a stem segment and θs is the angle of the stem from the vertical; θs varies along
the length of the stem. Note that the Lagrangian correction to the relative velocities
and accelerations is used, but it only matters for a few of the conditions with large
CaL/KC. All properties in (3.14) are measured, so a least-squares approach can be
used to calculate CM and CD. The Froude–Krylov and inertia terms are explicitly
accounted for, but they only affect the value of CM for mimic 4 with δy = δx.

The values of CM and CD are plotted as a function of KC in figure 12(a,b), where
CM shows considerable scatter and there does not seem to be any organized trend
when looking at individual mimics or individual values of l. This is attributed to the
limited importance of the inertia force in the present experiments for KC > 10 and
the fact that a part of the stem experiences large velocities at a given instance, while
another part experiences large relative accelerations (for the more flexible stems). The
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FIGURE 12. (Colour online) The average force coefficients for mimics 2, 3 and 4. (a) The
inertia coefficient CM as a function of KC. (b) The drag coefficient CD as a function of
KC. (c) CD as a function of KCr. (d) CD as a function of Rer.

value of CD shows less scatter as a function of KC than CM, but there are still clusters
with separate trend curves: (i) KC< 10; (ii) 10<KC< 30; (iii) 30<KC.

The definition of KC (3.3) is based on the fluid velocity, while the stem experiences
the relative velocity. Therefore, the relative Keulegan–Carpenter and Reynolds
numbers were defined as

KCr =
2πuc

w,r

ωδy
and Rer =

uc
w,rδy

ν
, (3.15a,b)

where

uc
w,r =
√

2
〈√

(uc
r − ūc

r)
2

〉
z

. (3.16)
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FIGURE 13. (Colour online) Comparison between the measured and fitted forces for all
mimics (2, 3 and 4). Markers show the mean value and the lines show the standard
deviation. The standard deviation is shown for both measured and fitted values. (a) The
maximum force, Fc. (b) The minimum force, Ft. Dashed line, 1:1 fit. Dash-dotted lines,
1:1.2 and 1.2:1 fits.

The value of CD is depicted as a function of KCr and Rer in figure 12(c,d). The
change from KC to KCr mostly affects KC for mimic 2, but it is enough to merge
the two separate trends for 10<KC; CD shows less scatter as a function of Rer than
Re (the latter not depicted) and CD decreases with increasing Rer.

There seem to be a separation of CD for the three mimics for low values of KCr and
Rer. The increase in CD with decreasing Rer and KCr is commonly known and is due
to the omission of viscous effects in the drag (e.g. Sumer & Fredsøe 1999). Inclusion
of a linear drag term was attempted, but due to the partial correlation between uc

r|u
c
r|,

uc
r and ∂uc

r/∂t, the least-squares system provided poor results and a direct evaluation
of linear and nonlinear drag coefficients was not achieved.

It was confirmed that the force coefficients (CD and CM) are not a function of either
Ca, CaL or CaL/KC. This makes sense, because the force coefficients represent the
interaction between stem and fluid, and they should not be a direct function of the
mechanical properties of the stem.

The accuracy of the fitting is presented in figure 13, where the mean and standard
deviation of Fc and Ft are presented for both measured and fitted values. It is seen
that the fitted loads are captured accurately and generally within 10 %–20 % of the
measured force. The mean deviation over all data sets is 2 %.
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3.5. Distribution of the external and internal forces along the stem
The estimated average force coefficients allow for an evaluation of the force
distribution, fx, along the length of the stem. The force distribution subsequently
allows for an approximate distribution of the internal shear force, Vx, within the stem
as follows:

Vx(s)=
∫ l

s
fx ds, (3.17)

where Vx(s) is only an approximation, because the force coefficients for vertical forces
on the stem could not be derived.

An example is shown in figure 14 for mimic 3 with H= 0.04 m, T = 2.0 s and l=
0.30 m (corresponding to figure 3c). The stem only experiences small displacements
and the total force and the inertia are seen to be out of phase (compare panels a,b).
The inertia force contributes less than 10 % to the maximum distributed force. It can
also be seen that the maximum loading on the stem takes place at the base of the
stem and at the tip of the stem. The latter due to the large relative velocities at the
tip of the stem and for the former because uc

r= uc at the base. Finally, panel (c) shows
Vx, which changes in a monotonic fashion from the tip towards the base of the stem.
Unless there are local weaknesses, the stem is most likely to break at the base or
become uprooted.

Another example is shown in figure 15 for mimic 2 with H = 0.04 m, T = 2.0 s
and l= 0.30 m (corresponding to figure 3a). This case differs from the above: (i) the
displacements are larger. (ii) The phase lag over the length of the stem is not a
constant (figure 7). It is clear to see that there are considerable temporal shifts in the
maximum distributed force over the length of the stem, which is attributed to the fact
that ϕc

s varies from 75◦ at the base to 0◦ at the tip of the stem. The distributed force
vanishes at s/l= 0.70 over the entire wave period. The inertia force shows a similar
temporal shift; again attributed to ϕc

s . The inertia force contributed 10 %–15 % of the
maximum force.

Finally, figure 15(c) shows Vx, where oblique lines for Vx = 0 mN are seen as a
function of time. This is opposite to the example with mimic 3, where Vx=0 mN over
the entire length of the stem at a given time instance. This effectively means that the
force at the base only receives contributions from the lower part of the stem, which
is approximately half the stem in the present case. Furthermore, while the maximum
of |Vx| still takes place at the base, there are almost as large values of |Vx| along
the upper half of the stem (approximately 70 % of the maximum base force). The
maximum in Vx at z/l= 0.75 occurs almost simultaneously with the minimum in Vx

at the base of the stem. Consequently, it is not unlikely that the stem will break away
from the root, if the stem is already damaged.

The differences in internal shear stresses for the two examples are linked to the
presence of a second mode shape for mimic 2 (see figure 4a,c). Mimic 3 falls in the
static regime (Leclercq & De Langre 2018) which explains the monotonic behaviour.
The second mode shape for mimic 2 is seen to directly influence the shear distribution
in the stem.

It was mentioned in conjunction with the Lissajous curves in figure 9 that the
distributed force along the stem for mimic 2 with H = 0.11 m, T = 3.0 s and
l = 0.30 m would be maximum below the tip (the relative velocity is largest below
the tip). Plots similar to figures 14 and 15 were made and it was indeed observed
that the force ranges from −120 to 500 mN at the base of the stem, while the force
at the tip of the stem only ranges from −120 to 200 mN. The force at the stem has
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FIGURE 14. (Colour online) (a) The distributed total force in mN m−1 as a function of
space and time. (b) The distributed inertia force in mN m−1 (total subtracted drag). (c) An
estimate of the internal shear force in mN. (d) xs/l at four points along the stem. Mimic
3, l= 0.30 m, H = 0.04 m, T = 2.0 s and the stem motion is that of figure 3(c).

a wide trough and a narrow and high peak and Vx shows a limited temporal shift,
see figure 16.

The supplementary video material (appendix D) shows the distributed hydrodynamic
force and the internal shear force.

3.6. Summary
The results have shown that the classification by Leclercq & De Langre (2018) based
on the ratio of the natural period to the wave period (Tnω) can be extended to flexible
stems in real waves. It is also seen that the main non-dimensional parameters Tnω
and CaL/KC (derived in this work) are equivalent. The motion of the stems can be
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FIGURE 15. (Colour online) (a) The distributed total force in mN m−1 as a function of
space and time. (b) The distributed inertia force in mN m−1 (total subtracted drag). (c) An
estimate of the internal shear force in mN. (d) xs/l at four points along the stem. Mimic
2, l= 0.30 m, H = 0.04 m, T = 2.0 s and the stem motion is that of figure 3(a).

subdivided into two aspects: (i) shape and (ii) magnitude. The results presented in
§ 3.3.2 suggest that the magnitude scales better with aw than l; the former selected
in the present work as the non-dimensional, horizontal length scale. The shape is
described by CaL/KC, which effectively informs on the possibility that the motion
of the stem will trigger higher mode shapes.

The existence of a second mode shape gives rise to a non-uniform phase lag along
the length of the stem (§ 3.3.3). The second mode shape also gives rise to more
complicated relative velocities and accelerations and a maximum in the internal shear
force away from the stem (§ 3.5). Consequently, the existence of more than a single
mode shape can be used to predict whether a stem will break at the base of the stem
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FIGURE 16. (Colour online) An estimate of the internal shear force in mN. Mimic 2,
l= 0.30 m, H = 0.11 m, T = 2.0 s and the stem motion is that of figure 3(b).

or higher up: the smaller the value of CaL/KC∝ (Tnω)
2, the more likely it is that the

stem will break at the base.

4. Discussion of canopy scale processes
Extrapolation of the motion characteristics of an individual stem to the characteristics

of canopies is not necessarily possible. The presence of a canopy introduces a mean
flow within and above the canopy (e.g. Luhar et al. 2010), where the most pronounced
feature is a streaming-like mean current at the top of the canopy. The mean current
will result in an increased mean deflection of the stems and thereby reduce the
magnitude of the transient part of the motion. This is also seen experimentally in
Lei & Nepf (2019), who compared motion of a single stem with the motion in a
canopy under identical conditions. As a first assessment, a stem is likely to be in the
same motion regime (e.g. following Leclercq & De Langre 2018), when the wave
period is the same, because CaL/KC ∝ (Tnω)

2 is constant. On the one hand, the
added mass increases from a single stem to multiple stems as known from offshore
engineering for clusters of cylinders (Sarpkaya 1979; Heideman & Sarpkaya 1985)
and it leads to an increase in Tn and thus CaL/KC. On the other hand, a large
(nonlinear) mean deflection can change the natural period of the stem as seen for
oscillating cantilever beams (Conzalez-Cruz, Jauregui-Correa & Herrera-Ruiz 2016).
It is likely that buoyancy effects – otherwise neglected in this work – can have
an influence on the natural period under large deflections. The nonlinear behaviour
of the natural period, and thereby on the classification following CaL/KC, can be
investigated with a validated nonlinear beam model.

The hydrodynamics within a canopy is influenced both by the intra-wave processes
for vertical mixing and the period-averaged properties. The mean deflection of the
stem, as discussed in § 3.3, is a clear proof that a mean force is acting on the stem,
and there is thus an equal force acting on the water column. The mean force could
potentially be important in a force equilibrium for the mean wave-induced set-up
through and behind a canopy (Dean & Bender 2006; Wu et al. 2011), because the
force equilibrium would otherwise only include terms from the bottom shear stress,
the gradient in the mean surface elevation and the gradient in the radiation stress.
Inclusion of a mean force on the vegetation in the horizontal force equilibrium
(Van Rooijen et al. 2016; Zhu et al. 2019) thus balances part of the gradient in
the radiation stress and reduces the equilibrium surface elevation gradient. The mean
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force will also contribute to the shear stress distribution responsible for the mean flow
within canopies (see e.g. Luhar et al. 2010; Abdolahpour et al. 2017, for experimental
data on mean flow in canopies).

At present, the mean force is estimated based on streamfunction wave theory (Dean
& Bender 2006), on the empirical wave shape by Ruessink, Ramaekers & Van Rijn
(2012) as included in the XBeach model by Van Rooijen et al. (2016) or based
on inclusion of second-order Stokes contributions in semi-analytical expressions
of the mean force (Zhu et al. 2019). These approaches are reasonable for stiff
stems; however, in the case of flexible stems, it is still not understood whether the
nonlinear wave kinematics or the Lagrangian motion is governing F̄x. This should
be quantified for a correct parameterization for large scale engineering models. The
main contribution (Lagrangian motion or nonlinear kinematics) was investigated with
the present experimental data, but the investigation was inconclusive. Therefore, it
is recommended that a nonlinear numerical beam model be applied to resolve this
outstanding question.

5. Conclusion

A unique data set for the motion of a single flexible stem with rectangular cross-
section in regular waves was presented in this work. The data set distinguishes itself
from previous laboratory studies by describing the full intra-wave motion of the stem
and not only the displacement of the tip. A total of 48 combinations of stem properties
(material properties and dimensions) and wave conditions were reported.

It was established that the non-dimensional quantity CaL/KC represents the motion
characteristics better than the quantity CaL. This was linked to the similarity between
CaL/KC and (Tnω)

2 (the latter by Leclercq & De Langre 2018). Leclercq & De
Langre (2018) classified the response based on a ratio between the natural and wave
periods. A small number of data points indicated that stems with a large mean
deflection showed a different oscillatory behaviour from stems with a small mean
deflection. This was explained by the fact that a large mean deflection restricts the
oscillatory motion. This nonlinear effect cannot be described by existing theoretical
models based on the linear Euler–Bernoulli beam theory and requires a nonlinear
beam model such as those described in Dijkstra & Uittenbogaard (2010), Luhar &
Nepf (2016) and Leclercq & De Langre (2018).

The phase lag between hydrodynamics and stem motion was evaluated and stiffer
stems were seen to have a uniform phase lag over the length of the stem, while more
flexible stems showed along-stem variation in the phase lag. This is linked to the
importance of a second mode shape for more flexible stems.

The relative velocities and accelerations were evaluated and subsequently inserted
into the dynamic beam model to calculate the average force coefficients for a flexible
stem. Only the drag coefficient, CD, was accurately extracted given the large value
of KC, indicating a limited inertia force. It was seen that CD showed better overall
coherence as a function of the Keulegan–Carpenter number based on the relative
velocities: the velocities which are effectively seen by the stem. The value of CD

decreases with increasing KC, which was attributed to linear drag for low KC and
Re numbers.

The processing of the data allowed for approximations of both the external
hydrodynamic loading and the internal shear force. It was seen that some stems
had a monotonic increase of the shear force towards the base of the stem, while
others exhibited a local maximum in the shear force closer to the top of the stem.
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The local near-tip maximum was linked to the large variation of the phase lag over
the length of the stem and thus also the motion regimes by Leclercq & De Langre
(2018). The local maxima in the internal shear force (away from or at the base of
the stem) can explain breakage mechanisms and thus loss of biomass.

The presented data set is envisaged as a valuable data set for benchmarking of linear
and nonlinear numerical models for the motion of a single flexible stem in waves.
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Appendix A. Matching measurements
There are several different signals that need to be synchronized to provide a

reliable estimate of the force coefficients on the single stems. These signals are
(i) synchronization of the velocity profile over the height of the water column,
(ii) synchronization of the sampled velocity and force and (iii) synchronization of
the video recording and the point measurements. These elements are described in the
following sections.

A.1. Reconstructing the velocity profile
The two velocity components u and w were measured at a single location above the
bed for each single test. Consequently, the velocity profile over the depth can only be
reconstructed by a combination of several tests. The surface elevation, η, and velocity
measurements both contained some low-frequency modulation, so an exact match of
the time series was required to avoid temporal shifts in this modulation over the water
column.

The synchronization of the velocity profile was based on the surface elevation at
the same location as the mimic (WG5), see figure 1. The synchronization was done
by evaluation of the correlation coefficient for η between two experiments, where
one time series was given a temporal offset. The temporal offset leading to the
largest correlation coefficient was adopted as the optimal synchronization. There were
multiple velocity measurements for some vertical locations. In that case, the average
velocity was used.

A.2. Synchronization of force and velocity measurements
There is an internal processing step in the EMF that leads to an offset between the
sampling of the force transducer (no internal processing) and the EMF. The offset
between the force transducer and the EMF was found to be approximately 0.11 s,
i.e. 11 samples.

The offset was estimated by assuming that the maximum force for large velocities
(large KC numbers) is drag dominated, i.e. correlated solely with u|u| (Sumer &
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Fredsøe 1999). A correlation analysis for 12 cases for the rigid mimic (mimic 4)
with KC> 100 was performed and the force was found to lead the velocity signal by
0.08–0.14 s with an average of 0.114 s. The sampling frequency was 100 Hz, so an
offset of 11 samples is used throughout this work. Hence, there is a synchronization
error between force transducer and velocity of up to ±0.03 s.

A.3. Synchronization of footage and point measurements
A LED was controlled by the acquisition system and the LED was captured by
the digital video camera. The synchronization was automated by matching the
control signal (point measurement) and the average of all pixel intensities in a
frame (footage). The steering signal for the LED was set to activate the LED 1.12 s
after the beginning of the control signal, so to avoid problems in the data treatment,
the time signal for the LED was displaced manually by 1.12 s to a later time instance.
The synchronization routine has a maximum uncertainty of 0.02 s, which equals half
the time between each frame.

Appendix B. Outline of the stem tracking algorithm

The footage was acquired in colour (RGB), so the position of the stem could be
identified on all three colour channels. This was used to actively decide on whether
one of the colour channels resulted in an erroneous tracking. The criterion was that
the position of the stem should be within 1 mm (2.5 pixels) of each other on the
three colour channels to qualify as a valid tracking. If not, the position of the stem
was regarded as unknown (see e.g. figure 17b).

The basis of the stem tracking is as follows:

(i) Load all footage (except for frames with the LED on) into the matrices X0,
X1, . . . , XN of rank 3 (the third dimension contains each of the three colour
channels).

(ii) Evaluate the simple mean of the pixel intensity of these frames (X) and compute
the perturbation from this mean X′n = Xn − X. This step effectively removed the
EMF from the footage (which is otherwise present, see figure 17).

(iii) Perform a Gaussian blur of the frames, where the size of the blurring kernel is
7-by-7 pixels. This step is used to reduce noise away from the stem, which would
otherwise (erroneously) be considered part of the stem.

(iv) Perform edge detection with a compact kernel. (The compact kernel reads
K = [−2, 0, 2; −1, 0, 1; −2, 0, 2] for detection along one axis and KT for
detection along the second axis.) The edge detection allows for evaluation of
sharp gradients in X′.

(v) Large values of the gradient in pixel intensity are tracked from the root of the
stem and upward. The tracking for each frame is stopped, when either the tracked
length of the stem equals the full length of the stem (figure 17f ) or the position
of the stem is too blurred to provide a reliable tracking (figure 17b).

The position of the root of the stem was identified manually prior to the execution of
the automated tracking procedure. Examples of the raw footage and the result of the
tracking algorithm are shown in figure 17.

It was not always possible to detect the end of the stem with the tracking algorithm,
since the velocity of the stem occasionally exceeded 0.3–0.4 m s−1 (figure 17b),
which meant that the stem displaced more than 30 pixels within one frame. High
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FIGURE 17. (Colour online) Example of the tracking algorithm for six frames for a case
with mimic 2 and l = 0.30 m. The vertical lines at x = 0 m are the EMF. The dashed
orange line is the tracked position of the stem. Panel (b) shows an example where a part
of the stem was not recognized.

speed cameras, optimal lighting and a short shutter time are all recommended for
future works.

The blurring of the stem during the sweeping from one extreme position to another
means that the location during this part of the motion is not always captured. However,
the velocity of the stem vanishes in the extreme positions, which is why a reliable
tracking of the extremities of the stem location was achieved for all tests with mimic
2 and 3.

The tracked position of the stem (xs(s), zs(s)) was finally interpolated onto an
equidistant coordinate system along the length of the stem, s. The resolution was set
to 1s= 2.5 mm, which is approximately 6 pixels.

Appendix C. Deriving the stem velocity and acceleration
At first, it was attempted to evaluate the velocities (∂xs/∂t) and accelerations

(∂2xs/∂t2) of the stem segments with a simple 3-point finite difference stencil. This
resulted in an accumulation of noise for each additional derivative (figure 18). The
noise was expected to affect the fitting to the Morison equation, when deriving the
force coefficients, why a different method was adopted.

Proper orthogonal decomposition was applied on the coordinate sets (xs, zs). This
method allows for the evaluation of case specific mode shapes Φs and the associated
weights αs(t). The POD method is not detailed in this work, so reference is made
to e.g. Birkemeier (1984) and Jacobsen, van Velzen & Fredsøe (2014). Examples of
mode shapes are shown in figures 4 and 19, and merely two mode shapes are enough
to characterize 98.5 % of the motion for that particular example.
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FIGURE 18. (Colour online) Example of xs, ẋs and ẍs at the tip of the stem for l= 0.30,
T = 3.0 s and H = 0.11 m (Mimic 2). The finite difference (discrete) and POD approach
to evaluate ẋs and ẍs are shown.
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FIGURE 19. (Colour online) The two first mode shapes and the mean stem position. Same
stem as in figure 18. The percentage is the importance of the mode in the description of
the fluctuating motion.

The strength of the POD method is that the stem position can be reconstructed as
follows:

[xs; zs] = [xs; zs] +
∑

n

αs,n(t)Φs,n, (C 1)
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where bold symbols are column vectors and n is the nth mode shape. Consequently,
the stem velocities and accelerations read

[ẋs; żs] =
∑

n

α̇s,nΦs,n and [ẍs; z̈s] =
∑

n

α̈s,nΦs,n. (C 2a,b)

Evaluation of α̇s and α̈s with a finite difference scheme would introduce noise as well.
Consequently, αs was first estimated with the following fit (filter):

α̃s = a0 +

5∑
n=1

an cos nωt+ bn sin nωt, (C 3)

where ω = 2π/T is the cyclic frequency and the fit is limited to the first five
harmonics. This fitting is possible because regular waves were used. The temporal
derivatives are then estimated through algebraic differentiation instead of a numerical
equivalent

˙̃αs =

5∑
n=1

nω(−an sin nωt+ bn cos nωt) (C 4)

and

¨̃αs =

5∑
n=1

n2ω2(−an cos nωt− bn sin nωt). (C 5)

The fitting approach in (C 3) was favoured over a Fourier decomposition of αs for two
reasons: (i) The time series for αs are non-equidistant, which makes discrete Fourier
transforms less straightforward. (ii) The match to the exact frequency ω instead of a
discrete frequency originating from a discrete Fourier transform was expected to result
in more accurate approximations of ˙̃αs and ¨̃αs.

The associated velocity and acceleration are shown in figure 18 and a noise
reduction is seen. The drawback of the adopted approach is that slow variations in
the stem motion are not included, so the POD-method results in a regularization of
the signal. This will not have any consequence for the present analysis of the force
coefficients, because the slow motion only affects the velocities and accelerations
with small modifications, which are estimated to be O(1 %).

Appendix D. Supplementary video material
Four videos are added as supplementary material. The videos have four panels

showing (i) stem and relative velocities, (ii) the distributed, horizontal forces on the
stem, (iii) the stem and relative accelerations and (iv) the distributed shear force in
the stem. Metadata is provided in the footer of the video.

The four videos match the example cases used throughout this paper (e.g. figures 3
and 4). Movie 1 corresponds to figure 3(a), Movie 2 corresponds to figure 3(b), etc.
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