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For a fixed permutation τ, let SN (τ) be the set of permutations on N elements that avoid

the pattern τ. Madras and Liu (2010) conjectured that limN→∞
|SN+1(τ)|

|SN (τ)| exists; if it does,

it must equal the Stanley–Wilf limit. We prove the conjecture for every permutation τ of

length 5 or less, as well as for some longer cases (including 704 of the 720 permutations of

length 6). We also consider permutations drawn at random from SN (τ), and we investigate

properties of their graphs (viewing permutations as functions on {1, . . . , N}) scaled down to

the unit square [0, 1]2. We prove exact large deviation results for these graphs when τ has

length 3; it follows, for example, that it is exponentially unlikely for a random 312-avoiding

permutation to have points above the diagonal strip |y − x| < ε, but not unlikely to have

points below the strip. For general τ, we show that some neighbourhood of the upper

left corner of [0, 1]2 is exponentially unlikely to contain a point of the graph if and only

if τ starts with its largest element. For patterns such as τ = 4231 we establish that this

neighbourhood can be extended along the sides of [0, 1]2 to come arbitrarily close to the

corner points (0, 0) and (1, 1), as simulations had suggested.

2010 Mathematics subject classification: Primary 60C05

Secondary 05A05, 05A16, 60F10

1. Introduction

For each natural number N, let SN denote the set of all permutations σ = σ1σ2 · · · σN
of {1, 2, . . . , N}. Fix an integer k and a permutation τ in Sk . For N � k, a permutation

σ ∈ SN is said to ‘contain the pattern τ’ if there is a subsequence of k elements of σ that

appears in the same relative order as τ (see Definition 2 for the precise statement). We
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Figure 1. The graph of σ = 5413627 ∈ S7 viewed as the function i �→ σi. It can be seen that σ contains the

patterns 2134 and 1234 but avoids the patterns 12345 and 54321. The pattern 21 occurs in σ in several ways

(e.g., σ1σ2, σ1σ3, σ2σ3, σ4σ6, and σ5σ6), but σ contains a tight occurrence of 21 only once (σ1σ2).

say that σ avoids τ (or is τ-avoiding) if it does not contain the pattern τ. For example,

σ = 5413627 ∈ S7 contains the patterns 2134 and 1234 (since σ contains the subsequences

σ1σ3σ5σ7 = 5167 and σ3σ4σ5σ7 = 1367) but avoids the patterns 12345 and 54321 (see

Figure 1). Given τ ∈ Sk , we denote the set of τ-avoiding permutations in SN by SN(τ).

Hence 5413627 is in S7(12345) as well as S7(54321) but is not in S7(2134) or S7(1234).

The number of elements in SN(τ), denoted |SN(τ)|, has been computed for only some

cases; in general, this seems to be a challenging computational problem. The case of

pattern length k = 2 is easy, since the only 12-avoiding permutation (respectively, 21-

avoiding permutation) in SN is the permutation which has all the entries in decreasing

(respectively, increasing) order. Thus |SN(12)| = |SN(21)| = 1 for every N. For k = 3, it is

known [21] that |SN(τ)| is the same for all τ ∈ S3 and is equal to the Nth Catalan number,

that is,

|SN(τ)| =

(
2N
N

)
N + 1

for every N � 1 and every τ ∈ S3. (1.1)

This also shows that

lim
N→∞

|SN(τ)|1/N = 4 for every τ ∈ S3.

Thus, for the case k = 3, |SN(τ)| has a finite exponential growth rate, while |SN | = N!

grows superexponentially (much faster). In 1980, the Stanley–Wilf conjecture predicted

that |SN(τ)| has a finite exponential growth rate for every τ ∈ Sk (k � 2). In 1999, Bóna [6]

proved the conjecture to be true for a special class of patterns. In 2000, Alon and Friedgut

[2] proved a general bound on |SN(τ)| that grew only slightly faster than exponentially.

However, a complete proof of the conjecture that would include all the patterns was not

found until 2004, when Marcus and Tardos [18] showed that

L(τ) := lim
N→∞

|SN(τ)|1/N exists and is finite for every τ. (1.2)
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For k = 2 and k = 3 we know that the so-called Stanley–Wilf limit L(τ) is independent

of τ and is respectively equal to 1 and 4. For k > 3, we know that L(τ) does depend on

τ and we only know the value of L(τ) for some of the patterns τ ∈ Sk . For k � 2, Regev

[20] proved that the Stanley–Wilf limit of the special pattern τ = 12 · · · k (the so-called

increasing pattern) is given by

L(12 · · · k) = (k − 1)2.

For a permutation σ = σ1σ2 · · · σN ∈ SN , the complement of σ is σc = σc1σ
c
2 · · · σcN , where

σci = N + 1 − σi for 1 � i � N. The reverse of σ is defined to be σr = σNσN−1 · · · σ2σ1. It

can be easily checked that σ is τ-avoiding if and only if σc (respectively, σr) is τc-avoiding

(respectively, τr-avoiding). Hence, this gives rise to a bijection between SN(τ) and SN(τc)

(respectively, SN(τr)). Therefore,

|SN(τ)| = |SN(τc)| = |SN(τr)| = |SN(τrc)|

and hence L(τ) = L(τc) = L(τr) = L(τrc). In addition, we have ([7], p. 136)

|SN(τ)| = |SN(τ−1)| and L(τ) = L(τ−1),

where τ−1 is the inverse permutation of τ (i.e., for τ ∈ Sk , τ−1 = ρ1ρ2 · · · ρk , such that

τρi = i for every i).

For k = 4, L(τ) is known for all τ ∈ S4 except for τ = 4231 and its complement 1324.

We know [3] that

L(τ) = sup
N�1

|SN(τ)|1/N.

Thus, for each N � 1, |SN(τ)|1/N is a lower bound on L(τ). But exact enumeration of

|SN(τ)| is difficult and exact values of |SN(4231)| are known only up to N = 25 [1]. This

gives rise to the (weak) lower bound |S25(4231)|1/25 ≈ 5.64 for L(4231). In 1999 Arratia

[3] conjectured that L(τ) � (k − 1)2 for every τ ∈ Sk . However, this conjecture was shown

to be wrong by Albert, Elder, Rechnitzer, Westcott and Zabrocki [1]. In fact, they showed

that L(4231) � 9.47 while (k − 1)2 = 9 for k = 4. For several years, the best published

upper bound for L(4231) was 288 [7], until Claesson, Jelı́nek and Steingrı́msson [11]

recently proved that L(4231) � 16; a more recent preprint of Bóna [9] lowers the upper

bound to 7 + 4
√

3 ≈ 13.93. So it remains an active open problem to find the exact value

or an accurate estimate of L(4231).

Madras and Liu [15] proposed an alternative method to approximate L(4231). They

used Monte Carlo simulation to estimate L(4231) statistically. To do this, they first made

the following natural conjecture.

Conjecture 1.1 (Ratio Limit Conjecture).

For every k � 2 and every τ ∈ Sk , lim
N→∞

|SN+1(τ)|
|SN(τ)| = L(τ).

When k is 2 or 3, known exact formulas verify the Ratio Limit Theorem (as we shall

refer to the Ratio Limit Conjecture in those cases for which proofs are known). Madras
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Figure 2. An example of a randomly generated 4231-avoiding permutation with 500 entries.

and Liu [15] used Monte Carlo methods to estimate the ratio

|SN+1(4231)|
|SN(4231)|

for some moderately large values of N. Then, assuming that Conjecture 1.1 was true for

τ = 4231, they extrapolated the results to the N → ∞ limit, obtaining a 95% confidence

interval of [10.71, 11.83] for L(4231) (subject to model uncertainty as well as statistical

error).

Madras and Liu [15] also addressed the question: ‘What does a typical 4231-avoiding

permutation look like?’ In order to approach this question, they used Monte Carlo

methods to produce some random samples of 4231-avoiding permutations for several

(relatively large) values of the permutation length N. A permutation σ = σ1σ2 · · · σN ∈ SN
can be illustrated by its graph as the set of N points {(i, σi) : i = 1, . . . , N} in the Cartesian

plane (see Figure 1). Based on the graphs of the random permutations generated by the

Monte Carlo simulation (e.g., see Figure 2), Madras and Liu [15] made some conjectures

about the typical shape of a 4231-avoiding permutation. In particular, they predicted that,

roughly speaking, there are some specific regions in the square [1, N]2 such that for large

N the probability is exponentially small that a point (i, σi) (for some 1 � i � N) belongs

to these regions.

The present paper is mainly motivated by the predictions and conjectures based on

the Monte Carlo results in [15]. We prove the Ratio Limit Conjecture 1.1 for k � 5

(Theorem 7.1), as well as when τ = τ1 · · · τk satisfies at least one of the following conditions.
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Figure 3. An example of a randomly generated 312-avoiding permutation in S100(312).

(C1) τ does not contain any tight occurrence of 12, or does not contain any tight

occurrence of 21 (Theorem 5.9 and Remark 1). (The notion of ‘tight occurrence of

patterns’ is explained later in this section.)

(C2) τ1 (or τk) is equal to either 1 or k (Theorem 6.4 and Remark 2).

(C3) τ = τ1τ2 · · · τk ∈ Sk (k � 6) satisfies τ1, τ2, τk−1, τk ∈ {q + 1, q + 2, q + 3, q + 4} (for

some q � 0) and τ contains exactly one tight occurrence of 12 and one tight

occurrence of 21, which are at positions i = 1 and i = k − 1, in either order

(Theorem 7.4).

(In the terminology of Atkinson and Stitt [4], τ satisfies (C1) if and only if τ or τr is

‘irreducible’.) Theorem 7.5 observes that the Ratio Limit Theorem is now known to hold

for all but 16 of the 720 patterns in S6.

Our next class of results concerns permutations drawn at random from a set SN(τ).

Accordingly, we make the following definition.

Definition 1. Consider a pattern τ. For each N � 1, let Pτ
N be the uniform probability

distribution on the set SN(τ), that is, P τ
N(A) = |A|/|SN(τ)| for every A ⊂ SN(τ). We shall

write π = π1π2 · · · πN to denote a random permutation from the distribution Pτ
N .

Figure 3 is an example of a randomly generated 312-avoiding permutation with length

100. It (and others similar to it) suggest that 312-avoiding permutations are likely to

stay near or below the diagonal. This is confirmed by Theorem 1.2 below, which gives

explicit large deviation results for Pτ
N when τ has length three. It also shows that, with

high probability, 321-avoiding permutations stay close to the diagonal x = y. To describe

the result formally, define the function

K(s, t) =
1

4

(2 − s− t)2−s−t(s+ t)s+t

(1 − s)1−s(1 − t)1−tttss
if (s, t) ∈ [0, 1]2, (1.3)
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where we interpret 00 to be 1. Observe that K(s, s) = 1 for every s ∈ [0, 1]. Also note that

K(s, t) = 2H(s)+H(t)−2H((s+t)/2),

where H(s) = −s log2 s− (1 − s) log2(1 − s) is the standard binary entropy function. Since

H is strictly concave, we see that K(s, t) < 1 whenever s 
= t. Also, define

K∗(s, t) =

{
K(s, t) if 0 � s � t � 1,

1 if 0 � t � s � 1.

Theorem 1.2. Let D be a relatively open subset of the unit square [0, 1]2. Then

lim
N→∞

[
P 321
N

{(
i

N
,
πi

N

)
∈ D for some i ∈ {1, . . . , N}

}]1/N

= sup{K(s, t) : (s, t) ∈ D} (1.4)

and

lim
N→∞

[
P 312
N

{(
i

N
,
πi

N

)
∈ D for some i ∈ {1, . . . , N}

}]1/N

= sup{K∗(s, t) : (s, t) ∈ D}. (1.5)

For a random 312-avoiding permutation, equation (1.5) tells us that it is not unusual

to have points of the graph well below the x = y diagonal. Complementing this result,

Proposition 4.2 shows that the number of points well below the diagonal is o(N) with high

probability. Madras and Pehlivan [16] consider the properties of random 312-avoiding

permutations below the diagonal in more detail. Theorem 1.2 also follows directly from

recent independent work of Miner and Pak [19], who investigate fine asymptotics of

P τ
N(πi = j) for τ ∈ S3.

The exact calculations in Theorem 1.2 are due in large part to the tractability of Catalan

numbers (1.1) and the many things associated with them. For longer patterns, our results

are considerably less precise and more qualitative. For our next results, consider the graph

of a random permutation from SN(τ), scaled down to the unit square [0, 1]2. Under what

condition is some neighbourhood of the upper left corner of [0, 1]2 very likely to contain

no points of the graph (as seems to be the case in Figures 2 and 3)? The answer is: if and

only if τ1 = k. The next theorem presents a more precise formulation of this assertion. It

assumes that τ1 > τk , since otherwise we have P τ
N(π1 = N) = |SN−1(τ)|/|SN(τ)|, which is

not small (this equation holds because if τ1 < τk , then Nσ2 · · · σN ∈ SN(τ) if and only if

σ2 · · · σN ∈ SN−1(τ)).

Theorem 1.3. Assume τ ∈ Sk and τ1 > τk .

(a) Assume τ1 = k. Then there exists an open neighbourhood D of the point (0, 1) such that

lim sup
N→∞

[
P τ
N

{(
i

N
,
πi

N

)
∈ D for some i ∈ {1, . . . , N}

}]1/N

< 1.
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(b) Assume τ1 < k. Then for every non-empty relatively open subset D of {(s, t) : 0 � s � t

� 1}

lim
N→∞

[
P τ
N

{(
i

N
,
πi

N

)
∈ D for some i ∈ {1, . . . , N}

}]1/N

= 1.

This theorem is a consequence of the stronger results Theorem 8.1 and Proposition 3.1.

One might wonder whether the conclusion of Theorem 1.3(b) holds whenever τ1<τk , but

Theorem 1.2 implies that τ = 123 is a counterexample to this conjecture.

Monte Carlo samples from SN(4231) (see [15] and Figure 2) suggest the conjecture that

for the pattern τ = 4231, the set D of Theorem 1.3(a) can be extended along the sides

of the square [0, 1]2 to come arbitrarily close to the corner points (0, 0) and (1, 1). More

generally, we have the following result. Its statement refers to the Tight Pattern Insertion

Property, which is a technical condition that we shall introduce in Definition 10 (and is

satisfied in the case τ = 4231). We do not believe that this condition is the best possible,

but we cannot prove a significantly more general result.

Theorem 1.4. Let τ ∈ Sk be a pattern such that τ1 = k and τ2τ3 · · · τk satisfies the Tight

Pattern Insertion Property. Then, for every ε > 0 there exists a δ > 0 such that

lim sup
N→∞

[
P τ
N

{(
i

N
,
πi

N

)
∈ [0, δ] × [ε, 1] for some i ∈ {1, . . . , N}

}]1/N

< 1.

The symmetry of the pattern 4231 implies that the set of graphs of members of SN(4231)

is invariant upon reflection through the lines x = y and x+ y = N + 1. This observation,

together with Theorem 1.4, proves the conjecture for the pattern 4231 that was mentioned

in the paragraph preceding this theorem.

The key points in our proofs of the Ratio Limit Theorems, as well as Theorems 1.3(a)

and 1.4, are (i) the so-called ‘pattern theorem’ argument first introduced by Kesten in

[14]† and (ii) the notion of ‘tight occurrence of patterns’.

Roughly speaking, a pattern τ = τ1τ2 · · · τk ∈ Sk occurs tightly in σ = σ1σ2 · · · σN ∈ SN
(or equivalently, σ contains a tight occurrence of τ) if it can be covered by a closed

(k − 1) × (k − 1) box in the graph of σ. (More formally, there must exist a contiguous

subsequence σiσi+1 · · · σi+k−1 that forms the pattern τ, with the additional property that, for

some integer h, we have σm ∈ [h, h+ k − 1] for every m = i, . . . , i+ k − 1. See Definition

4. In the terminology of Bousquet-Mélou, Claesson, Dukes and Kitaev [10], a tight

occurrence of τ = τ1 · · · τk is equivalent to the occurrence of the ‘bivincular’ pattern

(τ, [1, k − 1], [1, k − 1]).) See Figure 1 for an example.

† Historically, the word ‘pattern’ has more than one meaning. Kesten [14] focused on self-avoiding walks, and

other authors in that field have since referred to his result, and others like it, as ‘pattern theorems’ (e.g.,

[13] and Chapter 7 of [17]), even though Kesten did not use this term. These results are in the spirit of our

Proposition 5.5 below, and their use of ‘pattern’ is more akin to what we call ‘tight occurrence of a pattern’.
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We prove a Kesten-type ‘pattern theorem’ for SN(τ) when τ ∈ Sk has some specific

properties that will be explained in detail later. We shall prove that there exists an ε > 0

such that there is an exponentially small probability that a random permutation in SN(τ)

has fewer than εN tight occurrences of specified (other) patterns, as N approaches infinity.

To see why this helps with the Ratio Limit Theorems, suppose that almost every long τ-

avoiding permutation contains many tight occurrences of 12s and of 123s. If τ contains no

tight 123, then we can change any of σ’s tight 12s into tight 123s, and vice versa, without

affecting τ-avoidance. The corresponding relation between SN(τ) and SN+1(τ) is many-

to-many, and is very similar to the corresponding relation between SN−1(τ) and SN(τ).

Essentially, Kesten used this idea to show that |SN+1(τ)|/|SN(τ)| cannot be too different

from |SN(τ)|/|SN−1(τ)|. The core of this argument is in Lemma 5.7 and Proposition 5.8,

while Corollary 2.3 provides the finishing touch.

This paper is organized as follows. Section 2 states the definitions and the basic

terminology needed for the rest of the paper, and presents some background results and

useful bounds. Section 3 gives the (relatively easy) proof of Theorem 1.3(b), which tells

us when certain regions of the graph of a random τ-avoiding permutation are reasonably

likely to be occupied. Section 4 proves the shape results for permutations avoiding patterns

of length 3. Section 5 proves the Ratio Limit Theorem for SN(τ) when τ does not contain

a tight occurrence of the 12 pattern (or does not contain a tight occurrence of the 21

pattern). Section 6 discusses the Ratio Limit Theorem for the case that τ = kτ2 · · · τk ∈ Sk .
In Section 7 the Ratio Limit Theorem is proved for SN(τ) when k � 5 and some cases of

k = 6. Sections 8 and 9 prove the shape results of Theorems 1.3(a) and 1.4 respectively.

2. Basic terminology and useful results

For each positive integer N, let SN denote the set of all permutations of the numbers

1, . . . , N. We represent a permutation as a string,

σ = σ1σ2 · · · σN,

where each σi is in {1, . . . , N}, and σi 
= σj whenever i 
= j (1 � i, j � N). Viewed as a

function (as in Figure 1), the map i �→ σi is a bijection of {1, . . . , N} to itself.

Definition 2. Let k be a positive integer (k � 2).

(a) Let τ = τ1τ2 · · · τk be a permutation in Sk . A string of k distinct integers a1a2 · · · ak
forms the pattern τ if, for each i = 1, . . . , k, ai is the (τi)th smallest element of {a1, . . . , ak}
(e.g., 7932 forms the pattern 3421 because 7 is the third smallest, 9 is the fourth smallest,

etc.). In this case, we also write τ = Patt(a1a2 · · · ak), thus defining a map from strings

of distinct integers to permutations.

(b) Let N be an integer with N � k. For σ ∈ SN and τ ∈ Sk , we say that σ contains the

pattern τ if some k-element subsequence σi(1)σi(2) · · · σi(k) of σ (where 1 � i(1) < i(2) <

· · · < i(k) � N) forms the pattern τ. If σ contains τ, we also say that the pattern τ

occurs in σ. We say that σ avoids the pattern τ if σ does not contain τ. Let SN(τ) be

the set of all permutations of {1, . . . , N} that avoid τ.
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Let

L(τ) := lim
N→∞

|SN(τ)|1/N = sup
N�1

|SN(τ)|1/N.

In 2004, Marcus and Tardos [18] proved that the quantity L(τ) exists and is finite for

every τ. The second equality follows from the fact that |SN(τ)| is supermultiplicative in N

(as observed by [3]). In particular,

|SN(τ)| � L(τ)N for every N. (2.1)

We shall use the notation that �x
 is the largest integer less than or equal to x, and �x�
is the smallest integer greater than or equal to x.

The following elementary bounds will be used frequently.

Lemma 2.1.

(a) Let s be a positive real number. There exist constants c1 and c2 (depending on s) such

that

c1√
n
(sn/e)sn � �sn
! � c2

√
n(sn/e)sn for every integer n � 1.

(b) For integers k > m > 0, (
k

m

)
�

(
k

m

)k(
k

k − m

)k−m
.

(c) Assume 0 < a < b, and let t = a/b. Then there exist constants c3 and c4 (depending on

a and b) such that

c3

n5/2
(tt(1 − t)1−t)−bn �

(
�bn

�an


)
� c4(t

t(1 − t)1−t)−bn

for every integer n � 1.

Proof. (a) This follows from Stirling’s formula limx→∞ Γ(x+ 1)(e/x)x/
√
x =

√
2π for the

Gamma function Γ, and the bounds Γ(ns+ 1) � �sn
! � Γ(ns) = Γ(ns+ 1)/ns for ns � 2.

(b) Consideration of the binomial probability distribution shows that, for every p in (0, 1),

we have (
k

m

)
pm(1 − p)k−m � 1, and hence

(
k

m

)
�

(
1

p

)m(
1

1 − p

)k−m
. (2.2)

Now take p = m/k to obtain part (b).

(c) The left inequality follows from part (a) and the bound �bn
 − �an
 � �(b− a)n
 + 1.

For the right inequality, apply inequality (2.2) with k = �bn
, m = �an
, and p = t, and

use the bound �bn
 − �an
 � (b− a)n+ 1.

To prove the Ratio Limit Theorems, we shall use the following lemma and its corollary.

It is a modification of a similar result in [14].
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Lemma 2.2 (Lemma 7.3.1 of [17]). Let {aN} be a sequence of positive numbers. Assume

that:

(i) limN→∞ a
1/N
N = μ,

(ii) lim infN→∞(aN+1/aN) > 0, and

(iii) there exists a constant D > 0 such that

aN+2

aN
�

(
aN+1

aN

)2

− D

N

for all sufficiently large N. Then

lim
N→∞

aN+1

aN
= μ.

Observe that if D were 0 in Lemma 2.2(iii), then the sequence of ratios {aN+1/aN}
would be increasing and hence clearly convergent.

Corollary 2.3. Let τ be a pattern. Assume there exists a constant D > 0 such that

|SN+2(τ)|
|SN(τ)| �

(
|SN+1(τ)|
|SN(τ)|

)2

− D

N

for all sufficiently large N. Then

lim
N→∞

|SN+1(τ)|
|SN(τ)| = L(τ).

Proof. This follows directly from Lemma 2.2 with aN = |SN(τ)| and μ = L(τ). Condition

(i) follows from equation (1.2), and condition (ii) follows from the obvious inequality

|SN+1(τ)| � |SN(τ)|.

3. Proof of Theorem 1.3(b)

Suppose τ is a pattern in Sk with τ1 > τk . This section proves that if τ1 
= k, then no region

above the diagonal x = y is very unlikely to contain a point of the graph of a randomly

chosen τ-avoiding permutation. More precisely, we shall prove the following result, which

immediately implies Theorem 1.3(b).

Proposition 3.1. Assume τ ∈ Sk and τk < τ1 < k. Choose {i(N)}, {j(N)} such that 1 �
i(N) < j(N) � N for every N. Then

lim
N→∞

|{σ ∈ SN(τ) : σi(N) = j(N)}|1/N = L(τ).
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Figure 4. How the function F constructs the permutation σ from the three permutations α, β and γ in the

proof of Proposition 3.1.

Proof. Fix 1 � i < j � N. Define F : Si−1(τ) × Sj−i(τ) × SN−j(τ) → SN as follows. Sup-

pose that

α = α1α2 · · · αi−1 ∈ Si−1(τ),

β = β1β2 · · · βj−i ∈ Sj−i(τ) and

γ = γ1γ2 · · · γN−j ∈ SN−j(τ).

Let

σk =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αk if 1 � k � i− 1,

j if k = i,

i− 1 + βk−i if i < k � j,

j + γk−j if j < k � N.

Then F(α, β, γ) = σ1σ2 · · · σN . It is clear from the construction that σ has the following

block structure: the graph of σ is obtained by first adding a point to the upper left corner

of the graph of β (this point will become (i, j)), then inserting a translate of the result

at the upper right corner of α, and finally inserting a translate of the graph of γ at the

upper right corner of β. See Figure 4.

We next show that σ ∈ SN(τ). Suppose to the contrary that σ contains the pattern τ

so there exists a subsequence σ�[1] · · · σ�[k] which forms the pattern τ. We consider three

separate cases for �[1]:

(1) 1 � �[1] � i− 1,

(2) i � �[1] � j, or

(3) j < �[1] � N.

First assume that i � �[1] � j. Then, because of the block structure of σ and the fact that

σ�[1] > σ�[k] (since τ1 > τk), we should also have �[k] � j. Also τ1 < k implies that �[1] 
= i.

Hence this would result in a τ-pattern in β. This is a contradiction since β ∈ Sj−i(τ). The

other two cases can be treated similarly. Therefore, σ ∈ SN(τ).

It is also clear that F is one-to-one, so

|Si−1(τ)| |Sj−i(τ)| |SN−j(τ)| � |{σ ∈ SN(τ) : σi = j}|.
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Let ε > 0. There exists A > 0 such that |Sk(τ)| > A(L(τ) − ε)k for all k � 0 (|S0(τ)| := 1).

Therefore |{σ ∈ SN(τ) : σi = j}| > A3(L(τ) − ε)N−1, and the proposition follows.

4. 312-avoiding permutations

The main purpose of this section is to prove Theorem 1.2. Most of the work for this is

done in Theorem 4.1. Proposition 4.2 and Theorem 4.3 are consequences of Theorem 4.1.

The proof of Theorem 1.2 appears at the end of the section.

Recall L(312) = L(321) = 4. Define the function L on [0, 1]2 by L = 4K, where K was

defined in equation (1.3), that is,

L(s, t) =
(2 − s− t)2−s−t(s+ t)s+t

(1 − s)1−s(1 − t)1−tttss
if (s, t) ∈ [0, 1]2,

where we interpret 00 = 1. The following subset of permutations will play an important

role.

Definition 3. For a pattern τ and integers 1 � I � J � N, define

SN,I,J(τ) = {σ ∈ SN(τ) : σI = J and σk < J for k = 1, . . . , I − 1}.

Theorem 4.1. Let Δ be the triangle {(s, t) : 0 � s < t � 1}. For a pattern τ and a relatively

open subset D of Δ, let

SN[τ, D] =

{
σ ∈ SN(τ) :

(
i

N
,
σi

N

)
∈ D for some i ∈ {1, . . . , N}

}
.

Then

lim
N→∞

|SN[312, D]|1/N = sup{L(s, t) : (s, t) ∈ D}.

Proof. In this proof, for brevity, we shall write SN,I,J to denote SN,I,J(312) from

Definition 3. The key to the proof is the exact calculation of the size of SN,I,J .
Assume 1 � I < J � N. For σ ∈ SN,I,J , define

U = U(σ) = [1, J) \ {σ1, . . . , σI−1},
W = W(σ) = {i ∈ (I, N] : σi < J},
ξ = ξ(σ) = Patt(σ1 · · · σI−1),

ψ = ψ(σ) = Patt(σi : i > I, σi > J),

where in the last line we write (σi : i > I, σi > J) to denote the subsequence of σ consisting

of elements σi satisfying i > I and σi > J . See Figure 5. Also, where there is no chance of

confusion, we write intervals to denote contiguous sets of integers (e.g., we write [1, J) to

denote [1, J) ∩ Z). We interpret [a, b] = ∅ if b < a, and [a, b) = ∅ if b � a.

Observe the following:

(a) |U | = J − I = |W |,
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Figure 5. Let σ = 3246157, I = 3 and J = 4. Then U = [1, 4) \ {σ1, σ2} = {1}, W = {i ∈ (3, 7] : σi < 4} =

{5}, ξ = Patt(σ1, σ2) = Patt(3, 2) = 21 and ψ = Patt(σi : i > 3, σi > 4) = Patt(6, 5, 7) = 213. The interior of the

rectangle labelled ‘∅’ is empty, i.e., it contains no points of the graph of σ.

(b) the subsequence (σi : i ∈ W) is decreasing (since σ avoids 312, and σI = J > σi for

every i in W), and

(c) ξ ∈ SI−1(312) and ψ ∈ SN−J(312).

For a set A and an integer m > 0, let Pm(A) be the collection of all m-element subsets

of A. From the above observations (especially (b)), we see that the map

SN,I,J → PJ−I ([1, J)) × PJ−I ((I, N]) × SI−1(312) × SN−J (312),

σ �→ (U ,W , ξ, ψ) (4.1)

is one-to-one. To help evaluate |SN,I,J |, we shall characterize the image of SN,I,J under

this map.

For σ ∈ SN,I,J , we can express W(σ) as the union of some number of non-contiguous

intervals of integers, that is,

W(σ) =

( m⋃
l=1

[Bl−1, Al)

)
∪ [Bm,N],

where the Bl and Al are integers satisfying

I + 1 = B0 � A1 < B1 < A2 < B2 < · · · < Bm � N + 1,

and also

(I, N] \ W(σ) =

m⋃
l=1

[Al, Bl).

Observe that if s ∈ [Al, Bl) and t ∈ [Ar, Br) with l < r, then we must have σs < σt
(otherwise, σsσBlσt would form the pattern 312: to see this, recall that σBl < J <

min{σs, σt}). Therefore ψ must be of the form

ψ = ψ1 ◦ ψ2 ◦ · · · ◦ ψm, where ψl ∈ SBl−Al (312) for each l, (4.2)
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and ‘◦’ is the concatenation operator

(θ1 · · · θu) ◦ (φ1 · · ·φv) := (θ1 · · · θu, (φ1 + u) · · · (φv + u))

for θ ∈ Su and φ ∈ Sv . Let Ψ[W] be the set of all permutations ψ of the form (4.2) (where

m and the Bl–Al depend on W).

Similarly, for σ ∈ SN,I,J , we can express

U(σ) =

( m̄⋃
l=1

[Dl−1, El)

)
∪ [Dm̄, J),

where the Dl and El are integers satisfying

1 = D0 � E1 < D1 < E2 < D2 < · · · < Dm̄ � J,

and

[1, J) \ U(σ) =

m̄⋃
l=1

[El, Dl).

Observe that if s < t < I and σs ∈ [El, Dl), then we must have σt � El (otherwise, σsσtσu
would form the pattern 312, where σu = Dl−1). Therefore ξ must be of the form

ξ1 ◦ ξ2 ◦ · · · ◦ ξm̄, where ξl ∈ SDl−El (312) for each l. (4.3)

Let Ξ[U] be the set of all permutations ξ of the form (4.3) (where m̄ and the Dl–El depend

on U).

From the above analysis, it is not hard to see that the map

SN,I,J →
( ⋃

U∈PJ−I ([1,J))

{U} × Ξ[U]

)
×

( ⋃
W∈PJ−I ((I,N])

{W} × Ψ[W]

)
, (4.4)

σ �→ (U(σ), ξ(σ),W(σ), ψ(σ)) (4.5)

is a surjection, hence a bijection.

Now we count the right-hand side of (4.4). For a given W , we have

|Ψ[W]| =

m∏
l=1

CBl−Al ,

where C1, C2, . . . are the Catalan numbers:

Ck = |Sk(312)| =

(
2k
k

)
k + 1

.

It follows that ∣∣∣∣ ⋃
W∈PJ−I ((I,N])

{W} × Ψ[W]

∣∣∣∣ =

N−J∑
m=1

(
Σ∗
m

m∏
l=1

Ckl

)
W ∗

m, (4.6)

where:

Σ∗
m is the summation over all k1, . . . , km � 1 such that k1 + · · · + km = N − J (here we

associate kl with Bl − Al), and
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W ∗
m is the number of choices of integers with r0 � 0, rm � 0, rl � 1 for l = 1, . . . , m− 1,

and r0 + · · · + rm = J − I (here we associate rl with Al+1 − Bm for l = 0, . . . , m− 1, and

rm with N + 1 − Bm).

Therefore we have

W ∗
m =

(
J − I + 1

m

)
. (4.7)

For a non-negative integer p and a power series F , we use the notation [xp]F(x) to

denote the coefficient of xp in F(x).

Recall that the generating function of the Catalan numbers (starting from k = 1) is

C(x) :=

∞∑
k=1

Ckx
k =

1 −
√

1 − 4x

2x
− 1.

Therefore Σ∗
m

∏m
l=1 Ckl is the coefficient of xN−J in C(x)m. By equations (4.6) and (4.7), we

have ∣∣∣∣ ⋃
W∈PJ−I ((I,N])

{W} × Ψ[W]

∣∣∣∣ =

N−J∑
m=1

(
[xN−J]C(x)m

)(J − I + 1

m

)

= [xN−J]

N−J∑
m=1

C(x)m
(
J − I + 1

m

)
. (4.8)

Next, we claim that

[xN−J]

N−J∑
m=1

C(x)m
(
J − I + 1

m

)
= [xN−J]

J−I+1∑
m=1

C(x)m
(
J − I + 1

m

)
. (4.9)

On the one hand, if J − I + 1 � N − J , then (4.9) is true because(
J − I + 1

m

)
= 0 for m > J − I + 1.

On the other hand, if J − I + 1 > N − J , then (4.9) is true because

[xN−J]C(x)m = 0 for m > N − J

(observe that m is the smallest power of x in C(x)m). So the claim is true, and together

with (4.8) it implies that∣∣∣∣ ⋃
W∈PJ−I ((I,N])

{W} × Ψ[W]

∣∣∣∣ = [xN−J](1 + C(x))J−I+1

= [xN−J]

(
1 −

√
1 − 4x

2x

)J−I+1

= [xN−I+1]

(
1 −

√
1 − 4x

2

)J−I+1

. (4.10)
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An analogous argument shows that∣∣∣∣ ⋃
U∈PJ−I ([1,J))

{U} × Ξ[U]

∣∣∣∣ = [xI−1](1 + C(x))J−I+1

= [xJ]

(
1 −

√
1 − 4x

2

)J−I+1

. (4.11)

We shall also use the identity (see p. 68 of [12])

[xn]

(
1 −

√
1 − 4x

2

)k

=
k

n

(
2n− k − 1

n− 1

)
. (4.12)

Since the map of equations (4.4)–(4.5) is a bijection, we see from equations (4.10), (4.11)

and (4.12) that

|SN,I,J | = [xN−I+1]

(
1 −

√
1 − 4x

2

)J−I+1

× [xJ]

(
1 −

√
1 − 4x

2

)J−I+1

=
(J − I + 1)2

J(N − I + 1)

(
2N − I − J

N − I

)(
I + J − 2

J − 1

)
. (4.13)

We now state some consequences of equation (4.13). First, by Lemma 2.1(b) and the

simple bound (
I + J − 2
J − 1 ) � (

I + J
J ), we have

|SN,I,J | � L
(
I

N
,
J

N

)N

for I � J � N. (4.14)

Next, we introduce the following condition:

the integer sequences {i(N)} and {j(N)} satisfy 1 � i(N) < j(N) � N

and limN→∞(i(N)/N, j(N)/N) = (s, t) ∈ [0, 1]2.
(4.15)

If condition (4.15) holds, then

lim
N→∞

|SN,i(N),j(N)|1/N = L(s, t). (4.16)

For I � J � N, define

S∗
N,I,J = {σ ∈ SN(312) : σI = J}.

Then S∗
N,I,J is a subset of ∪i�I,j�JSN,i,j . Then since L(s, t) is increasing in s and decreasing

in t on Δ, we see that

|SN,I,J | � |S∗
N,I,J | � N2L

(
I

N
,
J

N

)N

.

From this we conclude that if condition (4.15) holds, then

lim
N→∞

|S∗
N,i(N),j(N)|1/N = L(s, t). (4.17)

Now consider (s, t) ∈ D. Choose sequences {i(N)} and {j(N)} such that condition (4.15)

holds and (i(N)/N, j(N)/N) ∈ D for every N. Then S∗
N,i(N),j(N) ⊂ SN[312, D], so equation
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(4.17) implies that

lim inf
N→∞

|SN[312, D]|1/N � sup{L(s, t) : (s, t) ∈ D}. (4.18)

Finally, it is not hard to see that

|SN[312, D]| �
∑

(i,j)∈N2:(i/N,j/N)∈D

|S∗
N,i,j | � N4 sup{L(s, t)N : (s, t) ∈ D}.

This provides the counterpart to equation (4.18) that completes the proof of the theorem.

Next, we consider the probability that the graph of a random permutation π =

π1 · · · πN in SN(312) (with uniform distribution P 312
N ) has more than tN points (i, πi)

(i ∈ {1, 2, . . . , N}) below a neighbourhood of radius δN of the diagonal of [1, N] × [1, N]

(for given δ > 0 and t > 0). The next proposition shows that this probability decays

exponentially as N → ∞.

Given σ = σ1, . . . , σN ∈ SN and A > 0, let KN(σ, A) = |{i : σi < i− A}|.

Proposition 4.2. Let δ > 0 and 0 < t < 1. Then

lim sup
N→∞

[P 312
N (KN(π, δN) > tN)]1/N < 1.

Proof. Let ε = δt/(1 − t). We first claim that if KN(σ, δN) � tN then σi > i+ εN for

some i, that is, the graph of σ has a point (i, σi) above an εN-neighbourhood of the

diagonal. Suppose to the contrary that σi � i+ εN for every 1 � i � N. Let A = δN and

B = εN. Then

σi < i− A for KN(σ, A) values of i

and

σi < i+ B for every (other) i.

So

N∑
j=1

j =

N∑
i=1

σi <

N∑
i=1

i+ B(N −KN(σ, A)) − AKN(σ, A),

and hence BN − BKN(σ, A) − AKN(σ, A) > 0, that is,

KN(σ, A) <
B

B + A
N = tN,

which is a contradiction. Hence

P 312
N (KN(π, δN) � tN) � P 312

N (πi > i+ εN for some i).

Therefore, using Theorem 4.1, we conclude that

lim sup
N→∞

[P 312
N (KN(π, δN) > tN)]1/N < 1.
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We remark that the region below a neighbourhood of the diagonal is not very likely to

be completely empty. In fact, Proposition 3.1 (applied to the reverse complement of 312)

implies that

lim
N→∞

[P 312
N (KN(π, δN) > 0)]1/N = 1

for every δ ∈ (0, 1).

Finally, equation (1.4) of Theorem 1.2 is a consequence of the following result and

symmetry.

Theorem 4.3. Recall the terminology of Theorem 4.1. Let D be a relatively open subset of

Δ. Then

lim
N→∞

|SN[321, D]|1/N = sup{L(s, t) : (s, t) ∈ D}.

Proof. Recall the definition of SN,I,J(τ) from Definition 3. Simion and Schmidt [21]

define a bijection from SN(312) to SN(321) that is also a bijection from SN,I,J(312) to

SN,I,J(321) whenever I � J � N (the details are also given in Section 4.2 of [7]). That is,

|SN,I,J(321)| = |SN,I,J(312)|, and the latter is given by equation (4.13). Therefore the part

of the proof of Theorem 4.1 subsequent to equation (4.13) applies to the pattern 321 as

well as to 312.

Proof of Theorem 1.2. Recall that L(321) = L(312) = 4. Equation (1.4) follows directly

from Theorem 4.3 and the symmetry of 321 under reverse complement. In the case that

D lies entirely above the diagonal y = x, equation (1.5) is equivalent to Theorem 4.1.

For other open sets D, the limit in equation (1.5) is 1, and this is a consequence of

Proposition 3.1 applied to τ = 231, which is the reverse complement of 312.

5. Tight occurrence of 12 and 21 patterns

The goal of this section is to first obtain a pattern theorem for SN(τ) when τ satisfies

condition (C1) from the Introduction, and then prove the Ratio Limit Theorem for SN(τ)

under this condition. Recall that (C1) says that τ contains no tight occurrence of 12 (or

contains no tight occurrence of 21).

Definition 4. Given a positive integer t, let γ ∈ St and σ ∈ SN .

(a) Let i ∈ {1, . . . , N − t+ 1}. We say that the pattern γ occurs tightly in σ (or equivalently,

σ contains a tight occurrence of γ) at position i if σiσi+1 · · · σi+t−1 forms a γ pattern

and satisfies the relation

max{σi+j}0�j�t−1 − min{σi+j}0�j�t−1 = t− 1.

(b) Let h ∈ {1, . . . , N − t+ 1}. We say that the pattern γ occurs tightly in σ (or equivalently,

σ contains a tight occurrence of γ) at height h if there exists an i ∈ {1, . . . , N − t+ 1}
such that σiσi+1 · · · σi+t−1 forms a γ pattern, and h � σi+j � h+ t− 1 for every j ∈
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(a) σ = 4213
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(b) H3(σ; hu) = 7234516

Figure 6. Let σ = 4213, t = 3, h = 2 and τ = 132, which contains no tight occurrence of 12. Then

σ = 4213 ∈ S4(τ), and by Lemma 5.3, H3(σ; hu) = 7234516 ∈ S7(τ).

{0, 1, . . . , t− 1}. Note that the subsequence σiσi+1 · · · σi+t−1 can be covered by the

(t− 1) × (t− 1) box [i, i+ t− 1] × [h, h+ t− 1] in the graph of σ.

Note that we sometimes refer to a tight occurrence of γ in σ at position i (height h)

as σ containing γ at position i (height h). Given a positive integer t, let αt := 12 · · · t and

βt := t(t− 1) · · · 1. In particular, if γ = αt (γ = βt) then Definition 4 can be restated as

Example 5.1 (Example 5.2) below.

Example 5.1. Let t be a positive integer and σ ∈ SN .

(a) Let i ∈ {1, . . . , N − t+ 1}. An αt occurs tightly in σ at position i if and only if σi+j =

σi + j for j ∈ {0, 1, . . . , t− 1}.
(b) Let h ∈ {1, . . . , N − t+ 1}. An αt occurs tightly in σ at height h if and only if there

exists an i ∈ {1, . . . , N − t+ 1} such that σi+j = h+ j for j ∈ {0, 1, . . . , t− 1}.

Example 5.2. Let t be a positive integer and σ ∈ SN .

(a) Let i ∈ {1, . . . , N − t+ 1}. A βt occurs tightly in σ at position i if and only if σi+j =

σi + t− j − 1 for j ∈ {0, 1, . . . , t− 1}.
(b) Let h ∈ {1, . . . , N − t+ 1}. A βt occurs tightly in σ at height h if and only if there exists

an i ∈ {1, . . . , N − t+ 1} such that σi+j = h+ t− j − 1 for every j ∈ {0, 1, . . . , t− 1}.

The following definition introduces an operation which, roughly speaking, inserts an αt
tightly and immediately above and to the right of the point at a given height h in the

graph of σ (for an example, see Figure 6).

Definition 5. Let t be a positive integer and σ ∈ SN .
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(a) Let h ∈ {1, . . . , N}. Choose J such that σJ = h. Define the permutation θ in SN+t as

follows:

θi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σi if i � J and σi � h,

σi + t if i < J and σi > h,

h+ j if i = J + j for j ∈ {1, . . . , t},
σi−t if i > J + t and σi−t < h,

σi−t + t if i > J + t and σi−t > h.

Then we denote θ by Ht(σ; hu).

(b) Assume N � h1 > h2 > · · · > hr � 1. Let σ(0) = σ and let σ(w) = Ht(σ
(w−1); huw) for

w = 1, . . . , r. Then we denote σ(r) by Ht(σ; hu1, . . . , h
u
r ).

Similarly, the following definition introduces an operation which, roughly speaking,

inserts a βt tightly and immediately below and to the right of the point at a given height

h.

Definition 6. Let t be a positive integer and σ ∈ SN .

(a) Let h ∈ {1, . . . , N}. Choose J such that σJ = h. Define the permutation γ in SN+t as

follows:

γi =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

σi if i < J and σi < h,

σi + t if i � J and σi � h,

h+ t− j if i = J + j for j ∈ {1, . . . , t},
σi−t if i > J + t and σi−t < h,

σi−t + t if i > J + t and σi−t > h.

Then we denote γ by Ht(σ; hd).

(b) Assume N � h1 > h2 > · · · > hr � 1. Let σ(0) = σ and let σ(w) = Ht(σ
(w−1); hdw) for

w = 1, . . . , r. Then we denote σ(r) by Ht(σ; hd1, . . . , h
d
r ).

The following lemma describes a situation where a permutation σ ∈ SN(τ) remains

τ-avoiding after the tight insertion of an αt immediately above and to the right of the

point at a given height h, that is, Ht(σ; hu) ∈ SN+t(τ) (see Figure 6).

Lemma 5.3. Let τ ∈ Sk be a k-permutation that contains no tight occurrence of 12. Then,

for any σ := σ1 · · · σN ∈ SN(τ), h ∈ {1, . . . , N} and t ∈ N, we have Ht(σ; hu) ∈ SN+t(τ).

Proof. First note that for t � 2, Ht(σ; hu) = H1(Ht−1(σ; hu); (h+ t− 1)u). So it suf-

fices to prove the statement for t = 1 and the complete proof will follow by in-

duction on t. Suppose to the contrary that H1(σ; hu) := θ1 · · · θN+1 contains the pat-

tern τ. So there exists a subsequence θi[1] · · · θi[k] which forms the pattern τ. Since σ

avoids τ, the α1 inserted tightly at height h of σ has to contribute to the formation

of τ in H1(σ; hu), that is, there exists some 1 � K � k such that θi[K] = h+ 1. It
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follows from Definition 5 that i[K] = J + 1 and θi[K]−1 = θJ = σJ = h. By assumption,

τ does not contain any tight occurrence of 12, and hence i[K − 1] < i[K] − 1 = J . So

θi[1] · · · θi[K−1]θi[K]−1θi[K+1] · · · θi[k] is also a τ pattern. Using Definition 5, this pattern gives

rise to the τ pattern σi[1] · · · σi[K−1]σi[K]−1σi[K+1]−1 · · · σi[k]−1 in σ, which is a contradiction.

Hence the proof is complete.

Similarly, the following lemma gives a condition under which a permutation σ ∈ SN(τ)

remains τ-avoiding after the tight insertion of βt at the bottom right corner of the point

at a given height h, that is, Ht(σ; hd) ∈ SN+t(τ). We omit the proof, since it is essentially

the same as for Lemma 5.3.

Lemma 5.4. Let τ ∈ Sk be a k-permutation that contains no tight occurrence of 21. Then,

for any σ ∈ SN(τ), h ∈ {1, . . . , N} and any t ∈ N, we have Ht(σ; hd) ∈ SN+t(τ).

Given τ ∈ Sk , an integer t > 1 and real c > 0, let B = {γ1, . . . , γq} be a finite set of

patterns of length t. Let SN(τ;B < c) denote the set of all the permutations in SN(τ) which

contain fewer than c tight occurrences of the patterns in B, that is, #γ1 + · · · + #γq < c,

where #γi denotes the number of tight occurrences of γi in the permutation (1 � i � q).

Definition 7. Let t be a positive integer and σ ∈ SN . Assume (x1, . . . , xr) ∈ {u, d}r and

N � h1 > h2 > · · · > hr � 1. Let σ(0) = σ and let σ(w) = Ht(σ
(w−1); hxww ) for w = 1, . . . , r.

Then we denote σ(r) by Ht(σ; hx1

1 , . . . , h
xr
r ).

In other words, Ht(σ; hx1

1 , h
x2

2 , . . . , h
xr
r ) (xi ∈ {u, d} for 1 � i � r) denotes the permutation

obtained by (i) inserting an αt tightly at the top right corner of the point at height hi
(1 � i � r), as described in Definition 5, if xi = u, and (ii) inserting βt tightly at the bottom

right corner of the point at height hi (1 � i � r), as described in Definition 6, if xi = d.

The following proposition gives a condition under which a pattern theorem holds for

SN(τ). It will be used to prove Corollary 5.6 and Theorem 7.4.

Proposition 5.5. Fix t ∈ N and τ ∈ Sk . Suppose there exists an ε > 0 such that for every

σ ∈ SN(τ) there are heights

N � h1(σ) > h2(σ) > · · · > h�εN
(σ) � 1 and (x1(σ), . . . , x�εN
(σ)) ∈ {u, d}�εN


such that

Ht

(
σ; h1(σ)x1(σ), . . . , h�εN
(σ)x�εN
(σ)

)
∈ SN+t�εN
(τ).

Then there exists a δ > 0 such that the following strict inequality holds:

lim sup
N→∞

|SN(τ; {αt+1, βt+1} < δN)|1/N < L(τ).

Proof. Take 0 < δ < ε and let r be a positive integer. Let V be the set of all (2r + 1)-tuples

�v = (σ, h̃1, . . . , h̃r , z1, . . . , zr), where σ ∈ SN(τ), N � h̃1 > h̃2 > · · · > h̃r � 1, and z1, . . . , zr ∈
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{u, d}. We shall write Ht(�v) to denote Ht(σ; h̃z11 , . . . , h̃
zr
r ). Also, let Vδ be the set of �v in V

such that σ ∈ SN(τ; {αt+1, βt+1} < δN).

For given �v = (σ, h̃1, . . . , h̃r , z1, . . . , zr) ∈ Vδ , we want an upper bound on the number of

�w = (σ̂, ĥ1, . . . , ĥ, ẑ1, . . . , ẑr) in V such that Ht(�w) = Ht(�v). Let j denote the number of tight

occurrences of the patterns in {αt+1, βt+1} in σ. Then 0 � j � �δN
 and Ht(�v) contains at

most tr + j tight occurrences of the patterns in {αt+1, βt+1}, so there are at most ( tr+j
r

)

ways to remove r of the tight occurrences of the patterns in {αt, βt} in order to construct

σ̂ (and �w). Hence the number of choices for �w is at most ( tr+�δN

r

).

Let a = ε/((tt + 2)L(τ)t) and r = �aN
. Let

P = {�w ∈ V : Ht(�w) ∈ SN+tr(τ) ∩ Ht(Vδ)},

where Ht(Vδ) = {Ht(�v) :�v ∈ Vδ}. Then

|SN(τ; {αt+1, βt+1} < δN)|
(

�εN

r

)
� |P | � |SN+tr(τ)|

(
tr + �δN


r

)

(the upper bound follows from the bound of the previous paragraph, and the lower bound

follows by considering only�v in Vδ for which every h̃i is in {h1(σ), . . . , h�εN
(σ)}). Therefore,

using Lemma 2.1(c), we have

|SN(τ; {αt+1, βt+1} < δN)|

� |SN+t�aN
(τ)|
(

�(at+ δ)N

�aN


)/(
�εN

�aN


)

� c [L(τ)](N+t�aN
)N5/2

((
a

ε

)a/ε(
1 − a

ε

)(1−a/ε))εN

×
((

a

at+ δ

)(a/(at+δ))(
1 − a

at+ δ

)(1−a/(at+δ)))−(at+δ)N

� c [L(τ)]NN5/2

(tt + 2)aN

(
at+ δ

a

)aN(
at+ δ

δ + a(t− 1)

)(δ+a(t−1))N

,

where c is a constant independent of N. Thus

lim sup
N→∞

|SN(τ; {αt+1, βt+1} < δN)|1/N � L(τ)

(tt + 2)a

(
at+ δ

a

)a(
at+ δ

δ + a(t− 1)

)δ+a(t−1)

.

We know that

lim
δ→0

(
at+ δ

a

)a(
at+ δ

δ + a(t− 1)

)δ+a(t−1)

=

{ (
tt

(t−1)t−1

)a
if t > 1,

1 if t = 1.

Therefore, we can choose δ sufficiently small that

(
at+ δ

a

)a(
at+ δ

δ + a(t− 1)

)δ+a(t−1)

< (tt + 1)a,
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which implies

lim sup
N→∞

|SN(τ; {αt+1, βt+1} < δN)|1/N

� L(τ)

(tt + 2)a

(
at+ δ

a

)a(
at+ δ

δ + a(t− 1)

)δ+a(t−1)

� L(τ)

(
tt + 1

tt + 2

)a

< L(τ).

Corollary 5.6. Let t > 1 be an integer. Let τ ∈ Sk be a k-permutation that contains no tight

occurrence of 12 (or contains no tight occurrence of 21). Then there exists a δ > 0 such that

lim sup
N→∞

|SN(τ; {αt, βt} < δN)|1/N < L(τ).

Proof. By Lemma 5.3 (Lemma 5.4), the conditions of Proposition 5.5 are satisfied when

τ does not contain any tight occurrence of 12 (21). So, by Proposition 5.5, there exists a

δ > 0 such that

lim sup
N→∞

|SN(τ; {αt, βt} < δN)|1/N < L(τ).

Next, we introduce some new notation and prove two important results which, together

with Corollary 2.3, immediately lead to the proof of the Ratio Limit Theorem for SN(τ)

provided that τ does not contain any tight occurrence of 12 (or does not contain any

tight occurrence of 21). Fix two sets of patterns, U and V . For non-negative integers a

and b, let SN(τ; a, b) denote the set of all the permutations of SN(τ) that contain exactly a

tight occurrences of patterns in U and b tight occurrences of patterns in V . (To be clear:

if σ ∈ SN(τ) and σ has al tight occurrences of the lth pattern in U, then a =
∑

l al .) Also,

let SN(τ; � a,� b) denote the set of all the permutations of SN(τ) that contain at least a

(respectively, b) tight occurrences of patterns in U (respectively, V ). Then

|SN(τ; � a,� b)| :=
∑

i�a,j�b
|SN(τ; i, j)|.

In particular,

|SN(τ; � 0,� 0)| = |SN(τ)|.

Then

SN(τ; � a,> b), SN(τ;> a,> b) and SN(τ; � a,< b)

are defined similarly.
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Lemma 5.7. Given τ := τ1τ2 · · · τk ∈ Sk , let t � k. Let U := {αt, βt} and V := {αt+1, βt+1}.
Then the following identity holds:

a|SN(τ; a, b)| = (b+ 1)|SN+1(τ; a+ 1, b+ 1)|,

for all a > 0 and b � 0.

Proof. In this proof, we shall write H to denote H1. To prove the lemma, we shall define

a bijection

Φ : {1, . . . , a} × SN(τ; a, b) → {1, . . . , b+ 1} × SN+1(τ; a+ 1, b+ 1).

For i ∈ {1, . . . , a} and σ ∈ SN(τ; a, b), we define Φ (i, σ) to be (j,H(σ; hx)), where x, h and

j are obtained as follows. If the ith tight pattern from U occurring in σ (i.e., the ith

occurrence in order from left to right in σ) is αt (respectively, βt) then x = u (respectively,

x = d); J is such that σJ−t+1σJ−t+2 · · · σJ is the ith tight pattern in U occurring in σ,

h = σJ , and j is such that θJ−t+1θJ−t+2 · · · θJ+1 is the jth tight pattern from V occurring

in θ = H(σ; hx).

We must first show that

Φ(i, σ) = (j,H(σ; hx)) ∈ {1, . . . , b+ 1} × SN+1(τ; a+ 1, b+ 1).

It is clear from the construction that H(σ; hx) contains a+ 1 occurrences of the tight

patterns in U and b+ 1 occurrences of the tight patterns in V . It only remains to prove

that it avoids τ. Suppose to the contrary that H(σ; hx) contains τ. Assume first that x = u.

Then there exists a subsequence θi[1] · · · θi[k] forming the pattern τ. Since σ avoids τ, the

tight α1 inserted at height h of σ has to contribute to the formation of τ in H(σ; hu). So

there exists 1 � K � k such that θi[K] = h+ 1. By Definition 5, we know that i[K] = J + 1.

Let w be the smallest number in {1, . . . , K} such that i[w], i[w + 1], . . . , i[K] is a sequence

of consecutive integers. Since w � K � k < t+ 1, it follows that θi[w]θi[w+1] · · · θi[K] and

θi[w]−1θi[w]θi[w+1] · · · θi[K−1] are both tight αK+1−w patterns. Since i[w] − 1 
= i[w − 1], we

know that

θi[1] · · · θi[w−1]θi[w]−1θi[w]θi[w+1] · · · θi[K−1]θi[K+1] · · · θi[k] (5.1)

forms the same pattern as θi[1] · · · θi[k] (which is τ). Since θi[K] does not appear in (5.1), it

follows that (5.1) translates back into a τ pattern in σ, which is a contradiction. Therefore

H(σ; hx) avoids τ. A similar argument applies when x = d.

Now we show that Φ is a one-to-one correspondence. First, let(
j1,H

(
σ; hx[1]1

))
,
(
j2,H

(
σ̂; hx[2]

2

))
∈ {1, . . . , b+ 1} × SN+1(τ; a+ 1, b+ 1)

satisfy (
j1,H

(
σ; hx[1]

1

))
=

(
j2,H

(
σ̂; hx[2]2

))
.

So j1 = j2 and

H
(
σ; hx[1]1

)
= H

(
σ̂; hx[2]2

)
,
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and thus x[1] = x[2]. Suppose first that x[1] = x[2] = u. By the definition of Φ, this

together with j1 = j2 implies that h1 = h2. Hence i1 = i2 and σ = σ̂, which leads to

(i1, σ) = (i2, σ̂) (a similar argument shows that (i1, σ) = (i2, σ̂) for the case of x[1] = x[2] =

d). Therefore, Φ is one-to-one.

Let

(j, θ) ∈ {1, . . . , b+ 1} × SN+1(τ; a+ 1, b+ 1).

Then there exists some J such that θJ−t+1θJ−t+2 · · · θJ+1 is the jth pattern from V

occurring in θ. Suppose that this pattern is αt+1. A similar argument works if the pattern

is βt+1. Let h = θJ , and then θ = H(σ; hu), where σ ∈ SN(τ; a, b) is obtained by removing

θJ+1 from θ and shifting the entries; σJ−t+1σJ−t+2 · · · σJ is a tight occurrence of αt so

there exists an i ∈ {1, . . . , a} such that σJ−t+1σJ−t+2 · · · σJ is the ith αt in σ. Therefore,

(j, θ) = Φ
(
(i,H(σ; hu))

)
, which proves that Φ is onto.

The next result is essentially due to Kesten [14], in the context of self-avoiding walks

rather than permutations.

Proposition 5.8. Let τ ∈ Sk be a permutation that contains no tight occurrence of 12. There

exists a positive constant Γ such that

|SN+2(τ)|
|SN(τ)| �

(
|SN+1(τ)|
|SN(τ)|

)2

− Γ

N

for all sufficiently large N.

Proof. By Lemma 5.7, we have

|SN+1(τ; � 0, > 1)| = |SN+1(τ;> 1, > 1)|

=
∑

i>0,j>0

|SN+1(τ; i+ 1, j + 1)|

=
∑

i>0,j>0

|SN(τ; i, j)| i

j + 1
,

and

|SN+2(τ; � 0, > 2)| = |SN+2(τ;> 2, > 2)|

=
∑

i>0,j>0

|SN+2(τ; i+ 2, j + 2)|

=
∑

i>0,j>0

|SN(τ; i, j)| i(i+ 1)

(j + 1)(j + 2)
.

The Schwarz inequality implies( ∑
i>0,j>0

|SN(τ; i, j)| i

j + 1

)2

�
( ∑
i>0,j>0

|SN(τ; i, j)|
)( ∑

i>0,j>0

|SN(τ; i, j)| i2

(j + 1)2

)
.
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We get

[
|SN+1(τ; � 0, > 1)|

]2 �
( ∑
i>0,j>0

|SN(τ; i, j)|
)( ∑

i>0,j>0

|SN(τ; i, j)| i2

(j + 1)2

)

� |SN(τ)|
( ∑
i>0,j>0

|SN(τ; i, j)| i2

(j + 1)2

)
.

For N � 1, let

ΞN =
|SN+2(τ; � 0, > 2)|

|SN(τ)| −
(

|SN+1(τ; � 0, > 1)|
|SN(τ)|

)2

and

ΔN =
|SN+2(τ)|
|SN(τ)| −

(
|SN+1(τ)|
|SN(τ)|

)2

− ΞN

=
|SN+2(τ)| − |SN+2(τ; � 0, > 2)|

|SN(τ)| − |SN+1(τ)|2 − |SN+1(τ; � 0, > 1)|2
|SN(τ)|2 .

Corollary 5.6 shows that ΔN decays to zero exponentially rapidly as N increases. Now, we

show that ΞN � −A/N for some constant A. Then

ΞN �
( ∑
i>0,j>0

|SN(τ; i, j)| i(i+ 1)

(j + 1)(j + 2)
−

∑
i>0,j>0

|SN(τ; i, j)| i2

(j + 1)2

)
1

|SN(τ)|

=
1

|SN(τ)|
∑

i>0,j>0

|SN(τ; i, j)| (−i2 + ij + i)

(j + 1)2(j + 2)
.

For every N, no permutation in SN(τ) contains more than N tight occurrences of the

patterns in U or V . Hence, the term −i2 + ij + i is greater than −N2. By Corollary 5.6,

there exists ε > 0 such that

lim sup
N→∞

(
1 − |SN(τ; � 0,� εN)|

|SN(τ)|

)1/N

< 1.

Splitting the sum over j into εN � j � N and 0 < j < εN, we obtain

ΞN � −N2|SN(τ; � 0,� εN)|
(εN)3|SN(τ)| + (−N2)

(∑
i�0,0<j<εN |SN(τ; i, j)|

|SN(τ)|

)

� −N2|SN(τ; � 0,� εN)|
(εN)3|SN(τ)| + (−N2)

(
1 − |SN(τ; � 0,� εN)|

|SN(τ)|

)
.

As N → ∞, the first term on the right-hand side is asymptotic to −ε−3/N, and the second

term decays to zero exponentially. Thus, letting Γ = 2ε−3, the proof of the theorem is

completed.

Theorem 5.9. Let τ ∈ Sk . Assume that τ contains no tight occurrence of 12. Then

lim
N→∞

|SN+1(τ)|
|SN(τ)| = L(τ).
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Proof. The proof follows from Proposition 5.8 and Corollary 2.3.

Remark 1. By symmetry, clearly the above result also holds if we assume that τ does not

contain any tight occurrence of 21.

6. Ratio Limit Theorem for SN (kτ2 · · · τk)

In this section we obtain a pattern theorem for SN(τ) when τ1 = max{τ1, . . . , τk} (i.e.,

τ1 = k), and use it to prove the Ratio Limit Theorem for this τ. Note that condition (C2)

from the Introduction is satisfied when τ1 = k.

This section requires an ‘insertion’ operation on permutations similar to but different

from the one given in Definition 6.

Definition 8. Let σ ∈ SN and t ∈ N.

(a) Let h ∈ {1, . . . , N}. Let J = min{j : σj � h}. Define the permutation θ in SN+t as

follows:

θi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σi if i < J,

h+ j if i = J + j for j ∈ {0, . . . , t− 1},
σi−t if i � J + t and σi−t < h,

σi−t + t if i � J + t and σi−t � h.

Then we denote θ by It(σ; h) (see Figure 7 for an example).

(b) Assume N � h1 > h2 > · · · > hr � 1. Let σ(0) = σ and let σ(w) = It(σ(w−1); hw) for w =

1, . . . , r. Then we denote σ(r) by It(σ; h1, . . . , hr).

The following lemma shows that given τ := kτ2 · · · τk ∈ SN , a permutation σ ∈ SN(τ)

remains τ-avoiding after the operation of It (see Figure 7 for an example).

Lemma 6.1. Let τ = kτ2 · · · τk ∈ Sk (i.e., τ1 = k). Then, for any σ ∈ SN(τ), h ∈ {1, . . . , N}
and t ∈ N, we have It(σ; h) ∈ SN+t(τ).

Proof. First note that for t � 2, It(σ; h) = I1(It−1(σ; h); (h+ t− 1)). So it suffices to prove

the statement for t = 1, and the complete proof will follow by induction on t.

Suppose to the contrary that I1(σ; h) := θ1 · · · θN+1 contains the pattern τ. So there

exists a subsequence θi[1] · · · θi[k] which forms the pattern τ. Since σ avoids τ, the new

point inserted tightly at height h of σ has to contribute to the formation of τ in

I1(σ; h), that is, there exists some 1 � K � k such that θi[K] = h. Then K must be 1

(since τ1 = k = max{τi}1�i�k and J was chosen such that σj < h for 1 � j < J , and

consequently θj < h = θi[K] for 1 � j < J). Moreover, i[2] 
= J + 1 since θi[2] < θi[1] = h

but θJ+1 = σJ + 1 > h. Therefore, replacing θi[1] by θJ+1, θJ+1θi[2] · · · θi[k] is also a τ

pattern in θ which implies that σJσi[2]−1 · · · σi[k]−1 forms the pattern τ in σ. This is a

contradiction, hence the proof is complete.
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(a) σ = 1243
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(b) I3 (σ; h) = 1234576

Figure 7. Let σ = 1243, t = 3, h = 3 and τ = 321 which starts with the largest number. Then σ = 1243 ∈ S4(τ)

and by Lemma 6.1 I3(σ; h) = 1234576 ∈ S7(τ). The interior of the rectangle labelled ‘∅’ contains no points of

the graph of σ.

Proposition 6.2. Let τ := kτ2 · · · τk ∈ Sk (i.e., τ1 = k) and let t > 1 be an integer. Then there

exists a δ > 0 such that the following strict inequality holds:

lim sup
N→∞

(
|SN(τ; {αt} < δN)|

)1/N
< L(τ).

Proof. Let δ > 0 and T = �2tL(τ)t�. For large N, let r = �N/2T 
. For each i = 1, . . . , r,

let ji := (2(i− 1)T , (2i− 1)T ] ∩ Z. (We shall only use the interval ji with reference to

values (or heights) σk of a permutation, rather than to the indices k of a permutation; to

emphasize this, we shall refer to such intervals as ‘intervals of heights’.)

Define the function Φ as

Φ : SN(τ; {αt} < δN) ×
(
(0, T ] ∩ Z

)r → SN+tr(τ),

such that

Φ(σ, (ĥ1, . . . , ĥr)) = It(σ; h1, . . . , hr),

where hi = ĥi + 2(r − i)T for 1 � i � r. Observe that hi ∈ jr+1−i for each i.

Corresponding to the set of intervals of heights for σ ∈ SN , we define a new set of

intervals of heights for It(σ; h1, . . . , hr) ∈ SN+tr as follows:

Φ†(ji) := (2(i− 1)T + (i− 1)t, (2i− 1)T + it], i = 1, . . . , r.

Observe that the r αt inserted tightly into σ by Φ occur at heights in the intervals Φ†(ji),

i = 1, . . . , r.
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Given σ and Φ(σ, (ĥ1, . . . , ĥr)) ∈ SN+tr(τ), we now want to find an upper bound on the

number of (σ̃, (h̃1, . . . , h̃r)) in the domain of Φ such that

Φ(σ̃, (h̃1, . . . , h̃r)) = Φ(σ, (ĥ1, . . . , ĥr)) = It(σ; h1, . . . , hr). (6.1)

Let p be the number of intervals J ∈ {j1, . . . , jr} such that an αt occurs tightly in σ at a

height in J . Denote the collection of such intervals by {ji[1], . . . , ji[p]}, and let {jj[1], . . . , jj[q]}
denote the remaining intervals of {j1, . . . , jr} (where q = r − p). Then p < δN since

σ ∈ SN(τ; {αt} < δN).

Evidently there are at most TδN ways to choose the heights {h̃i[1], . . . , h̃i[p]}.
For every 1 � � � q, the length of the largest increasing pattern occurring tightly in σ

at a height in jj[�] is at most t− 1. Hence, after the insertion of the αt (using the function

Φ), the length of the largest increasing pattern occurring tightly in It(σ; h1, . . . , hr) at a

height in Φ†(jj[�]) is at least t and at most 2t− 1; and any other αR pattern with R � t

occurring tightly in It(σ; h1, . . . , hr) at a height in Φ†(jj[�]) must be contained in this largest

tight occurring increasing pattern. There are at most t different ways to remove exactly

one αt from It(σ; h1, . . . , hr) at a height in each Φ†(jj[�]). Thus, in total there are at most

tr ways to choose the heights {h̃j[1], . . . , h̃j[q]} from this collection of intervals.

Therefore, in total, there are at most TδNtr different ways to construct the (σ̃, (h̃1, . . . , h̃r))

in the domain of Φ such that equation (6.1) holds. Therefore

|SN(τ; {αt} < δN)|Tr � |SN+tr(τ)|TδNtr,

and hence

|SN(τ; {αt} < δN)| � L(τ)N+tr

T r
T δNtr.

It follows that

lim sup
N→∞

(
|SN(τ; {αt} < δN)|

)1/N � L(τ)

(
L(τ)t t

T

)1/2T

Tδ � L(τ)
Tδ

21/2T
.

Since limδ→0 T
δ = 1, we can choose δ small enough so that Tδ < 21/2T . The proposition

follows.

The pattern theorems proved for SN(kτ2 · · · τk) in Proposition 6.2 and Lemma 5.7 are

the main results that lead to the Ratio Limit Theorem for SN(kτ2 · · · τk).

Proposition 6.3. Let τ := kτ2 · · · τk ∈ Sk (i.e., τ1 = k). There exists a positive constant Γ

such that

|SN+2(τ)|
|SN(τ)| �

(
|SN+1(τ)|
|SN(τ)|

)2

− Γ

N

for all sufficiently large N.

Proof. Using Proposition 6.2 and Lemma 5.7, a similar argument to that of Proposition

5.8 gives the proof.
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Theorem 6.4. Let τ := kτ2 · · · τk ∈ Sk (i.e., τ1 = k). Then

lim
N→∞

|SN+1(τ)|
|SN(τ)| = L(τ).

Proof. The proof follows from Proposition 6.3 and Corollary 2.3.

Remark 2. The Ratio Limit Theorem also holds for τ := τ1τ2 · · · τk ∈ Sk when τ1 = 1 or

τk ∈ {1, k}, that is, when condition (C2) from the Introduction holds. This is obvious by

looking at the complement, the reverse or the reverse complement of τ.

7. Ratio Limit Theorem for SN (τ1 · · · τk), k � 5

In this section we prove the Ratio Limit Theorem for SN(τ1 · · · τk) when k � 5. We also

discuss progress towards the case k = 6. We prove the Ratio Limit Theorem for k � 6 when

condition (C3) from the Introduction is satisfied. Recall that (C3) says that τ contains

exactly one tight occurrence of 12 and one tight occurrence of 21, so that they form four

consecutive numbers and they occur at the beginning and end of the permutation.

Theorem 7.1. Let k � 5 and τ ∈ Sk . Then

lim
N→∞

|SN+1(τ)|
|SN(τ)| = L(τ).

Proof. It can be easily checked that for k � 5, any τ = τ1τ2 · · · τk ∈ Sk satisfies at least

one of the following conditions:

(i) τ1 ∈ {1, k} or τk ∈ {1, k},
(ii) τ does not contain any tight occurrence of 12,

(iii) τ does not contain any tight occurrence of 21,

(iv) |SN(τ)| = |SN(τ̂)| such that τ̂ satisfies (i), (ii) or (iii). In particular, we use the relation

([5])

|SN(t(t− 1) · · · 1τt+1 · · · τk)| = |SN(12 · · · tτt+1 · · · τk)| (t ∈ N).

Therefore, Theorem 5.9 and Theorem 6.4 imply that the Ratio Limit Theorem holds for

k � 5.

Given k = 6, let τ = τ1 · · · τ6. If either τ1 ∈ {1, 6} or τ6 ∈ {1, 6} then τ satisfies (i) above.

Otherwise, there are four cases:

(1) τ2, τ5 ∈ {1, 6},
(2) τ3, τ4 ∈ {1, 6},
(3) τ4, τ5 ∈ {1, 6} or τ2, τ3 ∈ {1, 6},
(4) τ2, τ4 ∈ {1, 6} or τ3, τ5 ∈ {1, 6}.
We will investigate each case separately.
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The following lemma shows that any permutation from case (1) satisfies one of the

conditions (i)–(iv).

Lemma 7.2. Given k = 6, let τ = τ1 · · · τ6. If τ2, τ5 ∈ {1, 6} then one of the conditions (i)–

(iv) is satisfied.

Proof. Suppose first that τ2 = 1 and τ5 = 6. If τ1 = 2 or τ6 = 5 then τ satisfies (iv). Also,

if τ1 = 5 or τ6 = 2 then τ cannot contain tight occurrences of increasing and decreasing

patterns simultaneously, so either (ii) or (iii) holds.

So suppose that τ1, τ6 /∈ {2, 5}. Thus τ3, τ4 ∈ {2, 5} and τ1, τ6 ∈ {3, 4}, and such per-

mutations cannot contain any tight occurrence of a decreasing pattern. Therefore, τ

satisfies (iii).

Finally, if τ5 = 6 and τ2 = 1, then the above argument will be true for τc and hence for

τ.

For case (2), all the permutations satisfy one of the conditions (i)–(iv) except when τ,

τc, τr or τrc belongs to the set

C2 = {236154, 256143}.

The following lemma was motivated by the pattern 236154. It shows that if condition

(C3) holds for τ and if σ ∈ SN(τ), then, roughly speaking, at every point (i, σi) an α1 (or

β1) can be inserted tightly and immediately to the right of and above (or below) (i, σi), so

that the resulting permutation still avoids τ.

Lemma 7.3. Let τ ∈ Sk with k � 6. Assume that condition (C3) from the Introduction holds

for τ, that is, τ1, τ2, τk−1, τk ∈ {q + 1, q + 2, q + 3, q + 4} (for some q � 0) and τ contains

exactly one occurrence of 12 and one occurrence of 21, with one at position i = 1 and the

other at position i = k − 1 (e.g., τ = 236154).

Then, for any σ ∈ SN(τ) and h ∈ {1, . . . , N}, either H1(σ; hu) ∈ SN+1(τ) or H1(σ; hd) ∈
SN+1(τ).

Proof. Suppose that τ1 = q + 1, τ2 = q + 2, τk−1 = q + 4 and τk = q + 3. The other three

cases follow by symmetry.

Suppose to the contrary that both H1(σ; hu) := θ1 · · · θN+1 and H1(σ; hd) := γ1 · · · γN+1

contain the pattern τ. Then there exist subsequences θi[1] · · · θi[k] and γl[1] · · · γl[k], each

forming the pattern τ.

Since σ avoids τ, the α1 inserted tightly at height h of σ must contribute to the formation

of τ in H1(σ; hu). So there exists K ∈ [1, k] such that θi[K] = h+ 1. By Definition 5, we

know that i[K] = J + 1, where σJ = h. Now if θi[K−1] 
= h (i.e., if i[K − 1] 
= J), then

θi[1] · · · θi[K−1]θJθi[K+1] · · · θi[k] is a τ pattern which by Definition 5 translates back to a τ

pattern in σ. So θi[K−1] = h. Since the only tight occurrence of 12 in τ is at position i = 1,

it follows that K = 2 and hence θi[1] = h and θi[2] = h+ 1 (i.e., i[1] = J and i[2] = J + 1).

Similarly, the β1 inserted tightly at height h of σ has to contribute to the formation

of τ in H1(σ; hd), and since the only tight occurrence of 21 in τ is at position k − 1, it
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follows that γl[k−1] = h+ 1 and γl[k] = h (i.e., l[k − 1] = J and l[k] = J + 1). Also, since

τ1 < τ2 < τk ,

σl[1] = γl[1] < γl[2] = σl[2] < γl[k] = h. (7.1)

On the one hand, if q = 0, then for every j � 3 we have i[j] > i[2] = J + 1 and

θi[j] > θi[2] = h+ 1 (since τj > τ2 = 2), and hence σi[j]−1 = θi[j] − 1 � h+ 1. By equation

(7.1), σl[1]σl[2]σi[3]−1 · · · σi[k]−1 is a τ pattern in σ, which is a contradiction.

On the other hand, if q > 0 then choose M ∈ [1, k] such that τM = q. Then 2 < M <

k − 1. Therefore i[M] > i[2] = J + 1. Since τ1 > τM and θi[1] = h, we see that θi[M] < h.

Therefore, by Definition 5, σi[M]−1 = θi[M].

Recalling equation (7.1) and the fact that l[2] < J < i[M] − 1, we now consider two

separate cases.

(I) If σi[M]−1 < σl[2] then σl[2]σJσi[3]−1 · · · σi[k]−1 is a τ pattern in σ, which is a contradiction.

(II) If σi[M]−1 > σl[2] then σl[1] · · · σl[k−2]σJσi[M]−1 is a τ pattern in σ, which is a contradic-

tion.

Therefore, the proof is complete.

A corresponding Ratio Limit Theorem now follows as before.

Theorem 7.4. Let τ ∈ Sk with k � 6. If condition (C3) from the Introduction holds, then

lim
N→∞

|SN+1(τ)|
|SN(τ)| = L(τ).

Proof. Lemma 7.3 implies that the conditions of Proposition 5.5 are satisfied. Using

Proposition 5.5 and Lemma 5.7, a similar argument to that of Proposition 5.8 shows that

there exists a positive constant Γ such that

|SN+2(τ)|
|SN(τ)| �

(
|SN+1(τ)|
|SN(τ)|

)2

− Γ

N

for all sufficiently large N. The theorem now follows from Corollary 2.3.

The status of Conjecture 1.1 for the case k = 6 can now be summarized in the following

result. It says that the Ratio Limit Theorem is known (so far) to hold for 704 of the

720 patterns in S6. The proof follows directly from the results and discussion of this

section, together with some case-by-case checking for cases (3) and (4) as listed above.

In particular, since 412653 is the inverse of 236154, Theorem 7.4 implies that the Ratio

Limit Theorem holds for 412653.

Theorem 7.5. Let τ ∈ S6. Assume that none of τ, τc, τr , or τrc is in

{256143, 452163, 415632, 512643}.
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Then

lim
N→∞

|SN+1(τ)|
|SN(τ)| = L(τ).

We note that (256143)−1 = (452163)rc and (415632)−1 = (512643)c.

8. Upper left corner of the graph of kτ2 · · · τk-avoiding permutations

Consider the graph of a random permutation from SN(τ). In this section we establish that

if τ1 = k then there exists some neighbourhood of the upper left corner of [1, N]2 that,

with high probability, contains no points of the graph.

Theorem 8.1. Let τ = kτ2 · · · τk ∈ Sk , and define τ̄ = τ2 · · · τk . Let A = L(τ̄)/L(τ). Assume

α and β are numbers in (0, 1) such that

β − α >

√
A

2
(8.1)

and

Aβ−α <
(1 − β)1−βαα(β − α)2(β−α)

(1 − α)1−αββ
. (8.2)

Then

lim sup
N→∞

[
P τ
N{max{π1, . . . , π�αN
} > βN}

]1/N
< 1. (8.3)

By Proposition A.1 of Bóna [8], L(τ) � L(τ̄) + 1, and hence A < 1. (We note that the

strict inequality is important, so the trivial inequality L(τ) � L(τ̄) is inadequate here.)

Since A < 1, the assumptions (8.1) and (8.2) hold when α is close to 0 and β is close to 1.

Thus Theorem 8.1 implies Theorem 1.3(a), that is, it tells us that when τ1 = k, a region

near the upper left corner of the graph of σ is empty for the vast majority of τ-avoiding

permutations σ. This is consistent with results of simulations such as Figure 2.

Proof of Theorem 8.1. Assume that inequalities (8.1) and (8.2) hold. Recall the definition

of SN,i,j(τ) from Definition 3. First we claim that, for 1 � i < j � N,

|SN,i,j(τ)| �
(
N − i

N − j

)(
j − 1

i− 1

)
|SN−j(τ)| |Si−1(τ)| |Sj−i(τ̄)|. (8.4)

This is proved as follows. Consider the graph of an arbitrary σ ∈ SN,i,j(τ), viewed as a set

of N points in [1, N]2 in the xy-plane. We know (i, j) is one point, and we partition the

other N − 1 points into the following three groups of points in disjoint rectangles.

Group 1: the points that satisfy y > j and x > i.

Group 2: the points that satisfy y < j and x < i.

Group 3: the points that satisfy y < j and x > i.
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(Observe that no points satisfy y > j and x < i, by the definition of SN,i,j(τ).) Note that

there are exactly N − j points in group 1, and the set of their x coordinates can be chosen

in
(
N−i
N−j

)
ways. The set of their y coordinates must be {j + 1, . . . , N}. Given the sets of

x and y coordinates, the points of group 1 can be chosen in (at most) |SN−j(τ)| ways.

Similarly, the i− 1 points of group 2 can have the set of their y coordinates chosen in

( j−1
i−1

) ways and then their precise locations can be chosen in at most |Si−1(τ)| ways. This

leaves j − i points for group 3. Observe that the points of group 3 cannot contain the

pattern τ̄, since such a pattern together with (i, j) would form the pattern τ. The set of

x coordinates and the set of y coordinates for group 3 have been determined by choices

made for group 1 and group 2 respectively. Given these two sets, there are at most |Sj−i(τ̄)|
ways to arrange the points of group 3. The claim (8.4) follows.

By equation (8.4) and Lemma 2.1(b), we have

|SN,i,j(τ)| �
(
N − i

N − j

)(
j − 1

i− 1

)
L(τ)N−j+i−1L(τ̄)j−i

�
(
N − i

N − j

)(
j

i

)
L(τ)N−1Aj−i

� (N − i)N−i

(N − j)N−j(j − i)j−i
jj

ii(j − i)j−i
L(τ)NAj−i

= F
(
i

N
,
j

N

)N

L(τ)N, (8.5)

where

F(s, t) =
(1 − s)1−sttAt−s

(1 − t)1−t(t− s)2(t−s)ss

for 0 � s < t � 1, and we interpret 00 to be 1. Since

∂ lnF
∂s

= ln

(
(t− s)2

s(1 − s)A

)
and

∂ lnF
∂t

= ln

(
t(1 − t)A

(t− s)2

)
,

we see that F is increasing in s and decreasing in t whenever (s, t) ∈ (0, 1)2 and (t− s)2 >

A/4 (using the fact that 1/4 � x(1 − x) for every x). Now, condition (8.1) implies that

(t− s)2 > A/4 whenever 0 � s � α and β � t � 1, so the above-mentioned monotonicity

of F implies that

F
(
i

N
,
j

N

)
� F(α, β) for all i ∈ [1, αN] and j ∈ [βN,N]. (8.6)

We now make the observation that

{σ ∈ SN(τ) : max{σ1, . . . , σ�αN
} > βN} ⊂
�αN
⋃
i=1

N⋃
j=�βN�

SN,i,j(τ). (8.7)

Therefore, equations (8.7), (8.5), and (8.6) imply that

P τ
N{max{π1, . . . , π�αN
} > βN} � N2F(α, β)N

L(τ)N

|SN(τ)| .

We know F(α, β) < 1 by condition (8.2), and hence (8.3) holds.
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9. Leftmost elements of σ ∈ SN (kτ2 · · · τk)

The purpose of this section is to prove Proposition 9.2, which roughly says the following:

for certain permutations τ and for some δ > 0 (depending on τ), there is an exponentially

small (in N) probability that the first δN entries of a randomly chosen τ-avoiding

permutation are not small.

We first define an operation that inserts a pattern tightly into a permutation at a

prescribed height.

Definition 9. Let σ ∈ SN and ψ ∈ Sk .
(a) Let h ∈ {1, . . . , N}. Let J = min{j : σj � h}. Define the permutation θ in SN+k as

follows:

θi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σi if i < J,

h+ ψj+1 − 1 if i = J + j for j ∈ {0, . . . , k − 1},
σi−k if i � J + k and σi−k < h,

σi−k + k if i � J + k and σi−k � h.

Then we denote θ by Iψ(σ; h).

(b) Assume N � h1 > h2 > · · · > hr � 1. Let σ(0) = σ and let σ(w) = Iψ(σ(w−1); hw) for

w = 1, . . . , r. Then we denote σ(r) by Iψ(σ; h1, . . . , hr).

Note that Iαt = It, where It is as introduced in Definition 8.

Recall Definition 4. Observe that for τ = (k0 + 1)τ̄, where τ̄ ∈ Sk0 , if σ ∈ SN(τ) and τ̄

occurs tightly in σ at position i and if h � σi+l � h+ k0 − 1 (for l = 0, 1, . . . , k0 − 1), then

σj < h for all j ∈ {1, . . . , i− 1}.

Definition 10. A pattern τ̄ ∈ Sk0 is said to satisfy the Tight Pattern Insertion Property

(TPIP) if Iτ̄(σ; h) ∈ Sk0+N(τ) for every σ ∈ SN(τ) and h ∈ {1, . . . , N}, where τ = (k0 + 1)τ̄.

The following lemma provides some examples of permutations satisfying the TPIP.

The proof of the lemma appears at the end of this section. Proposition 9.2 below is the

motivation for introducing the TPIP.

Lemma 9.1. Let τ = kτ2 · · · τk = kτ̄ such that τ2 ∈ {1, 2} and τ̄ 
= 21. Then Iτ̄(σ; h) avoids

τ for any σ ∈ SN(τ) and h ∈ {1, . . . , N}, that is, the TPIP is satisfied for τ̄.

Proposition 9.2. Let τ = (k0 + 1)τ2 · · · τk0+1 ∈ Sk0+1 and suppose that the TPIP is satisfied

for τ̄ = τ2 · · · τk0+1 ∈ Sk0 . Fix ε ∈ (0, 1). Then there exists a δ ∈ (0, 1) (depending on τ̄) such

that

lim sup
N→∞

[
P τ
N{max{π1, . . . , π�δN
} > εN}

]1/N
< 1.
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Combining Proposition 9.2 with Lemma 9.1 yields the following. In particular, it says

that Proposition 9.2 holds for τ = 4231.

Corollary 9.3. Let τ = kτ2 · · · τk = kτ̄ such that τ2 ∈ {1, 2} and τ̄ 
= 21. Then Proposition 9.2

holds.

Before proving Proposition 9.2, we establish some preliminary results.

Definition 11. Let ψ ∈ Sk . For σ ∈ SN , define

Heightsψ(σ) = {h : ψ occurs tightly in σ at height h}.

For 1 � i < j � N − k + 1, let H
ψ
N[i, j] be the set of σ in SN such that

Heightsψ(σ) ∩ [i, j] = ∅.

Lemma 9.4. Assume that the TPIP is satisfied for ψ ∈ Sk . Assume 1 � i < j � N − k + 1

and σ, σ̃ ∈ H
ψ
N[i, j],

(a) Assume h, h̃ ∈ [i, j]. If Iψ(σ; h) = Iψ(σ̃; h̃), then σ = σ̃ and |h− h̃| � 2(k − 1).

(b) Assume j � h1 > · · · > hr � i and j � h̃1 > · · · > h̃r � i. If

Iψ(σ; h1, . . . , hr) = Iψ(σ̃; h̃1, . . . , h̃r),

then σ = σ̃ and |h� − h̃�| � 2(k − 1) for every � = 1, . . . , r.

Proof. (a) Suppose that Iψ(σ; h) = Iψ(σ̃; h̃). Since σ and σ̃ do not contain any tight

occurrence of ψ at any height in [i, j], using Definition 9, tight insertion of ψ at height

h ∈ [i, j] can lead to the creation of at most 2k − 1 new tight occurrences of ψ patterns

in Iψ(σ; h). More precisely, the pattern ψ inserted tightly at height h must contribute to

the creation of any new tight occurrence of ψ at say height h̄ ∈ [i, j], so

h̄ ∈ {h− k + 1, h− k + 2, . . . , h− 1, h, h+ 1, . . . , h+ k − 1}

and hence |h− h̃| � 2(k − 1). Then σ and σ̃ are obtained by removing the pattern ψ at

heights h and h̃ respectively and by Definition 9 it is clear that the two permutations

obtained from this procedure are identical, that is, σ = σ̃.

(b) The proof will be given by induction on r. By the proof of part (a), the statement in

part (b) holds for r = 1. Suppose now that the statement is true for r − 1. We show that

it is also true for r. Assume that

N � h1 > h2 > · · · > hr � 1, N � h̃1 > h̃2 > · · · > h̃r � 1

and Iψ(σ; h1, . . . , hr) = Iψ(σ̃; h̃1, . . . , h̃r).

Then, by Definition 9(b),

Iψ(Iψ(σ; h1, . . . , hr−1); hr) = Iψ(Iψ(σ̃; h̃1, . . . , h̃r−1); h̃r).

Thus it follows from part (a) that |hr − h̃r| � 2(k − 1) and

Iψ(σ; h1, . . . , hr−1) = Iψ(σ̃; h̃1, . . . , h̃r−1).
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Hence, using the assumption of the induction, |h� − h̃�| � 2(k − 1) for every � = 1, . . . , r

and σ = σ̃.

Lemma 9.5. Let τ̄ ∈ Sk0 and τ = (k0 + 1)τ̄ ∈ Sk0+1. Assume that the TPIP is satisfied for

τ̄. For 1 � i < j � N − k0 + 1 and 1 � r � j − i+ 1,

|Hτ̄
N[i, j] ∩ SN(τ)|

(
j − i+ 1

r

)
� |SN+k0r(τ)|(2k0)

r.

Proof. This follows from Lemma 9.4(b).

The proof of Proposition 9.2 relies on the following calculation.

Corollary 9.6. Assume that the TPIP is satisfied for τ̄ ∈ Sk0 , and let τ = (k0 + 1)τ̄. Assume

1 � j � N. Then

|Hτ̄
N[1, j] ∩ SN(τ)| � j5/2

c3
L(τ)N(2k0L(τ)k0 t)tj for every t ∈ (0, 1).

Proof. Let r = �tj
. By Lemma 9.5 with i = 1, as well as equation (2.1) and Lemma 2.1(c),

|Hτ̄
N[1, j] ∩ SN(τ)| � |SN+k0r(τ)|(2k0)

r(
j
r

)
� j5/2

c3
L(τ)N+k0r(tt(1 − t)1−t)j(2k0)

tj

� j5/2

c3
L(τ)N(2k0L(τ)k0 t)tj .

Proof of Proposition 9.2. For j, k ∈ {1, . . . , N} with j � k, let

AτN(j; k) = {σ ∈ SN(τ) : max{σ1, . . . , σk} = j}.

For N � k, consider the map F k
N : SN → Sk × SN−k defined by

F k
N(σ1 · · · σN) = (Patt(σ1 · · · σk),Patt(σk+1 · · · σN)).

For example, F4
9 (614892537) = (3124, 51324).

For σ ∈ AτN(j; k), it is obvious that Patt(σ1 · · · σk) is in Sk(τ) and that Patt(σk+1 · · · σN)

is in SN−k(τ). We claim that also Patt(σk+1 · · · σN) is in H
τ̄
N−k[1, j − k − k0]. To prove

the claim, write Patt(σk+1 · · · σN) = θ1θ2 · · · θN−k = θ. Observe that θm � σk+m − k for m =

1, . . . , N − k. If θ has a tight occurrence of τ̄ at some height h � j − k − k0, then for some

� ∈ {1, . . . , N − k} we have that θ�θ�+1 · · · θ�+k0−1 forms a τ̄ pattern and θ�+i � h+ k0 − 1 �
j − k − 1 (for i = 0, . . . , k0 − 1). Then σk+�σk+�+1 · · · σk+�+k0−1 forms the pattern τ̄ and

σk+�+i � θ�+i + k � j − 1 (for i = 0, . . . , k0 − 1). Combining this with the fact that σi = j

for some i � k (by definition of AτN(j; k)), it follows that σ contains the pattern τ. This

contradiction proves the claim. Thus we know that Patt(σk+1 · · · σN) is in SN−k(τ) ∩
H
τ̄
N−k[1, j − k − k0] whenever σ ∈ AτN(j; k).

https://doi.org/10.1017/S0963548313000576 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548313000576


198 M. Atapour and N. Madras

Let F (τ,j;k)
N be the restriction of F k

N to AτN(j; k). Observe that F (τ,j;k)
N is at most (jk)-to-one.

Let t = 1/(4k0L(τ)k0 ). Then we have

|AτN(j; k)| � |Sk(τ)||SN−k(τ) ∩ H
τ̄
N−k[1, j − k − k0]|

(
j

k

)

� L(τ)k
j5/2

c3

L(τ)N−k

2t(j−k−k0)

(
j

k

)
(by (2.1) and Corollary 9.6).

Suppose 0 < δ < ε, and let k = �δN
. Then we have

Pτ
N{max{π1, . . . , π�δN
} > εN} =

∑
j>εN |AτN(j; k)|

|SN(τ)|

� N7/2

c3

L(τ)N

|SN(τ)|
2k0t

2t(ε−δ)N

(
N

k

)

� 2c4N
7/2

c3

L(τ)N

|SN(τ)|
(δδ(1 − δ)1−δ)−N

2t(ε−δ)N
,

using Lemma 2.1(c) in the last step. Therefore

lim sup
N→∞

[
P τ
N{max{π1, . . . , π�δN
} > εN}

]1/N � 1

2t(ε−δ)δδ(1 − δ)1−δ . (9.1)

As δ decreases to 0, the right-hand side of equation (9.1) tends to 2−tε, which is less than

1. This proves the proposition.

Proof of Lemma 9.1. Suppose to the contrary that Iτ̄(σ; h) =: θ1 · · · θN+k−1 contains the

pattern τ. So there exists a subsequence θi[1] · · · θi[k] which forms the pattern τ. Since σ

avoids τ, the pattern τ̄ inserted tightly at height h of σ must contribute to the formation

of τ in Iτ̄(σ; h). Hence there exists 1 � K � k such that h � θi[K] � h+ k − 2. Choose

K to be the smallest integer with this property. We claim that K = 1. Suppose to the

contrary that K > 1. Then i[1] < J , where J is chosen such that σj < h for 1 � j < J

and consequently θj < h for 1 � j < J . Thus θi[1] < h, but τ1 = k = max{τi}1�i�k implies

that θi[1] > θi[K] � h, and so we have a contradiction. Therefore, K = 1 and h � θi[1] �
h+ k − 2. Next we show that θi[2] < h. To do this, we consider two cases.

(I) τ2 = 1. Since τ1 = k, we must have

θi[2] � θi[1] − (k − 1) � h+ k − 2 − (k − 1) = h− 1.

(II) τ2 = 2 and τ̄ 
= 21. In this case, k � 4. Assume θi[2] � h. Since τ1 = k, we must have

h � θi[2] � θi[1] − (k − 2) � h+ k − 2 − (k − 2) = h.

That is, θi[2] = h and θi[1] = h+ k − 2. Hence

θi[m] ∈ [h, h+ k − 2] for every m ∈ {1, . . . , k} \ {m0},

where m0 is defined by τm0
= 1. This forces

i[m] ∈ [J, J + k − 2] for every m ∈ {1, . . . , k} \ {m0}.
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Since m0 
= 1, we have i[1] = J . Therefore, by Definition 9(a),

θi[1] = θJ = h+ τ̄1 − 1 = h+ τ2 − 1 = h+ 1.

Combining this with θi[1] = h+ k − 2, we conclude k = 3, which is a contradiction.

Thus θi[2] < h, and hence i[2] > J + k − 1. Therefore, θJ+k−1θi[2] · · · θi[k] is also a τ pattern

in θ, which gives rise to the τ pattern σJσi[2]−k+1 · · · σi[k]−k+1 in σ. This is a contradiction.

Hence Iτ̄(σ; h) avoids τ and the proof is complete.
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