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Department of Computer Science, University of Szeged, Hungary

(e-mail: ze@inf.u-szeged.hu)

PANOS RONDOGIANNIS

Department of Informatics & Telecommunications, University of Athens, Greece

(e-mail: prondo@di.uoa.gr)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Extensional higher-order logic programming has been introduced as a generalization of

classical logic programming. An important characteristic of this paradigm is that it preserves

all the well-known properties of traditional logic programming. In this paper we consider the

semantics of negation in the context of the new paradigm. Using some recent results from

non-monotonic fixed-point theory, we demonstrate that every higher-order logic program with

negation has a unique minimum infinite-valued model. In this way we obtain the first purely

model-theoretic semantics for negation in extensional higher-order logic programming. Using

our approach, we resolve an old paradox that was introduced by W. W. Wadge in order to

demonstrate the semantic difficulties of higher-order logic programming.

1 Introduction

Extensional higher-order logic programming has been proposed (Wadge 1991;

Charalambidis et al. 2010; Charalambidis et al. 2013) as a generalization of classical

logic programming. The key idea behind this paradigm is that all predicates defined

in a program denote sets and therefore one can use standard extensional set theory in

order to understand their meaning and to reason about them. For example, consider
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Non-Monotonic Formalisms”. It is also supported by grant no. ANN 110883 from the National
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the following simple extensional higher-order program (Charalambidis et al. 2013)

stating that a band (musical ensemble) is a group that has at least a singer and a

guitarist:

band(B):-singer(S),B(S),guitarist(G),B(G).

Suppose that we also have a database of musicians:

singer(sally).

singer(steve).

guitarist(george).

guitarist(grace).

We can then ask the query ?-band(B). Since predicates denote sets, an extensional

higher-order language will return answers such as B = {sally, george} ∪ L, having

the meaning that every set that contains at least sally and george is a potential

band.

A consequence of the set-theoretic nature of extensional higher-order logic

programming is the fact that its semantics and its proof theory smoothly extend the

corresponding ones for traditional (ie., first-order) logic programming. In particular,

every program has a unique minimum Herbrand model which is the greatest lower

bound of all Herbrand models of the program and the least fixed-point of an

immediate consequence operator associated with the program; moreover, there

exists an SLD resolution proof-procedure which is sound and complete with respect

to the minimum model semantics.

One basic property of all the higher-order predicates that can be defined in the

language of (Charalambidis et al. 2013) is that they are monotonic. Intuitively, the

monotonicity property states that if a predicate is true of a relation R then it is also

true of every superset of R. In the above example, it is clear that if band is true

of a relation B then it is also true of any band that is a superset of B. However,

there are many natural higher-order predicates that are non-monotonic. Consider for

example a predicate single singer band which (apparently) defines a band that

has a unique singer:

single singer band(B):-band(B),not two singers(B).

two singers(B):-B(S1),B(S2),singer(S1),singer(S2),not(S1=S2).

The predicate single singer band is obviously non-monotonic since it is satisfied

by the set {sally, george} but not by the set {sally, steve, george}. In other words,

the semantics of (Charalambidis et al. 2013) is not applicable to this extended higher-

order language. We are therefore facing the same problem that researchers faced

more than twenty years ago when they attempted to provide a sensible semantics to

classical logic programs with negation; the only difference is that the problem now

reappears in a much more general context, namely in the context of higher-order

logic programming.

The solution we adopt is relatively simple to state (but non-trivial to materialize):

it suffices to generalize the well-founded construction (van Gelder et al. 1991;

Przymusinski 1989) to higher-order programs. For this purpose, we have found

convenient to use a relatively recent logical characterization of the well-founded

semantics through an infinite-valued logic (Rondogiannis and Wadge 2005) and
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also the recent abstract fixed-point theory for non-monotonic functions developed

in (Ésik and Rondogiannis 2013; Ésik and Rondogiannis 2014). This brings us to

the two main contributions of the present paper:

• We provide the first model-theoretic semantics for extensional higher-order

logic programming with negation. In this way we initiate the study of a non-

monotonic formalism that is much broader than classical logic programming

with negation.

• We provide further evidence that extensional higher-order logic programming

is a natural generalization of classical logic programming, by showing that all

the well-known properties of the latter also hold for the new paradigm.

In the next section we provide an introduction to the proposed semantics for

higher-order logic programming and the remaining sections provide the formal

development of this semantics. The proofs of all the results have been moved to

corresponding appendices.

2 An Intuitive Overview of the Proposed Semantics

The starting point for the semantics proposed in this paper is the infinite-valued

semantics for ordinary logic programs with negation, as introduced in (Rondogiannis

and Wadge 2005). In this section we give an intuitive introduction to the infinite-

valued approach and discuss how it can be extended to the higher-order case.

The infinite-valued approach was introduced in order to provide a minimum model

semantics to logic programs with negation. As we are going to see shortly, it is com-

patible with the well-founded semantics but it is purely model-theoretic1. The main

idea of this approach can be explained with a simple example. Consider the program:

p ←
r ← ∼p
s ← ∼q

Under the well-founded semantics both p and s receive the value True. However, p

is in some sense “truer” than s. Namely, p is true because there is a rule which says

so, whereas s is true only because we are never obliged to make q true. In a sense, s

is true only by default. This gave the idea of adding a “default” truth value T1 just

below the “real” truth T0, and (by symmetry) a weaker false value F1 just above

(“not as false as”) the real false F0. We can then understand negation-as-failure as

combining ordinary negation with a weakening. Thus ∼ F0 = T1 and ∼ T0 = F1.

Since negations can effectively be iterated, the infinite-valued approach requires a

whole sequence . . . , T3, T2, T1 of weaker and weaker truth values below T0 but above

the neutral value 0; and a mirror image sequence F1, F2, F3, . . . above F0 and below

0. In fact, to capture the well-founded model in full generality, we need a Tα and

a Fα for every countable ordinal α. In other words, the underlying truth domain of

1 In the same way that the equilibrium logic approach of (Pearce 1996) gives a purely logical
reconstruction of the stable model semantics.
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the infinite-valued approach is:

F0 < F1 < · · ·< Fω < · · ·< Fα < · · ·< 0 < · · ·< Tα < · · ·< Tω < · · ·< T1 < T0

As shown in (Rondogiannis and Wadge 2005), every logic program P with nega-

tion has a unique minimum infinite-valued model MP. Notice that MP is mini-

mum with respect to a relation � which compares interpretations in a stage-by-

stage manner (see (Rondogiannis and Wadge 2005) for details). As it is proven

in (Rondogiannis and Wadge 2005), if we collapse all the Tα and Fα to True

and False respectively, we get the well-founded model. For the example pro-

gram above, the minimum model is {(p, T0), (q, F0), (r, F1), (s, T1)}. This collapses

to {(p,True), (q,False), (r,False), (s,True)}, which is the well-founded model of the

program.

As shown in (Rondogiannis and Wadge 2005), one can compute the minimum

infinite-valued model as the least fixed point of an operator TP. It can easily be

seen that TP is not monotonic with respect to the ordering relation � and therefore

one can not obtain the least fixed point using the classical Knaster-Tarski theorem.

However, TP possesses some form of partial monotonicity. More specifically, as it

is shown in (Rondogiannis and Wadge 2005; Ésik and Rondogiannis 2014), TP is

α-monotonic for all countable ordinals α, a property that guarantees the existence

of the least fixed point. Loosely speaking, the property of TP being α-monotonic

means that the operator is monotonic when we restrict attention to interpretations

that are equal for all levels of truth values that are less than α. In other words, TP

is monotonic in stages (but not overall monotonic).

The TP operator is a higher-order function since it takes as argument an

interpretation and returns an interpretation as the result. This observation leads

us to the main concept that helps us extend the infinite-valued semantics to the

higher-order case. The key idea is to demonstrate that the denotation of every

expression of predicate type in our higher-order language, is α-monotonic for all

ordinals α (see Lemma 5). This property ensures that the immediate consequence

operator of every program is also α-monotonic for all α (see Lemma 7), and therefore

it has a least fixed-point which is a model of the program. Actually, this same model

can also be obtained as the greatest lower bound of all the Herbrand models of

the program (see Theorem 2, the model intersection theorem). In other words, the

semantics of extensional higher-order logic programming with negation preserves

all the familiar properties of classical logic programming and can therefore be

considered as a natural generalization of the latter.

3 Non-Monotonic Fixed Point Theory

The main results of the paper will be obtained using some recent results from non-

monotonic fixed point theory (Ésik and Rondogiannis 2013; Ésik and Rondogiannis

2014). The key objective of this area of research is to obtain novel fixed point results

regarding functions that are not necessarily monotonic. In particular, the results

obtained in (Ésik and Rondogiannis 2013; Ésik and Rondogiannis 2014) generalize

the classical results of monotonic fixed-point theory (namely Kleene’s theorem and
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also the Knaster-Tarski theorem). In this section we provide the necessary material

from (Ésik and Rondogiannis 2013; Ésik and Rondogiannis 2014) that will be

needed in the next sections.

Suppose that (L,�) is a complete lattice in which the least upper bound operation

is denoted by
∨

and the least element is denoted by ⊥. Let κ > 0 be a fixed ordinal.

We assume that for each ordinal α < κ, there exists a preordering �α on L. We write

x =α y iff x �α y and y �α x. We define x �α y iff x �α y but x =α y does not hold.

Moreover, we write x � y iff x �α y for some α < κ. Finally, we define x � y iff

x � y or x = y.

Let x ∈ L and α < κ. We define (x]α = {y : ∀β < α x =β y}.
A key property that will be used throughout the paper is that if the above

preordering relations satisfy certain simple axioms, then the structure (L,�) is a

complete lattice; moreover, every function f : L → L that satisfies some restricted

form of monotonicity, has a least fixed point. These ideas are formalized by the

following definitions and results.

Definition 1

Let (L,�) be a complete lattice equipped with preorderings �α for all α < κ. Then,

L will be called a basic model if and only if it satisfies the following axioms:

1. For all x, y ∈ L and all α < β < κ, if x �β y then x =α y.

2. For all x, y ∈ L, if x =α y for all α < κ then x = y.

3. Let x ∈ L and α < κ. Let X ⊆ (x]α. Then, there exists y (denoted by
⊔

α X) such

that X �α y
2 and for all z ∈ (x]α such that X �α z, it holds y �α z and y � z.

4. If xj, yj ∈ L and xj �α yj for all j ∈ J then
∨
{xj : j ∈ J} �α

∨
{yj : j ∈ J}.

Lemma 1

Let L be a basic model. Then, (L,�) is a complete lattice.

Definition 2

Let A,B be basic models and let α < κ. A function f : A→ B is called α-monotonic

if for all x, y ∈ A if x �α y then f(x) �α f(y).

It should be noted that even if a function f is α-monotonic for all α < κ,

then it need not be necessarily monotonic with respect to the relation � (for a

counterexample, see (Rondogiannis and Wadge 2005, Example 5.7, pages 453–454)).

Therefore, the standard tools of classical fixed point theory (such as the Knaster-

Tarski theorem), do not suffice in order to find the least fixed point of f with respect

to the relation �.

Let us denote by [A
m→ B] the set of functions from A to B that are α-monotonic

for all α < κ.

Theorem 1

Let L be a basic model and assume that f ∈ [L
m→ L]. Then, f has a �-least pre-fixed

point, which is also the �-least fixed point of f.

2 We write X �α y iff forall x ∈ X it holds x �α y.
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The above theorem will be our main tool for establishing the fact that the

immediate consequence operator of any extensional higher order logic program,

always has a least fixed point, which is a model of the program.

4 The Syntax of the Higher-Order Language H

In this section we introduce the higher-order language H, which extends classical

first-order logic programming to a higher-order setting. The language H is based

on a simple type system that supports two base types: o, the boolean domain, and

ι, the domain of individuals (data objects). The composite types are partitioned

into three classes: functional (assigned to individual constants, individual variables

and function symbols), predicate (assigned to predicate constants and variables) and

argument (assigned to parameters of predicates).

Definition 3

A type can either be functional, predicate, argument, denoted by σ, π and ρ

respectively and defined as:

σ := ι | ι→ σ

π := o | ρ→ π

ρ := ι | π

We will use τ to denote an arbitrary type (either functional, predicate or argument

one).

As usual, the binary operator → is right-associative. A functional type that is

different than ι will often be written in the form ιn → ι, n � 1 (which stands for

ι→ ι→ · · · → ι (n + 1)-times). Moreover, it can be easily seen that every predicate

type π can be written uniquely in the form ρ1 → · · · → ρn → o, n � 0 (for n = 0 we

assume that π = o). We can now proceed to the definition of H, starting from its

alphabet and continuing with expressions and program clauses:

Definition 4

The alphabet of the higher-order language H consists of the following:

1. Predicate variables of every predicate type π (denoted by capital letters such as

P,Q,R, . . .).

2. Predicate constants of every predicate type π (denoted by lowercase letters such

as p, q, r, . . .).

3. Individual variables of type ι (denoted by capital letters such as X,Y,Z, . . .).

4. Individual constants of type ι (denoted by lowercase letters such as a, b, c, . . .).

5. Function symbols of every functional type σ �= ι (denoted by lowercase letters

such as f , g, h, . . .).

6. The following logical constant symbols: the constants false and true of type o;

the equality constant ≈ of type ι → ι → o; the generalized disjunction and

conjunction constants
∨

π and
∧

π of type π → π → π, for every predicate type

π; the generalized inverse implication constants ←π , of type π → π → o, for
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every predicate type π; the existential quantifier ∃ρ, of type (ρ → o) → o, for

every argument type ρ; the negation constant ∼ of type o→ o.

7. The abstractor λ and the parentheses “(” and “)”.

The set consisting of the predicate variables and the individual variables of H will

be called the set of argument variables of H. Argument variables will be usually

denoted by V and its subscripted versions.

Definition 5

The set of expressions of the higher-order language H is defined as follows:

1. Every predicate variable (respectively, predicate constant) of type π is an

expression of type π; every individual variable (respectively, individual constant)

of type ι is an expression of type ι; the propositional constants false and true

are expressions of type o.

2. If f is an n-ary function symbol and E1, . . . ,En are expressions of type ι, then

(f E1 · · ·En) is an expression of type ι.

3. If E1 is an expression of type ρ → π and E2 is an expression of type ρ, then

(E1 E2) is an expression of type π.

4. If V is an argument variable of type ρ and E is an expression of type π, then

(λV.E) is an expression of type ρ→ π.

5. If E1,E2 are expressions of type π, then (E1

∧
π E2) and (E1

∨
π E2) are expressions

of type π.

6. If E is an expression of type o, then (∼E) is an expression of type o.

7. If E1,E2 are expressions of type ι, then (E1 ≈ E2) is an expression of type o.

8. If E is an expression of type o and V is a variable of type ρ then (∃ρVE) is an

expression of type o.

To denote that an expression E has type τ we will write E : τ. The notions of free

and bound variables of an expression are defined as usual. An expression is called

closed if it does not contain any free variables.

Definition 6

A program clause is a clause p←π E where p is a predicate constant of type π and

E is a closed expression of type π. A program is a finite set of program clauses.

Example 1

The subset predicate can be defined in H as follows:

subset←π→π→o λP.λQ. ∼∃X((P X)∧ ∼(Q X))

The subset predicate is defined by a λ-expression (which obviates the need to

have the formal parameters of the predicate in the left-hand side of the definition).

Moreover, in the right-hand side we have an explicit existential quantifier for the

variable X (in Prolog, if a variable appears in the body of a clause but not in the

head, then it is implicitly existentially quantified).
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5 The Semantics of the Higher-Order Language H

In this section we specify the semantics of H. We start with the semantics of types

and proceed to the semantics of expressions.

The meaning of the boolean type o is equal to a partially ordered set (V ,�) of

truth values. The number of truth values of V will be specified with respect to an

ordinal κ > 0. All the results of the paper hold for every initial selection of κ. The

set (V ,�) is therefore

F0 < F1 < · · ·< Fα < · · ·< 0 < · · ·< Tα < · · ·< T1 < T0

where α < κ.

Definition 7

The order of a truth value is defined as follows: order(Tα) = α, order(Fα) = α and

order(0) = +∞.

We can now define the meaning of all the types of our language as well as the

corresponding relations � and �α. This is performed in the following definitions:

Definition 8

We define the relation �α on the set V for each α < κ as follows:

1. x �α x if order(x) < α;

2. Fα �α x and x �α Tα if order(x) � α;

3. x �α y if order(x), order(y) > α.

Notice that x =α y iff either x = y or order(x) > α and order(y) > α.

Definition 9

Let D be a nonempty set. Then:

• [[ι]]D = D, and �ι is the trivial partial order such that d �ι d, for all d ∈ D;

• [[ιn → ι]]D = Dn → D. A partial order in this case will not be needed;

• [[o]]D = V , and �o is the partial order of V ;

• [[ι → π]]D = D → [[π]]D , and �ι→π is the partial order defined as follows: for

all f, g ∈ [[ι→ π]]D , f �ι→π g iff f(d) �π g(d) for all d ∈ D;

• [[π1 → π2]]D = [[[π1]]D
m→ [[π2]]D], and �π1→π2

is the partial order defined

as follows: for all f, g ∈ [[π1 → π2]]D , f �π1→π2
g iff f(d) �π2

g(d) for all

d ∈ [[π1]]D .

The subscripts in the above partial orders will often be omitted when they are

obvious from context.

Definition 10

Let D be a nonempty set and α < κ. Then:

• The relation �α on [[o]]D is the relation �α on V .

• The relation �α on [[ρ→ π]]D is defined as follows: f �α g iff f(d) �α g(d) for

all d ∈ [[ρ]]D . Moreover, f �α g iff f �α g and f(d) �α g(d) for some d ∈ [[ρ]]D .

The following lemma expresses the fact that all the predicate types correspond to

semantic domains that are both complete lattices and basic models:
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Lemma 2

Let D be a nonempty set and π be a predicate type. Then, ([[π]]D,�π) is a complete

lattice and a basic model.

We now proceed to formally define the semantics of H:

Definition 11

An intepretation I of H consists of:

1. a nonempty set D called the domain of I;

2. an assignment to each individual constant symbol c, of an element I(c) ∈ D;

3. an assignment to each predicate constant p : π of an element I(p) ∈ [[π]]D;

4. an assignment to each function symbol f : ιn → ι of a function I(f) ∈ Dn→ D.

Definition 12

Let D be a nonempty set. A state s of H over D is a function that assigns to each

argument variable V of type ρ of H, of an element s(V) ∈ [[ρ]]D .

Definition 13

Let I be an interpretation ofH, let D be the domain of I , and let s be a state over

D. Then, the semantics of expressions of H with respect to I and s, is defined as

follows:

1. [[false]]s(I) = F0

2. [[true]]s(I) = T0

3. [[c]]s(I) = I(c), for every individual constant c

4. [[p]]s(I) = I(p), for every predicate constant p

5. [[V]]s(I) = s(V), for every argument variable V

6. [[(f E1 · · ·En)]]s(I) = I(f) [[E1]]s(I) · · · [[En]]s(I), for every n-ary function symbol f

7. [[(E1E2)]]s(I) = [[E1]]s(I)([[E2]]s(I))

8. [[(λV.E)]]s(I) = λd.[[E]]s[V/d](I), where d ranges over [[type(V)]]D
9. [[(E1

∨
π E2)]]s(I) =

∨
π{[[E1]]s(I), [[E2]]s(I)}, where

∨
π is the least upper bound

function on [[π]]D
10. [[(E1

∧
π E2)]]s(I) =

∧
π{[[E1]]s(I), [[E2]]s(I)}, where

∧
π is the greatest lower bound

function on [[π]]D

11. [[(∼E)]]s(I) =

⎧⎪⎪⎨
⎪⎪⎩
Tα+1 if [[E]]s(I) = Fα

Fα+1 if [[E]]s(I) = Tα

0 if [[E]]s(I) = 0

12. [[(E1≈E2)]]s(I) =

{
T0, if [[E1]]s(I) = [[E2]]s(I)

F0, otherwise

13. [[(∃VE)]]s(I) =
∨

d∈[[type(V)]]D
[[E]]s[V/d](I)

For closed expressions E we will often write [[E]](I) instead of [[E]]s(I) (since, in

this case, the meaning of E is independent of s).

Lemma 3

Let E : ρ be an expression and let D be a nonempty set. Moreover, let s be a state

over D and let I be an interpretation over D. Then, [[E]]s(I) ∈ [[ρ]]D .
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Definition 14

Let P be a program and let M be an interpretation over a nonempty set D. Then M

will be called a model of P iff for all clauses p←π E of P, it holds [[E]](M) �π M(p),

where M(p) ∈ [[π]]D .

6 Minimum Herbrand Model Semantics for H

In this section we demonstrate that every program of H has a unique minimum

Herbrand model which is the greatest lower bound of all the Herbrand models of

the program, and also the least fixed point of the immediate consequence operator

of the program. We start with the relevant definitions.

Definition 15

Let P be a program. The Herbrand universe UP of P is the set of all terms that can

be formed out of the individual constants3 and the function symbols of P.

Definition 16

A Herbrand interpretation I of a program P is an interpretation such that:

1. the domain of I is the Herbrand universe UP of P;

2. for every individual constant c of P, I(c) = c;

3. for every predicate constant p : π of P, I(p) ∈ [[π]]UP
;

4. for every n-ary function symbol f of P and for all t1, . . . , tn ∈ UP, I(f) t1 · · · tn =

f t1 · · · tn.

A Herbrand state of a program P is a state whose underlying domain is UP. We

denote the set of Herbrand interpretations of a program P by IP.

Definition 17

A Herbrand model of a program P is a Herbrand interpretation that is a model of

P.

Definition 18

Let P be a program. We define the following partial order on IP: for all I, J ∈ IP,

I �IP
J iff for every π and for every predicate constant p : π of P, I(p) �π J(p).

Definition 19

Let P be a program. We define the following preorder on IP for all α < κ: for

all I, J ∈ IP, I �α J iff for every π and for every predicate constant p : π of P,

I(p) �α J(p).

The following two lemmas play a main role in establishing the two central

theorems.

Lemma 4

Let P be a program. Then, IP is a complete lattice and a basic model.

3 As usual, if P has no constants, we assume the existence of an arbitrary one.
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Lemma 5 (α-Monotonicity of Semantics)
Let P be a program and let E : π be an expression. Let I, J be Herbrand

interpretations and s be a Herbrand state of P. For all α < κ, if I �α J then

[[E]]s(I) �α [[E]]s(J).

Since by Lemma 4 the set IP is a basic model (and thus by Lemma 1 is a

complete lattice with respect to �), everyM⊆ IP has a greatest lower bound
�
M

with respect to �. We have the following theorem which generalizes the familiar

model intersection theorem for definite first-order logic programs (Lloyd 1987), the

model intersection theorem for normal first-order logic programs (Rondogiannis

and Wadge 2005, Theorem 8.6) and the model intersection theorem for definite

higher-order logic programs (Charalambidis et al. 2013, Theorem 6.8).

Theorem 2 (Model Intersection Theorem)
Let P be a program and M be a nonempty set of Herbrand models of P. Then,
�
M is also a Herbrand model of P.

Definition 20
Let P be a program. The mapping TP : IP → IP is defined for every p : π and

for every I ∈ IP as TP(I)(p) =
∨
{[[E]](I) : (p←π E) ∈ P}. The mapping TP will be

called the immediate consequence operator for P.

The following two lemmas are crucial in establishing the least fixed point theorem.

Lemma 6
Let P be a program. For every predicate constant p : π in P and I ∈ IP, TP (I)(p) ∈
[[π]]UP

.

Lemma 7
Let P be a program. Then, TP is α-monotonic for all α < κ.

Theorem 3 (Least Fixed Point Theorem)
Let P be a program and let M be the set of all its Herbrand models. Then, TP has

a least fixed point MP. Moreover, MP =
�
M.

The construction of the least fixed point in the above theorem is similar to the

one given for (potentially infinite) propositional programs in (Rondogiannis and

Wadge 2005, Section 6). Due to space limitations, we provide a short outline of this

procedure. In order to calculate the least fixed point, we start with an interpretation,

say I0, which for every predicate constant p of type ρ1 → · · · ρn → o, and for

all d1 ∈ [[ρ1]]UP
, . . . , dn ∈ [[ρn]]UP

, I0(p) d1 · · · dn = F0. We start iterating TP on this

interpretation until we get to a point where the additional iterations do not affect the

F0 and T0 values. At this point, we reset all the remaining values (regarding predicate

constants and arguments that have not stabilized) to F1, getting an interpretation I1.

We start iterating TP on I1, until we get to a point where the additional iterations

do not affect the F1 and T1 values. We repeat this process for higher ordinals. In

particular, when we get to a limit ordinal, say α, we reset all the values that have not

stabilized to a truth value of order less than α, to Fα. The whole process is repeated

for κ times. If the value of certain predicate constants applied to certain arguments

has not stabilized after the κ iterations, we assign to them the intermediate value 0.

The resulting interpretation is the least fixed point MP.
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7 Resolving a Semantic Paradox of Higher-Order Logic Programming

One deficiency of extensional higher-order logic programming is the inability to

define rules (or facts) that have predicate constants in their heads. The reason of

this restriction is a semantic one and will be explained shortly. However, not all

programs that use predicate constants in the heads of clauses are problematic. For

example, the program

computer scientist(john).

good profession(computer scientist).

has a clear declarative reading: the denotation of the computer scientist predicate

is the relation {john}, while the denotation of good profession is the relation

{{john}}.
In (Wadge 1991), W. W. Wadge argued that allowing rules to have predicate

constants in their heads, creates tricky semantic problems to. Wadge gave a simple

example (duplicated below) that revealed these problems; the example has since

been used in other studies of higher-order logic programming (such as for example

in (Bezem 2001)). We present the example in almost identical phrasing as it initially

appeared.

Example 2

Consider the program:

p(a).

q(a).

phi(p).

q(b):-phi(q).

One candidate for minimum Herbrand model is the one in which p and q are true

only of a, and phi is true only of p. However, this means that p and q have the

same extension, and so themselves are equal. But since p and q are equal, and phi

holds for p, it must also hold for q. The fourth rule forces us to add q(b), so

that the model becomes {p(a), phi(p), q(a), q(b)} (in ad hoc notation). But this is

problematic because p and q are no longer equal and q(b) has lost its justification.

Problems such as the above led Wadge to disallow such clauses from the syntax

of the language proposed in (Wadge 1991). Similarly, the higher-order language

introduced in (Charalambidis et al. 2013) also disallows this kind of clauses.

However, under the semantics presented in this paper, we can now assign a proper

meaning to programs such as the above. Actually, higher order facts such as phi(p).

above, can be seen as syntactic sugar in our fragment. A fact of this form simply

states that phi is true of a relation if this relation is equal to p. This can simply be

written as:

phi(P):-equal(P,p).

where equal is a higher-order equality relation that can easily be axiomatized inH
using the subset predicate (see Example 1):

equal← λP.λQ.(subset P Q) ∧ (subset Q P).
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One can compute the minimum model of the resulting program using the

techniques presented in this paper. The paradox of Example 2 is no longer valid

since in the minimum infinite-valued model the atom q(b) has value 0. Intuitively,

this means that it is not possible to decide whether q(b) should be true or false.

The above discussion leads to an easy way of handling rules with predicate

constants in their heads. The predicate constants are replaced with predicate variables

and higher-order equality atoms are added in the bodies of clauses. Then, appropriate

clauses defining the equal predicates for all necessary types, are added to the

program. The infinite valued semantics of the resulting program is taken as the

meaning of the initial program.

8 Future Work

We have presented the first, to our knowledge, formal semantics for negation

in extensional higher-order logic programming. The results we have obtained

generalize the semantics of classical logic programming to the higher order setting.

We believe that the most interesting direction for future work is the investigation of

implementation techniques for (fragments of)H, based on the semantics introduced

in this paper. One possible option would be to examine the implementation of a

higher order extension of Datalog with negation. We are currently examining these

possibilities.
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