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Abstract

In this paper we are interested in the decision problem faced by an agent when requesting bids for collections of tasks
with complex time constraints and interdependencies. In particular, we study the problem of specifying an appropriate
schedule for the tasks in the request for bids. We expect bids to require resource commitments, so we expect different
settings of time windows to solicit different bids and different costs. The agent is interested in soliciting “desirable”
bids, where desirable means bids that can be feasibly combined in a low-cost combination that covers the entire
collection of tasks. Since the request for bids has to be issued before the agent can see any bids, in this decision process
there is a probability of loss as well as a probability of gain. This requires the decision process to deal with the risk
posture of the person or organization on whose behalf the agent is acting. We describe a model based on Expected
Utility Theory and show how an agent can attempt to maximize its profits while managing its financial risk exposure.
We illustrate the operation and properties of the model and discuss what assumptions are required for its successful
integration in multiagent contracting applications.
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1. INTRODUCTION

E-commerce technology has the potential to benefit society
by reducing the cost of buying and selling and by opening
new market opportunities. We envision an auction-based
approach to the management of agile and dynamic supply
chains, in which autonomous, self-interested agents nego-
tiate on behalf of organizations and individuals to organize
coordinated activities. This is an area in which the potential
payoff is very high, given the projected size of the business
to business and make to order e-commerce markets.

More production processes are being outsourced to out-
side contractors, making supply chains longer and more
convoluted. This increased complexity is compounded by
increasing competitive pressure and accelerated production
schedules that demand tight integration of all processes.
Finding potential suppliers is only one step in the process
of producing goods. Time dependencies among operations
make scheduling a major factor. A late delivery of a part

may produce a cascade of devastating effects. Unfortu-
nately, current auction-based systems do not have any no-
tion of time. Handling auctions for tasks with time constraints
is beyond the capabilities of current e-commerce systems.

We present the results of a study of how an autonomous
agent can maximize its profits while predicting and manag-
ing its financial risk exposure when requesting bids for tasks
with complex time constraints. We show how this can be
done by specifying appropriate time windows for tasks when
soliciting bids and by using received bids effectively in
building a final work schedule.

2. MAGNET, A MULTIAGENT NEGOTIATION
TESTBED FOR CONTRACTING TASKS
WITH TEMPORAL AND PRECEDENCE
CONSTRAINTS

This study is a part of the MAGNET~multiagent nego-
tiation testbed! research project~Collins et al., 2002!.
MAGNET agents participate in first-price, sealed-bid com-
binatorial auctions over collections of tasks with prece-
dence relations and time constraints. MAGNET promises
to increase the efficiency of current markets by shifting
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much of the burden of market exploration, auction han-
dling, and preliminary decision analysis from human deci-
sion makers to a network of heterogeneous agents.

We distinguish between two agentroles, the Customer
and theSupplier~see Fig. 1!. A customer has a set of tasks
to be performed, with complex dependencies among the
tasks. When a customer lacks the resources to carry out its
own tasks, it may solicit resources from suppliers by pre-
senting arequest for quotes~RFQ! through an agent-
mediated market. Supplier agents may offer to provide the
requested resources or services, for specified prices, over
specified time periods. Once the customer receives bids, it
evaluates them to select an optimal set of bids and create a
work schedule. This paper deals with decision problems in
the Bid Manager component of the Customer Agent.

This is a schematic outline of the main interactions among
agents:

• A customer issues an RFQ that specifies tasks, their
precedence relations, and a timeline for the bidding
process. For each task, a time window is specified giv-
ing the earliest time the task can start and the latest
time it can end.

• Suppliers submit bids. A bid includes a set of tasks, a
price, a portion of the price to be paid as a nonrefund-
able deposit, and estimated duration and time window
data that reflect supplier resource availability and con-
strain the customer’s scheduling process.

• The customer decides which bids to accept. Each task
needs to be mapped to exactly one bid~i.e., no free
disposal; Nisan, 1999!, and the constraints of all
awarded bids must be satisfied in the final work
schedule.

• When the customer awards a bid, it pays a deposit and
specifies the work schedule.

• When the supplier completes a task, the customer pays
the remainder of the price.

• If the supplier fails to complete a task, the price is
forfeited and the deposit must be returned to the cus-
tomer. A penalty may also be levied for nonperfor-
mance, or a leveled-commitment protocol~Sandholm,
1996! may be used. The customer decides whether to
handle the failure by replanning or rebidding the failed
task~s!.

2.1. A motivating example

As an example, imagine that we need to construct a garage.
Figure 2 shows the tasks needed to complete the construc-
tion. The tasks are represented in atask network, where
links indicate precedence constraints. The first decision we
are faced with is how to sequence the tasks in the RFQ and
how much time to allocate to each of them. For instance,
we could reduce the number of parallel tasks, allocate more
time to tasks with higher variability in duration or for which
there is a shortage of laborers, or allow more slack time.

A sample RFQ is shown in Figure 2. Note that the time
windows in the RFQ do not need to obey the precedence
constraints; the only requirement is that the accepted bids
obey them. We assume that the supplier is more likely to
bid, and submit a lower-cost bid, if it is given a greater
flexibility in scheduling its resources. It is up to the cus-
tomer to find a bid combination that forms a feasible
schedule.

2.2. Experiences and observations

We have shown~Collins et al., 2001! that the time con-
straints specified in the RFQ can affect the customer’s out-
come in two major ways:

Fig. 1. The MAGNET architecture.
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1. by affecting the number, price, and time windows of
bids. We assume that bids will reflect supplier re-
source commitments, and therefore larger time win-
dows will result in more bids and better utilization of
resources, in turn leading to lower prices~Collins,
2002!. However, an RFQ with overlapping time win-
dows makes the process of winner determination more
complex~Collins, 2002!. Another less obvious prob-
lem is that every extra bid over the minimum needed
to cover all tasks adds one more rejected bid. Ulti-
mately, a large percentage of rejections will reduce
the customer agent’s credibility, which, after repeated
interactions in the market, will result in fewer bids
and0or higher costs.

2. by affecting the financial exposure of the customer
agent~Collins et al., 2001!. We assume nonrefundable
deposits are paid to secure awarded bids, and pay-
ments for each task are made as the tasks are com-
pleted. The payoff for the customer occurs only at the
completion of all the tasks. Once a task is completed
in the time period specified, the customer is liable for
its full cost, regardless of whether other tasks have
failed in the meantime. If a task is not completed by
the supplier, the customer is not liable for its cost, but
this failure can ruin other parts of the plan. Slack in
the schedule increases the probability that tasks will
be completed or that there will be enough time to
recover if any fail. However, slack extends the com-
pletion time and so reduces the payoff. In many busi-
ness situations, the speed is the key; the value of the
final payoff may drop off very steeply with time.

The agent needs to issue the RFQ before having received
any bid, so the process of deciding how to schedule the
different tasks and how much time to allocate to each task
involves a probability of loss, as well as a probability of
gain. This requires the decision process to deal with the risk
posture of the person or organization on whose behalf the
agent is acting.

The agent can use information available from the market
on expected costs, probability of completion of tasks within
a time window, and expected numbers of bidders to guide
its decision on how to sequence the tasks and how much
time to allocate to each.

In the next section we propose a principled method for
generating RFQs that takes into account the agent’s risk
posture and available market statistics to produce a sched-
ule that optimizes the agent’s expected utility.

3. EXPECTED UTILITY APPROACH

In this section we describe a new approach to the construc-
tion of optimal RFQs that employs the Expected Utility
Theory to reduce the likelihood of receiving unattractive
bids while maximizing the number of bids that are likely to
be awarded. This approach was originally suggested in our
previous work~Babanov, Collins, et al., 2002!. In this work
we extend it and pay special attention to the relation be-
tween the size of RFQ time windows and the number of
expected bids by investigating the balance between the quan-
tity and the quality of expected bids.

3.1. Terminology

A task network~see Fig. 2! is a tuple^N, a& of a setN of
individual tasks and strict partial ordering on them, such
that for anyi, j [ N, i a j implies that taski immediately
precedes taskj. We also useN to denote the number of tasks
where appropriate.

A task network is characterized by astart time~t s! and a
finish time ~t f !, which delimit the interval of time when
tasks can be scheduled. The placement of taskn in the
schedule is characterized bytask n start time~tn

s! andtask n
finish time~tn

f !, subject to the following constraints:

t s # tm
f # tn

s, ;m [ P1~n! and tn
f # tm

s # t f , ;m [ S1~n!,

whereP1~n! is the a set ofimmediate predecessorsof n,
P1~n! 5 $m [ N6m a n% , andS1~n! is defined similarly to
be the set ofimmediate successorsof taskn.

The probability of task ncompletion by timet, condi-
tional on the ultimate successful completion of taskn, is
distributed according to the cumulative distribution func-
tion ~CDF! Fn 5 Fn~tn

s; t !, lim tr`Fn~tn
s; t ! 5 1. Observe

that Fn is defined to be explicitly dependent on thetn
s. To

see the rationale, consider the probability of successful mail
delivery inx days for packages that were mailed on differ-
ent days of a week.

Fig. 2. A task network example and a corresponding RFQ.
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There is an associated unconditionalprobability of suc-
cess pn [ @0, 1# characterizing the percentage of tasks that
are successfully completed given infinite time~see Fig. 3!.
In the empirical support of work we assumed Weibull prob-
ability distribution forFn; however, the form of the distri-
bution is not tied in the theory. In fact, we expect that the
success probabilities will be derived from the available mar-
ket information.

Task n bears an associatedcost.1 We assume the total
cost of taskn has two parts: a deposit, which is paid when
the bid is accepted, and a costcn, which is due some time
after successful completion ofn. Because deposits are as-
sumed to be paid up front, the amount does not change
between schedules and we can assume without loss of gen-
erality the sum of deposits to be 0.

There is a singlefinal reward V scheduled at the plan
finish time t f and paid conditional on all tasks inN being
successfully completed by that time.

For each cost and reward, there is an associatedrate of
return2 qn that is used to calculate thediscounted present
value~PV! for payoff ~cn! due at timet as

PV~cn; t ! :5 cn~11 qn!2t.

We associate the rate of returnq with the final payoffV.

3.2. Expected utility and certainty equivalent

We represent the customer agent’s preferences over payoffs
by the von Neumann–Morgenstern utility functionu ~Mas–
Colell et al., 1995!. We further assume that the absolute
risk-aversion coefficientr :5 2u''0u' of u is constant for
any value of its argument; hence,u can be represented as
follows:

u~x! 5 2exp$2rx% for r Þ 0 and u~x! 5 x for r 5 0.

It is imperative to note here that we do not compare utility
values directly; the counterintuitive~i.e., decreasing in mon-

etary terms! form of the utility for r , 0 is a trade-off for
simple notation.

We assume that a future state of the world can be de-
scribed in terms of potential money transfers and the corre-
sponding probabilities. Accordingly, we definegambleto
be a set of payoff–probability pairsG 5 $~xi , pi !i % s.t.
pi . 0, ; i and (i pi 5 1. The expectation of the utility
function over a gambleG is theexpected utility~EU!:

EU@G# :5 (
~xi , pi ![G

pi u~xi !.

Thecertainty equivalent~CE! of a gambleG is defined as
the single payoff value whose utility matches the expected
utility of the entire gambleG, that is,u~CE@G# ! :5 EU@G# .
Hence, under our assumptions

CE~G! 5
21

r
log (

~xi , pi ![G

pi exp$2rxi % for r Þ 0

and

CE~G! 5 (
~xi , pi ![G

pi xi for r 5 0.

Our evaluation criterion is based upon comparing CE val-
ues, because they represent money transfers in certain and
current money. Because of this interpretation the CE val-
ues, unlike utilities, can be compared across various risk
aversities and alternative schedules, even between different
plans. Naturally, the agent will not be willing to accept
gambles with a negative certainty equivalent and higher
values of the certainty equivalent will correspond to more
attractive gambles.

To illustrate the concept, Figure 4 shows how the CE
depends on the risk aversityr of an agent. In this figure we
consider a gamble that brings the agent either 100 or noth-
ing with equal probabilities. Agents with positiver values
are risk averse; those with negativer values are risk loving.
Agents with risk aversity close to zero, that is, almost risk
neutral, have a CE equal to the gamble’s weighted mean
~50!.

1Hereafter we use the words “cost” and “reward” to denote some mon-
etary value, while referring the same value as “payment” or “payoff”
whenever it is scheduled at some timet.

2The reason for having multipleqn values is that individual tasks can
be financed from different sources, thus affecting task scheduling.

Fig. 3. The unconditional distribution for the successful completion
probability.

Fig. 4. The CE of a simple gamble as a function of the risk aversity.
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3.3. Cumulative probabilities

To compute the certainty equivalent of a gamble we need to
determine a schedule for the tasks and compute the payoff
probability pairs.

We assume that thecn for taskn is scheduled attnf , so its
present value3 Icn is

Icn :5 cn~11 qn!2tn
f
.

We define the conditional probability of taskn success as

Ipn :5 pnFn~tn
s; tn

f !.

We also define theprecursorsof taskn as a set of tasks that
finish before taskn starts in a schedule, that is,

EP~n! :5 $m [ N6 tmf # tn
s%.

The unconditional probability that taskn will be completed
successfully is

Ipn
c 5 Ipn 3 )

m[ EP~n!

Ipm.

That is, the probability of successful completion of every
precursor and of taskn itself are considered as independent
events. The reason this is calculated in such form is be-
cause, if any task inEP~n! fails to be completed, there is no
need to execute taskn.

The probability of receiving the final rewardV is therefore

Ip 5 )
n[N

Ipn.

3.4. Example and discussion

To illustrate the definitions above, let us return to the task
network in Figure 2 and consider the sample task schedules
shown in Figure 5. In this figure thex axis is time and they
axis shows both the task numbers and the cumulative dis-
tribution of the unconditional probability of completion
~compare to Fig. 3!. Circle markers showtns. Crosses indi-
cate bothtn

f and success probabilitiesIpn ~numbers next to
each point!. Square markers denote that the corresponding
task cannot span past this point due to precedence con-
straints. The thick part of each CDF shows the time allo-
cated to each task.

The customer agent needs a way of collecting the market
information necessary to build and use the probability model.
The probability of success is relatively easy to observe in
the market. This is the reason for introducing the cumula-
tive probability of successFn and probability of successpn,
instead of the average project life span or probability of
failure. Indeed, it is rational for the supplier to report a
successful completion immediately in order to maximize
the present value of a payment. In addition, it is rational not
to report a failure until the last possible moment, because of
a possibility of earning the payment by rescheduling, out-
sourcing, or fixing the problem in some way.

3.5. Gamble calculation algorithm
and maximization

Given a schedule like the one shown in Figure 5, we need to
compute the payoff probability and then maximize the CE
for the gamble. Writing an explicit description of the ex-
pected utility as a function of gambles is overly compli-
cated and relies on the order of task completions. Instead,
we propose a simple recursive algorithm that creates these
gambles. We then maximize the CE over the space of all
feasible schedules and the corresponding gambles.

3Hereafter we use the tilde to distinguish variables that depend on the
current task schedule, while omitting corresponding indices for the sake of
notational simplicity.

Fig. 5. The CE maximizing time allocations for the plan in Figure 2 forr 5 20.01~left! andr 5 0.02~right!.
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Algorithm: G R calcGamble~T, D!
Requires:T “tasks to process,” D “processed tasks”
Returns: G “subtree gamble”

M R $m [ T 6 EP~m! , D%

if M Þ B “it’s a branch”
n R first$M % “according to some ordering”
T R T \$n%
G R B
E R calcGamble~T, D! “follow {{{ r Sn path”
forall ~x, p! [ E

G R G ø $~x, p 3 ~12 Ipn!%!
endfor
I R calcGamble~T, D ø $n%! “follow {{{ r n path”
forall ~x, p! [ I

G R G ø $~x 1 Icn, p 3 Ipn!%
endfor
return G “subtree is processed”

else “it’s a leaf”
if N 5 D “all tasks are done”

return $~V,1!%
else “some task failed”

return $~0,1!%
endif

endif

In the first call, the algorithm receives a “todo” task listT5
N and a “done” task listD 5 B. All the subsequent calls are
recursive. To illustrate the idea behind this algorithm, we
refer to the payoff–probability trees in Figure 6. These two

trees were built for the time allocations in Figure 5 and
reflect the precursor relations for each case.

Considering the more sequential schedule on the right,
we note that with probability 12 Ip1 ask 1 fails, and the
customer agent does not pay or receive anything and stops
the execution~path N1 in the right tree!. With probability
Ip1
c 5 Ip1 the agent proceeds with task 3~path 1 in the tree!.

In turn, task 3 either fails with probabilityIp1 3 ~12 Ip3!, in
which case the agent ends up stopping the plan and paying
a total ofc1 ~path 1r N3!, or it is completed with the cor-
responding probabilityIp3

c 5 Ip13 Ip3. In the case where both
1 and 3 are completed, the agent starts both 2 and 4 in
parallel and becomes liable for payingc2 and c4, respec-
tively, even if the other task fails~paths 1r 3r 2r N4 and
1 r 3 r N2 r 4!. If both 2 and 4 fail, the resulting path in
the tree is 1r 3 r N2 r N4 and the corresponding payoff–
probability pair is framed in the figure.

The algorithm’s complexity isO~2K21 3 N!, whereK is
the maximum number of tasks that are scheduled to be ex-
ecuted in parallel. Reducing the complexity ofcalcGamble
is critical, because it will be executed in the inner loop of
any CE maximization procedure, unless we somehow fix
precursor relations and, consequently, a tree structure. In
commercial projects the ratioK0N is likely to be low, be-
cause few of these exhibit a high degree of parallelism. Our
preliminary experiments allow us to conclude that theK0N
ratio is lower for risk-averse agents~presumably, business-
people! than for risk lovers~gamblers!. These two consid-
erations may reduce the need for a faster algorithm, although
additional work to improve the algorithm is planned.

Fig. 6. Payoff–probability trees for the time allocations in Figure 5.
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3.6. Experimental results

We have conducted a set of experiments on CE maximiza-
tion in a variety of task networks. Some of the results for
our reference six-task network are summarized in Figure 7.
In this figure, they axis shows 11 different risk-aversityr
settings, and the bottomx axis is timet in the plan. The
rounded horizontal bars in each of 11 sections denote time
allocations for each of six tasks, with task 1 on top. Sec-
tions r 5 20.01 andr 5 0.02 correspond to schedules in
Figure 5a and b, respectively. Finally, the vertical bars show
the maximum CE values on the topx axis for eachr setting.

Let us examine the relative placement of time allocations
as a function ofr. For this example we chose two tasks, 3
and 4, which have similar positions in the task network.
Task 3 ~black horizontal bars! has a lower probability of
success in the infinite horizon than task 4~white bars!, as
well as a higher variance of the probability of success dis-
tribution. In addition, the cost of task 3 is twice the cost of
task 4.

Given this setup, we observed four distinct cases in the
experimental data:

1. Risk-loving agents tend to schedule tasks in parallel
and late in time in order to maximize the present value

of the expected difference between reward and pay-
offs to suppliers. This confirms the intuitive observa-
tion from Figure 4 that risk lovers lean toward receiving
high, risky payoffs rather than low, certain payoffs.

2. Risk neutral and minimally risk-averse agents place
risky task 3 first to make sure that any failure does not
happen too far into the project. Note that they still
keep task 2 in parallel so in case 2 fails, they are liable
for paying the supplier of task 4 on success. One can
consider those agents as somewhat optimistic.

3. Moderately risk-averse agents try to dodge the situa-
tion above by scheduling task 3 after task 2 is fin-
ished. These agents are willing to accept the plan, but
their expectations are quite pessimistic.

4. Highly risk-averse agents shrink the task 1 interval to
zero, thus “cheating” to avoid covering any costs. One
may interpret this as a way of signaling a refusal to
accept the plan. Indeed, the assignment of zero dura-
tion to a precursor-less task ensures zero probability
of completion and hence zero CE, even in the cases
where any nondegenerate schedule has a negative CE
value.

Fig. 7. The CE maximizing schedules and CE values for the plan in Figure 2 andr [ @20.03, 0.07# .
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4. GENERATION OF RATIONAL RFQ

In the previous sections we have shown a way of generating
a CE maximizing schedule of task execution, which we
hereafter refer to as thereasonable schedule. For a chosen
risk-aversity value and known market statistics, the reason-
able schedule ensures the highest expected quality of the
bids that satisfy it. Byquality, we assume some function of
the expectations over the cost, the probability of successful
completion, and the profitability of the incoming bids in
their feasible combinations with other bids.

The reasonable schedule, however, cannot serve as a ra-
tional RFQ, because it is unlikely that bids will be available
to cover precisely the same intervals as mandated by the CE
maximizing schedule. In order to construct a viable RFQ
using the reasonable schedule as a basis, the customer agent
might choose to lower its expectations of the bid quality to
some level by widening the RFQ time windows around the
time windows in the reasonable schedule, thus increasing4

the expected number of incoming bids. In this section we
discuss criteria that allow for rationalizing the selection
among all such RFQs.

We approach the individually rational~i.e., agent-
dependent! RFQ generation as follows:

1. Measure the sensitivity of the expected bid quality to
deviations from the CE maximizing schedule.

2. Derive the relationship between the quality of incom-
ing bids and the size of RFQ time windows.

3. Choose a rational quality–quantity combination.

In addition, we search for a solution concept that gener-
ates viable RFQsand is comprehensible to a human user of
the system.

4.1. CE Sensitivity to schedule changes

We propose measuring the sensitivity of CE by investigat-
ing how CE values change with variations of a single taskn
start time~tn

s! in the reasonable schedule. For the sake of
brevity the resulting dependency of CE values is denoted
by CE~tn

s!. Figure 8 shows CE~tns!, n 5 1{{{6 for our six-
task sample problem forr 5 20.01 and 0.02, respectively.
In the figure, they axis of each horizontal stripen repre-
sents the percentage of the maximum CE value astn

s varies,
thex axis representstns, and the horizontal lines with circle
and cross ends show the corresponding reasonable schedules.

Tasks 1, 3, and 5 in the right graph are relatively restric-
tive to the start times of the bids that can be bundled with
the reasonable bids without considerably impairing the re-
sulting bundle’s value. However, the fact that task 2 in the
right graph is more flexible does not guarantee that it will
attract a higher number of bids, because the latter depend
both on the size of the corresponding time window and on
the market properties of the task: resource availability, num-
ber of prospective bidders, seasonal changes, and so forth.

We assert that for the purpose of creating a rational RFQ,
it is admissible to choose time windows based on the sen-
sitivity of CE to deviations of a single time constraint from
the reasonable schedule. The rationale is that the relations
between tasks are already encapsulated in the calculations
of CE, so the change of one constraint will approximate the
rescheduling of several related tasks in the neighborhood of
the reasonable schedule.

4.2. Quality versus quantity

Observe that the time window for the taskn, $tns6CE~tn
s!$x%,

grows as the lowest expected CE value~x! decreases. The
relation between these two variables for the tasks 3 and 4 of
the test problem is shown in Figure 9. The corresponding
relation between the lowest expected CE value and the ex-
pected number of bids as a function of the window size is

4At least to some extent, because there is a fair chance that the number
of the incoming bids will cease to increase whenever RFQ time windows
become too large to inspire confidence on the part of suppliers.

Fig. 8. The CE~tns! graphs for the corresponding reasonable schedules in Figure 5.
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shown in Figure 10. In the right graph we assumed, for the
sake of example, that the supply of task 3 in the market is
higher than task 4, hence the difference in relative positions
of task 3 and task 4 graphs in the two figures.

The graph in Figure 10 is an example of the relation
between the quality and the quantity of bids for which we
are searching. Indeed, the only independent variable in this
graph istn

s. The quantity of bids depends on the size and
positions of RFQ time windows that, in turn, depend on the
decision about the lowest acceptable CE value. The quality
of bids is a function of the RFQ choice and the properties of
the plan. Finally, it is expected that the customer agent will
prefer a point on the graph to any point below and to the left
of it; thus, the best choice should lie on the graph.

4.3. Rational quality–quantity choice and RFQ

We illustrate the decision process of the customer agent in
Figure 11, where the customer agent’s preferences over

quality–quantity combinations are represented by a family
of indifference curves and the graph of underlying quality–
quantity relationship is as derived in the previous section.
Each indifference curve shows quality–quantity pairs that
are equivalent from the agent’s point of view. In particular,
points A, B, and C are considered to be equally attractive.
The intuition is that, although in point A the agent receives
a much smaller number of bids to compare with C and is
exposed to a higher risk of not covering some tasks, this is
offset by a positive effect of a lower percentage of bid re-
jections on the agent’s reputation. In addition, the winner
determination problem is exponentially easier to solve~Col-
lins, 2002! for the lower expected number of bids in point A.

For all points below the maximum expected quality line
~Fig. 11, dashed line! agent’s preferences increase in the
direction of point M. Thus, a curve through point D is pre-
ferred over one through point C and even more so over one
through point E. The rational choice belongs to the inter-
section of the quality–quantity graph and the highest indif-
ference curve~point B!.

After the rational choice of the quality–quantity combi-
nations for all tasks in the plan is revealed, we proceed with
constructing the RFQ time windows. The choice of early
start time~tn

es! and late start time~tnls! are determined by
the value of the reciprocal of the CE~tn

s! at the minimum
admissible CE choice for taskn. The late finish time~tnlf ! is
chosen to be at the reasonable time window length distance
from tn

ls. Figure 12 shows two sample RFQs for the garage
building example. The start time intervals~ @tn

es, tn
ls# !, late

finish time tn
lf , and the corresponding reasonable schedules

are presented in the figure.
Our choice of the RFQ may not be optimal in the quan-

titative sense. However, it is individually rational for the
customer agent, fast to compute, and, arguably, easily grasped
by a human user of the system. It should be emphasized
here that the choice of the RFQ is based on the uncertain
market information; hence, any quantitatively “optimal” so-
lution is itself a compromise.

5. OPEN ISSUES AND FURTHER RESEARCH

In this section we outline two major issues that arise when
we employ the expected utility approach to generate ratio-
nal RFQs. The first issue concerns the CE maximization in
the domain with temporal and precedence constraints. The
second issue is the assessment of the EU approach and,
ultimately, the MAGNET system itself in the absence of the
real-world data for the domain of interest.

5.1. Multiple local maxima

One of the most important issues related to CE maximiza-
tion is the presence of multiple local maxima of CE, even in
cases where task networks are fairly simple. We argue that
this property is partially due to the relative positioning of
the tasks off the critical path. Any two tasks that are not

Fig. 9. The relationship between the RFQ window size~units of time onx
axis! and the lowest admissible percentage of the maximum CE value.

Fig. 10. The relationship between the expected number of bids~x axis!
and the lowest admissible percentage of the maximum CE value.
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ordered by the precedence constraints can be scheduled in
three ways: parallel and two sequential. Scheduling tasks in
parallel increases the probability of successful completion,
whereas sequential scheduling minimizes overall payments
in case one of the tasks fails. In cases where extra slack
allows for sequential scheduling, it turns out that parallel
and sequential positionings of two independent individual
tasks lead to similar resulting CE values.

To illustrate the issue, we constructed a sample task net-
work with two parallel tasks. Task 1 has a higher variance
of completion time probability and lower probability of suc-
cess than task 2; everything else is the same. The resulting
graph of CE is shown in Figure 13. There are three local
maxima with positive CE values in this figure: one that
corresponds to task 2 being scheduled first in sequential
order, another on the right side corresponding to task 1
being first, and yet another representing both tasks being
scheduled at time 0 and executed in parallel. The number of
local maxima grows considerably with the number of the
tasks that are not restricted by the precedence relationship.

5.1.1. Domain and algorithm properties

The following list shows the properties of the domain
that influence the search algorithm design:

• local maxima are due to different scheduling order of
tasks off the critical path;

• groups of local maxima have similar CE values; and

• an RFQ based on the global maximum can be overly
restrictive.

The properties of the domain frame the properties of the
search algorithm that we design to fit this domain. Namely,
the search algorithm must be able to test different orderings
of tasks, should know how to explore groups of similar
local maxima, and, whenever possible, should provide al-
ternative schedules with CE values close to the global
maximum.

We propose a search algorithm based on the ideas of
simulated annealing~Reeves, 1993! and genetic algorithms
~Forrest, 1993!. The algorithm will combine the stochastic,
temperature-driven nature of simulated annealing with the
simultaneous search space exploration of genetic algo-
rithms. In this section we describe the proposed algorithm
in more detail and explain the rationale of its design.

5.1.2. Search algorithm

The proposed search algorithm explores several alterna-
tive schedules in parallel. The initial set of alternatives can
be generated in many ways: random generation, hill climb-

Fig. 11. A quality–quantity graph with three~—! indifference curves;~– – –! the maximum expected quality line.

Fig. 12. The rational RFQs for the corresponding reasonable schedules in Figure 5 and the maximum CE percentages of 80, 95, 50,
70, 50, and 90%.~ ! start time intervals,~▫! late finish times, and~C—3! corresponding reasonable schedules.
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ing from a random schedule, critical path method, and so
forth. The execution of the algorithm proceeds in steps by
randomly applying one of the six transformation rules to
each alternative schedule. The probabilities of choosing some
rule can be adjusted to adjust the algorithm’s behavior over
a wide range.

Figure 14 illustrates the algorithm for the case of three
pairwise independent tasks. In this figure the columns rep-
resent three consecutive states of the algorithm, and each
column lists several alternative schedules. Arrows and let-
ters next to the columns denote various transformations from
the following list:

Distortion alters start and finish times of one or several
tasks and adjusts the time windows of all related tasks
to maintain precedence constraints~1 r 5, Fig. 14!.
Distortion mimics the basic step of the simulated an-
nealing algorithm in continuous 2N–dimensional space
of task start and finish times.

Gradient followingis one or more steps of a generic nu-
merical maximization method~5 r 9!. This step is
very computationally intensive, because it requires
many calls to the calcGamble algorithm in the process
of calculating numerical derivatives. By varying the
relative probabilities of the distortion and gradient fol-
lowing, we may choose the stochastic properties of the
proposed approach.

Shufflingchanges relative scheduling of two or more tasks
wherever it is permitted by the precedence constraints.
It can switch ordering of the tasks~6 r 10!, change
the sequential ordering to parallel, or reschedule par-
allel tasks to be executed sequentially~4 r 8!. The
major role of shuffling is to explore local maxima that
have similar CE values due to different scheduling of
tasks off the critical path.

Explosionadds a copy of the subject schedule to the list
of alternatives~2r 6, 7!. Explosion compliments shuf-
fling by allowing for simultaneous exploration of the

groups of similar schedules. We may choose to de-
crease the rate of explosions with the annealing tem-
perature to focus on improving the current set of
solutions after the search space has been explored to
some extent.

Implosionmerges two similar5 schedules in one. It helps
to reduce computational expenses from crowding sev-
eral alternative schedules around one maximum~7,
8 r 11!. The rate of implosions will change in the
direction opposite to the rate of explosions.

Removaleliminates alternatives that do not score well
relative to others~3 r B!. This transformation takes
care of the schedules that are stuck in local maxima
with low CE values. The rate of removals grows as the
annealing temperature decreases.

Each of the first five transformations is tested against the
simulated annealing temperature rule whenever it leads to a
decrease in the CE value. In case it is discarded, other trans-
formations are chosen at random and applied until one of
them increases the CE or passes the temperature rule.

The probabilities of transformations and the details of
the proposed search algorithm’s properties are subject to
further research. However, it is reasonable to believe that
the comprehensive study of the RFQ generation mecha-
nism is only possible in the dynamic market environment.
In the next section we outline the approach to the large-
scale testing of the MAGNET system that we are presently
researching and that will provide us with the necessary data.

5.2. Evolutionary framework for large-scale testing

We plan to devote efforts to thoroughly test the suggested
CE-based approach of rational RFQ generation. In particu-
lar, we are interested in testing how well individual agents
interact in a populated market. The major goals of this part
of the study would be the following:

• to provide the statistical data necessary for the evalu-
ation of the theoretical assumptions and derivations;

• to facilitate the understanding of the nuances of CE-
based RFQ generation and suggest improvements to
the theory and implementation; and

• to study the relative performance of agents in a simu-
lated market, developing an understanding of the prop-
erties of automated and mixed-initiative combinatorial
auction-based trading societies.

The most compelling approach would be to gather a rich set
of statistical data from a commerce domain. That has not
proven to be feasible for two reasons. First, few industrial
organizations are sufficiently open to expose the type of
data you would need to do that, and we would need data

5Similarity is a function of the distance between two schedules, as
between two points in the 2N-dimensional time space.

Fig. 13. The local maxima for two parallel tasks.
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from multiple organizations in a single market. Second,
data is gathered to serve a purpose, and our experience tells
us that when you attempt to apply existing data to a new
purpose, it frequently turns out to be full of inconsistencies
and methodological problems.

In lieu of using real industry data, we are designing a
large-scale test suite atop an abstract domain with control-
lable statistics, based on the evolutionary approach to eco-
nomic simulation. Evolutionary frameworks have been used
extensively in economics~Nelson, 1995; Rode, 1997; Tes-
fatsion, 2001!. The framework will allow us to tune the
market by tweaking the frequency of issuing RFQs and will
allow for the dynamic introduction of new supplier strat-
egies without imposing any assumptions on the nature of
strategies. We will later extend the framework to support
trade games played by human subjects. This will be an
especially useful tool for teaching and a tool to explore
strategic behaviors and study the emergence of cooperation
~Axelrod, 1984; Axelrod, 1997!.

We suggest detailed reasoning behind our choice of the
evolutionary approach and describe experimental results
from a pilot model of a trading agent society in our related
research~Babanov, Ketter, et al., 2002!.

6. RELATED WORK

Expected Utility Theory~Pratt, 1964! is a mature field of
economics that has attracted many supportive and critical
studies, both theoretical~Machina, 1987, 1989! and empir-
ical ~Smith & Desvousges, 1987; Jullien & Salanié, 2000!.
We believe that expected utility will play an increasing role
in automated auctions, because it provides a practical way
of describing risk estimations and temporal preferences.

Despite the abundance of work in auctions~McAfee &
McMillan, 1987!, limited attention has been devoted to auc-
tions over tasks with complex time constraints and inter-
dependencies. Parkes and Ungar~2001! propose a method

to auction a shared track line for train scheduling. The prob-
lem is formulated with mixed integer programming with
many domain-specific optimizations. Bids are expressed by
specifying a price to enter a line and a time window. Time
slots are used in Wellman et al.~2001!, where a protocol for
decentralized scheduling is proposed. The study is limited
to scheduling a single resource. MAGNET agents deal with
multiple resources.

Most work in supply-chain management is limited to hi-
erarchical modeling of the decision making process, which
is inadequate for distributed supply chains, where each or-
ganization is self-interested rather than cooperative. Walsh
et al.~2000! propose a protocol for combinatorial auctions
for supply chain formation, using a game-theoretical per-
spective. They allow complex task networks but do not
include time constraints. MAGNET agents must also en-
sure the scheduling feasibility of the bids they accept and
evaluate risk. Agents in MASCOT~Sadeh et al., 1999! co-
ordinate scheduling with the user, but there is no explicit
notion of payments or contracts and no explicit statement
of the criteria for accepting0rejecting a bid. Their major
objective is to show policies that optimize schedules locally
~Kjenstad, 1998!, whereas our objective is to optimize the
customer’s utility.

Different heuristics for scheduling are proposed in Dutta
et al.~2001!. The strategies are intended fo supplier agents
that are trying to adjust their schedules to win new awards.
In the work presented here, we are concerned with the sched-
uling that customers need to do before requesting bids.

In MAGNET the agents interact with each other through
a market. The market infrastructure provides a common
vocabulary, collects statistical information that helps agents
estimate costs, schedules, and risks, and acts as a trusted
intermediary during the negotiation process. The market
also acts as a matchmaker~Sycara et al., 1997!, allowing us
to ignore the issue of how agents will find each other. For a
survey on the use of intelligent agents in manufacturing,
see Shen and Norrie~1999!.

Fig. 14. The two steps of the search algorithm execution.
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The determination of winners of combinatorial auctions
~Rothkopf et al., 1998! is difficult. Dynamic programming
~Rothkopf et al., 1998! works well for small sets of bids,
but it does not scale and imposes significant restrictions on
the bids. Algorithms such as CABOB~Sandholm et al.,
2001!, Bidtree ~Sandholm, 2000!, and CASS~Fujishima
et al., 1999! reduce the search complexity. Reeves et al.
~2001! use auction mechanisms to “fill in the blanks” in
prototype declarative contracts that are specified in a lan-
guage based on Courteous Logic Programming~Grosof et al.,
1999!. These auctions support bidding on many attributes
other than price, but the problem of combining combinato-
rial bids with side constraints is not addressed.

Combinatorial auctions are becoming an important mech-
anism not only for agent-mediated e-commerce~Guttman
et al., 1998; Wurman et al., 1998; Sandholm, 1999! but also
for the allocation of tasks to cooperative agents~e.g., Dias
& Stentz, 2000; Hunsberger & Grosz, 2000!.

Hunsberger and Grosz~2000! combinatorial auctions for
the initial commitment decision problem, which is the prob-
lem an agent must solve when deciding whether to join a
proposed collaboration. Their agents have precedence and
difficult temporal constraints. However, to reduce search
effort, they use domain-specificroles, a shorthand notation
for collections of tasks. In their formulation, each task type
can be associated with only a single role. MAGNET agents
are self-interested, and there are no limits to the types of
tasks they can decide to do. In Glass and Grosz~2000!
scheduling decisions are made, not by the agents, but in-
stead by a central authority. The central authority has in-
sight to the states and schedules of participating agents, and
agents rely on the authority for supporting their decisions.

Leyton–Brown et al.~2000! suggest a way of construct-
ing a universal test suite for winner determination algo-
rithms in combinatorial auctions. Their work does not include
cases with precedence and time constraints and, thus, is not
directly applicable to the MAGNET framework. It never-
theless provides well-understood test cases for comparing
the performance of algorithms.

7. CONCLUSIONS

Auction mechanisms are an effective approach to negotia-
tion among groups of self-interested economic agents. We
are particularly interested in situations where agents need
to negotiate over multiple factors, including not only price,
but task combinations and temporal factors as well.

We have shown how an agent can use information about
the risk posture of its principal, along with market statistics,
to formulate RFQs that optimize the trade-off between risk
and value and increase the quality of the bids received. This
requires deciding how to sequence tasks and how much
time to allocate to each of them. Bids closest to the speci-
fied time windows are the most preferred risk–payoff
combinations.

The work described here is a part of a larger effort at the
University of Minnesota that aims to study how autono-
mous or semiautonomous agents can be used in complex
commerce-oriented domains.
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