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Abstract

In part-selectionproblems,parts are selected fromcatalogsand connected to meet the following problem require-
ments:functionality, specifications, andconstraints. This paper formally defines the part-selection problem, enumer-
ates a set of design properties that are useful during a search for a design solution, and provides an algorithm for
solving part-selection problems based on a novel set of operators for manipulating portions of the design space.
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1. INTRODUCTION

Many products today are designed using “components off
the shelf”~COTS!. These products can range from sophis-
ticated computer systems, to aircraft subsystems, to soft-
ware systems, to integrated circuits~e.g., “intellectual
property” modules!, and even to buildings. With the prolif-
eration of “electronic” catalogs, we expect that increasingly
more products will be designed with COTS.

In general, designing with COTS is an example of a com-
monly occurring, fundamental class of engineering-design
problems called thepart-selection problem. In these prob-
lems, parts are selected from catalogs and connected to meet
the following problem requirements:functionality, specifi-
cations, and constraints. Functionality defines what the ar-
tifact is supposed to do; specifications define optimality
conditions; and, constraints define the feasibility relation-
ships that must be satisfied for the artifact to operate cor-
rectly. An artifact that satisfies these requirements is a
solution to the design problem.

In contrast with configuration~Darr & Dym, 1997!, the
part-selection problem does not include part arrangement.
As such, part selection is a subset of the more general con-
figuration problem. Even though, as we show in this paper,
part selection is a very difficult modeling and computa-
tional problem. The results given in this paper apply di-
rectly to configuration problems, since configuration requires
part selection.

In this paper, we aim to do the following things:

• Provide a new and comprehensive formal representa-
tion for part-selection problems that extends previous
~related! problem representations, yet is compact with
well-defined semantics.

• Describe several important properties about part-
selection problems and solutions. These properties,
combined with our representation, help to uncover struc-
ture in the problem that can be exploited to create heu-
ristics. An example of this is the “boundary” part,
defined later in this paper, which eliminates search dur-
ing problem solving. Further, the representation pro-
vides a basis to rigorously compare various problem-
solving approaches to the part-selection problem.

• Provide a new solution method that effectively ex-
ploits our novel “attribute-space” representation. This
solution method suggests a family of efficient problem
solvers.
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The problem representation we give is motivated by many
things, one of which is combinatorics: part-selection prob-
lems are characterized by brutal combinatorics. We can
roughly estimate the number of possible solutions as the
following:

6parts66functions6, ~1!

where6functions6 is the number of functions needed to meet
the functionality requirements in the design and6parts6 is
the average number of parts that can fulfill a function. We
assume here that a part can fulfill only one function, since
this makes the calculation easier and has little affect on the
asymptotic results we are using here for illustration. Note,
however, that later in the paper we describe how to handle
parts that can perform multiple functions. We make the sim-
plifying assumption that the time to find a solution to the
part-selection problem is at worst case proportional to the
size of the design space. Thus, we can bound computation
time asO~6parts66functions6 !.

Needless to say, we are very concerned with mitigating this
combinatorial problem. Thus, our representation is biased to
help with the average case. Given that it is impossible to re-
duce the number of functions~this is generally accepted as a
problem input3!, we choose to try to reduce the base~i.e., the
number of parts!. We do this by creating a representation that
is based on “attribute spaces,” where we form an abstraction
over individual parts, aggregate their values first as catalogs,
and then as an interval with only the upper and lower bounds
for the values of attributes represented.

For example, imagine all the parts in a part-selection prob-
lem are described by two attributes, cost and mass. We would
first represent each part by two intervals: one for cost and
one for mass. We would then create two intervals for each
catalog: one for cost and one for mass. Thus, we can com-
pactly represent each catalog, regardless of the number of
parts it contains, as two intervals.

In the very best case, this can drastically reduce the prob-
lem combinatorics: we have now effectively reduced6parts6
to two ~2! for each attribute: the upper and lower bounds on
an interval. There are some strict limitations on this ap-
proach, which we describe formally and informally in the
paper. Thus, for a simple design with a single attribute~but
many functions!, we reduce problem size, and hence com-
putational effort, to

26functions6. ~2!

Some might argue that there is little comfort in Eq.~2!.
We would agree, except to say that two is much better than
6parts6. This represents, in an informal way, an approxima-
tion on the lower bound of the worst case. Clearly, part se-
lection remains a tough problem.

As discussed in this paper, the interval representation pro-
vides some important additional benefits, and we have
crafted a design process that exploits intervals to gain com-
putation advantage. More importantly, intervals have ex-
posed a very useful heuristic called “boundary parts.” If
boundary parts are present in all catalogs, it is possible to
solve the part-selection problem without search~Darr, 1997;
Darr et al., 1998!. The design process we discuss is based
on manipulating these intervals. We start with a represen-
tation of the entire design space, and then reduce it through
a series of~nondeterministic! operators.

The problem representation given in this paper, while at-
tempting to combat combinatorics, is also expressive. Our
representation is based on theattribute. This notion is then
systematically extended to parts and catalogs. Further, we
also describe amultifacetedrepresentation of constraints.
We believe, as we have described elsewhere~Darr et al.,
1998!, that driving the part-selection processvia con-
straints has computational advantages.

In the remainder of the paper, we provide our part-
selection triptych as follows: we begin with basic defini-
tions leading to the attribute-space representation, which we
use to compactly represent parts and catalogs. We then give
a formal definition of important properties of the part-
selection problem and a formal problem definition. This is
followed by a nondeterministic method for solving these
problems based on “shrinking” the attribute space. We then
summarize the paper.

2. BASIC DEFINITIONS

Part selection has a distinguishing characteristic that the
problem is solved by selecting predefined parts that can be
connected only in certain ways~Mittal & Frayman, 1989;
Rahmer & Voss, 1998! to perform some high-level func-
tionality ~Colton & Ouellette, 1993!. In other words, new
parts cannot be created at will, constraints restrict the ways
that parts can be connected, and parts implement low-level
functions whose combination results in the desired high-
level functionality~Mittal & Frayman, 1989; Kota & Lee,
1993; Pimmler & Eppinger, 1994!. Functions have been var-
iously defined as “what a device is for”~de Kleer & Brown,
1984! or “a description of behavior abstracted by humans
through recognition of the behavior in order to utilize it”
~Umeda et al., 1990!. Here, a function is a property of a
part that, alone or in combination with other parts, achieves
some user-defined functionality. We assume that the map-
ping from the functions that a part implements to the higher
level functionality is given as part of the definition of a part.
The design is the collection of parts that implements the
user-defined functionality, among other things.

Functions help to manage the complexity of the design
through functional decompositions, whereby the user-defined
functionality is decomposed into functions implemented by
individual parts~Colton & Ouellette, 1993; Gupta et al.,
1993; Kota & Lee, 1993; Pimmler & Eppinger, 1994!. For

3One cannot generally reduce the number of functions. This would re-
sult, for example, in the user of the artifact having to make due with fewer
functions; this is not acceptable, in our view.
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example, a high-level function in the automotive industry is
“power generation and transmission,” which can be decom-
posed into the functions “engine” and “transmission.” The
“engine” function can be further decomposed into the func-
tions “combustion,” “fuel delivery,” etc. Eventually, the de-
composition halts when the functions can be implemented
by sets of parts. In current methods, the part is the irreduc-
ible, fundamental entity that makes up a design. The design
is constructed by selecting and connecting parts, and then
verifying that the design satisfies all constraints.

Yet, the problem definition in this paper uses theattribute
as the fundamental entity to describe parts, functions, and
designs. In fact, a function is nothing more than an attribute
with a particular name: the denotationvia a name for a func-
tion. While functions are prominent in part-selection prob-
lems, they are not the only things considered. Many other
aspects—attributes—of a design are important, such as cost,
size, etc.

2.1. Attributes, parts, catalogs, designs

In this section, we develop the definitions~semantics! for
parts, catalogs, and designs based on theattribute. A set of
attributes represents a part; a set of parts form a catalog,
which can also be considered a set of attributes; parts and
catalogs are partitions in the space of attributes. Thus, we
have a simple, uniform representation for parts and cata-
logs, with a straightforward, yet expressive semantics.

An attribute is a two-tuple^ak, dk&, whereak is the at-
tribute’s name anddk is its domain. The domain is the set of
valuesa [ dk that can be assigned to the attribute. The do-
maindk of a part attributeak is restricted to scalar values. In
this definition, there are two types of domains: numeric-
valued domains consisting of integer or real numbers; and
domains that consist of tokens. An attribute domain is or-
dered if for eacha, b [ dk, eithera , b, or a . b, or a 5

b. In general, numeric-valued domains are ordered, and sym-
bolic domains are not.A 5 $ai : i 5 1, N% is the set of all
attributes.

Partsare sets of attributes, part5 $^a1, d1&, . . . ,^am, dm&,
^ f1, fm1&, . . . , ^ fn, fmn&% .

A special subset of part attributes$^ f1, fm1&, . . . , ^ fn,
fmn&% is the part-function multiplicity~partpfm!, which is
the set of functions implemented by the part; the part im-
plementsfmk instances offk ~Mittal & Frayman 1989; Col-
ton & Ouellette, 1993; Haworth et al., 1993!. As an example,
consider Figure 1, which is a catalog of parts. Each part in
this catalog implements a set of functions; partmodel18-10
has partpfm 5 $^machine-unit, 1& ^motor, 1&%.

A catalogis a collection of parts, catalog5 $parti : i 5 1,
. . . , D% generally organized by vendor product line, al-
though this need not be the case. The set of all catalogs is
catalogs5 $catalogi : i 5 1, . . . ,M % .

The catalog attributes, catalogattr 5 $^ak, øi di ,k&:
^ak, di,k& [ parti [ catalog%, is the set of attributes that
define the parts in the catalog.4 The domain of each cata-
log attributeak is the union of the domainsdi,k for all
parts in the catalog. Thecatalog-function multiplicity, cat-
alogpfm 5 $parti

pfm: i 5 1, . . . , D% , is the set of part-
function multiplicities of all parts in the catalog. The
problem-function multiplicityis the set of all part-function
multiplicities, $catalogi

pfm: i 5 1, . . . ,M % . As we discussed
in the Introduction, there is a computational advantage to
aggregating information about parts as attributes of a cat-
alog as a whole.

Figure 1 shows a portion of a motor-housing catalog from
the VT elevator problem~Yost & Rothenfluh, 1996!. This

4The catalog attributes are not necessarily disjoint. The same attribute
ak can appear in more than one catalog. For example, the power attribute
may appear in many different catalogs, since it is an attribute of many
different parts.

Fig. 1. Motor-housing catalog.
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catalog contains three types of parts: parts that implement
the motor and machine-unit functions, parts that implement
the machine-unit function, and parts that implement the mo-
tor function. The part model18-10 is defined by the set$^part-
name, model18-10&, ^hp, 10&, ^max current, 150&, ^sheave
diameter, 24&, ^efficiency, 0.81&, ^machine-unit, 1&, ^motor,
1&%. The set of catalog attributes is motor-housingattr5 $^hp,
$10, 15, 20, 25, 30, 40%&, ^max current,$150, 250, 260, 340,
440, 530%&, ^sheave diameter,$24, 30, 32%&, ^efficiency,$0.81,
0.76, 0.842%&% ~note that not every part in the catalog has a
value for each of these attributes!. The catalog-function mul-
tiplicity is the set motor-housingpfm 5 $$^machine-unit, 1&,
^motor, 1&%, $^machine-unit, 1&%, $^motor, 1&%%.

A design is the result of a design process. In part selec-
tion, the design is represented as a collection of parts that is
evaluated with respect to constraints and preferences~de-
fined in Section 5!. Formally, a design is represented as an
assignment of attribute values from their domains: de-
sign5 $^ak, a&: a [ dk, k51, . . . ,N% .5 Thedesign spaceis
the set of all possible assignments of values to attributes in
the design, or the cross product of all attribute domains:DS5
3k51, .. . , N^ak, dk&.

6 In other words, the design space is the
set of all possible designs,~designk [ DS, for all k!.

In the design process we describe later, the notion of
design space is important. Our design process, essentially,
starts with the entire design space, and through a set of
operations refines that space into a design that meets the
user’s requirements.

The attribute as a fundamental representational entity is
consistent with definitions that use the part as the basic el-
ement to describe a design~Mittal & Frayman, 1987, 1989;
Marcus et al., 1988; Gupta et al., 1993!, or optimization tech-
niques that use state and decision variables~Lyon & Mis-
tree, 1985; Bradley & Agogino, 1993; Mistree et al., 1994!.
Defining the problem with attributes makes it more conve-
nient to use constraints, rather than parts, to direct the search
for a solution. Design properties derived from the con-
straints are used to eliminate parts that ordinarily might be
chosen to implement some function, without regard to
whether that part violates a constraint or set of constraints.
Furthermore, attributes allow us greater representational uni-
formity, as we can use them to represent not only parts, but
ports~Mittal & Frayman, 1989!, state variables, and many
other things.

2.2. Constraints

In part selection, constraints can be used for two purposes:
evaluationand propagation~Freuder, 1978; Sussman &
Steele, 1980; Davis, 1987!. Constraints define a network
that describes the relationships among all the parts in the
design. Aconstraintis a relationcj defined over a subset of

the attributesAj 5 $ak: ak [ A% that restrict the attribute
domains:cj # DS. The set of attributes,Aj , is the con-
straint’sarguments.

Both evaluation and propagation can be used to “drive”
the design process. For example, our design process is based
on satisfying constraints through a process of making a con-
straint network consistent and decomposable, as described
in Section 4. This is done using constraints to both “prop-
agate” and “evaluate” various assignments to attributes.

Figure 2 shows a constraint from the VT elevator-design
problem that restricts the diameters of an elevator deflector
sheave and hoist cable~Deflector Sheave diameter$ 40 *
Hoist Cable diameter!. Designs that do not satisfy this con-
straint are not physically possible, violating either a law of
physics or some other inviolable relationship. The set of de-
signs that satisfy the constraint are shown in the shaded area
~Figure 2!.

In our problem definition, constraints are defined over
attribute spaces~see Section 3 for a definition!, and are not
defined over catalogs or parts. Constraints consist of the fol-
lowing elements:

• a constraint-evaluation functionthat determines when
the constraint is satisfied,

• a constraint-propagation functionthat infers the value
of one attribute given the values of other attributes, and

• aprecondition-evaluation functionthat defines the con-
ditions under which the constraint is to be evaluated.

The definition of constraints presented here includes ex-
plicit definitions of constraint evaluation and propagation
functions.

2.2.1. Constraint evaluation

In evaluation, constraints determine if the current assign-
ment of values to design attributes is physically allowed, or
feasible. The constraint-evaluation functiongj ~Aj ! maps from
an attribute assignment$^ak, a&: a [ dk, for all ak [ Aj % to
the Boolean valuesT or F. If gj ~Aj ! 5 T, then the assign-
mentsatisfiesthe constraint~the assignment isfeasible); if

5The names of parts can be included in these attributes.
6The cross product is defined as the set of assignments$$^a1, a1&, . . . ,

^aN, aN&%: ai [ di , for all ai in the design%.

Fig. 2. Example constraint.
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gj ~Aj ! 5 F, then the assignmentviolatesthe constraint~the
assignment isinfeasible).

2.2.2. Constraint propagation

In propagation, constraints infer the values of assigned
or unassigned design attributes, given the values of as-
signed design attributes, potentially restricting future as-
signments. Propagation is an important way of using
constraints in design, since it detects the infeasibility of a
partial assignment~i.e., some attributes may not have final
values! before all design attributes are assigned values. This
reducesthrashing, where a partial assignment is pursued,
even though it will eventually be found to be infeasible
~Mackworth, 1977!.

The constraint-propagation functionhj, i ~Aj ! restricts the
domain ofai , given an assignment of domain values to all
other attributes inAj exceptai .

7 This function maps from
an assignment of domain values to all but one of the con-
straint’s arguments$^ak, a&: a [ dk, for all ak [ Aj , k Þ i %
to a subset of domain values, with properties defined in Sec-
tion 4, for the remaining constraint argument:hj, i ~Aj ! # di .
There is a constraint-propagation function for each con-
straint argumentai .

2.2.3. Constraint preconditions

A difficulty that arises in part-selection problems is that
the set of constraints necessary to evaluate the design changes
as parts are selected~Mittal & Frayman, 1987, 1989; Mittal
& Falkenhainer, 1990; Bowen & Bahler, 1991!. Thus, a pre-
condition provides an explicit specification of when the con-
straint is to be evaluated. Our preconditions are similar to
dynamic-constraint preconditions~Mittal & Falkenhainer,
1990!.

A preconditionis a relationcj
pre defined over a subset of

attributesAj
pre # Aj that define when a constraintcj is ac-

tive ~cj
pre # DS!. The set of attributes,Aj

pre, are the pre-
condition’s arguments. The precondition-evaluation function
gj

pre~Aj
pre! maps from an attribute assignment to the Bool-

ean valuesT or F. If gj
pre~Aj

pre! 5 T, then the assignment
satisfies the precondition andcj is active; if gj

pre~Aj
pre! 5

F, then the assignment violates the precondition andcj is
inactive.

Note that we can get a syntactically simpler constraint
form with equivalent expressiveness by simply conjoining
the constraint precondition with the constraint propagation
function. We argue, however, that separating these ele-
ments of a constraint, as shown here, makes it easier to un-
derstand how a constraint is used.

2.2.4. State variables

In many part-selection problems, constraints are defined
over attributes that are not catalog attributes, but which are
derived from catalog attributes. For example, a designer is

often interested in the total weight of a design, which is the
sum of the weights of individual parts. These attributes are
calledstate variables. The value of a state variable is com-
puted using a functionf ~SV!.

Formally, a state variable,^svk, dk& [ A, is an attribute
whose value is determined by some functionfk~SVk!, where
SVk is the subset of attributes~catalog attributes and other
state variables! that determines the value.

An example state variable in the VT domain is the relev-
eling torque of the motor, defined by the expression: relev-
eling torque5 torque factor*machine-unit sheave diameter,
where torque factor is another state variable and machine-
unit sheave diameter is apart attribute.

2.2.5. Constraint properties

Monotonic constraints~Hyvonen, 1992! are a class of
constraints over numbers that are important for defining a
useful set of design properties~Section 4!. A monotonic
constraint totally orders the possible assignments to an
attribute from its domain. These constraints allow the use
of interval arithmetic for constraint evaluation and propa-
gation functions, and help to identify heuristics. In partic-
ular, if a constraint is monotonic, then we can useendpoint
analysis~Darr, 1997; Darr et al., 1998! to evaluate only the
upper and lower bounds of an interval, and deduce whether it
is feasible or not, rather than evaluating all the points com-
prising the interval. This can be a tremendous advantage,
particularly in finding infeasible designs, since a catalog many
contain thousands of parts and we need only consider~in best
case! two parts: those parts that define the upper~amax! and
lower ~amin! bounds of the interval.

Constraintcj is monotone decreasingin ak if for each
assignment̂ ak, b& ø $^ai , a&: for all ai [ Aj ~i Þ k!%
such thatgj ~Aj ! 5 T, thengj ~Aj ! 5 T for the assignment
^ak, g& ø $^ai , a&: for all ai [ Aj ~i Þ k!% for all g , b.
Constraintcj is monotone increasingin ak if for each
assignment̂ ak, b& ø $^ai , a&: for all ai [ Aj ~i Þ k!%
such thatgj ~Aj ! 5 T, thengj ~Aj ! 5 T for the assignment
^ak, g& ø $^ai , a&: for all ai [ Aj ~i Þ k!% for all g . b.
Constraintcj is monotonicif for each ^ak, dk& [ Aj , the
constraint is monotone increasing inak or monotone de-
creasing inak.

In other words, a constraint is monotone increasing if the
domains of its arguments can be totally ordered~i.e., g .
b! and the constraint evaluation function isT for all domain
elements greater than some limit~e.g.,b!. For monotone
decreasing constraints, the idea is the same, only we are con-
cerned with domain elements below some limit.

3. THE ATTRIBUTE-SPACE REPRESENTATION

Ordered attributes are represented as anattribute space,8

which is an interval that bounds the values of all domain

7In the propagation functionhj, i ~Aj !, the first subscript~ j ! denotes the
constraint, and the second subscript~i ! denotes the attribute.

8The attribute-space representation of an attribute is denoted usingbold
font.
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elements~Davis, 1987; Navinchandra & Rinderle, 1990;
Hyvonen, 1992; Finch & Ward, 1995; Van Hentenryck &
Michel, 1995!. The attribute space is an abstraction that al-
lows us to compactly represent the potentially very large
design space. In addition, it focuses on attributes, rather than
parts, which is consistent with typical constraint definitions.

The attribute-space representation of an ordered domain
attributeak is given by the interval:dk 5 @aminamax# , where
amin # a # amax, for all a, amin, amax [ dk. If amin # a #
amax, then we say thata [ dk. The attribute-space repre-
sentation of the design space is the set of intervalsAS 5
$^ak, dk&: k 5 1, . . . ,N% within which all designs in the de-
sign space lie. The attribute space is said to contain all
designs in the design space:AS contains designi iff for all
^ak, a& [ designi , a [ dk, ^ak, dk& [ AS.

Figure 3 shows two part catalogs. In Figure 4 the attribute-
space representation for all part combinations, which are
enumerated in Figure 5, is given. Figure 3 shows how com-
pactly the entire design space can be represented; the shaded
box covers all designs. This box can be represented simply
by the intervals for weight@1474 3115# and hp@10 30# .

The traditional representation used in part-selection prob-
lems is apoint representation, where constraints are used to
evaluate a single design. When used, propagation functions
restrict the assignment of values to unassigned design
attributes, relative to the current assigned design attributes.
The design is then extended by selecting and assigning ad-

ditional design attributes, evaluating the design, propagat-
ing values, and so on. The advantage of the attribute-space
representation is that it allows propagation functions to be
applied to all design attributes, whether assigned or not. Thus,
a commitment to a specific value of any design attribute is
postponed until the last possible moment.

The efficiency of reasoning over intervals has been
demonstrated outside the design domain in the constraint-
satisfaction problem~CSP! literature~Davis, 1987; Navin-
chandra & Rinderle, 1990; Dechter et al., 1991; Hyvonen,
1992; Faltings, 1994! and the constraint-logic program-
ming ~CLP! literature ~Benhamou et al., 1994; Van
Hentenryck & Michel, 1995!. Some CLP systems use a
representation similar to the attribute-space representation,
representing discrete choices as intervals~Van Hentenryck
& Michel, 1995!.

Any subset of attributes can also be represented as an
attribute space. Thecatalog attribute spaceof a catalog is
the set of intervalscatalog =$^ak, dk&: for all ^ak, dk& [
catalogattr% within which all the parts in the catalog lie. The
catalog attribute space is said to contain each part in the cat-
alog:catalogcontains parti iff for all ^ak,a& [ parti ; a [ dk,
where^ak, dk& [ catalog. This is a useful property for prun-
ing parts from a catalog ifdk defines the valid range of val-
ues. Ifa Ó dk, then that part cannot be in a valid design.

A constraint can also be defined over the attribute-space
representation of the constraint arguments, which we de-
note ascj . Intuitively, if gj ~Aj ! 5 T, then each assignment
contained in the attribute spaceAj satisfies the constraint
~the attribute spaceAj is a feasible space!. Also, if gj ~Aj ! 5
F, then there is at least one assignment in the spaceAj

that violates the constraint~the spaceAj is infeasible!. In

Fig. 3. Example part catalogs for amachine
unit and amotor.

Fig. 4. Attribute-space representation. Fig. 5. Enumerated~point representation! design space.
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other words, constraintcj is satisfied if all designs in the
design space are feasible with respect tocj . The constraint-
propagation functionhj, i ~Aj ! maps to an intervaldi

* # di

with properties defined in Section 4.
Preconditions can also be defined over an attribute space

~cj
pre!. Intuitively, if gj

pre~Aj
pre! 5 T, then there is at least

one assignment inAj
pre that satisfies the precondition andcj

is active. Also, ifgj
pre~Aj

pre! 5 F, then there is no assign-
ment contained inAj

pre that satisfies the precondition andcj

is inactive.

4. PROBLEM PROPERTIES

Defining design properties gives us structure to exploit in
problem solving. As we have shown, constraints are central
to the part-selection problem. Thus, we look to the constraint-
satisfaction~CSP! literature to get important properties of
constraint networks that we can use for design. This section
defines properties of constraints, attribute spaces, parts, and
catalogs that are motivated by the CSP literature. A CSP is
a class of problems described by a set of variables, a set of
domain values for each variable, and a set of constraints. A
solution is an assignment of values to variables that satis-
fies the constraints. There are many parallels between CSPs
and part-selection problems~Darr et al., 1998!, some of
which we enumerate here.

Consistencyanddecomposabilityare properties of a CSP
~Mackworth 1977; Dechter et al., 1991; van Beek 1992a).
Consistency eliminates all provably infeasible assignments
to variables in a CSP~although some infeasible assignment
may still remain in the context of the entire design!; consis-
tency allows infeasible designs to be eliminated. Decompos-
ability is a condition of a CSPwhere all possible assignments
to a variable are guaranteed to result in feasible solutions; de-
composability is used to identify sets of legal designs, from
which the final, possibly optimal, solution is chosen.

A constraint whose precondition is true isconsistentif,
for each attribute in the constraint’s arguments and every
assignment to that attribute, there exist values for all other
attributes that satisfy the constraints~Freuder, 1978!. A con-
straint whose precondition is false is trivially consistent. Con-
sistency allows elimination of sets of provably infeasible
designs, thereby reducing the search space.

Formally,cj is consistent ifgj
pre~Aj

pre! 5 T and for each
assignment̂ak, a&, for all a [ dk, ak [ Aj , there exist at
least one assignment^ai , b&, for all b [ di , ai [ Aj ~for all
i Þ k! such thatgj ~Aj ! 5 T. If cj is consistent, then each
ak [ Aj is consistent with respect tocj , and eacha [ dk is
a consistent value. The predicate consistent~cj ! is true if cj

is consistent. The propagation functionhj, i
consistent~Aj ! 5 di is

defined such thatai is consistent with respect tocj .
A constraint defined over an attribute space~cj ! is con-

sistent ~Davis, 1987; Navinchandra & Rinderle, 1990;
Hyvonen, 1992; van Beek, 1992a; Faltings, 1994; Van Hen-
tenryck & Michel, 1995! if gj

pre~Aj
pre! 5 T and for allak [

Aj

• If cj is monotone decreasing inak, gj ~Aj ! 5 T for the
assignmentAj

* 5 ^ak, amax& ø $^ah, b&: for all ah [
Aj ~h Þ k!% , where

• b 5 amin if cj is monotone decreasing inah, or,

• b 5 amax if cj is monotone increasing inah.

• If cj is monotone increasing inak, gj ~Aj ! 5 T for the
assignmentAj

* 5 ^ak, amin& ø $^ah, b&: for all ah [
Aj ~h Þ k!% , where

• b 5 amin if cj is monotone decreasing inah, or,

• b 5 amax if cj is monotone increasing inah.

For example, consider the constraint and the parts:
machine-unit weight1 motor weight# 2760 lbs. Assume
for this example that the attribute space is composed of the
following: ^machine-unit weight,@1100 2750#& and^motor
weight,@374 715#&. The constraint-propagation function for
the machine-unit weight attribute is given by: machine-unit
weight # 27602 motor weight. Evaluating this function
using interval arithmetic~i.e., the endpoints of the inter-
vals! yields the consistent range of values@1100 2386# for
the machine-unit weight attribute. This calculation, there-
fore, relies only on evaluating the interval endpoints.

The predicate consistent~cj ! is true if cj is consistent. If
cj is consistent, then eachak [ Aj is consistent with respect
to cj , and eacha [ dk is a consistent value. The propaga-
tion functionhj, i

consistent~Aj ! 5 di
* is defined such thatai is

consistent with respect tocj .
Consistency also applies to catalogs, design spaces, and

attribute spaces.

• A catalog is aconsistent catalogif for eachak [ cat-
alogattr, and for everycj or cj such thatak [ Aj , cj or cj

is consistent. If catalogi is a consistent catalog, then
each part[ catalogi is aconsistent part. The predicate
consistent~catalog! is true if the catalog is consistent.

• A design space is aconsistent design spaceif eachcj is
consistent. The predicate consistent~DS! is true if DS
is consistent. An attribute space is aconsistent attribute
spaceif each cj is consistent. The predicate consis-
tent~AS! is true if AS is consistent.

A stronger property than consistency isdecomposability.
Decomposability means that all designs in the design space
or attribute space satisfy all the constraints whose precon-
ditions are true9 ~Mackworth & Freuder, 1985; van Beek,
1992a). Decomposability is defined differently depending
on whether constraints are defined over design spaces or
attribute spaces.

A constraintcj is decomposable ifgj
pre~Aj

pre! 5 T and
gj ~Aj

* ! 5 T for each Aj
* [ DS. The predicate decom-

posable~cj ! is true if cj is decomposable. A constraintcj

defined over an attribute space is decomposable if

9In the CSP literature, decomposability is often called n-consistency.
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gj
pre~Aj

pre! 5 T andgj ~Aj ! 5 T for the assignment$^ak, b&:
for all ak [ Aj % , where

• b 5 amax if cj is monotone decreasing inak, or,

• b 5 amin if cj is monotone increasing inak.

The predicate decomposable~cj ! is true ifcj is decompos-
able. If cj or cj is decomposable, then eachak [ Aj is de-
composable with respect tocj or cj , respectively.

Decomposability also applies to catalogs, design spaces,
and attribute spaces. A catalog is adecomposable catalog
if for eachak [ catalogattr, and for everycj or cj such that
ak [ Aj , cj or cj is decomposable. If catalogi is a decom-
posable catalog, then each part[ catalogi is a decompos-
able part. The predicate decomposable~catalogi ! is true if
catalogi is decomposable.DS is a decomposable design
spaceif each cj or cj is decomposable. The predicate de-
composable~DS! is true if DS is decomposable.AS is a
decomposable spaceif eachcj is decomposable. The pred-
icate decomposable~AS! is true if AS is decomposable.

4.1. Comments on limitations and computational
issues

The definitions for consistency and decomposability of an
attribute space presented here assume that each constraint
is monotonic and defined over ordered attributes, since only
the interval endpoints are used in defining the property
~Dechter et al., 1991; Hyvonen, 1992; van Beek, 1992b).
The technique of using intervals to reason about constraints
defined over discrete-value domains has been effectively
used in constraint-logic programming~Benhamou et al.,
1994; Carlson et al., 1994; Van Hentenryck & Michel, 1995!.
For nonmonotonic constraints or unordered attributes, or
both, the computationally expensive process of checking each
combination of values determines consistency or decom-
posability. Thus, a disadvantage of the attribute-space rep-
resentation is that it does not apply to all constraints;
however, its advantage is potentially significant improve-
ments to computationally efficiency.

Consistency is achieved in polynomial time. Decompos-
ability, however, is achieved in the worst case in exponen-
tial time. For a certain class of problems, decomposability
can be efficiently achieved when the constraints have cer-
tain properties. In particular, it has been shown that for a
certain class of CSPs, where the constraints are monotonic
and the variable domain values are single valued, decom-
posability can be achieved in linear time~Van Hentenryck
et al., 1992!. Since many constraints in part-selection prob-
lems are monotonic, taking advantage of this property is
worthwhile.

4.2. The boundary-part property

We can gain significant computational advantage by mak-
ing use of theboundary-part property. This property guar-

antees that a boundary part is decomposable, regardless of
the parts in other catalogs. Thus, it reduces the search space,
and defines the conditions for backtrack-free search.

Formally, part[ catalogi is a boundary part iff for each
ak [ catalogiattr~^ak, dk& [ part!, and eachcj such thatak [
Aj :

• if cj is monotone decreasing inak, then^ak, amin& [
part.

• if cj is monotone increasing inak, then^ak, amax& [
part.

Boundary parts commonly occur in catalogs since man-
ufacturers generally differentiate the parts they produce and
sell. An example part catalog is given in Figure 6. Assum-
ing the constraint on cost is monotone decreasing and the
constraint on reliability is monotone increasing, then Part 1
is a boundary part. This is because Part 1 has the least value
in the catalog for cost and the greatest value for reliability.

5. PROBLEM DEFINITION

The design problem specifies the problem to be solved, and
includes the functions to implement, the constraints to sat-
isfy, the set of catalogs, a set offixed attributes, and
designer preferencesover various designs, represented gen-
erally as a utility function@note: in this paper, for ease of
explanation we use a linear, weighted value function~Fish-
burn, 1970!# . Thus, functions play a role in specifying the
behavior of the design. As we define below, the design is
complete when parts are selected to implement all functions.

Formally, the design-problemis a tuple ,required-
functions, constraints, catalogs,u~!, fixed-attributes., thatde-
scribes the desired design in terms of a set of specifications:

• required-functions5 $^ fk, fmk&: fmk instances offk are
required%.

• fk
f is thefth instance offk ~f [ $1, . . . , fmk%!.

• constraints5 øj cj , is the set of feasibility constraints,
with preconditionscj

pre~Aj
pre!.

• constraintssupport-fn# constraints is a set ofsupport-
functionconstraints.

• catalogs5 øi catalogi , is a set of part catalogs.

• u~! is a utility function representing the preferences of
the designer. For this paper, we limit ourselves to lin-

Fig. 6. Example boundary part.
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ear, weightedvaluefunction that assigns a real number
to a design or part, defines at least a partial order on
the designs or parts, and represents the desirability of
the part or design from the designer’s perspective. Note,
however, that we do not depend on an analytical utility
function.

• u~part! 5 Skwk * y~ak!, Skwk 51, ^ak, dk& [ part.10

• u~design! 5 Skwk * y~ak!, Skwk 5 1, ^ak, dk& [
design.

• fixed-attributes# A, is a set of constant-valued
attributes such that the value of each attribute domain
cannot be changed during the design process. These
values can be scalars or intervals.

Example fixed attributes from the VT domain include
the building dimensions. An example value function isu~! 5
0.3 * y~HP! 1 0.7 * y~total-weight!. Figure 7 shows an
example VT constraint representing an equality relation-
ship defined over unordered attributes that uses fixed
attributes in the precondition. This constraint guides the
selection of an elevator platform dependent on the fixed
attributes elevator capacity, elevator-platform width, and
elevator-platform depth. If the elevator width is less than
or equal to 84 inches, the elevator depth is less than or
equal to 60 inches, and the elevator capacity is less than
2500 lbs., then the part P2.5B must be selected to imple-
ment the platform function.

Support-function constraintsrepresent support function
relationships, such as the requirement that a timer function
be implemented for a particular CPU to operate~Mittal &
Frayman, 1987, 1989; Mittal & Falkenhainer, 1990; Gupta
et al., 1993; Haworth et al., 1993!. By definition, support
functions are functions that are not included in the list of
required functions specified by the designer, but are nec-
essary for the correct operation of some required function
or other support function. These constraints have a precon-
dition that defines when the support functions are re-
quired. The support functions are contained in the constraint
expression.

Formally,cj is a support-function constraint if there exists
anak [ Aj such that for all part[ catalogi , wherê ak, dk& [
part~catalogi [ catalogs!, there is an̂ fk, fmk& [ partpfm such
that^ fk, fmk& Þ required-functions.

Figure 8 shows an example support-function constraint for
the compensation-cable function.11 The precondition speci-
fies the number of required compensation cables, which is
included as part of the problem definition. The constraint ex-
pression restricts the number of selected compensation ca-
bles~compensation-cable quantity! to be at least the number
of required compensation cables~Comp Cables Required! in-
cluded in the problem specification. If the precondition is not
satisfied, the constraint is inactive and the compensation-
cable function is not needed. If the precondition is satisfied,
however, the compensation cable function is required.

A solution to the design problem is a set of partsS 5
$part: part[ catalogi , i [ $1, . . . ,M %% with the following
properties:

• For eachfk
f [ required-functionsø support-functions,

there exists a part[ Ssuch that̂ fk, fmk& [ partpfm, for
all part[ S.

• Theattributespace~AS! that containsSisdecomposable.

• For eachfk
f [ required-functionsø support-functions,

and each parti , partj [ AS, such thatfk
f [ parti

pfm, and
fk

f [ partj
pfm, u~ parti ! # u~ partj !. In other words, the

parts that are chosen for the solution have the highest util-
ity given all the parts that are admitted by the decom-
posable attribute space.

In multifunction part selection, the design topology is al-
lowed to change depending on the set of parts selected. For
example, inclusion of multifunction parts tends to decrease
the number of parts in the final design, while parts that re-
quire support functions tend to increase the number of parts.
In single-function part selection, the number of parts is fixed,
since each part implements exactly one required function
and there are no support-function relationships.

6. PROBLEM-SOLVING METHOD

Using the attribute-space representation, the properties
defined in Section 4 are achieved by a series ofspace-
transformation operationsthat transform an initial attribute

10y~ak! is a normalizing function that assigns a value from 0~worst! to
1 ~best! to an attribute value forak.

11It is assumed that the compensation cable function is not part of the
problem definition.

Fig. 7. Example constraint illustrating fixed attributes, unordered do-
mains, and equality relationships.

Fig. 8. Example support function constraint.
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space~AS0) into a consistent or decomposable attribute
space. We assume here that these operators are nondeter-
ministic, meaning that they will always make the correct
choice when faced with a decision.

These operations create a consistent space from an incon-
sistent space~dconsistent~ASt ! r ASt11), or shrink a con-
sistent space~dshrink~ASt ! r ASt11).12 The shrinking
operationdshrink creates a spaceASt11 that lies withinASt.
Embedded within these transformations are mapping oper-
ations from a discrete space consisting of parts, to an attribute
space consisting of intervals. A similar technique has been
used in constraint-logic programming~Benhamou et al.,
1994; Carlson et al., 1994; Van Hentenryck & Michel, 1995!
and part selection in the mechanical-engineering domain
~Finch & Ward, 1995!.

• design operationdconsistent~ASt ! is a transformation
from ASt to ASt11, where¬consistent~ASt ! and con-
sistent~ASt11).

• design operationdshrink~ASt ! is a transformation from
ASt to ASt11, where consistent~ASt ! andASt11 is an
attribute space wheredk

t11 # dk
t , for all ^ak

t , dk
t & [

ASt, and for all̂ ak
t11, dk

t11& [ ASt11, and at least one
dk

t11 , dk
t .

A decomposable space is achieved by combining these
operations to alternate between creating consistent spaces
from inconsistent spaces and shrinking consistent spaces:

dconsistent~AS0) r AS1;

dshrink~AS1) r AS2;

. . .

dconsistent~ASt22) r ASt21;

dshrink~ASt21) r ASt Algorithm ~1!

where decomposable~ASt ! and¬decomposable~ASk !, k5
0, . . . ,t 21. Note that if any operation fails~e.g., there is no
feasible solution!, the algorithm halts.

This sequence of operations is driven by the constraints:
the consistency operations remove inconsistent attribute-
domain elements, thereby reducing the search space, and
the shrinking operations use knowledge based on the type
of constraints present in the design problem, or domain-
dependent knowledge to shrink the attribute space by re-
moving designs. Once decomposable~ASt !, a design can be
easily generated by simply choosing parts from each cata-
log ~which can be done concurrently!. Parts should be cho-
sen to be consistent with definitions in Section 5~i.e., they
should maximize the utility function for each catalog!. This

will yield a locally optimal solution, which may coincide
with a globally optimal solution~but this is not guaranteed!.

While consistency can be founddeterministicallywith-
out backtracking~with some restrictions on the problem!,
decomposability cannot always be found in such a way.
Thus, in a deterministic implementation of Algorithm 1,
there will be backtracking, except in either lucky or trivial
cases. In fact, in the worst case the problem becomes ex-
ponential in the number of parts; this, however, is the bane
of all part-selection problem solvers~as we discussed in
the Introduction!.

6.1. Example problem

In this section, we present an example of the problem-
solving method by solving the followingdesign-problem:

^$^machine-unit, 1& ^motor, 1&%, $c1, c2% , $machine-unit, motor%,

u~!, 2&, where

• Required functions: there must be one each ofmachine-
unit andmotor.

• The constraints are as follows~we list only the propa-
gation functions!:

c1: ~min_hp, max_hp, hp!: min_hp,5 hp ,5 max_hp

h1,1~min_hp, max_hp, hp!: min_hp,5 hp

h1,2~min_hp, max_hp, hp!: hp ,5 max_hp

c2: ~MU-weight, Motor-weight!:

(~MU-weight,Motor-weight! ,5 2760

h2,1~MU-weight, Motor-weight!:

MU-weight ,5 27602 Motor-weight

h2,2~MU-weight, Motor-weight!:

Motor-weight,5 27602 MU-weight

• The catalogs are given in Figure 3:

machine-unitattr 5 $^min_hp,$10, 15, 20, 40%&,

^max_hp,$15, 20, 40%&,

^MU-weight, $1100, 1700, 2400, 2750%&%

motorattr 5 $^hp, $10, 15, 20, 25, 30%&,

^Motor-weight,$374, 473, 534, 680, 715%&%

machine-unitpfm 5 $^machine-unit, 1&%

motorpfm 5 $^motor, 1&%

• The utility function is defined as:

U~!5 2 @0.3~hp! 1 0.7~Motor-weight1 MU-weight!# ,
12Note, the use of a superscript here indicates that the design process

unrolls over time.
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where the closer to zero the better, and no scaling functions
are given~for simplicity of explanation!

• There are no fixed attributes for this problem.

At the start of the design process—the application of the
problem-solving method—AS0 is given by Figure 4. The
first step of Algorithm 1 is theconsistentoperation; for this
example, we will guide the shrinking operation by using the
constraint propagation functions~we assume that the pre-
conditions for both constraints areT !. Consider that, if we
want to make the catalogs consistent, we can use the prop-
agation functions to infer bounds on the catalogs as follows:

h1,1~!: the lower bound on hp is 10.

h1,2~!: the upper bound on hp is 40.

h2,1~!: the upper bound on weight for the motor unit~MU !
is 2386.

h2,2~!: the upper bound on weight for the motor is 1660.

Given this information, we applydconsistent~AS0! r AS1,
whereAS1 is given in Figure 9. Because the weight of the
part model38 lies outside the consistent range, it is re-
moved from the machine-unit catalog. Once this part is re-
moved, however, the consistent space must be recalculated
because the consistency of parts in the motor catalog may
depend on model38. This is the case in this example, since
model38 defined the upper bound on horsepower~max_hp
for model38 is 40, the maximum value in the catalog!. So,
removing the part lowers the bound for propagation func-
tion h1,2~! to 20, which causes the parts 25HP and 30HP to
be removed from the motor catalog. At this point, the space
is consistent, with the part catalogs as shown in Figure 10.

We can now chose a decomposable attribute space for
the design; we do this operation nondeterministically, not-
ing that there are alternative attribute spaces that could
have been selected, and that search would probably be nec-

essary in a deterministic search process. We, therefore, ap-
ply dshrink~AS1! r AS2, where decomposable~AS2). Dur-
ing the application of this operator, the motors with the least
and greatest horsepower were removed, makingc1 decom-
posable. The part catalogs corresponding toAS2 are given
in Figure 11.

The solution to the design problem, therefore, isS 5
$model18, 15HP%. The machine-unit part Model18 was cho-
sen over Model28 because it weighs less giving it a better
utility value. It is important to note that givenAS2, S is
optimal, but this is not necessarily the globally optimal de-
sign. The decision to form the decomposable space as we
did caused us to miss the globally optimal design. This is
not as bad a problem as it may at first seem, as we can choose
other decomposable spaces if necessary to find the optimal
solution ~in a deterministic implementation!; for a nonde-
terministic implementation, we can simply change the op-
erator to chose the optimal decomposable space.

7. SUMMARY

This paper defined the part-selection problem, including def-
initions of parts, catalogs, constraints, and the problem spec-
ification. The representation is descriptive and accounts for
combinatorial issues inherent in the class of part-selection
problems. We have provided a multifacted definition of con-
straints, which we argue is needed to fully exploit the way
constraints are actually used in problem solvers. As we have
noted in the paper, our representation builds on the estab-
lished work in the design and CSPfields, and attempts to unify
many concepts from both fields.Aformal description of part-
selection problems helps to understand the nature of the
problem, leading to both efficient algorithms, and rigorous
comparisons among competing problem-solving methods.
The VT-Sisyphus experiments~Schreiber & Birmingham,
1996! are an example where a formal problem representa-
tion provided many insights into design problem solving.

We defined the properties of “consistency” and “decom-
posability” for part-selection problems, borrowing con-

Fig. 9. AS1 depiction.

Fig. 10. Part catalogs resulting from application ofdconsistent~AS1).

Fig. 11. Final part catalogs, which form the decomposable attribute space.
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cepts from the CSP literature. We also introduced the
“boundary-part property,” which can be used to define the
conditions for backtrack-free search. These properties are
useful for design problem solvers for part-selection prob-
lems. While not all problem solvers will try to achieve these
properties, they are nonetheless useful in describing cer-
tain problem regularities.

The design properties are used in a describing the oper-
ation of a nondeterministic algorithm for solving part-
selection problems. This algorithm exploits a set of operators
that shrink the design space, finding a series of consistent,
albeit “smaller,” design spaces. The algorithm terminates
with a decomposable design space, or recognition that no
such space is possible. This algorithm, which cannot be di-
rectly implemented, yields a variety of algorithms that can
be implemented.
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