Artificial Intelligence for Engineering Design, Analysis and Manufacturig00, 14, 39-51. Printed in the USA.
Copyright © 2000 Cambridge University Press 0890-0M$12.50

Part-selection triptych: A representation,
problem properties and problem definition,
and problem-solving method

TIMOTHY P. DARR* aND WILLIAM P. BIRMINGHAM 2
Artificial Intelligence Laboratory, Department of Electrical Engineering and Computer Science,
The University of Michigan, 1101 Beal Avenue, Ann Arbor, Ml 48109

(RECEIVED September 1, 1998yccepTED September 8, 1999

Abstract

In part-selectionproblems,parts are selected froncatalogsand connected to meet the following problem require-
ments:functionality, specificationsandconstraints This paper formally defines the part-selection problem, enumer-
ates a set of design properties that are useful during a search for a design solution, and provides an algorithm for
solving part-selection problems based on a novel set of operators for manipulating portions of the design space.

Keywords: Part selection; Constraint-satisfaction; Design; Optimization; Configuration

1. INTRODUCTION In contrast with configuratiofiDarr & Dym, 1997, the
part-selection problem does not include part arrangement.

Many products today are designed using “components off\s such, part selection is a subset of the more general con-

the shelf”(COTS. These products can range from sophis-figuration problem. Even though, as we show in this paper,

ticated computer systems, to aircraft subsystems, to sofpart selection is a very difficult modeling and computa-

ware systems, to integrated circuifs.g., “intellectual tional problem. The results given in this paper apply di-

property” moduleg and even to buildings. With the prolif- rectly to configuration problems, since configuration requires

eration of “electronic” catalogs, we expect that increasinglypart selection.

more products will be designed with COTS. In this paper, we aim to do the following things:

In general, designing with COTS is an example of a com-
monly occurring, fundamental class of engineering-design ® Provide a new and comprehensive formal representa-

problems called theart-selection problemin these prob- tion for part-selection problems that extends previous
lems, parts are selected from catalogs and connected to meet (related problem representations, yet is compact with
the following problem requirementgunctionality, specifi- well-defined semantics.

cations, and constraint§unctionality defines what the ar- ¢ Describe several important properties about part-
tifact is supposed to do; specifications define optimality ~ Selection problems and solutions. These properties,
conditions; and, constraints define the feasibility relation- ~ combined with our representation, help to uncover struc-
ships that must be satisfied for the artifact to operate cor- ture in the problem that can be exploited to create heu-

rectly. An artifact that satisfies these requirements is a ristics. An example of this is the “boundary” part,
solution to the design problem. defined later in this paper, which eliminates search dur-

ing problem solving. Further, the representation pro-
vides a basis to rigorously compare various problem-
solving approaches to the part-selection problem.

Reprint requests to: Timothy P. Darr. e Provide a new solution method that effectively ex-
1 H H
i $‘£W7a8t7gg°9y Development Group, 6034 West Courtyard Drive, Aus- ploits our novel “attribute-space” representation. This
72A|I‘editoria| decisions regarding this paper were made by the Editor solution method suggests a fam”y of efficient prOblem
Emeritus, Clive Dym. solvers.
39

https://doi.org/10.1017/50890060400141046 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400141046

40 T.P. Darr and W.P. Birmingham

The problem representation we give is motivated by many As discussed in this paper, the interval representation pro-
things, one of which is combinatorics: part-selection prob-vides some important additional benefits, and we have
lems are characterized by brutal combinatorics. We carmrafted a design process that exploits intervals to gain com-
roughly estimate the number of possible solutions as th@utation advantage. More importantly, intervals have ex-

following: posed a very useful heuristic called “boundary parts.” If
e boundary parts are present in all catalogs, it is possible to
[partgtnetens, (1) solve the part-selection problem without seailrr, 1997;

where|functions is the number of functions needed to meetParr et al., 1998 The design process we discuss is based
the functionality requirements in the design apdrts is on'mampulatmg these. intervals. We start with a represen-
the average number of parts that can fulfill a function. Wetation of the entire design space, and then reduce it through
assume here that a part can fulfill only one function, since?® S€ries ofnondeterministicoperators. _

this makes the calculation easier and has little affect on the The problem representation given in this paper, while at-
asymptotic results we are using here for illustration. Note [EMpting to combat combinatorics, is also expressive. Our
however, that later in the paper we describe how to handIEEPresentation is based on ttéribute. This notion is then
parts that can perform multiple functions. We make the simSystematically extended to parts and catalogs. Further, we
plifying assumption that the time to find a solution to the also de_scr|be anuIt|facetedrepr§sentat|on of constraints.
part-selection problem is at worst case proportional to théVe believe, as we have described elsewti@arr et al,,
size of the design space. Thus, we can bound computatioh?98, that driving the part-selection proces& con-
time asO(|partg/fnctions). straints has computatlonal advantages. .

Needless to say, we are very concerned with mitigating this " the remainder of the paper, we provide our part-
combinatorial problem. Thus, our representation is biased t§€lection triptych as follows: we begin with basic defini-
help with the average case. Given that it is impossible to relions leading to the attribute-space representation, which we
duce the number of functiorfhis is generally accepted as a US€ to compactly represent parts and catalogs. We then give
problem inpu®), we choose to try to reduce the bése., the & formal definition of important properties of the part-
number of parts We do this by creatingarepresentationthatseleCt'O” problem and a f.or.mal problem deﬂnmo_n. This is
is based on “attribute spaces,” where we form an abstractiofp!lowed by a nondeterministic method for solving these
overindividual parts, aggregate their values first as catalogd2roblems based on “shrinking” the attribute space. We then
and then as an interval with only the upper and lower bound§Ummarize the paper.
for the values of attributes represented.

For example, imagine all the parts in a part-selection probo, BAS|IC DEFINITIONS
lem are described by two attributes, cost and mass. We would . o o
first represent each part by two intervals: one for cost andrart selgctlon has a dlstmgwshlng c_haractenstlc that the
one for mass. We would then create two intervals for eaciProblem is solved by selecting predefined parts that can be
catalog: one for cost and one for mass. Thus, we can confonnected only in certain wayslittal & Frayman, 1989;
pactly represent each catalog, regardless of the number &ahmer & Voss, 1998to perform some high-level func-
parts it contains, as two intervals. tionality (Colton & Ouellette, 1998 In other words, new

In the very best case, this can drastically reduce the prod?arts cannot be created at will, constraipts restrict the ways
lem combinatorics: we have now effectively redutearts ~ that parts can be connected, and parts implement low-level
to two (2) for each attribute: the upper and lower bounds onfunctions whose combination results in the desired high-
an interval. There are some strict limitations on this ap-€vel functionality(Mittal & Frayman, 1989; Kota & Lee,
proach, which we describe formally and informally in the 1993; Pimmler & Eppinger, 1994Functions have been var-
paper. Thus, for a simple design with a single attritiiiet iously defined as “what a device is foftle Kleer & Brown,

many function we reduce problem size, and hence com-1984 or “a description of behavior abstracted by humans
putational effort, to through recognition of the behavpr |n.order to utilize it”
(Umeda et al., 1990 Here, a function is a property of a
olfunctions. (2) partthat, alone or in combination with other parts, achieves
some user-defined functionality. We assume that the map-
Some might argue that there is little comfort in EB). ping from the functions that a part implements to the higher
We would agree, except to say that two is much better tharevel functionality is given as part of the definition of a part.
|partg. This represents, in an informal way, an approxima-The design is the collection of parts that implements the
tion on the lower bound of the worst case. Clearly, part seuser-defined functionality, among other things.
lection remains a tough problem. Functions help to manage the complexity of the design
through functional decompositions, whereby the user-defined
s _ _ functionality is decomposed into functions implemented by
One cannot generally reduce the number of functions. This would re- dividual Col & Ouell 1993 G |
sult, for example, in the user of the artifact having to make due with feweriNdividua parts(Colton - uellette, = upta et al,,
functions; this is not acceptable, in our view. 1993; Kota & Lee, 1993; Pimmler & Eppinger, 1994or

https://doi.org/10.1017/50890060400141046 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400141046

Part-selection triptych 41

part max sheave
name hp current diameter efficiency pfm

model18-10 10 150 24 0.81 machine-unit, motor
model18-15 15 250 24 0.81 machine-unit, motor
model28-15 15 250 30 0.76 machine-unit, motor
model28-20 20 260 30 0.76 machine-unit, motor
model38-20 20 260 30 0.76 machine-unit, motor
model38-25 25 340 30 0.76 machine-unit, motor
model38-30 30 440 30 0.76 machine-unit, motor
model38-40 40 530 30 0.76 machine-unit, motor
model58-40 40 530 32 0.842 machine-unit, motor

model18 - - 24 0.81 machine-unit

model28 - - 30 0.76 machine-unit

model38 - - 30 0.76 machine-unit

model58 - - 32 0.842 machine-unit
motor OHP 10 150 - - motor
motor1SHP 15 250 - - motor
motor20HP 20 260 - - motor
motor25SHP 25 340 - - motor
motor30HP 30 440 - - motor
motor4OHP | 40 330 u u motor Fig. 1. Motor-housing catalog.

example, a high-level function in the automotive industry isB. In general, numeric-valued domains are ordered, and sym-
“power generation and transmission,” which can be decombolic domains are notA = {a;:i = 1, N} is the set of all
posed into the functions “engine” and “transmission.” Theattributes.
“engine” function can be further decomposed into the func- Partsare sets of attributes, part{(a,, d,), ...,{an, dm).
tions “combustion,” “fuel delivery,” etc. Eventually, the de- (f;, fmy), ..., (f,, fm.)}.
composition halts when the functions can be implemented A special subset of part attributgéf,, fm;), ..., (f,,
by sets of parts. In current methods, the part is the irreducim,)} is the part-function multiplicity(par’™), which is
ible, fundamental entity that makes up a design. The desigthe set of functions implemented by the part; the part im-
is constructed by selecting and connecting parts, and theplementsm, instances of, (Mittal & Frayman 1989; Col-
verifying that the design satisfies all constraints. ton & Ouellette, 1993; Haworth et al., 1992s an example,
Yet, the problem definition in this paper uses #tgibute consider Figure 1, which is a catalog of parts. Each part in
as the fundamental entity to describe parts, functions, anthis catalog implements a set of functions; pacddel18-10
designs. In fact, a function is nothing more than an attributéhas part™ = {{(machine-unit, 1(motor, 1}.
with a particular name: the denotatigia a name for a func- A catalogis a collection of parts, catalog {part:i =1,
tion. While functions are prominent in part-selection prob- ..., D} generally organized by vendor product line, al-
lems, they are not the only things considered. Many othethough this need not be the case. The set of all catalogs is
aspects—attributes—of a design are important, such as costatalogs= {catalog: i =1, ...,M}.
size, etc. The catalog attributes catalog"" = {(a,, U;d, ,):
(ay, 0,) € part € catalog, is the set of attributes that
define the parts in the cataldgrhe domain of each cata-
2.1. Attributes, parts, catalogs, designs log attributea, is the union of the domains; , for all

. . - . parts in the catalog. Theatalog-function multiplicity cat-
In this section, we develop the definitiofsemantics for alog™ — {pa”ipfm: i =1, .. D}, is the set of part-

arts, catalogs, and designs based oratiribute. A set of . T .
P g 9 unction multiplicities of all parts in the catalog. The

attributes represents a part; a set of parts form a catalo roblem-function multiplicitis the set of all part-function
which can also be considered a set of attributes; parts a ltinlici uncti : u 12_'_'_3’1 MY A P di uncti d
catalogs are partitions in the space of attributes. Thus, waltip icities, {catalog™: 1 =1, ...,M}. As we discusse

have a simple, uniform representation for parts and catal the Introduction, there is a computational advantage to

logs, with a straightforward, yet expressive semantics. aggregating information about parts as attributes of a cat-
An attributeis a two-tuple(a,, d,), wherea, is the at- a'°9 as a whole. . .

tribute’s name and, is its domain. The domain is the set of Figure 1 shows a portion of a motor-housing catalog from

valuesa € d, that can be assigned to the attribute. The doihe VT elevator problengYost & Rothenfluh, 1995 This

maind, of a part attribute, is restricted to scalar values. In
this definition, there are two types of domains: numeric
valued domains Consisting of integer or real numbers; and “The catalog attributes are not necessarily disjoint. The same attribute

. . . . a, can appear in more than one catalog. For example, the power attribute
domains that consist of tokens. An attribute domain is Or'may appear in many different catalogs, since it is an attribute of many
dered if for eachw, 8 € d,, eithera < B, 0ra > B,0ra = different parts.

https://doi.org/10.1017/50890060400141046 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400141046

42 T.P. Darr and W.P. Birmingham

catalog contains three types of parts: parts that implement Deflgizgztzlrleave
the motor and machine-unit functions, parts that implement

the machine-unit function, and parts that implement the mo-

tor function. The part model18-10 is defined by the{geart- 25.0
name, modell8-10¢hp, 10, (max current, 15§ (sheave
diameter, 24 (efficiency, 0.8}, (machine-unit, 1, (motor,

1)}. The set of catalog attributes is motor-housifig= {(hp,

{10, 15, 20, 25, 30, 49, {max current{150, 250, 260, 340,

440, 530), (sheave diametef24, 30, 32), (efficiency,{0.81,

Deflector Sheave diameter >=
40 * Hoist Cable diameter

0.76, 0.842)} (note that not every part in the catalog has a 20.0
value for each of these attribuje$he catalog-function mul-
tiplicity is the set motor-housirff™ = {{{machine-unit, 1, 0-3 0.75
(motor, D}, {{machine-unit, &, {{motor, D}}. Hoist Cable
A design is the result of a design process. In part selec- diameter
tion, the design is represented as a collection of parts that is Fig. 2. Example constraint.

evaluated with respect to constraints and preferefdes

fined in Section % Formally, a design is represented as an
assignment of attribute values from their domains: de- . . .
signg= {(ay, a):a € dy k=1, ...,N}.5 Thedesign spaces the at_tnbutesAj ={a: a, € Al tha_t restrict Fhe attribute
the set of all possible assignments of values to attributes fjomains:; C DS The set of attributesdy, is the con-

the design, or the cross product of all attribute domdn$s= stramtsargume_nts . i
X1 n{@e do .8 In other words, the design space is the Both evaluation and propagation can be used to “drive

set of all possible designédesign € DS, for all k). the design process. For example, our design process is based

In the design process we describe later, the notion of" s_atisfying constra_ints through a process ofmakingacpn-
design space is important. Our design process, essentiall traint network consistent and decomposable, as described

starts with the entire design space, and through a set Section 4. This is done using constraints to both “prop-

operations refines that space into a design that meets thaega'te and “evaluate various assignments to attrlbutes'.
; . Figure 2 shows a constraint from the VT elevator-design

user’s requirements. blem that restricts the di ‘ ¢ levator deflect
The attribute as a fundamental representational entity jgroolem that restricis the diameters ot an elevator detiector

consistent with definitions that use the part as the basic eEHhe_ath abr:d Q_O'St (;ablg@eflect(i;]sth;ave td'aTete:h‘?'o §
ement to describe a desigiittal & Frayman, 1987, 1989; oist Cable diametgr Designs that do not satisfy this con-

Marcus et al., 1988: Gupta et al., 1996r optimization tech- straint are not physically possible, violating either a law of
niques that L'ISG stéte and deci’sion variablamn & Mis- physics or some other inviolable relationship. The set of de-
tree, 1985: Bradley & Agogino, 1993; Mistree et al., 1894 signs that satisfy the constraint are shown in the shaded area

Defining the problem with attributes makes it more conve—(':Igure 2.

nient to use constraints, rather than parts, to direct the searchlr.' our problem deflnlt!on, constram.ts. are defined over
for a solution. Design properties derived from the Ccm_attrlbute spacefsee Section 3 for a definitignand are not

straints are used to eliminate parts that ordinarily might b efined over catalogs or parts. Constraints consist of the fol-

chosen to implement some function, without regard to owing elements:

whether that part violates a constraint or set of constraints. e aconstraint-evaluation functiothat determines when

Furthermore, attributes allow us greater representational uni- the constraint is satisfied,

formity, as we can use them to represent not only parts, but « aconstraint-propagation functiothat infers the value

ports(Mittal & Frayman, 1989, state variables, and many of one attribute given the values of other attributes, and

other things. e aprecondition-evaluation functiathat defines the con-
ditions under which the constraint is to be evaluated.

2.2. Constraints The definition of constraints presented here includes ex-
plicit definitions of constraint evaluation and propagation

In part selection, constraints can be used for two purposesunctions.

evaluationand propagation(Freuder, 1978; Sussman &

Steele, 1980; Davis, 1987Constraints define a network 2.2.1. Constraint evaluation

that describes the relationships among all the parts in the In evaluation, constraints determine if the current assign-

design. Aconstraintis a relationc; defined over a subset of ment of values to design attributes is physically allowed, or
feasible The constraint-evaluation functigy(A;) maps from

5The names of parts can be included in these attributes. an attribute assignme(fia,, a): a € dy, for all a, € Ai} to

5The cross product is defined as the set of assignm{éf@s «,), ..., the BOOI_ean values or F_- If gj(Aj) = T, ther_] the_aSSign'
(ay, an)): a; € d,, for all &, in the desigh mentsatisfiesthe constraintthe assignment ifeasible) if

https://doi.org/10.1017/50890060400141046 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400141046

Part-selection triptych 43

g;(A)) = F, then the assignmentolatesthe constraintthe often interested in the total weight of a design, which is the

assignment isnfeasible) sum of the weights of individual parts. These attributes are
_ _ calledstate variablesThe value of a state variable is com-
2.2.2. Constraint propagation puted using a functioh(SV).

In propagation, constraints infer the values of assigned Formally, a state variablésy,, d,) € A, is an attribute
or unassigned design attributes, given the values of aswhose value is determined by some functigi®\{,), where
signed design attributes, potentially restricting future as-S\, is the subset of attributggatalog attributes and other
signments. Propagation is an important way of usingstate variablesthat determines the value.
constraints in design, since it detects the infeasibility of a An example state variable in the VT domain is the relev-
partial assignmerfi.e., some attributes may not have final eling torque of the motor, defined by the expression: relev-
values before all design attributes are assigned values. Thigling torque= torque factor machine-unit sheave diameter,
reduceshrashing where a partial assignment is pursued,where torque factor is another state variable and machine-
even though it will eventually be found to be infeasible unit sheave diameter isgart attribute
(Mackworth, 1977.

The constraint-propagation functidn; (A;) restricts the ~ 2.2.5. Constraint properties

domain ofa;, given an assignment of domain values to all Monotonic constraintgHyvonen, 1992 are a class of
other attributes inA; excepta;.” This function maps from constraints over numbers that are important for defining a
an assignment of domain values to all but one of the conyseful set of design properti€Section 4. A monotonic
straint’s argument§a,, @): « € dy, foralla, € A, k#i} constraint totally orders the possible assignments to an
to a subset of domain values, with properties defined in Secattribute from its domain. These constraints allow the use

tion 4, for the remaining constraint argumeint; (A)) C di. of interval arithmetic for constraint evaluation and propa-
There is a constraint-propagation function for each congation functions, and help to identify heuristics. In partic-
straint argumend; . ular, if a constraint is monotonic, then we can esglpoint
analysis(Darr, 1997; Darr et al., 19980 evaluate only the
2.2.3. Constraint preconditions upper and lower bounds of aninterval, and deduce whether it

A difficulty that arises in part-selection problems is that is feasible or not, rather than evaluating all the points com-
the set of constraints necessary to evaluate the design chang®ssing the interval. This can be a tremendous advantage,
as parts are selectéMittal & Frayman, 1987, 1989; Mittal particularly infinding infeasible designs, since a catalog many
& Falkenhainer, 1990; Bowen & Bahler, 199Thus, apre- containthousands of parts and we need only con§iialbest
condition provides an explicit specification of when the con-case two parts: those parts that define the upfey,,,) and
straint is to be evaluated. Our preconditions are similar tdower («,,,;,) bounds of the interval.
dynamic-constraint preconditioridittal & Falkenhainer, Constraintc; is monotone decreasinm a, if for each
1990. assignmenta,, 8) U {(a;, a): for all &, € A (i # k)}

A preconditionis a relationc”® defined over a subset of such thatg;(A;) = T, theng;(A)) = T for the assignment
attributesA"™® C A, that define when a constraigtis ac- (& v) U {(&;, @): for all a; € A; (i # k)} for all y < B.
tive (ijre C DS). The set of attributesé\jpre, are the pre- Constraintc; is monotone increasingn a, if for each
condition’s arguments. The precondition-evaluation function@ssignmenta,, 8) U {(a;, a): for all & € A (i # K)}

g”"*(AP"®) maps from an attribute assignment to the Bool-Such thatg (A) = T, theng;(A;) = T for the assignment
ean valuedT or F. If g"°(A®) = T, then the assignment (&, y) U (&, a): for all a € Ay (i # k)} for all y > B.
Constraintc; is monotonicif for each(a, d) € A, the

satisfies the precondition argl is active if g”°(A"®) = o : o q
F, then the assignment violates the precondition gnid E?Qasst:r%nfrs monotone increasing ay or monotone de-
"

inactive S . L
Note that we can get a syntactically simpler constraintd In o_ther\]:v_(zrds, a consttralnt |sbm0n0'ﬁ)ne gcrsgsmg if the
form with equivalent expressiveness by simply conjoining omains of its arguments can be totally ordefed., y >

the constraint precondition with the constraint propagatiorﬁ) and the constraint evaluation functionisor all domain

function. We argue, however, that separating these ele@lements greater than some linfé.g., 8). For monotone

ments of a constraint, as shown here, makes it easier to uggcregsmtghcgnst@nt?, the |ctie:; 'SI the samei_onliy we are con-
derstand how a constraint is used. cerned wi omain elements below some fimit.

2.2.4. State variables _ 3. THE ATTRIBUTE-SPACE REPRESENTATION
In many part-selection problems, constraints are defined

over attributes that are not catalog attributes, but which ar©rdered attributes are represented asatiribute spacg
derived from catalog attributes. For example, a designer isvhich is an interval that bounds the values of all domain

“In the propagation functioh; ; (A)), the first subscript j) denotes the 8The attribute-space representation of an attribute is denotedhisithg
constraint, and the second subscfiptdenotes the attribute. font.

https://doi.org/10.1017/50890060400141046 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400141046

44 T.P. Darr and W.P. Birmingham

part_name | min_hp max_hp weight part_name | hp weight

model 18 10 15 1100 10HP 10 374
model28 15 20 1700 15HP 15 473
model38 20 40 2400 20HP 20 534
model58 40 40 2750 25HP 25 680

30HP 30 715

Fig. 3. Example part catalogs for machine
(a) machine-unit catalog (b) motor catalog unit and amotor.

elements(Davis, 1987; Navinchandra & Rinderle, 1990; ditional design attributes, evaluating the design, propagat-
Hyvonen, 1992; Finch & Ward, 1995; Van Hentenryck & ing values, and so on. The advantage of the attribute-space
Michel, 1995. The attribute space is an abstraction that al-representation is that it allows propagation functions to be
lows us to compactly represent the potentially very largeapplied to all design attributes, whether assigned or not. Thus,
design space. In addition, it focuses on attributes, rather thaam commitment to a specific value of any design attribute is
parts, which is consistent with typical constraint definitions.postponed until the last possible moment.

The attribute-space representation of an ordered domain The efficiency of reasoning over intervals has been
attributea, is given by the intervald, = [@pin@maxl, Where demonstrated outside the design domain in the constraint-
Amin = & = Aaw TOr all @, @min, max € A If ain =a = satisfaction probleniCSB literature(Davis, 1987; Navin-
amax then we say that € d,. The attribute-space repre- chandra & Rinderle, 1990; Dechter et al., 1991; Hyvonen,
sentation of the design space is the set of interfgs= 1992; Faltings, 1994and the constraint-logic program-
{(ay, d): k=1, ...,N} within which all designs in the de- ming (CLP) literature (Benhamou et al., 1994; Van
sign space lie. The attribute space is said to contain alHentenryck & Michel, 1995 Some CLP systems use a
designs in the design spadkS contains desigriff for all representation similar to the attribute-space representation,
(ay, @) € design, a € dy, (a,, d) € AS. representing discrete choices as intery&sn Hentenryck

Figure 3 shows two part catalogs. In Figure 4 the attribute& Michel, 1995).
space representation for all part combinations, which are Any subset of attributes can also be represented as an
enumerated in Figure 5, is given. Figure 3 shows how comattribute space. Theatalog attribute spacef a catalog is
pactly the entire design space can be represented; the shadbeé set of intervalsatalog ={(a,, d,): for all {a,, d,) €
box covers all designs. This box can be represented simplyatalog™} within which all the parts in the catalog lie. The
by the intervals for weighftl474 3115 and hp[10 30]. catalog attribute space is said to contain each part in the cat-

The traditional representation used in part-selection probalog:catalogcontains partiff for all (a,, «) € part; « € d,,
lems is gooint representatiorwhere constraints are used to where(a,, d,) € catalog This is a useful property for prun-
evaluate a single design. When used, propagation functioriag parts from a catalog d, defines the valid range of val-
restrict the assignment of values to unassigned desigues. Ifa & d,, then that part cannot be in a valid design.
attributes, relative to the current assigned design attributes. A constraint can also be defined over the attribute-space
The design is then extended by selecting and assigning adepresentation of the constraint arguments, which we de-

note asc;. Intuitively, if g;(A;) = T, then each assignment
contained in the attribute spaég satisfies the constraint
(the attribute spaca, is a feasible spageAlso, if g;(A;) =

Attribute Space (machine-unit, motor example) F, then there is at least one assignment in the sggce
4000 — that violates the constrairithe spacej; is infeasiblg. In

z

3 Y L]

3 3000 - . _

E design:

o A {<machine-unit-part-name, model18>, <motor-part-name, 10HP>,
2z £ 2000 - . <horsepower, 10 hp>, <total-weight, 1474 lbs>}
- Q
= £ e © design space:
2t {{<machine-unit-part-name, model18>, <motor-part-name, 10HP>,
3% 1000 — <horsepower, 10 hp>, <total-weight, 1474 lbs>},

4 {<machine-unit-part-name, model28>, <motor-part-name, 10HP>,

5 <horsepower, 10 hp>, <total-weight, 2074 lbs>},

=]

E 0 Y 5 5 m b m {<machine-unit-part-name, model58>, <motor-part-name, 40HP>,

- - & «a @ o <horsepower, 40 hp>, <total-weight, 3740 lbs>}}
Horsepower attribute space:
(motor HP) [10 hp 40 hp], [1474 lbs. 3740 Ibs.]
Fig. 4. Attribute-space representation. Fig. 5. Enumerated point representatiordesign space.

https://doi.org/10.1017/50890060400141046 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400141046

Part-selection triptych 45

other words, constraing; is satisfied if all designs in the e If ¢; is monotone decreasing ay, g;(A;) = T for the
design space are feasible with respeat;tdrhe constraint- assignment\’ = (8, amay U (@, B): for all a, €
propagation functiorh; ; (A;) maps to an intervadi® C d, A;(h # K)}, where
with properties defined in Section 4.

Preconditions can also be defined over an attribute space
(cf"®). Intuitively, if g”*(A”®) = T, then there is at least

e B = amy, if ¢ is monotone decreasing &, or,
e B = anaif ¢ is monotone increasing ia,.

one assignment iA”" that satisfies the precondition and o If ¢ is monotone increasing ia,, g;(A;) = T for the
is active. Also, ifg”®(A") = F, then there is no assign- assignmenty’ = (a,, amin U {(a,, B): for all a, €
ment contained il that satisfies the precondition and Aj(h # K)}, where

is inactive.

e B = amy, if ¢ is monotone decreasing &, or,
e B = anaif ¢ is monotone increasing ia,.
4. PROBLEM PROPERTIES

Defining design properties gives us structure to exploit in For example, consider the constraint and the parts:
problem solving. As we have shown, constraints are centrahachine-unit weight- motor weight= 2760 Ibs. Assume

to the part-selection problem. Thus, we look to the constraintfor this example that the attribute space is composed of the
satisfaction(CSP literature to get important properties of following: {machine-unit weight,1100 275Q) and(motor
constraint networks that we can use for design. This sectioweight,[374 715). The constraint-propagation function for
defines properties of constraints, attribute spaces, parts, alde machine-unit weight attribute is given by: machine-unit
catalogs that are motivated by the CSP literature. A CSP iweight = 2760 — motor weight. Evaluating this function

a class of problems described by a set of variables, a set ofsing interval arithmetidi.e., the endpoints of the inter-
domain values for each variable, and a set of constraints. Aals) yields the consistent range of valyd400 2386 for
solution is an assignment of values to variables that satighe machine-unit weight attribute. This calculation, there-
fies the constraints. There are many parallels between CSHare, relies only on evaluating the interval endpoints.

and part-selection problen{®arr et al., 1998 some of The predicate consistefx;) is true if ¢; is consistent. If
which we enumerate here. ¢ is consistent, then eael) € A is consistent with respect

Consistencanddecomposabilitare properties of a CSP to ¢, and eachr € d is a consistent value. The propaga-
(Mackworth 1977; Dechter et al., 1991; van Beek 18p2 tion functionh"s's*®A;) = d* is defined such thaa; is
Consistency eliminates all provably infeasible assignmentsonsistent with respect 1.
to variables in a CSRalthough some infeasible assignment Consistency also applies to catalogs, design spaces, and
may still remain in the context of the entire desigeonsis- attribute spaces.
tency allows infeasible designs to be eliminated. Decompos-
ability is a condition of a CSP where all possible assignments
to avariable are guaranteed to resultin feasible solutions; de-
composability is used to identify sets of legal designs, from
which the final, possibly optimal, solution is chosen.

A constraint whose precondition is trueasnsistenif,
for each attribute in the constraint's arguments and every °
assignment to that attribute, there exist values for all other
attributes that satisfy the constraifiEgeuder, 1978 Acon-
straint whose precondition is false is trivially consistent. Con-
sistency allows elimination of sets of provably infeasible
designs, thereby reducing the search space.

Formally, ¢; is consistent ifg”(A") = T and for each
assignmentay, a), for all @ € dy, a, € A;, there exist at
least one assignmetw;, 8), forall g € d;, a; € A (for all
i # k) such thatg;(A;) = T. If ¢ is consistent, then each
a, € A is consistent with respect , and eachy € dy is
aconsistent valueThe predicate consiste(t;) is true ifc
is consistent. The propagation functioff"s***"t A;) = d, is
defined such thaa; is consistent with respect 1.

A constraint defined over an attribute spacg is con-
sistent(Davis, 1987; Navinchandra & Rinderle, 1990;
Hyvonen, 1992; van Beek, 1982Faltings, 1994; Van Hen-
tenryck & Michel, 1995 if g”*(A"®) = T and for alla, €

AJ- °In the CSP literature, decomposability is often called n-consistency.

e A catalog is aconsistent catalogf for eacha, € cat-
alog™™, and for every; or ¢; such thal, € A;, ¢; or ¢;

is consistent. If catalqds a consistent catalog, then
each pare catalog is aconsistent partThe predicate
consistentcatalog is true if the catalog is consistent.
Adesign space is eonsistent design spadesachc; is
consistent. The predicate consisié@®) is true if DS

is consistent. An attribute space is@nsistent attribute
spaceif eachc; is consistent. The predicate consis-
tent(AS) is true if ASis consistent.

A stronger property than consistencydiscomposability
Decomposability means that all designs in the design space
or attribute space satisfy all the constraints whose precon-
ditions are trud (Mackworth & Freuder, 1985; van Beek,
1992a). Decomposability is defined differently depending
on whether constraints are defined over design spaces or
attribute spaces.

A constraintc; is decomposable i§”(A"®) = T and
gi(A7) = T for eachAj € DS The predicate decom-
posabléc) is true if ¢; is decomposable. A constraimt
defined over an attribute space is decomposable if

https://doi.org/10.1017/50890060400141046 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400141046

46 T.P. Darr and W.P. Birmingham

g “(A”) = Tandg;(A) = T for the assignmeri(ay, 8): Catalog A | _reliability cost

for all a, € A}, where Parc 1 3 0
e B = amaif ¢ is monotone decreasing &, or, Part 2 1 3
e B = amp, if ¢ is monotone increasing ia,. Part 3 1 2

The predicate decomposabdg) is true ifc; is decompos-
able. If ¢ or ¢; is decomposable, then eaah € A, is de-
composable with respect t or ¢;, respectively.

Decomposability also applies to catalogs, design spaces,

and attribute spaces. A catalog islacomposable catalog antees that a boundary part is decomposable, regardless of
if for eacha, € catalog™, and for everyc; or ¢; such that the parts in other catalogs. Thus, it reduces the search space,
a € Ay, ¢ or ¢ is decomposable. If catalpgs a decom- and defines the conditions for backtrack-free search.
posable catalog, then each partcatalog is adecompos- Formally, parte catalog is a boundary part iff for each

able part The predicate decomposaltatalog) is true if 5, catalog™((ay, d,) € part, and eactr; such thae, €
catalog is decomposableDS is a decomposable design A -

spaceif each; or ¢; is decomposable. The predicate de-

Fig. 6. Example boundary part.

composabléDS) is true if DS is decomposableAS is a o if ¢ is monotone decreasing &y, then(ay, amin) €
decomposable spadfeachc; is decomposable. The pred- part. . o
icate decomposablésS) is true if AS is decomposable. o if ¢ is monotone increasing ia,, then(ay, ama €
part.
4.1. Comments on limitations and computational Boundary parts commonly occur in catalogs since man-
issues ufacturers generally differentiate the parts they produce and

sell. An example part catalog is given in Figure 6. Assum-

The definitions for consistency and decomposability of @Mng the constraint on cost is monotone decreasing and the

attribute space presented here assume that each constralff,siraint on reliability is monotone increasing, then Part 1
is monotonic and defined over ordered attributes, since only; 5 boundary part. This is because Part 1 has the least value

the interval endpoints are used in defining the property, yq catalog for cost and the greatest value for reliability.
(Dechter et al., 1991; Hyvonen, 1992; van Beek, 1992

The technique of using intervals to reason about constraints
defined over discrete-value domains has been effectivelp. PROBLEM DEFINITION

i;gi'g clonstre;lnlt-ltigg:4p\r/ogrgmr?lr(@eﬂgal\r/rll'oE Ietlglé’s The design problem specifies the problem to be solved, and
, Lansonetai, » van Hentenryc icne, includes the functions to implement, the constraints to sat-

For nonmonotonic constraints or unordered attributes, or fy, the set of catalogs, a set 6iked attributes and

;) - I

th, the computationally expensive process of checkin eacgsu . . .

bo ; the comp Y EXpen: process € 9 esigner preferenceasver various designs, represented gen-
combination of values determines consistency or decom-

-) . erally as a utility functio{note: in this paper, for ease of
posablllty. Th_us, a dl_sadvantage of the attnbute—spacg re explanation we use a linear, weighted value functigish-
resentation is that it does not apply to all constraints;

however. its advantade is potentiallv sianificant imoro e_burn, 1970]. Thus, functions play a role in specifying the
Wever, | vantage 15 potentially signif IMPTOVE-pehavior of the design. As we define below, the design is
ments to computationally efficiency.

Consistency is achieved in polvaomial time. Decom OS_completewhen parts are selected to implement all functions.
y boly ‘ P Formally, thedesign-problemis a tuple <required-

ability, however, is achieved in the worst case in eXponen?unctions, constraints, catalogs), fixed-attributes-, that de-

tial time. F_o_r a certain class of problems, deC.ompos":lb'“tyscribes the desired design in terms of a set of specifications:
can be efficiently achieved when the constraints have cer-

tain properties. In particular, it has been shown that for a e required-functions= {(f,, fm,): fm,instances of, are
certain class of CSPs, where the constraints are monotonic required.

and the variable domain values are single valued, decom- b .
posability can be achieved in linear timean Hentenryck o " is thegth instance of, (¢ € {1, ..., fm/}).

etal., 1992. Since many constraints in part-selection prob- e constraints= U; ¢;, is the set of feasibility constraints,
lems are monotonic, taking advantage of this property is with preconditions;”"(AP").

worthwhile. . o
e constraints, o1, C CONstraints is a set asupport-

functionconstraints.

4.2. The boundary-part propert
y-part property e catalogs= U; catalog, is a set of part catalogs.

We can gain significant computational advantage by mak- e u() is a utility function representing the preferences of
ing use of theboundary-part propertyThis property guar- the designer. For this paper, we limit ourselves to lin-

https://doi.org/10.1017/50890060400141046 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400141046

Part-selection triptych 47

.. Precondition
precondition:) Comp Cables Required > 0
elevator capacity <= 2500 Ibs Constraint
elevator platform width <= 84 inches compensation-cable quantity >= Comp Cables Required
elevator platform depth <= 60 inches
constraint: Fig. 8. Example support function constraint.
platform part = P2.5B

Fig. 7. Example constraint illustrating fixed attributes, unordered do-
mains, and equality relationships. Formally,c; is a support-function constraint if there exists
ana, € A such that for all par€ catalog, where(a,, dy) €
part(catalog € catalogs$, there is ad f,, fm,) € part™ such
that(f,, fm,) # required-functions.
Figure 8 shows an example support-function constraint for
e compensation-cable functiohThe precondition speci-
es the number of required compensation cables, which is
included as part of the problem definition. The constraint ex-
pression restricts the number of selected compensation ca-
bles(compensation-cable quantity be at least the number
o u(part =3, w* v(ay), 3w, =1,(a,, d) € part’® ofrequired compensation cabl&omp Cables Requirgh-
o u(design = 3w, * v(ay), 3, W, = 1, (a,, dy € cludedinthe problem specification. If the preconditionis not
design. satisfied, the constraint is inactive and the compensation-
cable function is not needed. If the precondition is satisfied,
o fixed-attributesC A, is a set of constant-valued however, the compensation cable function is required.
attributes such that the value of each attribute domain A solutionto the design problem is a set of pafs=

cannot be changed during the design process. Thegart: part< catalog, i € {1, ...,M}} with the following

ear, weightedraluefunction that assigns a real number
to a design or part, defines at least a partial order o
the designs or parts, and represents the desirability

the part or design from the designer’s perspective. Note
however, that we do not depend on an analytical utility
function.

values can be scalars or intervals. properties:
Example fixed attributes from the VT domain include e ForeacH,’ € required-functionsJ support-functions,
the building dimensions. An example value function($ = there exists a pagt Ssuch that f,, fm,) € part’™, for
0.3 * v(HP) + 0.7 * v(total-weigh). Figure 7 shows an all parte S

example VT constraint representing an equality relation- e The attribute spade\S) that contain$is decomposable.
ship defined over unordered attributes that uses fixed e For eact,’ € required-functions) support-functions,
attributes in the precondition. This constraint guides the and each payfpart € AS, such that,” € parf™, and
selection of an elevator platform dependent on the fixed f? e part}’fm, u(part) = u(part). In other words, the
attributes elevator capacity, elevator-platform width, and partsthatare chosen for the solution have the highest util-

elevator-platform depth. If the elevator width is less than ity given all the parts that are admitted by the decom-
or equal to 84 inches, the elevator depth is less than or posable attribute space.

equal to 60 inches, and the elevator capacity is less than

2500 Ibs., then the part P2.5B must be selected to imple- In multifunction part selection, the design topology is al-

ment the platform function. lowed to change depending on the set of parts selected. For
Support-function constraintepresent support function example, inclusion of multifunction parts tends to decrease

relationships, such as the requirement that a timer functiothe number of parts in the final design, while parts that re-

be implemented for a particular CPU to oper@ltéittal & quire support functions tend to increase the number of parts.

Frayman, 1987, 1989; Mittal & Falkenhainer, 1990; Guptaln single-function part selection, the number of parts is fixed,

et al., 1993; Haworth et al., 1993By definition, support since each part implements exactly one required function

functions are functions that are not included in the list ofand there are no support-function relationships.

required functions specified by the designer, but are nec-

essary for the correct'operatlon of some required functlo%. PROBLEM-SOLVING METHOD

or other support function. These constraints have a precon-

dition that defines when the support functions are re-Using the attribute-space representation, the properties

quired. The support functions are contained in the constraindefined in Section 4 are achieved by a seriesspéce-

expression. transformation operationthat transform an initial attribute
1% (a,) is a normalizing function that assigns a value frofw@rsb to 1t is assumed that the compensation cable function is not part of the
1 (bes} to an attribute value foa,. problem definition.

https://doi.org/10.1017/50890060400141046 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400141046

48 T.P. Darr and W.P. Birmingham

space(AS°) into a consistent or decomposable attributewill yield a locally optimal solution, which may coincide
space. We assume here that these operators are nondeteith a globally optimal solutioribut this is not guarantegd
ministic, meaning that they will always make the correct While consistency can be fourdkterministicallywith-
choice when faced with a decision. out backtrackingwith some restrictions on the problem
These operations create a consistent space from an incodecomposability cannot always be found in such a way.
sistent spacés°"SSe{ASY) — AS'™1) or shrink a con- Thus, in a deterministic implementation of Algorithm 1,
sistent spacéss" "k AS!) — AS'™1).22 The shrinking there will be backtracking, except in either lucky or trivial
operation5S"""K creates a spadsS'*?! that lies withinAS". cases. In fact, in the worst case the problem becomes ex-
Embedded within these transformations are mapping opeponential in the number of parts; this, however, is the bane
ations from a discrete space consisting of parts, to an attributef all part-selection problem solvefas we discussed in
space consisting of intervals. A similar technique has beethe Introduction.
used in constraint-logic programmir@enhamou et al.,
1994; Carlson et al., 1994; Van Hentenryck & Michel, 1995
and part selection in the mechanical-engineering domai

(Finch & Ward, 1995. In this section, we present an example of the problem-
solving method by solving the followindesign-problem

8-1. Example problem

o design operatiod SIS ASY) is a transformation
from AS' to AS'**, where- consistentAS') and con- ({(machine-unit, 1(motor, D}, {c., c,}, {machine-unit, motds

sistent AS'™*1).

« design operatioaS"""{ AS') is a transformation from u(), -, where
AS'to AS'™"*, where consistefiAS") andAS'™* is an « Required functions: there must be one eacimathine-
attribute space wherd{*? C df, for all {(af, d) € unit andmotor.
AS',and foralaj"*, di*') € AS™*, and atleastone , The constraints are as followywe list only the propa-
ditt C dk. gation functionk

A decomposable space is achieved by combining these ¢,: (min_hp, max_hp, hp min_hp<= hp <= max_hp
operations to alternate between creating consistent spaces
from inconsistent spaces and shrinking consistent spaces: hy1(min_hp, max_hp, hp min_hp<= hp

peonsiste ASO) s AS: h; »(min_hp, max_hp, hp hp <= max_hp

SN AST) 5 AS?: c,: (MU-weight, Motor-weighy:

> (MU-weight,Motor-weight <= 2760

Sconsisten(ASt—Z) N AS[—l. hzll(MU'Weight, MOtOr-Weighl:

S ASI1) s AS! Algorithm (1) MU-weight <= 2760— Motor-weight
h,, »(MU-weight, Motor-weight:
where decomposahl&S') and- decomposableAS*), k=
0, ...,t —1. Note that if any operation failg.g., there is no Motor-weight<= 2760— MU-weight
feasible SOlUtiOh the algorithm halts. e The Cata|ogs are given in Figure 3:
This sequence of operations is driven by the constraints:
the consistency operations remove inconsistent attribute- machine-unit® = {(min_hp,{10, 15, 20, 4§,
domain elements, thereby reducing the search space, and
the shrinking operations use knowledge based on the type
of constraints present in the design problem, or domain- (MU-weight, {1100, 1700, 2400, 2758
dependent knowledge to shrink the attribute space by re-
moving designs. Once decomposd®&"), a design can be

(max_hp{15, 20, 40),

motor® = {(hp, {10, 15, 20, 25, 30,

easily generated by simply choosing parts from each cata- (Motor-weight,{374, 473, 534, 680, 71§
log (which can be done concurrentyParts should be cho- _) _ _
sen to be consistent with definitions in Sectiofi.g., they machine-unft™ = {{machine-unit, 1

should maximize the utility function for each catajoghis motoP™ = {(motor, 1}

e The utility function is defined as:

12Note, the use of a superscript here indicates that the design process
unrolls over time. U()= —[0.3(hp) + 0.7(Motor-weight+ MU-weight)],

https://doi.org/10.1017/50890060400141046 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400141046

Part-selection triptych 49

where the closer to zero the better, and no scaling functions Tart_name | min_hp max_hp weight pari_name | hp weight

are given(for simplicity of explanation ﬁggzgz }2 ég };gg }(S)E§ i[s) Z;;t

20HP 20 534

e There are no fixed attributes for this problem.
(a) machine-unit catalog (b) motor catalog

At the start of the design process—the application of the Fig 10. part catalogs resulting from application&Psse¥AS?).
problem-solving method-AS® is given by Figure 4. The
first step of Algorithm 1 is theonsistenbperation; for this
example, we will guide the shrinking operation by using the
constraint propagation functiorfgre assume that the pre- essary in a deterministic search process. We, therefore, ap-
conditions for both constraints afi®. Consider that, if we ply 65"""5 AS') — AS?, where decomposahl&S?). Dur-
want to make the catalogs consistent, we can use the propig the application of this operator, the motors with the least
agation functions to infer bounds on the catalogs as followsand greatest horsepower were removed, makinggcom-

posable. The part catalogs corresponding &7 are given

h; ;0): the lower bound on hp is 10. in Figure 11.

The solution to the design problem, therefore Sis-
{model18, 15HP. The machine-unit part Model18 was cho-
h, ,(): the upper bound on weight for the motor utMU) sen over Model28 because it weighs less giving it a better

is 2386. utility value. It is important to note that giveAS?, Sis

optimal, but this is not necessarily the globally optimal de-
sign. The decision to form the decomposable space as we
Given this information, we appl§= ¥ AS®) _s AS?, did caused us to miss t_he global_ly optimal design. This is
whereAS? is given in Figure 9. Because the weight of the notas bad a problem as it may atfirst seem, aswe can chpose
part model38 lies outside the consistent range, it is repther decomposable spaces if necessary to find the optimal

moved from the machine-unit catalog. Once this part is reSolution(in a deterministic implementationfor a nonde-
rministic implementation, we can simply change the op-

moved, however, the consistent space must be recalculaté‘a .
because the consistency of parts in the motor catalog ma?/rator to chose the optimal decomposable space.
depend on model38. This is the case in this example, since
model38 defined the upper bound on horsepolm@ax_hp 7. SUMMARY
for model38 is 40, the maximum value in the cataldgo,
removing the part lowers the bound for propagation func-This paper defined the part-selection problem, including def-
tion h; ,() to 20, which causes the parts 25HP and 30HP tdnitions of parts, catalogs, constraints, and the problem spec-
be removed from the motor catalog. At this point, the spacdfication. The representation is descriptive and accounts for
is consistent, with the part catalogs as shown in Figure 10combinatorial issues inherent in the class of part-selection
We can now chose a decomposable attribute space f@roblems. We have provided a multifacted definition of con-
the design; we do this operation nondeterministically, not-straints, which we argue is needed to fully exploit the way
ing that there are alternative attribute spaces that coulgonstraints are actually used in problem solvers. As we have
have been selected, and that search would probably be ne@oted in the paper, our representation builds on the estab-
lished work in the design and CSP fields, and attempts to unify
many concepts from both fields. Aformal description of part-
selection problems helps to understand the nature of the
Attribute Space (machine-unit, motor) problem, leading to both efficient algorithms, and rigorous
4000 — comparisons among competing problem-solving methods.
The VT-Sisyphus experimentSchreiber & Birmingham,
1996 are an example where a formal problem representa-
tion provided many insights into design problem solving.
We defined the properties of “consistency” and “decom-
posability” for part-selection problems, borrowing con-

h; »(): the upper bound on hp is 40.

h, »(): the upper bound on weight for the motor is 1660.

3000

Weight
(sum of parts) 2000

1000 J
0 . . part_name [min_hp max_hp weight part_name | hp weight
5l s do 35 o 3 model1S | 10 5 1100 SHP | 15 473
model28 15 20 1700
Horsepower
(hp) (a) machine-unit catalog (b) motor catalog
Fig. 9. AS? depiction. Fig. 11. Final part catalogs, which form the decomposable attribute space.

https://doi.org/10.1017/50890060400141046 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400141046

50 T.P. Darr and W.P. Birmingham

cepts from the CSP literature. We also introduced therishburn, P.C(1970. Utility Theory and Decision Makinglohn Wiley &

« _ " ; ; Sons, Inc., New York.
bour_u_zlary part property, which can be used to def”?e theFreuder, E.C(1978. Synthesizing constraint expressiof@mmunica-
conditions for backtrack-free search. These properties are ijons of the ACM 21(11)958-966.

useful for design problem solvers for part-selection prob-Gupta, A.P., Birmingham, W.P., & Siewiorek, D(2993. Automating the

; ; ; design of computer systemdEEE Transactions on Computer-Aided
lems. While not all problem solvers will try to achieve these Design of Integrated Circuits and Systems 12473—487.

properties, they are nonetheless useful in describing cefaworth, M.S., Birmingham, W.P., & Haworth, D.EL993. Optimal part
tain problem regularities. selection]/EEE Transactions on Computer-Aided Design of Integrated

; ; ; ihi _ Circuits and Systems 12(1Q)611-1617.
The design properties are used in a describing the Ope|’-|yvonen, E.(1992. Constraint reasoning based on interval arithmetic:

ation ef a nondeterm.iniStiC .algorithm.for solving part- " The tolerance propagation approaditificial Intelligence 58(1-3)
selection problems. This algorithm exploits a set of operators 71-112.

; ; SRE ; ; ota, S. & Lee, C.-L.(1993. General framework for configuration de-
that shrink the design space, finding a series of consistenf! sign: Part 1—Methodologydournal of Engineering Design 4(4)

albeit “smaller,” design spaces. The algorithm terminates 577_2g9.
with a decomposable design space, or recognition that ngyon, T.D. & Mistree, F.(1985. A computer-based method for the pre-

; ; ; ; ; i liminary design of shipsJournal of Ship Research 29(451-269.
such space IS pOSSIbl?. This alg(.)rlthm’ WhICh cannot be dIMackworth, A.K.(1977). Consistency in networks of relationartificial
rectly implemented, yields a variety of algorithms that can” |nteliigence 8(1)99-118.
be implemented, Mackworth, A.K. & Freuder, E.C(1985. The complexity of some poly-

nomial network consistency algorithms for constraint satisfaction prob-
lems.Atrtificial Intelligence 25(1) 65-74.
Marcus, S., Stout, J.,, & McDermott, @988. VT: An expert elevator
ACKNOWLEDGMENTS designer that uses knowledge-based backtrackihhlagazine 995—
112.
) . ~ Mistree, F., Patel, B., & Vadde, $1994. On modeling multiple objec-
This research was funded in part by the DARPA ACORN project tives and multi-level decisions in concurrent desigroc. Advances in
under subcontract 1-41480 and by General Motors Corp. This pa- Design Automation (DE-Vol. 69-2pp. 151-161. ASME, Minneapo-

per does not necessarily reflect the views of the funding agencies, iS; Minnesota.

) ; : Mittal, S. & Falkenhainer, B(1990. Dynamic constraint satisfaction prob-
We also thank Joe D’Ambrosio for many key suggestions and help- lems. Proc. Eighth National Conf. on Atrtificial Intelligence (AAAI-

ful comments. 90), 25-32.
Mittal, S. & Frayman, F(1987). COSSACK: A constraints-based expert

system for configuration task®roc. Second Int. Conf. on Applica-
tions of Al to EngineeringBoston, Massachusetts.

REFERENCES Mittal, S. & Frayman, F(1989. Towards a generic model of configura-
tion tasks.Proc. Eleventh Int. Joint Conf. on Atrtificial Intelligence
. IJCAI-89), pp. 1395-1401. Morgan Kaufmann, Detroit, Michigan.
Benhamou, F., McAllester, D., & Van Hentenryck,(P994). CLP (inter- (. .
vals) revisitedReport CS-94-18. Brown University, Providence, Rhode Navinchandra, D. & Rinderle, JR1990. Interval approaches for concur-

rent evaluation of design constraint&inter Annual Meeting of the
Bowen, J. & Bahler, D(1991). Conditional existence of variables in gen- ASME Symposium on Concurrent Product and Process Design DE-

: ; ; - Vol. 21, 101-108.
eralized constraint networkBroc. Ninth National Conf. on App. 215— . .))
220. Anaheim, California. Rahmer, J. & Voss, A(1998. Supporting explorative configuration. In

Bradley, S.R. & Agogino, A.M(1993. Computer-assisted catalog selec- Artificial Intelligence in Designpp. 483—498. Lisbon, Portugal.

- ; - 0) _~ Schreiber, A.T. & Birmingham, W.REds). (1996. Special Issue: The
tA()SnMV\thS%tgtllgga_cit‘){?ectlvesProc. Design Theory and Methodology sisyphus-VT Initiative.International Journal of Human-Computer

p : - : Studies 44Academic Press, London
Carlson, B., Carlsson, M., & Diaz, 01994). Entailment of finite domain !
constraints Proc. Eleventh Int. Conf. of Logic ProgramminiylT Sussman, G‘] & Steele, G.(_‘I.980. CON.STRAI.NT.S A Ia_nguage for
Press. expressing almost-hierarchical descriptioAdificial Intelligence 14

Island.

I 1-39.
Colton, J.S. & Ouellette, M.R1993. A form verification system for the . .)
conceptual design of complex mechanical systeRrec. ASME Umgdg, Y_.,Tak%da;, H't' To@mlyagna,l_'l'.,t&Yosflll,lg\layveg(ﬂiggo. I_:uni:lt|7o7n,
Advances in Design Automation (DE-Vol. 65-fp. 97-108. ASME, enavior, and structureroc. Applications of Al in Engineenng, it 7/~

193. Boston, Massachusetts.
van Beek, P(1992a). On the minimality and decomposability of con-
problem approach to solving part-selection problef®hD Thesis straint networksProc. Tenth National Conf. on Atrtificial Intelligence

h . = e (AAAI-92) 447-452.
Dar-{h-?gnlgﬁr;:;ygﬂ;xlcwg;n'&Msligganmlggg A MAD approach to van Beek, P(1992). Reasoning about qualitative temporal information.

N : P) . : Atrtificial Intelligence 58 297-326.
solving part-selection problems. Wrtificial Intelligence in Design . .
pp. 251-270. Lisbon, Portugal. Van Hentenryck, P., Deville, V., & Teng, C.-M1992. A generic arc-

Darr, T.P. & Dym, C.L(1997. Configuration design: An overview. lfhe consistency algorithm and its specializatioAstificial Intelligence
Handbook of Applied Expert Systertisiebowitz, J., Ed), Chapter 21, 57(2-3) 291-321.

Albuquerque, New Mexico.
Darr, T.(1997). A multi-attribute, interval distributed constraint-satisfaction

pp. 21-1-21-15. CRC Press, Florida Van Hentenryck, P. & Michel, L(1995. Helios: A modeling language for
Davis' E.(1987). Co'nstraint prop:agation With interval labefgtificial In- nonlme_ar constraint solving and globa_l optimization using interval
teliigence 32(3)281-331 analysis Report CS-95-33. Brown University, Providence, Rhode
A ’ . Island.
Dei]l'tt?f?(:iglqlr:ﬁ;llzgéﬁci zgg_lsj%f?g% Temporal constraint networks. Yost, G.R. & Rothenfluh, T.R(1996. Configuring elevator systems.

International Journal of Human-Computer Studies 443 521—

de Kleer, J. & Brown, J.51984). A qualitative physics based on conflu- 568

encesAtrtificial Intelligence 24(3) 7-83.

Faltings, B.(1994). Arc-consistency for continuous variableattificial
Intelligence 65(2)363-376.

Finch, W.W. & Ward, A.C.(1995. Generalized set-propagation opera-
tions over relations of more than three variabl&$EDAM 9(3), Timothy P. Darr is a senior consultant and technical proj-

231-242. ect manager at Trilogy Development Group in Austin,

https://doi.org/10.1017/50890060400141046 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400141046

Part-selection triptych 51

Texas. He received his Ph.D. in computer science at thevith a joint appointment in the School of Information, both
University of Michigan, Ann Arbor. His research interests at the University of Michigan, Ann Arbor. Birmingham'’s
are in the areas of distributed design, concurrent engineeresearch interests are in the areas of distributed design, con-
ing and constraint-satisfaction problems. current engineering, and Al applied to design. He is the
editor of the journalAIEDAM (Artificial Intelligence for

William P. Birmingham is an associate professor in thenlt:_ngineering Design, Analysis, and Manufacture

Electrical Engineering and Computer Science Departme

https://doi.org/10.1017/50890060400141046 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060400141046

