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Abstract In this note, we study an invariant associated with the zeros of the moment map generated by
an action form, the infinitesimal index. This construction will be used to study the compactly supported
equivariant cohomology of the zeros of the moment map and to give formulas for the multiplicity index
map of a transversally elliptic operator.
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Introduction

Let G be a compact Lie group acting on a manifold N. Then G acts on the cotangent
bundle M = T*N in a Hamiltonian way. Set g:=T1G as its Lie algebra. The set M of
zeros of the moment map p : M — g* is the union of the conormals to the G-orbits in N.
An element S of the equivariant K-theory Kg(MP) of M? is called a transversally elliptic
symbol, and Atiyah and Singer (see [1]) associated with S a trace class representation
index(S) of G. If G is the dual of G, the representation index(S) gives rise to a function
m(t) on G such that index(S) = Zre(} m(t)t, called the multiplicity index map.

The analogue of the equivariant K-theory of MY is the equivariant cohomology with
compact supports H; C(MO). Here we construct a map infdexé7 called the infinitesimal
index, associating with an element [«] € HE, C(MO) an invariant distribution on g*. We
prove a certain number of functorial properties of this map, mimicking the properties
of the index map formalized by Atiyah, Segal and Singer. However, although our proofs
are similar to those of [4, 5,20, 22], our point of view is dual. Indeed in previous works,
the equivariant index, or integrals of equivariant cohomology classes, are (generalized)
functions on G, or g, while we work directly on the dual space g*.

More generally, we consider the case where M is a G-manifold provided with a
G-invariant 1-form o (and we do not assume that do is non-degenerate). This allows
us to obtain a map infdexg :HE’C(MO) — D (g*)G7 where MY is the set of zeros of the
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associated moment map u : M — g* and D’ (g*)G the space of G-invariant distributions
on g*. Our construction is strongly related to Paradan’s localization on MY of the
equivariant cohomology of M (see [24]).

An outline of the article

Let us summarize the content of this article.

In the first section, we give a ‘de Rham’ definition of the equivariant cohomology with
compact supports Hg .(Z) of a topological space Z which is a closed invariant subspace
of a G-manifold M: a representative of a class [¢] is an equivariant differential form
a(x) on M with compact support and such that the equivariant differential Do of «
vanishes in a neighborhood of Z. In the appendix, we show that under mild assumptions
on M and Z our space HE‘;’ ~(2) is naturally isomorphic to the (topological) equivariant
cohomology of Z with compact supports.

In the second section, we define the infinitesimal index. Let M be a G-manifold
provided with a G-invariant 1-form o (we will say that o is an action form). Let v,
be the vector field on M associated with x € g and i, the derivation on forms induced
by contraction with v,. The moment map u:g— C®°(M) or u: M — g* is defined by
wx) = —{o,vy) = —ix(0). Then

2(x) = u(x) + do = Do (x)

is a closed (in fact exact) equivariant form on M. The symbol D denotes in this paper the
equivariant differential as defined in the Cartan model (see formula (2)).
Our main remark is the following.

Proposition 0.1. If f is a smooth function on g* with compact support, and o is
a compactly supported equivariant form such that the differential Do wvanishes in a
neighborhood of M? := u=1(0), then the double integral

/ / eisg(x)a(x)f(x)dx
MJg

is independent of s, for s sufficiently large.

Here f (x) is the Fourier transform of f. Some comment is in order: if a(x) is
closed (and compactly supported) on M, it is clear that the integral fM e Wy (x) is
independent of s as £2(x) = Do (x) is an exact equivariant form. In our context, «(x) is
compactly supported, but a(x) is not closed on M: only its restriction to a neighborhood
of MY is closed. This is however sufficient for proving that

(infdexts([a]), f) = lim / / eSOy (x)f (x)dx (1)
§—> 00 M g

is a well defined map from Hg; C(MO) to invariant distributions on g*. This we call the
infinitesimal index. The infinitesimal index does not depend on some deformations of the
form o; see Theorem 3.5.

In the third and fourth sections, we prove a certain number of functorial properties
of the infinitesimal index: the locality (excision) property in §4.1, the functoriality with
respect to subgroups in §4.5, and the stability with respect to immersions in § 4.8.
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One of the most important properties is the free action property that we prove in
§4.11. Consider the situation where the compact Lie group L acts freely on M and 0
is a regular value of w. Then the infinitesimal index of a class [«a] is a polynomial
density on I*. Its value at 0 is the integral of the cohomology class corresponding to [«]
under the Kirwan map over the reduced space u~1(0)/L. This is essentially the Witten
nonabelian localization theorem [25]. We give also the double equivariant version, where
a compact Lie group G acts on M, commuting with the free action of L.

We then deduce from these properties the stability with respect to induction in
§5.13.1, and a comparison formula with the infinitesimal index for the maximal torus of
Gin §5.15.

Let us comment on previous work around this theme.

The use of the form e*P? in order to ‘localize’ integrals is the main principle in the
Witten nonabelian localization theorem [14,25] and our definition of the infinitesimal
index is strongly inspired by this principle.

Paradan has studied systematically the situation of a manifold M provided with a
G-invariant action form o. Indeed, he constructed in [20] a closed equivariant form P,
on M, congruent to 1 in cohomology and supported near MO. Paradan’s form P, is
constructed using equivariant cohomology with C~*° coefficients. Multiplying a(x) by
Paradan’s form P, (x) leads to a closed compactly supported equivariant form on M
and I(x) := f v Po@a(x) is a generalized function on g. As we explain in Remark 3.8,
our infinitesimal index is the Fourier transform of I(x). Properties of the infinitesimal
index could thus be deduced by means of the Fourier transform from the functorial
properties of P, proven in [20,22]. For example, the independence of the infinitesimal
index with respect to some deformations of the form o is an important tool, similar to
the independence for P, proven in a more general setting in [20](Proposition 2.6). The
formula for infdex’é in term of a maximal torus of G is similar to a remarkable formula
in [20] (Theorem 4.5). However, we have chosen here to prove directly properties of the
infinitesimal index by using our limit definition. There are two advantages in doing so.
First, we believe that the proofs are easier. Secondly, this is the framework that we will
use in [11] to produce piecewise polynomial densities (also called spline distributions)
directly on g* from some compactly supported equivariant classes.

In the case where M = N®N*, where N is a representation space for a linear action of a
torus G, we determined K(;(MO) as a space of functions on G using the multiplicity index
map in the article [9]. In a companion article [10], we have used the infinitesimal index
to identify H; C(MO) with a space of spline distributions on g* of which the functions
describing the index are a discrete analogue.

Finally using the analogies between splines and discrete functions, we have compared
in [11] the equivariant cohomology with compact supports and the equivariant K-theory
of M, by relating the infinitesimal index and the multiplicity index map.

https://doi.org/10.1017/51474748012000722 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748012000722

300 C. De Concini, C. Procesi and M. Vergne

1. Equivariant de Rham cohomology

Let M be a C* manifold with a C* action of a compact Lie group G. We are going to
define its equivariant cohomology with compact supports following the Cartan definition
(see [13]).

We define the space of compactly supported equivariant forms as

AG.o(M) = (S(g¥) ® Ac(M))¢

with the grading given setting g* in degree 2. Here A.(M) is the algebra of differential
forms on M with compact supports. Thus an element of Ag (M) can be written as
a(x) = Zle P,(x)a* where P,(x) are polynomial functions on g, and a? are differential
forms with compact support on M.

Each element x € g of the Lie algebra of G induces a vector field v, on M, the
infinitesimal generator of the action: here the sign convention is that v, = j—e exp(—ex)-m
in order that the map x — v, be a Lie algebra homomorphism. A vector field V on M
induces a derivation ty on forms, such that 1y (df) = V(f), and for simplicity we denote ¢,
by ty.

One defines the differential as follows. Given o € Ag (M), we think of « as an
equivariant polynomial map on g with values in A.(M); thus, for any x € g, we set

Dar(x) :=d(a(x)) — tx(a(x)) (2)

where d is the usual de Rham differential.
It is easy to see that D increases the degree by 1 and that D? = 0. Thus we can take
the cohomology and we get the G-equivariant cohomology of M with compact supports.
Now take a G-stable closed set Z in a manifold M. Consider the open set U=M \ Z.
Then U is a manifold and we have an inclusion of complexes Ag (U) C Ag,.(M) given
by extension by zero. We set

AG,e(Z, M) == Ag,c M)/ Ag.c(U).

Definition 1.1. The equivariant de Rham cohomology with compact supports Hg; .(Z)
is the cohomology of the complex Af; .(Z, M).

Notice that Ag,(U) is an ideal in Ag (M), so Ag.(Z,M) is a differential graded
algebra and Ha .(2) is a graded algebra (without 1 if Z is not compact).

In this model, a representative of a class in HZ;’ .(Z) is an equivariant form o(x) with
compact support on M. The form « is not necessary equivariantly closed on M, but
there exists a neighborhood of Z such that the restriction of «(x) to this neighborhood is
equivariantly closed.

If Z is compact, the class 1 belongs to HZ‘;’ +(Z): a representative of 1 is a G-invariant
function x on M with compact support and identically equal to 1 on a neighborhood of Z
in M.

Remark 1.2. Our model for Hf .(Z) seems to depend on the ambient manifold M.
However, in the appendix we are going to see that, under mild assumptions on M
and Z, Hg; .(Z) is naturally isomorphic to the equivariant singular cohomology of Z with
compact supports.
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By the very definition of H{; .(Z), we also deduce the following proposition.

Proposition 1.3. Let M be a G-space, and j:Z — M the inclusion of a closed G-stable
subset. Denote by i: U — M the inclusion (}f U:=M\Z. We have a long exact sequence
Lx
> HE (U) —— HE (M) —— HY (2) —— HE ) — . ()

If i:Z— M is a closed G-submanifold of a manifold M, the restriction of forms gives
rise to a well defined map i* : Ag .(Z, M) - Ag.(2).

Proposition 1.4. If Z is a closed G-invariant submanifold of a manifold M admitting
an equivariant tubular neighborhood, the map i* induces an isomorphism in cohomology.

Proof. We reduce to the case in which M is a vector bundle on Z by restriction to a
tubular neighborhood. Put a G-invariant metric on this bundle and let p : M — Z be
the projection. Choose a C* function f on R with compact support and equal to 1 in a
neighborhood of 0. We map an equivariant form w € Ag,.(Z) to f(|lm ||2)p*a)(m) and then
to its class modulo Ag (U). It is easily seen that this map is an inverse in cohomology of
the map i*. a

Assume that M is a L x G-manifold and that L acts freely on M. Then M/L
is a manifold with a G-action. Let Z be a G x L closed subset of M. Denote by
p: M — M/L the projection. The pull-back of forms on M/L induces a map from
p* i HG (Z/L) — Hf (D).

Proposition 1.5. The pull-back
p* i HG (Z/L) — Hi . (2)
is an isomorphism.

Proof. The fact that the pull-back of forms induces an isomorphism between Hg; .(M/L)
and Hsz’C(M), and between sz;’c((M \ Z)/L) and Hsz’C(M \ Z), is proven as in the work
of Cartan (see [13] or [12]). Our statement then follows from Proposition 1.3. O
2. Basic definitions

2.1. The action form and the moment map

Let G be a Lie group and M a G-manifold.

Definition 2.2. An action form is a G-invariant real 1-form o on M.

The prime examples of this setting are when M is even dimensional and do is
non-degenerate. In this case do defines a symplectic structure on M.

Example 2.3. For every manifold N, we may take its cotangent bundle M := T*N with
projection m : T*N — N. The canonical action form ¢ on a tangent vector v at a point
(n,¢),neN,¢ eT;N is given by

(@ ]v):=(pldm(v)).
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In this setting, do is a canonical symplectic structure on T*N and, if r = dim(N), the

r . . . . .
form er‘ determines an orientation and a measure, the Liouville measure, on T*N. If a

group G acts on N, then it acts also on T*N, preserving the canonical action form and
hence the symplectic structure and the Liouville measure.

Remark 2.4. If M is a manifold with a G-invariant Riemannian structure, we can
consider an invariant vector field instead of a 1-form.

Definition 2.5. Given an action form o we define the moment map wue : M — g*
associated with o by

to (M) (x) := — (0 [ vx)(m) = —1x(0)(m) (4)

formeM, xeg.

Remark 2.6. Due to our sign convention for v,, we have

p(m)(x) = <U

d (€x)

—exp(ex) -m ).

de P

The moment map is a G-equivariant map, where on g* we have the coadjoint action.

The form do is a closed 2-form on M. Then Do (x) = u(x) 4+ do is a closed (and in fact
exact) equivariant form on M.
Let us present a few examples.

Example 2.7. In Example 2.3, take N = §' = {e??}. The form d6 gives a trivialization
7*S' = §1 x R. The vector field % gives a canonical generator of the Lie algebra of S,
and d6, a generator for the dual. The circle group S* acts freely by rotations on itself. If
[e?, 1] is a point of T*S! with r € R, the action form o is o = tdf. The function ¢ is the
moment map and dr A df the symplectic form.

More generally, take N = G, a Lie group. Denote by

L(g):h+> gh, R(g):h+ hg™!

the left and right actions of G on G and by extension also on T*G. Let us now trivialize
T*G = G x g* using left invariant forms. Then, in this trivialization, for & € G and & € g*,

L(g)(h, &) = (gh, &), R(g)(h, &)= (hg™", g&).

Call 7 : T*G — G the canonical projection. Fix a basis ¥, ..., ¥, of left invariant
1-forms on G such that a point of 7*G = G x g* is a pair (g, ) = (g, >, &iYi). Clearly the
action form is 0 = ), &;w* (¥;), and the symplectic form is ), dg;Am* (W) +> 2, i * (dr).
In the noncommutative case, in general dy; # 0; nevertheless when we compute the
Liouville form, we immediately see that these terms disappear and

r

=G AT W) A Ade AT (), (5)

r(r—1)

We can rewrite this as % =(-1 dt At*(Vy) where we set Vi := Y1 Ao A+ Ay,
and d¢ :=d{1 A -+ Adg. At this point it is clear that Vy gives a Haar measure dg
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on G while d¢ gives a translation invariant measure on g*. Thus we have (identifying top
forms with measures according to the orientation of T7*G given by %)

do”
= dedg. (6)

Remark 2.8. We can further normalize our choice of the basis of left invariant forms
such that V,, gives the normalized Haar measure giving volume 1 to G. This normalizes
also the translation invariant measure on g*. The only further choice consists in choosing
an orientation for G such that we have an induced orientation for g* giving the canonical
orientation on T*G.

Let us call uy and p, the moment maps for the left and right actions of G respectively.
By the very definition of o, we have the following proposition.

Proposition 2.9.

we(g, ) =gv¥, (g, ¥)=—y, left trivialization. (7)
If we had used right invariant forms in order to trivialize the bundle, we would have

wr(g ¥) =—g¥, e(g,¥) =1y, right trivialization. (8)

Example 2.10. We get another example in the case of a symplectic vector space V with
antisymmetric form B. Then o = %B(v, dv) is a 1-form on V invariant under the action
of the symplectic group G, such that do = %B(dv, dv) is a symplectic 2-form on V. The
moment map u: V — g* is given by u(v)(x) = %B(v, Xxv).

For example, let M := R? with coordinates v := [vi,v2], B= ‘?1 é‘ The action form o
is %(vldvg — vadvy) and do = dvi A dva. The compact path 0£ the symplectic group is the
circle group S' acting by rotations. The moment map is Mtve

Remark 2.11. Given a vector space N, the space N @ N* has a canonical symplectic
structure given by

((, @) | (v, ) := (@ |v) — (Y [u). (9)

The symplectic structure do on the cotangent bundle to a vector space N gives a
symplectic structure B to the vector space T*N = N & N*.

The action form o coming from the cotangent structure is not the same as the action
form on N @& N* given by duality (9) (in the case V =R, ydx versus %(ydx — xdy)), but the
moment map relative to the subgroup GL(N) acting by (gn,'g~1¢) is the same, as is do.

2.12. The cohomology groups H¢ (M)

We will need to extend the notion of equivariant cohomology groups. Consider the
space C*(g) of C*° functions on g. We may consider the Z/2Z-graded spaces AZ (M)
(or AZ.(M)) consisting of the G-equivariant C*° maps from g to A(M) (or to
Ac(M)). The equivariant differential D is well defined on AZ (M) (or on AF .(M)) and

https://doi.org/10.1017/51474748012000722 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748012000722

304 C. De Concini, C. Procesi and M. Vergne

takes even forms to odd forms and vice versa. Thus we get the cohomology groups
HE M), HOGCjC(M). The group Hchjc(M) is a module over H (M), and in particular on
C™ (9)% =HF (p1).

Proceeding as in the previous case, we may define for any G-stable closed subspace
Z of M the cohomology groups Hg .(Z). An element in Hg (Z) is thus represented by
an element in AZ (M) whose boundary has support in M \ Z. We have a natural map
HE (Z) - HE (D).

In order to take Fourier transforms, we will need to use yet another space.

Consider the space P*°(g) of C* functions on g with at most polynomial growth.
Equivalently, we say that P°°(g) consists of functions with moderate growth. We may
consider the spaces Ag " (M) consisting of the G-equivariant C*° maps with at most
polynomial growth from g to A.(M). The index m indicates the moderate growth on g
of the coefficients. We get the cohomology groups H(o;f’cm (M). This new cohomology has

Hgo’m(pt) = P> (g)% and is a module over P> (g)¢. We may define in the same way the
00,m

groups He " (Z) of the cohomology with compact supports, and with coefficients of at
most polynomial growth, for any G-stable closed subspace Z of M.

2.13. Connection forms

We shall use a fundamental notion in Cartan’s theory of equivariant cohomology. Let us
recall the following definition.

Definition 2.14. Given a free action of a compact Lie group L on a manifold P, a
connection form is an L-invariant 1-form o € A'(P) ® [ with coefficients in the Lie
algebra of L such that —i,w =xforallxel.

If on P with free L-action we also have a commuting action of another compact group
G, it is easy to see that there exists a G x L-invariant connection form w € A (P) ® [ on P
for the free action of L.

Let M = P/L and y € g. Define the curvature R and the G-equivariant curvature Ry of
the bundle P — M by

1
R:=dw+ §[w,w], Ry :=—iyw +R. (10)

Example 2.15. Consider L =G and P = G with left and right action. A connection
form for the right action can be constructed as follows. Each element x of the Lie
algebra of G defines the vector field vy by right action. These are left invariant vector
fields. Given a basis e1,...,e, of g, set v; :=v,,. This determines a dual basis and
correspondingly left invariant forms w; with ivj (wi) = {wi|vj) = 8; such that — Zi w;e; is a
connection form for the right action.

This form is also left invariant and R = 0, so by (10) the equivariant curvature is —iyw
where now iy is associated with the left action. We then have

Ry(®) == iy(w)(ei=—g y. (11)

1
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The equivariant Chern—Weil homomorphism ([7,8]; see [3]) associates with any
L-invariant smooth function a on [ a closed G-equivariant form, with C*® coefficients
asin §2.12, denoted by y — a(R,), on M = P/L.

The formula for this form is obtained via the Taylor series of the function a
as follows. Choose a basis e¢j, j=1,...,r, of [ and write R = EJ-RJ- ® ej. For a

multi-index I := (i1, ..., i), define R := | le] Then, given a point p € P, we set

j
the following definition.

Definition 2.16.
RI
a(Ry)(p) := a(—iyw + R) = a(—y0(p)) + » da(—tyoP) 7 (12)
- !

which is a finite sum since R is a nilpotent element.

One easily verifies that this is independent of the chosen basis. Moreover one can
prove (as in the construction of ordinary characteristic classes) the following proposition.

Proposition 2.17 ([7,8], see [3]). The differential form a(Ry) is the pull-back of a
G-equivariant closed form (still denoted by a(Ry)) on M = P/L. Its cohomology class
in Hg (M) is independent of the choice of the connection.

3. The definition of the infinitesimal index

3.1. The infinitesimal index

As before, consider a compact Lie group G and a G-manifold M equipped with an action
form o. We assume M oriented. Let u := s : M — g* be the corresponding moment
map given by (4).

Set

MY =~ Y0), U=m\M2
We simply denote Mg by M? when the group G is fixed.
Consider the equivariant form

2 :=do 4+ u=Do.

Let D’'(g*) be the space of distributions on g*. It is a S[g*] module where g* acts by
differentiation. When G is noncommutative, we need to work with the space D’ (g*)¢ of
G-invariant distributions.

By Definition 1.1, a representative of a class [«] € HEC(MO) is a form « €

[S(g™) ® A.(M)]% such that Da is compactly supported in U.
Let us define a map called the infinitesimal index

infdex?; : HG (M°) — D' (g")°

as follows.
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We fix a translation invariant Lebesgue measure d&¢ on g*. We choose a square root i of
—1 and define the Fourier transform

P = / oI (e .
g*

We normalize dx on g such that the inverse Fourier transform is

f(&) = / W F (x)dx. (13)
g

The measure dxd& is independent of the choice of d&.

Let f(&) be a C* function on g* with compact support in a ball Bg of radius R in
g* (for a choice of Euclidean structure on g*) and f (x) its Fourier transform, a rapidly
decreasing function on g.

Consider the differential form on M depending on a parameter s:

U(s,af)= /eim(x)a(x)f(x)dx,
g
and define
(infdex(s, «, o), f) ::/ /eim(x)a(x)f(x)dx

MJg
=/11/(s,a,f). (14)
M

This double integral on M x g is absolutely convergent, since « is compactly supported
on M and depends polynomially on x, while f (x) is rapidly decreasing.

More precisely, write a(x) = 25:1 P,(x)a® with a® compactly supported forms on M
and P,(x) polynomial functions of x. Then

(s, o, f)(m) = [ / JA‘(x)Pa(x)e"“"(’")”‘)dx} el g,
a g
By Fourier inversion (as in (13)),

/ FRP,(x)e B2 gy — (P (—id)f ) (sp(m)), (15)
g
and thus

W(s, o f) =Y ((Pa(—id)f) o (sp1))e" Ve, (16)

In particular, remark that ¥(s, «, f) does not depend on the choice of dé. Another
consequence of this analysis is the following proposition.

Proposition 3.2. Let K C M be the support of a and C C g* the support of f.

The support of W (s, a, f) is contained in K N\pu=1(C/s). In particular, if su(K)NC =9,
then ¥ (s, o, f) =0.

Given s > 0, set Vs = M_I(BR/S). We can then choose some sg >> 0 so large that
the restriction of o to the small neighborhood Vi, of MY is equivariantly closed.
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This is possible since Da has a compact support K in U =M \ M°, and so, if
P = mingeg | (m)] > 0, it suffices to take sg > R/p.
We have (P,(—id)f)(su(m)) =0 if ||[su(m)|| > R <= ||u(m)|| > R/s. Thus we see that,
for s > s9, if K is the support of «, ¥ (s, «, f) has compact support contained in Vy N K.
We have then the formula

(infdex(s, &, 0), f) = / (s, af) = / (s, af). (17)
M Vs
Note that from the formula (17), the lemma follows.

Lemma 3.3. If o has support in U then, for s large, ¥ (s, a, f) = 0.

We will often make use of the following lemma.

Lemma 3.4. We have

_il / 520 g (0 (1)l = / / e D(a) (0F (V).

ds MJg MJg
Proof. Indeed, since £2(x) = Do (x),

—ii/ /eim(x)a(x)f‘(x)dxz/ /Da(x)eim(x)ot(x)f(x)dx
ds MJg MJg
=v+r

with
v:// D(Ueisg(x)a(x))f(x)dx
gJIM

and

r= / / 0P D) (x)f (x)dx
M

g

since D(£2) = 0 and D is a derivation, we have D(e®*®) = 0.
As a(x) is compactly supported, v = 0, and we obtain the lemma. ]

Let us see that
(infdex(s, a, o), f) =/ /eim(x)a(x)f(x)dx
MJg

does not depend on the choice of s > sq.

We use Lemma 3.4 above to compute %(infdex(s, «,0),f). By the hypotheses
made, the form oDa has compact support in U; thus by Lemma 3.3, the differential
form ¥(s,oDq,f) = fg UeiSQ(X)D(a)(x)f(x)dx is identically equal to 0 for s > sg. This
implies that for s > sg,

d
— (infdex(s, o, 0), f) =0,
ds

and hence the independence of the choice of s > 5.
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We now see the independence of the choice of the representative «. In fact, take a
different representative a + B with 8 compactly supported on U. Then

lim (infdex(s, 8,0),f) =0
§—> 00

by Lemma 3.3.
Next let us show that limg_, o (infdex(s, @, o), f) depends only on the cohomology class
of a. Take @ = DB, with B compactly supported on M; we see that

(infdex(s, o, o), f) = / / e*2ODB(x)f (x)dx

MJg
= / / D™ B(x))f (x)dx = 0.
gJIM

Finally, let us consider two action forms o1, og, with o9 = 0. Then the moment
map for o, =to1 + (1 — Hog is wuy =tur + (1 — Hpo, with pog = n. We assume
that the closed set M;I(O) remains equal to M°, for r e [0,1]. Let us see that
infdex(s, o, 01) = infdex(s, a, 0g), for s large.

Indeed, consider £2(t) = Do;. Let

I(t,s) = / / 20D o (x0)f (x)dx.
MJg

We obtain
d . o
—i—I(t,s) = s/ /D(al — 00) ()P o (x)f (x)dx
dt MJg
=Vv+r
with
v=s / / D((01 — 00)e* e (0)F (W)
gJM
and

r= s/ /(01 — 00)e" 2 D) (x)f (x)dx.
MJg

As a(x) is compactly supported, v = 0.

As for r, we remark that (¢, x) = (i, x) + q(t) where ¢(¢) is a 2-form. The integral r
involves the value of f, and its derivatives, at the points su;(m). As the compact support
K of Da is disjoint from MO, our assumption implies that u,(m) is never equal to 0 for
m e K and ¢ € [0, 1]. Thus, if p := mingeg se[0,17 |t:(m)|| > 0, arguing as for the formulas
(15) and (16), we deduce that r =0 if we take so > R/p.

One has still to verify that this linear map satisfies the continuity properties that
make it a distribution. We leave this to the reader.

In conclusion we have shown the following theorem.

Theorem 3.5. Let o be an action form with moment map . Let M® = u=1(0). Then we
can define a map

infdex;, : H&C(MO) — D' (g")°
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setting, for any [o] € HE,C(MO) and for any smooth function with compact support f
on g,

(infdexZ([«]), f) := lim / / eSOy (x)f (x)dx.
S—> 00 M g

The map infdexy; is a well defined homomorphism of S [g*1¢ modules.
If the 1-form o moves along a smooth curve o; with moment map wu, such that ufl(O)

remains equal to M°, then
infdex(} = infdexg,.

In particular, if two action forms o1, 02 have the same moment map wu, the two
infinitesimal indices infdex} and infdex{? coincide. Indeed, the moment map pu,
associated with (1 — f)o1 + fo2 is constant. In view of this property, we denote simply by
infdexg the map infdexg. We call it the infinitesimal index map associated with u, or,
for short, the infdex map.

Remark 3.6. In general, the maps infdexg and infdex&“ are different
(cf. Example 3.14), although the zeros of the moment maps associated with o and
—o are the same. Thus the stability condition that the set u,‘l(O) remains constant
when moving along oy is essential in order to insure the independence of the infinitesimal
index.

Let us give another formula for infdex’é. From this formula, it will be clear that
infdexg belongs to the space S’ (g*)¢ of invariant tempered distributions on g*.
Let f be a Schwartz function on g*. If « is a representative of [«] € Hf; C(MO), we see

that [ g el ) (Da)(x)f‘(x)dx is a rapidly decreasing function of s: Da being identically
equal to 0 on a neighborhood of MO, this is expressed in terms of the value of the

function f, and its derivatives, at points su(m), where u(m) is nonzero. Thus we can
define the compactly supported differential form @ («, f) on M by

D (a, f) = / a()f (x)dx + io / ” ( / eif‘MDa(x)f(x)dx) ds. (18)
g s=0 \Jg

Proposition 3.7. We have
(ntdexfe).f) = [ oG@.p.

Proof. Let f be a function with compact support on g*. Then

lim / /eim(x)a(x)f(x)dx
§—> 00 M g

/ / a(O)f (x)dx + / T ( / / eim(x)a(x)f(x)dx> ds.
MJg 0o ds \Ju g

By Lemma 3.4, we obtain the proposition. O

is equal to
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Remark 3.8. It is possible to define equivariant forms on M with C™° coefficients [16].
Such a form is an equivariant map from test densities on g to differential forms on M.
The equivariant differential D extends and we obtain the group H;* (M), and similarly
the group Hai.o(M). Ifae H&C(MO), and g is a test function on g, we may define the
differential form

(p(a), gdx) = /a(x)g(x)dx + ia/ (/ eiSQ(X)Da(x)g(x)dx> ds.
I s=0 \Jg

It is easy to see that p(a) is a compactly supported equivariant form on M with C~*
coefficients such that D(p(@)) = 0. Indeed, we have p(a) = a — og—g, where g—f‘r is well
defined in the distribution sense by —i |, ;00 D% Dads.

We see that o > p(«) defines a map from HE,C(MO) to Hgo (M). In this framework,
our distribution infdex’é(a) on g* is the Fourier transform of the generalized function
fM pla) on g.

Paradan defined, associated with an action form o, a particular element P, €
H; (M) representing 1 and supported in a neighborhood of MO [19]. This element is
the form p(1) defined above (when M is compact). Most of our subsequent theorems
could be obtained by Fourier transforms of theorems proven in [20,22] where basic
functorial properties of P, are proved. However, we will work on g* instead that on g
and we will give direct proofs.

3.9. Extension of the definition of the infinitesimal index

Let us see that the definition of the infinitesimal index extends to H%Ocm (MY).
Ifae Acéf’cm(M) is such that Da = 0 in a neighborhood of M?, we see that Lemma 3.4
still holds, f being a Schwartz function on g*:

i / / 206 (0 (x)dx = / / 26 Do (0] ().
ds MJg MJg

Since « is of at most polynomial growth, the function of x given by Dot(x)f (%)
is still a Schwartz function of x. Thus by Fourier inversion, we again see that
—i % /; iy i) g e @y (x)f (x)dx is a rapidly decreasing function of s and we may define

(infdextt(a), f) = lim / / eSOy (x)f (x)dx.
§—>00 M g
We have again the formula
(infdex(s (), f) = / & (a, f)
M
where @ (a, f) is given by equation (18).
This formula shows that infdex’é(a) is a G-invariant tempered distribution on g*.

With similar arguments, we obtain the following theorem.

Theorem 3.10. We can define a map
infdex : Hey " (M%) — S’ (g9
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00,m

setting for any [a] € Hg ., (M) and for any Schwartz function f on g*
(infdexts([a]), f) := lim / / S 2Oy (0)f (x)dx.
§—> 00 M g

If o moves smoothly along a curve oy such that ,u,’l(O) remains equal to M°, the map
infdexg’ remains constant.
Furthermore, using the Fourier transform F of tempered distributions,

f(infdex’é([ot])): lim / ey (x). (19)
§—>00 M

Remark 3.11. If f has compact support and the Fourier transform of a(x) is a
distribution with compact support on g*, the value [ I I g 2 W g (x)f (x)dx is independent
of s when s is sufficiently large.

Let us state some immediate properties of the infinitesimal index. We recall that
our construction of the infinitesimal index map is strongly inspired by the Witten
nonabelian localization theorem [25]. In particular, we have the following ‘nonabelian
localization’ result.

Theorem 3.12. Let [a] € HOGC”’C'"(M) and I(x) = fMot(x), a function on g with moderate

growth. Let o be an action form, and let M° be the zeros of the moment map. Then [c]
defines an element [ag] in chf’Cm(MO) and

F(infdexf ([ao])) (x) = 1(x). (20)

Proof. This is clear from formula (19) as [}, e*2?®a(x) does not depend on s, since £2(x)
is exact and « is closed with compact support. O

The left-hand side of (20) depends only on the restriction of « on a small
neighborhood of M?. Thus Theorem 3.12 says that we can compute the equivariant
integral of @ on M, knowing « on a small neighborhood of M?.

Remark 3.13. Let M be a G-manifold equipped with a G-invariant Riemannian metric.
Take a G-invariant vector field V on M such that V,, at each point m € M is tangent to
the orbit Gm and let o be the 1-form associated with V using the metric. Then M? is the
set of zeros of the vector field V.

e If G is abelian, we may choose V = v, with x generic in g, and then M? = MY, the
set of fixed points of G on M. Theorem 3.12 leads to the ‘abelian localization theorem’ of
Atiyah, Bott, Berline and Vergne [2, 6].

e When G is not necessarily abelian and M is provided with a Hamiltonian
structure with symplectic moment map v : M — g* then the Kirwan vector
field V,, = exp(ev(m))m is such that MY coincides with the critical points of the function
Ilv ||2(We used an identification g* = g). Then one of the connected components of MY is
the zero of the symplectic moment map v, and u and v coincide near this component.
This is the situation considered by Witten (and extensively studied by Paradan [19])
with applications to intersection numbers of reduced spaces v~1(0)/G (as in [15]).

https://doi.org/10.1017/51474748012000722 Published online by Cambridge University Press


https://doi.org/10.1017/S1474748012000722

312 C. De Concini, C. Procesi and M. Vergne

Example 3.14. o If G := {1} is trivial, H&C(MO) is equal to H¥(M) and the infinitesimal
index maps to constants, by just integration of compactly supported cohomology classes.
o If M = {pt} is a point, the moment map and £2(x) are both 0 while M® = M = {pr}. Its
equivariant cohomology is S [g*]°.
By Theorem 3.5 it is then enough to compute the infinitesimal index of the class 1.
This is given by

fr / F)dx =f(0)
g

by the Fourier inversion formula. So, in this case the infinitesimal index of 1 is the
S-function Jg.

More generally, we have extended the definition of infdex’é to the space P (g)¢ of
invariant functions on g with at most polynomial growth. If a(x) is any G-invariant
function on g with polynomial growth and & is its Fourier transform (a distribution on
g*), we obtain

infdexgo (x) =a. (21)

e Consider M = T*S! with the canonical action form as in Example 2.7. Then
MO = §1. We compute the infinitesimal index of the class 1 € H&C(MO) =R. Let x()
be a function identically equal to 1 in a neighborhood of t = 0. Then Do (x) = xt 4+ dt A d6,
and by definition

(infdexé(l),f) = s]_j)m (/ X (t)eisxt-‘risdtd@]?(x)dx)

o Jxst -0

= lim x Of (s1)e’¥0 = lim 27is / x (Of (st)dt
T*st §=ee R

500
= Y1_1)1%10 2mi /]R x (t/s)f (H)dt.
Taking the limit, we see that
(infdex(;(1), f) =27ri/Rf(t)dt,

that is the distribution infdexg(l) is just 2wi times the integration with respect to the
Lebesgue measure dt.

e More generally, consider M = T*G with the canonical action form o as in
Example 2.7 and the canonical G x G-action by left and right multiplications. Set
r:=dim G and orient M via the Liouville form do”. We take (g, ¢) with g € G and ¢ € g*
as coordinates on M = G x g*. We write an element of g @ g as (v, x). We have M0 =G
and want to compute the infinitesimal index of the class 1 € ngG’C(MO) =R. Let x be a
function with compact support, G-invariant and identically equal to 1 in a neighborhood
of 0 in g*. This function gives also a function on 7*G = G x g*, still denoted by .
Then x (g, £) = x(¢) is a representative of 1. Let f be a function on g* @ g*. Then (using
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formulas (7) and (6) and Fourier inversion), we have

(mfdexGxG(l) f)= hm/T / X(;)eiSd"eis(g’g_lyfx)f(x, y)dxdy

§—>00

=hm/ / (@) sy 420 ) 68797 (x, y)dady
TG J gdg

§—>00

§—>00

= ir lim / / X(;)Sr is(¢,8~ }’7X>f'(x’ y)dXdydg‘dg
Gxg* Jgdg
=7 Jim, /G X(©)f (s8¢, —s¢)dgdg
xg*

= /G X (& /9)f (8¢, —¢)d¢ds.
e

Taking the limit, we obtain

(infdexty, (1) f) = i" /G £(gg. —5)dedg. (22)
xg*

e Consider now M = R? as in Example 2.10. As we have seen, the action form o is
5 (vldvg —v2dvy), so Do (x) =dvi A dva + x||v || /2. Then MY =0.

We compute the infinitesimal index of the class 1 € HZ"; (M%), Let x(r) be a function
on R with compact support and identically equal to 1 in a neighborhood of t = 0. We
then get

*© )2 A
(infdexg; (1), f) = Jim /11@2 / X (v [1Fyelss 2 Fisdndvag ) gy,
—00
Using polar coordinates on R2, and inversion of the Fourier transform, we see that

(infdexgz (1), f) = 2nisl_i)rgo /0 ” X (t/9) /0 - f(tdt.

Taking the limit, we obtain
o0
(infdex(z(1), f) = 2mi /0 f(dt,

that is the distribution infdex’é(l) is just 2mi times the Heaviside distribution supported
on RT.

4. Properties of the infinitesimal index

There are several functorial properties of the infinitesimal index that we need to
investigate: locality, product, restriction, the map iy, and free action.

4.1. Locality

The easiest property is locality.
Let M be a G-action manifold with moment map u and i : U — M an invariant open
set; then we have a mapping ix : Ag,.(U) = Ag,.(M) which induces also a mapping

iy HE (UY) — HE (M0).
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Proposition 4.2. The mapping i, is compatible with the infinitesimal index.

Proof. This is immediate from the definitions. O

4.3. The product of manifolds
If we have a product My x Mg of two manifolds relative to two different groups G1 x Ga,
we have
(M1 x M2)? =M x MY
and the cohomology is the product.

Proposition 4.4. The infinitesimal index of the external product of two cohomology
classes is the external product of the two distributions.

Proof. This is immediate from the definitions. O

4.5. Restriction to subgroups
Let L C G be a compact subgroup of G such that [, the Lie algebra of L, is a subalgebra
of g. The moment map uy for L is just the composition of ug with the restriction
p:g*— I*. Thus MZI(O) D ,ual(O).

If f is a test function on [*, then p*f is a smooth function on g* constant along the
fibers of the projection.

Definition 4.6. We will say that a distribution & on g* is a distribution with compact
support along the fibers if for any test function f on I*, the distribution (p*f)® has
compact support on g*.

If @ is a distribution on g* with compact support along the fibers, we may define p,©®
as a distribution on [* by

(P+0,f) = /*(P*f)(")- (23)

g

The right-hand side is computed as the limit when T tends to co of (®, (p*f) x7) when
XxT is a smooth function with compact support and equal to 1 on the ball By of g*.

Let Zg be a closed G-invariant subset of M containing MZI(O) (if L is normal in G and
in particular if G is abelian, we can take Zg = y,lfl (0)). Then we have two maps

jiHE (Z6) — HE (ugt(0))

and
riHE (Zg) — Hi (g (0)).

Theorem 4.7. If [a] € H&C(Zg) then infdex‘éG(j[a]) 18 compactly supported along the
fibers of the map p : g* — I*, and

pi(infdexz® (jler])) = infdex* (r[a]). (24)
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Proof. Write F¥" (h) for the Fourier transform h of a function & on g*.
Let f be a test function on [* with support on a ball Bg. We have, for x a test function
on g*,

(@ Pinfdexte ol ) = lim [ [ 9 0a A @0 was
g

By our assumption on «, there exists € > 0 such that D« is equal to 0 on the subset
lurm)|| = llprg@m)|| < € of M. The support C of (p*f)x is contained in the set of
y € g* such that ||[p(y)|| < R. The support K of Da is contained in the set of points m
such that |pug(@m)|| > €. Thus by Proposition 3.2 and the argument of Lemma 3.4, the
distribution

x— / / MW o () FY (xp*f) (x)dx
MJg

stabilizes as soon as s > R/e.
Write for sg > R/e

(p*hinfdex (), x) = /M / 0206 () FT (xp™f) (0

g
=/ Y (so, o, xp*f)
M

where

W (s0. ot xp")m) =) [ / Pa(x)e 0 FE (3 p*f) ()l | €097
a g

=D (Pa(=id)(xp*f) 0 (som))e™* . (25)

Applying Proposition 3.2, we have that, if K is the compact support of «, as sg is greater
than R/e, the form W (sg, o, xp™f) is supported on the compact subset soug(K) in g*.
This shows the first statement that infdexgG j[a]) is compactly supported along the
fibers of p.

We pass next to formula (24). We then have

(p*P)intdex’® (jlal). xr) = /M W (50, . xp™f)

for any T large.
Using formula (25), when T is sufficiently large, as xr is equal to 1 on the compact
subset souG(K), we thus have that W (sg, «, xrp*f) is simply

> (Pa(=id)p*f) o (som))e™0V .

As p*f is constant along the fibers, if we denote by g the restriction of a(x) to [, we
see that ¥ (so, o, x7p*f) is equal to the differential form ¥ (sg, ag, f) as all derivatives in
the ker p direction annihilate p*f. We thus obtain our theorem. ]
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4.8. The Thom class and the map i

Let Z be an oriented G-manifold of dimension d and i: M < Z a G-stable oriented
submanifold of dimension n = d — k. Assume that M is an action manifold with moment
map u and that Z is equipped with an action form oz such that the associated moment
map pz extends . Thus Z0 N M = MY, Under these assumptions, we will define a map

i HE (M%) — HE (Z°)

preserving the infdex.

Let us recall the existence of an equivariant Thom class ([18]; see [13], p. 158,
and [21]). We assume first that M has a G-stable tubular neighborhood N in Z, with
projection p : N - M. Then there exists a unique class 7y of equivariantly closed forms
on N with compact support along the fibers such that the integral p,tjy is identically
equal to 1 along each fiber. Thus for any equivariant form «(x) on M with compact
support (but not necessarily closed), we have that

/a—/pa/\tM

In general, let us take a class [«] € Hz‘;’c(MO) where o € Ag (M) and Da has support K
in M\ MO.
Consider a G-stable open set U C M with the following properties.

(i) The support of & is contained in U.

(ii) The closure of U is compact and has an open neighborhood A in Z, and M N A has a
G-stable tubular neighborhood in A.

By locality, we can then substitute U with M and thus assume that the pair (Z, M) has
all the properties which insure the existence of a Thom class .

Consider a G-invariant Riemannian metric on the normal bundle A/ to M in Z.
Define S$¢ as the (open) disk bundle of radius € in A/. Then we can take our tubular
neighborhood in such a way that it is diffeomorphic to S¢ for some €.

We claim that we can take S¢ so close to M that p~ 'K NS¢ N Z = ¢. Indeed, p~ K N S€
is a compact set and, since K is disjoint from M9 and hence from Z, for a sufficiently
small €, p~ 1K N §€ is disjoint from Z°.

Let us now fix the Thom form 7 in Ag,(N) with support in S¢.

Consider then the form p*a A 737. We have that D(p*a A 1) = p*Da A T has support
inp Ttk NS¢ cz\ZY It follows that p*a A 7y defines an element in Hac(ZO).

We claim that this element depends only on the class [«]. So first take another
Thom form tj, with the same properties. Then there is a form ry € Ag,(5€) such that
Ty — T3y = Dry and

panty —pa Aty =pa ADry=Dp a Ary) —p Do Ary

where p*a A ry has compact support and p*Da A ry has support in Z \ Z°.
Next assume that o is supported outside MY; then again we may take 7y such that
p*a A 1y is supported outside Z0.
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Finally, if @ = DS, we have p*a A 1y = D(p*B A Ti).
Hence we can set

il = [p*a A i, (26)

Theorem 4.9. Assume that M is an action manifold with action form o and moment
map 1 and that Z is equipped with an action form oz such that the associated moment
map uz extends w. Then the morphism

i H (M°) — HE (2%
preserves the infinitesimal index.

Remark 4.10. We do not need to assume that the restriction of oz to M is the action
form o on M, only that the moment map w7 restricts to u.

Proof. First let us see that infdexéz (i)[a]) does not depend on the choice of the form oz
on Z, if the moment map uz restricts to u. We can assume that Z = N. Let 8 = p*a A 1.
The form B is compactly supported.

Let 01,00 be two l-forms on Z and consider o; = to1 + (1 — t)og and u; the
corresponding moment map. Set £2(f) = Do;. We assume that the map pu, coincides
with u on M for all . Thus, provided we choose 1y with support sufficiently close to M,
there exists an & > 0 such that on the support of DS, we have ||u|| > h > 0.

Define

I(t, ) = / / B(x)eS2 0 B (x)f (x)dx.
NJg

We can prove that %I (t, s) =0 in the same way as we proved the invariance of the
infinitesimal index infdex|; along a smooth curve p, (proof of Theorem 3.5); thus we
skip the proof.

Having established the independence from o, we choose for the final computation

oz := p*o. In this case, since B = p*a A 1y,

(infdexg? ([B]). f) = lim / / PHE D a(x)) A Ty (F (x)dx. (27)
§—> 00 g N
As 7y has integral 1 over each fiber of the projection p : N — M, we obtain that (27) is
equal to
lim / / 2y (x)f (x)dx
§—> 00 g M
which is our statement. (]

4.11. Free action

Let G and L be two compact groups. Consider now an oriented manifold N under
G x L-action, with action 1-form oy and moment map ugxr = (UG, L) : N — g* @ I*. We
set NV = ,uE;iL(O).
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Assume that:

e the group L acts freely on N;

e 0 is a regular value of up.

Define P = uzl (0). By assumption, P is a manifold with a free L-action so

M= pu; ' (0)/L

is a G-manifold. We will see in a short while that the orientation on N determines a
natural orientation on M.

We denote by 7 the projection 7 : P— M. The invariance of oy under L action implies
the following proposition.

Proposition 4.12. The restriction o of oy to P wverifies 1,6 =0 for any x € [ and
descends to a G-invariant action form oy on M; thus M is an action manifold and
o =n*(oy).

We denote by u the moment map on M associated with ojs. The map w is obtained by
factoring the restriction of ug to P which is L-invariant, that is, ug = u o @ on P. Since
NV is the subset of P where ug equals 0, we see that M? = 1 =1(0), the fiber at zero of pu,
is M0 = NO/L.

Recall (Proposition 1.5) that since the action of L is free, we have an isomorphism
T HE (M°) — HEy (NY).

Our goal in this section is, given a class [y] € Hg,C(MO), to compare infdexg([y]) and
infdex{s 25 (* ([y1)).

As 0 is a regular value of up, any L-stable compact subset K in P has an L-stable
neighborhood in N isomorphic to K x [* with the moment map p; being the projection
on the second factor. Since the computations of the infinitesimal index of a given class
with compact support are local around NV (by Proposition 4.2), we may assume that
N =P x [* and that the moment map u is the projection on the second factor. We write
an element of N as (p, ¢) with p € P, ¢ € I*.

The composition of the projection n: N =P x [* — P and of w : P — M is a fibration
with fiber L x [* = T*L. We orient M using the orientation of N and that given by the
symplectic structure on T*L (see formula (5)).

4.12.1. An auxiliary form. Let us choose now a connection form o € A'(P)®I for the
free action of L on P. We want to apply Definition 2.16 to the following functions. For ¢
a point in [*, define 6, € C* () by

O (x) := / ! l8) g = / ¥ ap, (f)
L [*

where dl is a Haar measure on L or in an equivalent way where df; (f) is a L-invariant
measure on the orbit L C [*.

Thus for any ¢ € [*, we may consider, using the curvature R (cf. formula (10)), the
G-equivariant closed form 6; (Ry) on M given by

0 (Ry) = / ! Ry 18) g — / el (mL@.18) IR IE) gy (28)
L L
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We need some growth properties of the function y — 6, (Ry). If we fix p € P and ¢ € [,
let us see the following lemma.

Lemma 4.13. The function y — 0;(Ry)(p) is the Fourier transform of a compactly
supported measure dup ¢ on g* (with values in \ T;P).

Proof. Indeed, let f e [*. The function (—ty,w(p),f) is linear in y € g, so we write
(—yo (), f) = {y, h(p, f)) with h(p, /) € g* depending smoothly on p, f. We see that

6 (R)(p) = /[ S0P R g (p),

where dp; (f) is an L-invariant measure supported on the orbit L{ C [*.
Let us integrate over the fiber of the map h, : [* — g* given by f — h(p,f) =§&. We
obtain that

6: (Ry) () = / 08 (), ("R dp. (1)). (29)
g*

In this formula, (hp)*(eimmdﬁg (f)) is a measure supported on the compact set h,(L¢)
as dp; (f) is supported in the compact set L¢. In particular, we see that, over a compact
subset of P, y — 6; (Ry)(p) is a bounded function of y as well as all of its derivatives in y,
and estimates are uniform in ¢ if ¢ varies in a compact set of [*. O

If [y]e HE C(MO), we choose a representative y(y) which is a form with compact
support on M, depending of y in a polynomial way. Set

Ve ) =y (O (Ry). (30)

Proposition 4.14. The equivariant form y;(y) is of at most polynomial growth in y. It
represents a class in H?;’C'"(MO) which does not depend on the choice of the connection w
but only on the choice of the Haar measure dl.

Proof. The fact that y;(y) is of at most polynomial growth follows from the preceding
discussion. The second statement is proved as in ([7, 8]; see [3]). O

Remark that 6y(R,) = vol(L, dl) where vol(L,dl) is the volume of the compact Lie
group L for the Haar measure dl such that did¢ is the canonical measure on T*L =L x [*
(by right or left trivialization).

4.14.1. The main formula. With the notation of the previous paragraph, given
[yle HZ";!C(MO), we may apply the infinitesimal index construction (Theorem 3.10) to
the cohomology class [y;] € Hgf’cm(MO) of the equivariant form y; (y) = y ()0; (R)). We
have the following theorem.

Theorem 4.15. Let fi be a test function on I* and fo be a test function on g*. Then
(infdexg([)?;]),fg) 18 a smooth function of ¢ and

(infdexg L7 (7™ [y 1), fif2) = idimL/ﬁ(infdeX’é([)?;]),f2>f1(§)d§- (31)
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Remark 4.16. Formula (22) is a particular case of the above theorem. Indeed consider
M = T*L with the double action of L x L. We take G = L as the first copy, and L as
the second copy acting freely on the right. Then P =L and M = L/L = {pt} is a point.
The equivariant curvature Ry, a form on P with value in [, is Ry(I) = —ly (formula (11)),
S0 7¢(y) is the invariant function [, e dl and (infdex([7]),f2) (the distribution
Fourier transform of the function y; (y)) is f 1J2(=1¢)dl. The theorem above gives

(infdex( i (1), fifp) = itmE | SOl

which is formula (22).

Let us first write a corollary of this theorem.

Corollary 4.17. Let fo be a test function on g*. Then the distribution fi —
(infdex;2"  (r*([yD), fife) on I* is a smooth density D(¢)d¢. The value of D at 0 is
equal to i Evol(L, di) (infdext([y]), f2) -

We now prove Theorem 4.15.

Proof. Denote by n: P x [* — P the projection n: (p,¢)—~p, and set E =mwron:N —
M,E(p,¢):=n(p),peP, ¢ el

Let y(y) be a compactly supported G-equivariant form on M representative of [y].
Any G x L-equivariant form v with compact support on N = P x [* which restricted
to P coincides with w*y can be taken as a representative for the cohomology class
7*lyl € Hop (N).

In order to construct ¥, take an L-invariant function p : [* — R supported near zero
and such that p equals 1 on a neighborhood of 0 and define the form v, which is still
L-invariant and G-equivariant, by

VYO P, )= p)E Y ®Y). (32)

Recall that @ is the restriction of oy on P and consider the 1-form n*(@) on N = P x [*,
the pull-back of @ under the projection 7 : Px[* — P. Let w € A (P)®[ be our connection
form. Then we have the following lemma.

Lemma 4.18. (w, ¢) is an action form on N, with the moment map for L the second
projection. Its moment map for G vanishes on P.

Consider og = oy and o1 = n*(@) + (w, ¢) with moment maps g, iL1.

Lemma 4.19. The moment map u; =tp1 + (1 — t)ug associated with to1 + (1 — t)og is
such that ,ut_l(O) =NO forall t € [0, 1].

Proof. This follows from the fact that the component under L of these maps is the
second projection, so ul_l(O) C P for all + and moreover w1, g coincide on P. Thus
w1 (0) = PO =NO. O
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According to Theorem 3.5, we may thus assume that oy = n*(@) + (w, ¢) and compute

with this ‘normal form’ the values of infdengfLL.

Recall that u : M — g* is the moment map relative to G associated with ojs. By abuse
of notation, we still denote by w its pull-back by 75 to N. This is the moment map
associated with n*(c).

Lemma 4.20. Let 2 := Doy for (x,y) € [® g. At a point (p, ¢) € P x [*, we have
20x,y) = (x,¢) — (o, &) + ) +dn* @) + d(w, ).

Proof. By the definition of a connection form (for the action of L), we have
(x,¢) = —{L,w, &), 50 {x, &) — (tyw, ¢) is the value of the moment map at (x,y) of (w, ¢).
As for n*(@), by the definition of P = MZI(O), the part relative to L of its moment map is
equal to 0. O

We write £2(x, y) = (x, £) + £2'(y) with
Q'Y ==y, &) + (y, W) +n*d@) + d{w, ¢)
independent of x. We have
Q'(y) =n*(D7) — (o, {) +d(@, §). (33)

For s sufficiently large,

(infdexi;2 (T * ([ly D), fife) = 1(s)
with

I(s) = / / PN Y ()AL (f () dxdy.
N JgxI
Applying Fourier inversion:
/ PO (e = fi(56).
[
we obtain that

1) = /N / 52 Oy ()f1 (s ) (¥)dly

g
where ¥ (y)(p, £) = p(£)E*y (y) is defined by formula (32).
Write the connection form w = Y";_; wje; on an oriented basis {e1, ..., e} of [, and set

Gi= (e, ) fori=1,...,r.
We have (o, {) = Z{:l giw; and thus

d{w, ¢) =Z§idwi+2d§,~/\a)i. (34)
i=1 i=1

Let us now integrate along the fiber [* of the projection n: N =P x [* — P. We thus
need to identify the highest term of ¢#%2'0) in the dg;. By (34) and (33), this highest term
equals

N r(r+1)
@) 'doy Aoy A NG ANwp=(—1) 2

(is) Vi A di
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where we set V, := w1 Aw2 A -+ Awy and d¢ :=d1 A -+ Adg. We obtain

I(s) = /N / &2 Oy ()f1 (s o (¥)dly
g

r(r+1)

=Dz / Py MR G) ( /[ s'e PO LS o (0)fi (s0)V, Ad;> dy.
Pxg *
In the integral on [*, we change ¢ to s¢ and obtain
o+l S ~ o .
O [ Tk ( [ e g ¢ i)V d@) d.
xg *

On the compact support of f1(¢), if s is sufficiently large, p(¢/s) = 1. Also we
may replace dw by R as R — dw = %[a), w] is annihilated by the wedge product with
@] Aw2 A -+ A w, and obtain (for s sufficiently large)

r(r+1)

(infdexA S5ty fufo) = (—1) "5 7 /N / D7, () o (1 R (0) Vi A didy,
g

Now consider the fibration N - M x [* with fiber L. On each fiber, the form
Vo =wi AN w2 A --- A @, induces an orientation and restricts to a Haar measure di
on L. Let us now integrate over the fiber. Recall that oy denotes the action form on
M. Let 2y := Doy; we have w*oy = 6, n*Da = n*7* 2. By formula (6), recalling that
r =dim L and using formula (28), we finally obtain that I(s) is equal to

jdim /[ ( /M / eSOy ()6, (Rpﬁ(y)dy) fi(¢)de.
* g

Remark that when ¢ varies in the compact support of f1, and over a compact subset K
of M, the Fourier transform (in y) of 6; (R,) stays supported on a fixed compact subset of
g*. Indeed, using formula (29), we see that the Fourier transform of 6; (R,) is supported
on the compact subset i(w 1K, L¢). By Remark 3.11, for s> s,

/M MOy ()0, (Ry)fo () dy = infdex (7], f2) (35)
xg

for any ¢ in the support of fi.
Thus we obtain our claim. O

Another important particular case of the free action property is that where G is
trivial. We then have y =0 in all the steps of the proof of Theorem 4.15. We now
summarize the result that we obtain in this particular case of Theorem 4.15. Let N be an
oriented L-manifold with action form, and assume that the group L acts freely on N and
that 0 is a regular value of pz. Let M = NY/L and let [y] € Hac(NO) =H}M).

Let R be the curvature of the fibration N — M. For any ¢ € I*, we consider the closed
differential form on M given by

6 (R) = / S RI) g1, (36)
L

Here, as R is an [-valued 2-form, 6; (R) is a polynomial function of ¢.
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Then we obtain the following proposition.

Proposition 4.21. The distribution infdex]*([y]) is a polynomial density on I*. More
precisely,

(infdext ([y]), f1) = 9™ L /{ ( /M VQ;(R))fl(f)dé'.

In particular the value of infdeXZL([y]) at 0 is well defined and computes the integral
on the reduced space MZI(O) /L of the compactly supported cohomology class associated
with [y]. This is essentially the Witten localization formula [14, 25].

4.22. Extension of the properties of the infinitesimal index

We have extended the definition of the infinitesimal index to H?;cf’cm(MU). Analyzing the
proofs of the properties locality, product, and the map i), we see that these properties
hold for the infinitesimal index map on Hgf’cm(MO). The proofs for the restriction
property and the free action extend, provided we are in the situation of Remark 3.11:
we consider the infinitesimal index on classes [a] € Hg? ;m(MO) such that the Fourier
transform of «(x) is a distribution with compact support on g*, and so the infinitesimal
index stabilizes for s large. This will always be the situation in the applications to index
formulas.

5. Some consequences of the functorial properties of the infinitesimal index

We list here some corollaries of the functorial properties: excision, product, restriction,
push-forward, and free action, proved in the preceding section.

5.1. Diagonal action and convolution

Consider two G action manifolds M1, M2 with moment maps w1, wo with zeros M(l], Mg.
Let A be the diagonal subgroup. The moment map for A is 1 + ua.

Let us assume that (M1 x M2)Q = M) x M3. If o € H; (M?) and B € Hf, (M9),
we may apply the product property (Proposition 4.4) and the restriction property
(Theorem 4.7). As the restriction map is such that r*f(&1, &2) =f(&1 + &2) (&1, &2 € g%),
we obtain the following proposition.

Proposition 5.2. Under the hypothesis (M1 x MQ)% = M(l) X MS, the infinitesimal index
infdexlzl—m *(a1 A ) is the convolution product infdex('(a1) * infdexi”(a2) of the
distributions infdexg1 (1) and infdex’é2 (a2).

Let us give an important example of this situation.

Let Mx be a complex representation space for the action of a torus G, where
X =lay,a2,...,an] is a list of nonzero weights a; € GcC g*. We assume that X spans
a pointed cone in g*. Recall the definition of the multivariate spline Tx; it is a tempered
distribution defined by

(Tx 1f) =/Ooo~~/ooof <Zfiai> dr -+ - dty,. (37)
i1
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12
Let us consider on My = C™ the action form such that u(z1,...,zx) = >, |Z‘2‘ a;. Then

Mg = {0} and the class 1 is a class in H&C(Mg). Using our computation in Example 3.14

of infdexlé(l) in the case of R2 = C, we obtain the following formula.

Proposition 5.3.
infdexfz (1) = (27i)™ Tx.

We will use this calculation in [10] to identify szl C((T*MX)O) with a space of spline
distributions on g*.

Another example that we will use in §5.15 is the case were one of the action forms, say
01, is equal to 0, so u1 = 0 and w is the pull-back of wo. Then

(M1 x M2)% =My x M.

In this case, the space H&C(M(l)) is simply H’Ck;’c(Ml) and fMl a1(x) is a polynomial
function of x € g. Thus infdexg(al), the Fourier transform, is a distribution of support 0
on g*.

Corollary 5.4.

infdex/s [a1 x ag] = infdex(();(al) * infdex(;” (ar2).

5.5. Induction of distributions

Assume that L C G is a subgroup; let [ C g be the corresponding Lie algebras. Choose
Lebesgue measures on g, and [ by fixing translation invariant top differential forms. This
determines dual measures and forms on g*, I* and a Haar measure dg on G. If p is the
restriction map g* — [*, we let p, be the integration over the fiber (with respect to the
chosen forms and orientations). It sends a test function on g* to a test function on [*. Let

A © = [ siards (39)
G
The operator A transforms a test function on g* to an invariant test function on g*.

Deﬁ*nition 5.6. For a distribution V on [*, we define the G-invariant distribution
Indf’* V on g* by

(Ind V, f) = vol (L, d) "1 (V, p(A(f))),
f being a test function on g*.
It is easy to see that Ind?: V is independent of the choices of measures.

5.7. Induction of action manifolds

Assume that L C G is a subgroup. Take M an L-manifold with action form o and
moment map .

Consider T*G as a G x L-action manifold where G acts on the left and L on the right,
and the action form w is the canonical 1-form on 7*G.
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5.7.1. The induced action manifold. Set N := T*G x M and p1, p2 be the first and
second projections of this product manifold. We consider the action form y» = pjw + p5o
on N, and denote by figxr = itg @ fir the corresponding moment map.

Let us trivialize T*G = G x g* using left trivialization (7), so we make the identification
N =G x g* x M. According to the formula (7), if (g, &, m) € N we have

RnG(g, & m)=—g§ :=—g&, (g, & m)=—&[+ ur(m). (39)
We denote by N the zero fiber of the moment map figxz for G x L, and by M the

zero fiber of the moment map uy on M for L.

Lemma 5.8. We have NY =G x MY,

Proof. From the formula (39), the set of points of N where fic =0 is G x M, and at
these points we have fi7(g, m) = up(m). O

Lemma 5.9. (i) If we take the zero fiber of fir, we obtain the manifold

Pi=[p ' (0)={(8.§.m): g € G.§ € g".me M:&|; = pur(m). (40)
(i) 0 is a regular value for the moment map fir.

Proof. The first statement is immediate from formula (39). As for the second, fix g, m;
the map 7 : g* — [* given by 7 : & — (g, &, m) = —&|[ + ur(m) clearly has a surjective
differential for all £—hence the claim. |

We are thus in the situation of §4.11. The manifold N is a G x L-manifold, L acts
freely on N and 0 is a regular value of the moment map iy for L. Consider the manifold
M = P/L. Applying Proposition 4.12, we see the following lemma.

Lemma 5.10. The quotient M = P/L is a G-manifold. The action form on N restricted
to P descends to M.

The induced moment map ug: P/L — g* is obtained by taking the quotient from the
moment map g : (g, &, m) — g& on P.

Definition 5.11. We will say that M is the induced action manifold.

By Lemma 5.8, the closed set NV, the zero fiber of the moment map figxz, equals
G x MY and it is contained in P. Since, by definition, on P = /1[1(0) the moment map iy
equals 0, we have that on P the moment map jigxr equals fig. Therefore we obtain the
following lemma.

Lemma 5.12. Under the inclusions N° ¢ P, NY/L C P/L, the zero fiber ./\/lOG C M of the
moment map UG s identified with NO/L =Gx MY,

Denote by p1,p2 the two projections of N =G x M? on its factors. Denote by
7:Gx M?=NO— NO/L = Gx;M° the quotient map.
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Thus we get the isomorphisms

p*

HE (M°) —=— HEy (N0 < H (G x1 M°)

xL,c

We set j = n*’lpgz

JoHE MO 2w, (VO T (MO, (41)
Remark 5.13. As in the usual case (see [12], page 33), the isomorphism j~! can
be described as follows. Let )/(y)7 with y € g, be an equivariant form on P/L =
M representing [y] € HGC(M )—HGL(GXLMO) We restrict y to the L-invariant
submanifold M embedded in M by m +— (e, ur(m), m) and obtain an L-equivariant form
on M. We can represent j~'[y] by y(x)|; with x € I.

5.13.1. The induction formula for the infinitesimal index. Given a class [a] €
H}’:C(MO), our goal is to compare infdex;”([e]) and infdex’é‘;(/'([Ot]))7 the first being
a distribution on [* and the second one a distribution on g*. We shall show that
infdex“c(]([a])) 1s induced by 1nfdefo([oz])7 according to Definition 5.6.

Theorem 5.14. Let [o] € Hf (M) ; then

infdex!“C (j[ar]) = i1 G~ L8 (infdex” ([a])). (42)

Proof. Consider the form y :=1 x @ on G x M, where « is a representative of [a]. By
*71p’§, and we see that [y] = p3la] = m%j[a].

Consider the G x L-manifold N = T*G x M. To this manifold we can apply Corollary
4.17. Let fi be a variable test function on [* and f2 be a given test function on g*. The
distribution f; — (infdex’éixLL([y]), faf1) is given by a smooth density D(¢)d¢ on [*, and
the value D(0) equals idim Loy, dl)(infdex’éG Jlal), f2).

Let us compute (infdex’éGXXLL( D, f2f1) using the fact that y is the external product
1 x a. We consider the product manifold 7*G x M provided with the action of G1 x Gg
where G1 = G x G acts by left and right action on 7*G and G2 = L acts on M.

Consider next the embedding of G x L as a subgroup of G x G x L through

{((g,D,]), g€ G,leL}. Denote by

definition, j =7

s:g@l—>g®gd!l, (a,b)+ (a,b,b)

the inclusion of Lie algebras. Denote by p : g* — [* the restriction map. Then for ¢ € [*
and (£1, &2) € g* @ g* the restriction map R associated with the inclusion s is

R=s":1g"®g" @ > g"@l*, (61,52, 0) (51.¢ +p2)).

Remark that our given action form on N is G x G x L-invariant and that N = G x MY is
also the set of zeros of the moment map u for the group G x G x L.

In order to compute infdeXgGXXLL([y]) we may thus apply first the external
product property (Proposition 4.4) and then the restriction property, (Theorem 4.7)
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obtaining
infdengflf (1 x o) =Ry, (infdexgxc(l) ® infdeXzL ([a]).

We now make this formula more explicit. Let fi be a test function on [* and fo a test
function on g*. Using the formula (23),

(Ru(infdext (1) ® infdext* ([a])), fifz) = Jim (infdexfs, (1) ® infdex) ™ ([e]), R* (fifo) x7)-

The function R*(fif2) (€1, &2, ¢) is the function fi (¢ + p(£2))f2(£1). Using formula (22) for
infdexéxG(l) for T*G, we obtain

A (infdex, (1) ® infdexz* ([@]), f1(¢ + pENfEDxr)

= i4m G infdext* (), ¢(f1, f2))
with (A is defined in (38))

A1 f)(0) = / /G Filc + pE)fa(—g8)dgde = / FLC + pEDAf(—E)dE.
g* g*

Integrating first on the fiber p : g* — [*, then on [*, we see that
q(f1,f2) (&) =f1 * (P« (Af2))(£)

where u % v is the convolution product of test functions on [*.
Then we obtain

(infdexg 2 ([y D). fife) = i @ infdex)ft ([er]). f1 * (p+ (Af2))(©)).
This is a smooth density with respect to ¢ € I*, and if f1 tends to 8g(¢), then
(infdexz27 ([ 1), fife) tends to

i G (infdexti ([a]), p+ (Af2) (¢)) = i Cvol(L, dI) (Ind% infdex ([a]), f2(0)).
We thus obtain the wanted formula, (42). O

5.15. Maximal tori

As usual, let M be a G-manifold with a G-invariant action form o. Let T C G be a
maximal torus. We show next how to reduce the calculation of the infinitesimal index
map for G to the calculation of the infinitesimal index map for 7. Our construction is
very similar to the construction of the map Kg(T§EN) — Kr(T7N) at the level of K-theory
given in [1].

Associated with o, we have the moment maps vg: M — g* and v =povg : M — t*,
with p: g* — t* the restriction map.

Consider M as a T-manifold, and consider N = T*G x M, provided, as in §5.7 (here the
group L is T), with the action form ¥ = pjw + p5o and the action of G x T: the group G
acts on T*G by left action, and trivially on M, the group T acts on G by right action and
acts on M. We denote by figxT = fig @ it the corresponding moment map.

Recall, by formula (40), that

P=ji;'(0)={(g. &, m); g € G, £ € g*, m € M; | = vr(m)}
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is a G x T-manifold on which G acts by go - (g, &, m) = (gog, &, m) for go € G, (g, &, m) € P,
and T acts by ¢ - (g, &, m) = (gt~ 1, 1€, tm).

We then consider M := P/T, with moment map uc([g, &, m]) = g& (39). Recall that
M% is isomorphic to G x TM? embedded in P/T by [g, 0, m].

For [a] € HE";’C(M?;), we want to produce an element r([a]) € Hac(./\/loc) =
Hz‘;’ C(GxTMg) which has the same infinitesimal index as [«].

Proposition 5.16. We can embed G x M in P through the map

y (g, m) = (g, v(g tm), g 1m).

The map y is G x T-equivariant, where G acts on G x M by diagonal action (left on G)
while T acts by the right action on G and not on M.

Proof. First, (g, vg(g~'m), g~ tm) € P since vg(g~ m)|¢ = vr(g~tm). Next, y (hg, hm) =
(hg, vG(g~tm), g~1m) and

1

vt m) = (g™t v g™ tm), 1g7im) = (¢r™ L, g (g™ tm), 1g7im). O

Corollary 5.17. The map y induces, modulo the action of T, an embedding still denoted
by v : G/T x M — M = P/T. Thus the manifold G/T x M, with diagonal G-action, is
identified with a G-invariant submanifold of M.

In fact more is true. Let g : M — G/T x M be the projection given by ¢(g, &, m) =
(gT, gm). Let g* = t* @ t+ be the canonical T-invariant decomposition of g*. Then we
claim that the following proposition holds.

Proposition 5.18. gy is the identity and g : M — G/T x M is a vector bundle with fiber
th.

Proof. The first claim comes from the definitions. As for the second, we may identify P
with G x M x t*+ through the map

P—>G><M><ti, (g, &, mm— (g,m & —vr(m)). O

Lemma 5.19. The restriction of the moment map ug on M to G/T x M is just
(gT, m) — vg(m) with zeros G/T X Mg,

Proof. We have ug(g,&,m) = g& by the previous discussion. An element (g, m)
corresponds to the triple (g, vg(g~tm), g 'm), so the claim follows since vg is
G-equivariant. [l

We now apply the construction y of §4.8 to the manifold G/T x M embedded by y
in M.

Recall that G/T is a even dimensional manifold. Take an equivariant form g on G/T
with class

) L dimayr ¢(G/T)

= (-1
[B]=( Wi

(43)
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where W is the Weyl group and e(G/T) is the equivariant Euler class. Notice that since
|W| equals the Euler characteristic of G/T, fG/T[,B] is equal to (—1)% dim G/T'

Thus, by Theorem 3.12, the infinitesimal index of [B] is just the §-function on g*.
Let [¢] € Hz‘;’ L,(Mg). We then construct the element [8 A «] in the compactly supported
equivariant cohomology

(B AaleHE (G/T x M)Y) = H (G/T x MY).
Lemma 5.20. The infinitesimal index of [B A «] is equal to (—1)% dimG/T times the
infinitesimal index of [a].
Proof. Apply Corollary 5.4. ]

Under the embedding y : G/T x M — M of action manifolds (cf. 5.17), by
Theorem 4.9, we have now a homomorphism

v HE (G/T x M) — HE (M)

preserving the infdex.
We define

r(la]) == n(B A al) € HG (M). (44)
We then have, combining Lemma 5.20 with Theorem 4.9,
infdexz;c ([a]) = infdeXgG (rla]). (45)
On the other hand, we have the isomorphism
jiHf (M) — HE (GxTMY)
and we have shown in Theorem 5.14 that
infdex¢ (/[0]) = (—1)2 UM G/ [ infdex! (16])

for any [0] € Hy .(M?).
We deduce the following theorem.

Theorem 5.21. Tuake the following commutative diagram:

i—1
J
HY, (M2) SN H (G x7 MY) —— H} (M)

infdexl infdexl infdexl (46)
: Ind®,
D/(g*)G _’d__> «D/(g*)G &_ «D/(t*)

The element [A] :=j_1r([oz]) € H;C(Mg) 18 such that

infdex!¢ ([a]) = Ind% infdexy (i~ r([a)). (47)
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Let us finally give an explicit formula for the element [A] = 1r([a]) € Hj. C(M%)
corresponding to [«] € Hac (Mg).

Let Pf(x) = detil/Q(x) be the Pfaffian associated with the action of x € t in the oriented
orthogonal space t*.

We need the following proposition.

Proposition 5.22. The restriction of the form B(x) at the point e € G/T is the
polynomial |W|™1 (27[)_% dim G/T p(y),

Proof. By construction, the equivariant Euler class is the restriction to G/T of the
Thom class of the tangent bundle. The fiber of the tangent bundle at the T fixed point e
is isomorphic to t-. Thus this class restricts at the fixed point e as (—271)*% dim G/T pg (x)
([18]; see [3], Theorem 7.41, and [21]). O

Recall the decomposition g* = t* @ t+. Let us consider the map v, : M — t- which is
uniquely defined by the identity vg = vy @ v) . Then v;l(O) N vj_l(O) = v51(0).

Denote by 79 the T-equivariant Thom class of the embedding 0 — t+, a compactly
supported equivariant class on t+. Then 7, := Vi 10 is a closed equivariant class on M
supported on a small neighborhood A of vj_l(O). It follows that we have the following
lemma.

Lemma 5.23. If [«¢] € Hg’c(Mg), we can choose tg such that the class t1 A a defines a
class in H;C(Mg).

Proof. Let KC M\ M?; be the support of Da; then D(t; A «) =1, A Da is supported in
ANK. Since @ = KﬁMg = KﬂM?ﬂ vJ__l(O)7 we can choose 7g such that AﬁKﬁM? =¢.0

By Remark 5.13, an equivariant form representing j~'r([a]) is the restriction to
M = {(e, 0, m), m € M} of r(a)(x), when x € t. We still denote it byj_l(r(oe))(x).

Theorem 5.24. We can choose the Thom classes such that
1 q:
T @) @) = 1WIT @) 72 T P e (x) A 7L ).

Proof. Let tG/7xm be a Thom class of the bundle g : M — G/T x M (Proposition 5.18).
Then, by the y construction, the associated equivariant form on M which we denoted
by r(a) is ¢*(B A &) A T6/TxM-

Now the bundle ¢ : M — G/T x M is trivial over e x M and isomorphic to t+ x M by
&, m)— (e, & +vg(m), m).

The restriction of the Thom class TG/7xu gives a Thom class for this trivial bundle.
We can then assume that the restriction of tg/7xanm is 70(§).

As (e, M) is embedded by & = v, (m), we obtain our theorem from Proposition 5.22. [
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Appendix A. Equivariant cohomology with compact supports

A.1. Compact supports

We are going to assume in this appendix that all our spaces are locally compact and
paracompact and we are going to work with Alexander—Spanier cohomology groups,
both ordinary and with compact supports, and with real coefficients. We shall denote
them by H* or, if we take compact supports, by H. H* is a cohomology theory on spaces
or pairs of spaces deduced from a functorial cochain complex C(X, Z), and H}, the theory
with compact supports, is associated with a natural subcomplex C.(X, Z) (see [23] ch. 6).

Let us now recall a few properties. The first is (see [23] ch. 6, p. 321, Lemma 11).

Proposition A.2. Let (X,Z) be a pair with X compact Z # ) closed. Set U:=X\ Z.
Then there are natural isomorphism Ha(U) ~ HY(X, Z).

In fact this is induced by the map of cochain complexes C.(U) — C(X,Z), and
composition of the inclusions C.(U) — C.(X) — C(X) and of the quotient C(X) — C(X, Z).

In particular, if we take an open set U in a compact space X (for example we could
take the one-point compactification U of a locally compact space U), we get that
H*(U) = H*(X, X\ U).

As an application of this, assume that Z C U is closed and U is open in a compact
space X. Set ¥ =X\ U and take the triple (X,Z,Y) with Z=2Z U Y. Consider the
commutative diagram

0 —— CXU\NZ) —— C:U) —— Ci2)
0 — C*X,Z) —— C*X,Y) —— C*(Z,Y) —— 0

Using the exactness of the bottom line we deduce the long exact sequence

<= H"U\ 2) BN HMU) ., HNZ) —— H'" \(X\2)— ---.
On the other hand, the top line induces a homomorphism of chain complexes
Wi CHU)/CHUNZ) — CH(Z)
and since the vertical arrows induce isomorphism in cohomology, using the five lemma
we easily deduce the following proposition.
Proposition A.3. The homomorphism w induces an isomorphism in cohomology.

In order to compare the Alexander—Spanier and singular cohomologies, one needs to
pass to the associated sheaves (see [23] ch. 6, p. 324). Thus, under suitable topological
conditions, we obtain a natural isomorphism between Alexander—Spanier and singular
cohomologies.

In particular, consider a C* manifold M and a closed subset Z C M. Further, assume
that Z is locally contractible (this is the case for TEN in T*N, as follows from the
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description of the neighborhood of a G-orbit using the slice theorem). We then have
(see [23] ch. 6, p. 341, Corollary 7) that, under these assumptions, we can use singular
cochains and in fact, in the case of a manifold, singular C* cochains to compute
the cohomology since the Alexander—Spanier and singular cohomologies are naturally
isomorphic in this case.

Integrating on singular C* simplexes we get a commutative diagram:

0 — AAM\2Z) —— AXM)

! |

0 —— CIM\Z) —— CiM)

where A% is the complex of differential forms with compact supports. We deduce a
homomorphism of cochain complexes

v ASM) ) AEM N\ Z)— 0oCE(M) [ oCEM \ Z).

Since the vertical arrows induce isomorphism in cohomology, we get a de Rham model
for H}(Z).

Proposition A.4. The homomorphism v induces isomorphism in cohomology. In
particular, HI(Z) s naturally isomorphic to the cohomology of the complex

AL (M) JAZM N Z).

A.5. Classifying spaces

We now take a compact Lie group G and denote by Bg its classifying space (which is
not locally compact). Recall that Bg is a polyhedron with finitely many cells in each
dimension and it has a filtration (Bg)g C --- C (Bg), C (BG)uy1 C --- C Bg by compact
manifolds with the property that the inclusion (Bg), C Bg induces isomorphism in
cohomology up to degree n. For example, if G is an s-dimensional torus, Bg = CP (0c0)*
and we may take (Bg), = CP(n)* (indeed in this case, the inclusion induces an
isomorphism up to degree 2n — 1).

We denote by 7 : EG — Bg the universal fibration and set (Eg), = 7~ ((Bg),). Thus
(Eg), is also a compact C*° manifold and a principal bundle over (Bg),.

Recall now that for any G-space Y, H5(Y) = H* (Y xGEg).

We can define the equivariant cohomology with compact supports of a G-space as
follows. Take U locally compact. Embed U in its one-point compactification UT. The
action of G extends to U™ and we set the following definition.

Definition A.6. Hf; .(U) = HEWUT, 00).

Some remarks are in order.

e If U is compact, then U™ is the disjoint union U U {00} so Hg, (U) = Hg(U).
e If U is non-compact, then Hg; .(U) = H*(U* xGEg, Bg) where Bg = {00} xGEG.
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e All the equivariant cohomologies are modules over H{(pt) and all the
homomorphisms are module homomorphisms.

Recall that by the properties of (Bg),, for any & > 0, and for all m large enough,
H"(Bg,R) = H ((BG),,, R) for 0 < r < 2h. So given a G-space X, the spectral sequences
of the fibrations XxgEg — Bg and Xxg (Eg),, — (BG),, have the same Ey'? for all
r and p 4+ g < h. In particular, we get for any pair (X,Z) of G-spaces that for large
m, Hg(X, 7Z) = H'"(Xxg (EG)m» ZXG (EG),)- From Proposition A.2, we then deduce the
following proposition.

Proposition A.7. Let X be a G-space with X compact Hausdorff and Z # ¥ a closed
G-stable subspace. Set U :=X \ Z. Then there is a natural isomorphism Hg; [U) =
HL(X,2). ’

Furthermore for m large with respect to h, Hé’;’c(U) ~ H?(UXG (Ec)m)-

Take now a C*° manifold M with a C* action of G and a closed G-stable subset Z in M
which we assume to be locally contractible—for instance if Z is locally triangular, as for
instance when Z is semi-analytic [17]. The same is true for Zx ¢ (Eg),, for any m, so we
can apply Proposition A.4 and deduce that for m large with respect to h, H}('; (Z) is the
hth cohomology group of the complex A*(M X ¢ (EG),,)/ AL(M\ Z)XG (EG))- ’

But one knows (see [13]) that for any m we have a natural morphism of complexes
Ag,c(M) — AX(Mxg (Eg),,) which induces isomorphism in cohomology in small degree.
The same holds also for the open set M \ Z so we get a commutative diagram:

0 —— Ag,cM\ Z) — Ag,e (M)
0 —— AXMN\2) xG (EGIm)) —> AZM X (EGIm))
which induces a morphism of complexes
01 AG, (M) [ AG,c(M\ Z) — AZ(M %G (EG)m) | A (M \ Z) X G (EG) m)-
From this we immediately deduce the following proposition.
Proposition A.8. HEC(Z) equals the cohomology of the complex A*&’C(Z, M) =
A (M) AZM N\ Z).

Proof. From the above considerations we have, if m is large with respect to h, that p
induces an isomorphism in cohomology in degree h. Since we have seen that in degree
h the cohomology of the complex AX(Mxg (Eg)y,)/AS((M \ Z)x¢c (Eg),,) is Hé’;’c(Z)7
everything follows. O
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