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Institut de Mathématiques de Jussieu, 175 rue du Chevaleret, 75013 Paris,
France (vergne@math.jussieu.fr)

(Received 1 November 2011; accepted 29 February 2012;
first published online 18 May 2012)

Abstract In this note, we study an invariant associated with the zeros of the moment map generated by
an action form, the infinitesimal index. This construction will be used to study the compactly supported

equivariant cohomology of the zeros of the moment map and to give formulas for the multiplicity index

map of a transversally elliptic operator.
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Introduction

Let G be a compact Lie group acting on a manifold N. Then G acts on the cotangent
bundle M = T∗N in a Hamiltonian way. Set g := T1G as its Lie algebra. The set M0 of
zeros of the moment map µ :M→ g∗ is the union of the conormals to the G-orbits in N.
An element S of the equivariant K-theory KG(M0) of M0 is called a transversally elliptic
symbol, and Atiyah and Singer (see [1]) associated with S a trace class representation
index(S) of G. If Ĝ is the dual of G, the representation index(S) gives rise to a function
m(τ ) on Ĝ such that index(S)=∑

τ∈Ĝ m(τ )τ , called the multiplicity index map.
The analogue of the equivariant K-theory of M0 is the equivariant cohomology with

compact supports H∗G,c(M0). Here we construct a map infdexµG, called the infinitesimal
index, associating with an element [α] ∈ H∗G,c(M0) an invariant distribution on g∗. We
prove a certain number of functorial properties of this map, mimicking the properties
of the index map formalized by Atiyah, Segal and Singer. However, although our proofs
are similar to those of [4, 5, 20, 22], our point of view is dual. Indeed in previous works,
the equivariant index, or integrals of equivariant cohomology classes, are (generalized)
functions on G, or g, while we work directly on the dual space g∗.

More generally, we consider the case where M is a G-manifold provided with a
G-invariant 1-form σ (and we do not assume that dσ is non-degenerate). This allows
us to obtain a map infdexµG : H∗G,c(M0)→ D′ (g∗)G, where M0 is the set of zeros of the
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associated moment map µ :M→ g∗ and D′ (g∗)G the space of G-invariant distributions
on g∗. Our construction is strongly related to Paradan’s localization on M0 of the
equivariant cohomology of M (see [24]).

An outline of the article
Let us summarize the content of this article.

In the first section, we give a ‘de Rham’ definition of the equivariant cohomology with
compact supports H∗G,c(Z) of a topological space Z which is a closed invariant subspace
of a G-manifold M: a representative of a class [α] is an equivariant differential form
α(x) on M with compact support and such that the equivariant differential Dα of α
vanishes in a neighborhood of Z. In the appendix, we show that under mild assumptions
on M and Z our space H∗G,c(Z) is naturally isomorphic to the (topological) equivariant
cohomology of Z with compact supports.

In the second section, we define the infinitesimal index. Let M be a G-manifold
provided with a G-invariant 1-form σ (we will say that σ is an action form). Let vx

be the vector field on M associated with x ∈ g and ix the derivation on forms induced
by contraction with vx. The moment map µ : g→ C∞(M) or µ : M→ g∗ is defined by
µ(x)=−〈σ, vx〉 = −ix(σ ). Then

Ω(x)= µ(x)+ dσ = Dσ(x)

is a closed (in fact exact) equivariant form on M. The symbol D denotes in this paper the
equivariant differential as defined in the Cartan model (see formula (2)).

Our main remark is the following.

Proposition 0.1. If f is a smooth function on g∗ with compact support, and α is
a compactly supported equivariant form such that the differential Dα vanishes in a
neighborhood of M0 := µ−1(0), then the double integral∫

M

∫
g

eisΩ(x)α(x)f̂ (x)dx

is independent of s, for s sufficiently large.

Here f̂ (x) is the Fourier transform of f . Some comment is in order: if α(x) is
closed (and compactly supported) on M, it is clear that the integral

∫
M eisΩ(x)α(x) is

independent of s as Ω(x) = Dσ(x) is an exact equivariant form. In our context, α(x) is
compactly supported, but α(x) is not closed on M: only its restriction to a neighborhood
of M0 is closed. This is however sufficient for proving that

〈infdexµG([α]), f 〉 = lim
s→∞

∫
M

∫
g

eisΩ(x)α(x)f̂ (x)dx (1)

is a well defined map from H∗G,c(M0) to invariant distributions on g∗. This we call the
infinitesimal index. The infinitesimal index does not depend on some deformations of the
form σ ; see Theorem 3.5.

In the third and fourth sections, we prove a certain number of functorial properties
of the infinitesimal index: the locality (excision) property in ğ 4.1, the functoriality with
respect to subgroups in ğ 4.5, and the stability with respect to immersions in ğ 4.8.
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One of the most important properties is the free action property that we prove in
ğ 4.11. Consider the situation where the compact Lie group L acts freely on M and 0
is a regular value of µ. Then the infinitesimal index of a class [α] is a polynomial
density on l∗. Its value at 0 is the integral of the cohomology class corresponding to [α]
under the Kirwan map over the reduced space µ−1(0)/L. This is essentially the Witten
nonabelian localization theorem [25]. We give also the double equivariant version, where
a compact Lie group G acts on M, commuting with the free action of L.

We then deduce from these properties the stability with respect to induction in
ğ 5.13.1, and a comparison formula with the infinitesimal index for the maximal torus of
G in ğ 5.15.

Let us comment on previous work around this theme.
The use of the form eisDσ in order to ‘localize’ integrals is the main principle in the

Witten nonabelian localization theorem [14, 25] and our definition of the infinitesimal
index is strongly inspired by this principle.

Paradan has studied systematically the situation of a manifold M provided with a
G-invariant action form σ . Indeed, he constructed in [20] a closed equivariant form Pσ
on M, congruent to 1 in cohomology and supported near M0. Paradan’s form Pσ is
constructed using equivariant cohomology with C−∞ coefficients. Multiplying α(x) by
Paradan’s form Pσ (x) leads to a closed compactly supported equivariant form on M

and I(x) := ∫M Pσ (x)α(x) is a generalized function on g. As we explain in Remark 3.8,
our infinitesimal index is the Fourier transform of I(x). Properties of the infinitesimal
index could thus be deduced by means of the Fourier transform from the functorial
properties of Pσ proven in [20, 22]. For example, the independence of the infinitesimal
index with respect to some deformations of the form σ is an important tool, similar to
the independence for Pσ proven in a more general setting in [20](Proposition 2.6). The
formula for infdexµG in term of a maximal torus of G is similar to a remarkable formula
in [20] (Theorem 4.5). However, we have chosen here to prove directly properties of the
infinitesimal index by using our limit definition. There are two advantages in doing so.
First, we believe that the proofs are easier. Secondly, this is the framework that we will
use in [11] to produce piecewise polynomial densities (also called spline distributions)
directly on g∗ from some compactly supported equivariant classes.

In the case where M = N⊕N∗, where N is a representation space for a linear action of a
torus G, we determined KG(M0) as a space of functions on Ĝ using the multiplicity index
map in the article [9]. In a companion article [10], we have used the infinitesimal index
to identify H∗G,c(M0) with a space of spline distributions on g∗ of which the functions
describing the index are a discrete analogue.

Finally using the analogies between splines and discrete functions, we have compared
in [11] the equivariant cohomology with compact supports and the equivariant K-theory
of M0, by relating the infinitesimal index and the multiplicity index map.
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1. Equivariant de Rham cohomology

Let M be a C∞ manifold with a C∞ action of a compact Lie group G. We are going to
define its equivariant cohomology with compact supports following the Cartan definition
(see [13]).

We define the space of compactly supported equivariant forms as

AG,c(M)= (S(g∗)⊗Ac(M))
G

with the grading given setting g∗ in degree 2. Here Ac(M) is the algebra of differential
forms on M with compact supports. Thus an element of AG,c(M) can be written as
α(x) =∑R

a=1 Pa(x)αa where Pa(x) are polynomial functions on g, and αa are differential
forms with compact support on M.

Each element x ∈ g of the Lie algebra of G induces a vector field vx on M, the
infinitesimal generator of the action: here the sign convention is that vx = d

dε exp(−εx) ·m
in order that the map x→ vx be a Lie algebra homomorphism. A vector field V on M
induces a derivation ιV on forms, such that ιV(df )= V(f ), and for simplicity we denote ιvx

by ιx.
One defines the differential as follows. Given α ∈ AG,c(M), we think of α as an

equivariant polynomial map on g with values in Ac(M); thus, for any x ∈ g, we set

Dα(x) := d(α(x))− ιx(α(x)) (2)

where d is the usual de Rham differential.
It is easy to see that D increases the degree by 1 and that D2 = 0. Thus we can take

the cohomology and we get the G-equivariant cohomology of M with compact supports.
Now take a G-stable closed set Z in a manifold M. Consider the open set U =M \ Z.

Then U is a manifold and we have an inclusion of complexes AG,c(U) ⊂ AG,c(M) given
by extension by zero. We set

AG,c(Z,M) :=AG,c(M)/AG,c(U).

Definition 1.1. The equivariant de Rham cohomology with compact supports H∗G,c(Z)
is the cohomology of the complex A∗G,c(Z,M).

Notice that AG,c(U) is an ideal in AG,c(M), so AG,c(Z,M) is a differential graded
algebra and H∗G,c(Z) is a graded algebra (without 1 if Z is not compact).

In this model, a representative of a class in H∗G,c(Z) is an equivariant form α(x) with
compact support on M. The form α is not necessary equivariantly closed on M, but
there exists a neighborhood of Z such that the restriction of α(x) to this neighborhood is
equivariantly closed.

If Z is compact, the class 1 belongs to H∗G,c(Z): a representative of 1 is a G-invariant
function χ on M with compact support and identically equal to 1 on a neighborhood of Z
in M.

Remark 1.2. Our model for H∗G,c(Z) seems to depend on the ambient manifold M.
However, in the appendix we are going to see that, under mild assumptions on M
and Z, H∗G,c(Z) is naturally isomorphic to the equivariant singular cohomology of Z with
compact supports.
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By the very definition of H∗G,c(Z), we also deduce the following proposition.

Proposition 1.3. Let M be a G-space, and j : Z→M the inclusion of a closed G-stable
subset. Denote by i : U→M the inclusion of U :=M \ Z. We have a long exact sequence

· · · → Hh
G,c(U)

i∗−−−−→ Hh
G,c(M)

j∗−−−−→ Hh
G,c(Z) −−−−→ Hh+1

G,c (U)→ · · · . (3)

If i : Z→M is a closed G-submanifold of a manifold M, the restriction of forms gives
rise to a well defined map i∗ :AG,c(Z,M)→AG,c(Z).

Proposition 1.4. If Z is a closed G-invariant submanifold of a manifold M admitting
an equivariant tubular neighborhood, the map i∗ induces an isomorphism in cohomology.

Proof. We reduce to the case in which M is a vector bundle on Z by restriction to a
tubular neighborhood. Put a G-invariant metric on this bundle and let p : M→ Z be
the projection. Choose a C∞ function f on R with compact support and equal to 1 in a
neighborhood of 0. We map an equivariant form ω ∈AG,c(Z) to f (‖m ‖2)p∗ω(m) and then
to its class modulo AG,c(U). It is easily seen that this map is an inverse in cohomology of
the map i∗. �

Assume that M is a L × G-manifold and that L acts freely on M. Then M/L
is a manifold with a G-action. Let Z be a G × L closed subset of M. Denote by
p : M → M/L the projection. The pull-back of forms on M/L induces a map from
p∗ : H∗G,c(Z/L)→ H∗L×G,c(Z).

Proposition 1.5. The pull-back

p∗ : H∗G,c(Z/L)→ H∗L×G,c(Z)

is an isomorphism.

Proof. The fact that the pull-back of forms induces an isomorphism between H∗G,c(M/L)
and H∗L×G,c(M), and between H∗G,c((M \ Z)/L) and H∗L×G,c(M \ Z), is proven as in the work
of Cartan (see [13] or [12]). Our statement then follows from Proposition 1.3. �

2. Basic definitions

2.1. The action form and the moment map

Let G be a Lie group and M a G-manifold.

Definition 2.2. An action form is a G-invariant real 1-form σ on M.

The prime examples of this setting are when M is even dimensional and dσ is
non-degenerate. In this case dσ defines a symplectic structure on M.

Example 2.3. For every manifold N, we may take its cotangent bundle M := T∗N with
projection π : T∗N→ N. The canonical action form σ on a tangent vector v at a point
(n, φ), n ∈ N, φ ∈ T∗n N is given by

〈σ | v〉 := 〈φ | dπ(v)〉.
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In this setting, dσ is a canonical symplectic structure on T∗N and, if r = dim(N), the
form dσ r

r! determines an orientation and a measure, the Liouville measure, on T∗N. If a
group G acts on N, then it acts also on T∗N, preserving the canonical action form and
hence the symplectic structure and the Liouville measure.

Remark 2.4. If M is a manifold with a G-invariant Riemannian structure, we can
consider an invariant vector field instead of a 1-form.

Definition 2.5. Given an action form σ we define the moment map µσ : M → g∗
associated with σ by

µσ (m)(x) := −〈σ | vx〉(m)=−ιx(σ )(m) (4)

for m ∈M, x ∈ g.

Remark 2.6. Due to our sign convention for vx, we have

µ(m)(x) :=
〈
σ

∣∣∣∣ d

dε
exp(εx) · m

〉
.

The moment map is a G-equivariant map, where on g∗ we have the coadjoint action.

The form dσ is a closed 2-form on M. Then Dσ(x)= µ(x)+ dσ is a closed (and in fact
exact) equivariant form on M.

Let us present a few examples.

Example 2.7. In Example 2.3, take N = S1 = {eiθ }. The form dθ gives a trivialization
T∗S1 = S1 × R. The vector field ∂

∂θ
gives a canonical generator of the Lie algebra of S1,

and dθ , a generator for the dual. The circle group S1 acts freely by rotations on itself. If
[eiθ , t] is a point of T∗S1 with t ∈ R, the action form σ is σ = tdθ . The function t is the
moment map and dt ∧ dθ the symplectic form.

More generally, take N = G, a Lie group. Denote by

L(g) : h 7→ gh, R(g) : h 7→ hg−1

the left and right actions of G on G and by extension also on T∗G. Let us now trivialize
T∗G= G× g∗ using left invariant forms. Then, in this trivialization, for h ∈ G and ξ ∈ g∗,

L(g)(h, ξ)= (gh, ξ), R(g)(h, ξ)= (hg−1, gξ).

Call π : T∗G→ G the canonical projection. Fix a basis ψ1, . . . , ψr of left invariant
1-forms on G such that a point of T∗G= G× g∗ is a pair (g, ζ )= (g,∑i ζiψi). Clearly the
action form is σ =∑i ζiπ

∗(ψi), and the symplectic form is
∑

i dζi∧π∗(ψi)+
∑

i ζiπ
∗(dψi).

In the noncommutative case, in general dψi 6= 0; nevertheless when we compute the
Liouville form, we immediately see that these terms disappear and

dσ r

r! = dζ1 ∧ π∗(ψ1) ∧ · · · ∧ dζr ∧ π∗(ψr). (5)

We can rewrite this as dσ r

r! = (−1)
r(r−1)

2 dζ ∧π∗(Vψ ) where we set Vψ := ψ1∧ψ2∧· · ·∧ψr

and dζ := dζ1 ∧ · · · ∧ dζr. At this point it is clear that Vψ gives a Haar measure dg
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on G while dζ gives a translation invariant measure on g∗. Thus we have (identifying top
forms with measures according to the orientation of T∗G given by dσ r

r! )

dσ r

r! = dζdg. (6)

Remark 2.8. We can further normalize our choice of the basis of left invariant forms
such that Vω gives the normalized Haar measure giving volume 1 to G. This normalizes
also the translation invariant measure on g∗. The only further choice consists in choosing
an orientation for G such that we have an induced orientation for g∗ giving the canonical
orientation on T∗G.

Let us call µ` and µr the moment maps for the left and right actions of G respectively.
By the very definition of σ , we have the following proposition.

Proposition 2.9.

µ`(g, ψ)= gψ, µr(g, ψ)=−ψ, left trivialization. (7)

If we had used right invariant forms in order to trivialize the bundle, we would have

µr(g, ψ)=−gψ, µ`(g, ψ)= ψ, right trivialization. (8)

Example 2.10. We get another example in the case of a symplectic vector space V with
antisymmetric form B. Then σ = 1

2B(v, dv) is a 1-form on V invariant under the action
of the symplectic group G, such that dσ = 1

2B(dv, dv) is a symplectic 2-form on V. The
moment map µ : V→ g∗ is given by µ(v)(x)= 1

2B(v, xv).

For example, let M := R2 with coordinates v := [v1, v2],B=
∣∣∣ 0 1
−1 0

∣∣∣. The action form σ

is 1
2 (v1dv2 − v2dv1) and dσ = dv1 ∧ dv2. The compact part of the symplectic group is the

circle group S1 acting by rotations. The moment map is v21+v22
2 .

Remark 2.11. Given a vector space N, the space N ⊕ N∗ has a canonical symplectic
structure given by

〈(u, φ) | (v, ψ)〉 := 〈φ | v〉 − 〈ψ | u〉. (9)

The symplectic structure dσ on the cotangent bundle to a vector space N gives a
symplectic structure B to the vector space T∗N = N ⊕ N∗.

The action form σ coming from the cotangent structure is not the same as the action
form on N ⊕ N∗ given by duality (9) (in the case V = R, ydx versus 1

2 (ydx− xdy)), but the
moment map relative to the subgroup GL(N) acting by (gn,tg−1φ) is the same, as is dσ .

2.12. The cohomology groups H∞
G,c(M)

We will need to extend the notion of equivariant cohomology groups. Consider the
space C∞(g) of C∞ functions on g. We may consider the Z/2Z-graded spaces A∞G (M)
(or A∞G,c(M)) consisting of the G-equivariant C∞ maps from g to A(M) (or to
Ac(M)). The equivariant differential D is well defined on A∞G (M) (or on A∞G,c(M)) and
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takes even forms to odd forms and vice versa. Thus we get the cohomology groups
H∞G (M), H∞G,c(M). The group H∞G,c(M) is a module over H∞G (M), and in particular on
C∞ (g)G =H∞G (pt).

Proceeding as in the previous case, we may define for any G-stable closed subspace
Z of M the cohomology groups H∞G,c(Z). An element in H∞G,c(Z) is thus represented by
an element in A∞G,c(M) whose boundary has support in M \ Z. We have a natural map
H∗G,c(Z)→H∞G,c(Z).

In order to take Fourier transforms, we will need to use yet another space.
Consider the space P∞(g) of C∞ functions on g with at most polynomial growth.

Equivalently, we say that P∞(g) consists of functions with moderate growth. We may
consider the spaces A∞,mG,c (M) consisting of the G-equivariant C∞ maps with at most
polynomial growth from g to Ac(M). The index m indicates the moderate growth on g

of the coefficients. We get the cohomology groups H∞,mG,c (M). This new cohomology has
H∞,mG (pt) = P∞ (g)G and is a module over P∞ (g)G. We may define in the same way the
groups H∞,mG,c (Z) of the cohomology with compact supports, and with coefficients of at
most polynomial growth, for any G-stable closed subspace Z of M.

2.13. Connection forms

We shall use a fundamental notion in Cartan’s theory of equivariant cohomology. Let us
recall the following definition.

Definition 2.14. Given a free action of a compact Lie group L on a manifold P, a
connection form is an L-invariant 1-form ω ∈ A1(P) ⊗ l with coefficients in the Lie
algebra of L such that −ιxω = x for all x ∈ l.

If on P with free L-action we also have a commuting action of another compact group
G, it is easy to see that there exists a G× L-invariant connection form ω ∈A1(P)⊗ l on P
for the free action of L.

Let M = P/L and y ∈ g. Define the curvature R and the G-equivariant curvature Ry of
the bundle P→M by

R := dω + 1
2
[ω,ω], Ry := −iyω + R. (10)

Example 2.15. Consider L = G and P = G with left and right action. A connection
form for the right action can be constructed as follows. Each element x of the Lie
algebra of G defines the vector field vx by right action. These are left invariant vector
fields. Given a basis e1, . . . , er of g, set vi := vei . This determines a dual basis and
correspondingly left invariant forms ωi with ivj(ωi)= 〈ωi | vj〉 = δi

j such that −∑i ωiei is a
connection form for the right action.

This form is also left invariant and R= 0, so by (10) the equivariant curvature is −iyω
where now iy is associated with the left action. We then have

Ry(g)=−
∑

i

iy(ωi)(g)ei =−g−1y. (11)
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The equivariant Chern–Weil homomorphism ([7, 8]; see [3]) associates with any
L-invariant smooth function a on l a closed G-equivariant form, with C∞ coefficients
as in ğ 2.12, denoted by y→ a(Ry), on M = P/L.

The formula for this form is obtained via the Taylor series of the function a
as follows. Choose a basis ej, j = 1, . . . , r, of l and write R = ∑j Rj ⊗ ej. For a

multi-index I := (i1, . . . , ir), define RI := ∏r
j=1 R

ij
j . Then, given a point p ∈ P, we set

the following definition.

Definition 2.16.

a(Ry)(p) := a(−iyω + R)= a(−ιyω(p))+
∑

I

∂Ia(−ιyω(p))RI

I! (12)

which is a finite sum since R is a nilpotent element.

One easily verifies that this is independent of the chosen basis. Moreover one can
prove (as in the construction of ordinary characteristic classes) the following proposition.

Proposition 2.17 ([7, 8], see [3]). The differential form a(Ry) is the pull-back of a
G-equivariant closed form (still denoted by a(Ry)) on M = P/L. Its cohomology class
in H∞G (M) is independent of the choice of the connection.

3. The definition of the infinitesimal index

3.1. The infinitesimal index

As before, consider a compact Lie group G and a G-manifold M equipped with an action
form σ . We assume M oriented. Let µ := µσ : M→ g∗ be the corresponding moment
map given by (4).

Set

M0
G := µ−1(0), U :=M \M0

G.

We simply denote M0
G by M0 when the group G is fixed.

Consider the equivariant form

Ω := dσ + µ= Dσ.

Let D′(g∗) be the space of distributions on g∗. It is a S[g∗] module where g∗ acts by
differentiation. When G is noncommutative, we need to work with the space D′ (g∗)G of
G-invariant distributions.

By Definition 1.1, a representative of a class [α] ∈ H∗G,c(M0) is a form α ∈
[S(g∗)⊗Ac(M)]G such that Dα is compactly supported in U.

Let us define a map called the infinitesimal index

infdexσG : H∗G,c(M0)→D′ (g∗)G

as follows.
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We fix a translation invariant Lebesgue measure dξ on g∗. We choose a square root i of
−1 and define the Fourier transform

f̂ (x) :=
∫

g∗
e−i〈ξ |x〉f (ξ)dξ.

We normalize dx on g such that the inverse Fourier transform is

f (ξ)=
∫

g
ei〈ξ |x〉 f̂ (x)dx. (13)

The measure dxdξ is independent of the choice of dξ .
Let f (ξ) be a C∞ function on g∗ with compact support in a ball BR of radius R in

g∗ (for a choice of Euclidean structure on g∗) and f̂ (x) its Fourier transform, a rapidly
decreasing function on g.

Consider the differential form on M depending on a parameter s:

Ψ (s, α, f )=
∫

g
eisΩ(x)α(x)f̂ (x)dx,

and define

〈infdex(s, α, σ ), f 〉 :=
∫

M

∫
g

eisΩ(x)α(x)f̂ (x)dx

=
∫

M
Ψ (s, α, f ). (14)

This double integral on M × g is absolutely convergent, since α is compactly supported
on M and depends polynomially on x, while f̂ (x) is rapidly decreasing.

More precisely, write α(x) =∑R
a=1 Pa(x)αa with αa compactly supported forms on M

and Pa(x) polynomial functions of x. Then

Ψ (s, α, f )(m)=
∑

a

[∫
g

f̂ (x)Pa(x)eis〈µ(m),x〉dx

]
eisdσαa.

By Fourier inversion (as in (13)),∫
g

f̂ (x)Pa(x)eis〈µ(m),x〉dx= (Pa(−i∂)f )(sµ(m)), (15)

and thus

Ψ (s, α, f )=
∑

a

((Pa(−i∂)f ) ◦ (sµ))eisdσαa. (16)

In particular, remark that Ψ (s, α, f ) does not depend on the choice of dξ . Another
consequence of this analysis is the following proposition.

Proposition 3.2. Let K ⊂M be the support of α and C ⊂ g∗ the support of f .
The support of Ψ (s, α, f ) is contained in K ∩µ−1(C/s). In particular, if sµ(K)∩C = ∅,

then Ψ (s, α, f )= 0.

Given s > 0, set Vs = µ−1(BR/s). We can then choose some s0 � 0 so large that
the restriction of α to the small neighborhood Vs0 of M0 is equivariantly closed.
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This is possible since Dα has a compact support K in U = M \ M0, and so, if
ρ :=minm∈K ‖µ(m)‖> 0, it suffices to take s0 > R/ρ.

We have (Pa(−i∂)f )(sµ(m)) = 0 if ‖sµ(m)‖ > R ⇐⇒ ‖µ(m)‖ > R/s. Thus we see that,
for s> s0, if K is the support of α, Ψ (s, α, f ) has compact support contained in Vs ∩ K.

We have then the formula

〈infdex(s, α, σ ), f 〉 =
∫

M
Ψ (s, α, f )=

∫
Vs

Ψ (s, α, f ). (17)

Note that from the formula (17), the lemma follows.

Lemma 3.3. If α has support in U then, for s large, Ψ (s, α, f )= 0.

We will often make use of the following lemma.

Lemma 3.4. We have

−i
d

ds

∫
M

∫
g

eisΩ(x)α(x)f̂ (x)dx=
∫

M

∫
g
σeisΩ(x)D(α)(x)f̂ (x)dx.

Proof. Indeed, since Ω(x)= Dσ(x),

−i
d

ds

∫
M

∫
g

eisΩ(x)α(x)f̂ (x)dx =
∫

M

∫
g

Dσ(x)eisΩ(x)α(x)f̂ (x)dx

= ν + r

with

ν =
∫

g

∫
M

D(σeisΩ(x)α(x))f̂ (x)dx

and

r =
∫

M

∫
g
σeisΩ(x)D(α)(x)f̂ (x)dx

since D(Ω)= 0 and D is a derivation, we have D(eisΩ(x))= 0.
As α(x) is compactly supported, ν = 0, and we obtain the lemma. �

Let us see that

〈infdex(s, α, σ ), f 〉 =
∫

M

∫
g

eisΩ(x)α(x)f̂ (x)dx

does not depend on the choice of s> s0.
We use Lemma 3.4 above to compute d

ds 〈infdex(s, α, σ ), f 〉. By the hypotheses
made, the form σDα has compact support in U; thus by Lemma 3.3, the differential
form Ψ (s, σDα, f ) = ∫g σeisΩ(x)D(α)(x)f̂ (x)dx is identically equal to 0 for s > s0. This
implies that for s> s0,

d

ds
〈infdex(s, α, σ ), f 〉 = 0,

and hence the independence of the choice of s> s0.
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We now see the independence of the choice of the representative α. In fact, take a
different representative α + β with β compactly supported on U. Then

lim
s→∞〈infdex(s, β, σ ), f 〉 = 0

by Lemma 3.3.
Next let us show that lims→∞〈infdex(s, α, σ ), f 〉 depends only on the cohomology class

of α. Take α = Dβ, with β compactly supported on M; we see that

〈infdex(s, α, σ ), f 〉 =
∫

M

∫
g

eisΩ(x)Dβ(x)f̂ (x)dx

=
∫

g

∫
M

D(eisΩ(x)β(x))f̂ (x)dx= 0.

Finally, let us consider two action forms σ1, σ0, with σ0 = σ . Then the moment
map for σt = tσ1 + (1 − t)σ0 is µt = tµ1 + (1 − t)µ0, with µ0 = µ. We assume
that the closed set µ−1

t (0) remains equal to M0, for t ∈ [0, 1]. Let us see that
infdex(s, α, σ1)= infdex(s, α, σ0), for s large.

Indeed, consider Ω(t)= Dσt. Let

I(t, s)=
∫

M

∫
g

eisΩ(t,x)α(x)f̂ (x)dx.

We obtain

−i
d

dt
I(t, s) = s

∫
M

∫
g

D(σ1 − σ0)(x)eisΩ(t,x)α(x)f̂ (x)dx

= ν + r

with

ν = s
∫

g

∫
M

D((σ1 − σ0)eisΩ(t,x)α(x))f̂ (x)dx

and

r = s
∫

M

∫
g
(σ1 − σ0)eisΩ(t,x)D(α)(x)f̂ (x)dx.

As α(x) is compactly supported, ν = 0.
As for r, we remark that Ω(t, x) = 〈µt, x〉 + q(t) where q(t) is a 2-form. The integral r

involves the value of f , and its derivatives, at the points sµt(m). As the compact support
K of Dα is disjoint from M0, our assumption implies that µt(m) is never equal to 0 for
m ∈ K and t ∈ [0, 1]. Thus, if ρ :=minm∈K,t∈[0,1] ‖µt(m)‖ > 0, arguing as for the formulas
(15) and (16), we deduce that r = 0 if we take s0 > R/ρ.

One has still to verify that this linear map satisfies the continuity properties that
make it a distribution. We leave this to the reader.

In conclusion we have shown the following theorem.

Theorem 3.5. Let σ be an action form with moment map µ. Let M0 = µ−1(0). Then we
can define a map

infdexσG : H∗G,c(M0)→D′ (g∗)G
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setting, for any [α] ∈ H∗G,c(M0) and for any smooth function with compact support f
on g∗,

〈infdexσG([α]), f 〉 := lim
s→∞

∫
M

∫
g

eisΩ(x)α(x)f̂ (x)dx.

The map infdexσG is a well defined homomorphism of S [g∗]G modules.
If the 1-form σ moves along a smooth curve σt with moment map µt such that µ−1

t (0)
remains equal to M0, then

infdexσt
G = infdexσG.

In particular, if two action forms σ1, σ2 have the same moment map µ, the two
infinitesimal indices infdexσ1G and infdexσ2G coincide. Indeed, the moment map µt

associated with (1− t)σ1 + tσ2 is constant. In view of this property, we denote simply by
infdexµG the map infdexσG. We call it the infinitesimal index map associated with µ, or,
for short, the infdex map.

Remark 3.6. In general, the maps infdexµG and infdex−µG are different
(cf. Example 3.14), although the zeros of the moment maps associated with σ and
−σ are the same. Thus the stability condition that the set µ−1

t (0) remains constant
when moving along σt is essential in order to insure the independence of the infinitesimal
index.

Let us give another formula for infdexµG. From this formula, it will be clear that
infdexµG belongs to the space S ′ (g∗)G of invariant tempered distributions on g∗.

Let f be a Schwartz function on g∗. If α is a representative of [α] ∈ H∗G,c(M0), we see
that

∫
g eisΩ(x)(Dα)(x)f̂ (x)dx is a rapidly decreasing function of s: Dα being identically

equal to 0 on a neighborhood of M0, this is expressed in terms of the value of the
function f , and its derivatives, at points sµ(m), where µ(m) is nonzero. Thus we can
define the compactly supported differential form Φ(α, f ) on M by

Φ(α, f ) :=
∫

g
α(x)f̂ (x)dx+ iσ

∫ ∞
s=0

(∫
g

eisΩ(x)Dα(x)f̂ (x)dx

)
ds. (18)

Proposition 3.7. We have

〈infdexµG(α), f 〉 =
∫

M
Φ(α, f ).

Proof. Let f be a function with compact support on g∗. Then

lim
s→∞

∫
M

∫
g

eisΩ(x)α(x)f̂ (x)dx

is equal to ∫
M

∫
g
α(x)f̂ (x)dx+

∫ ∞
0

d

ds

(∫
M

∫
g

eisΩ(x)α(x)f̂ (x)dx

)
ds.

By Lemma 3.4, we obtain the proposition. �
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Remark 3.8. It is possible to define equivariant forms on M with C−∞ coefficients [16].
Such a form is an equivariant map from test densities on g to differential forms on M.
The equivariant differential D extends and we obtain the group H−∞G (M), and similarly
the group H−∞G,c (M). If α ∈ H∗G,c(M0), and g is a test function on g, we may define the
differential form

(p(α), gdx)=
∫

g
α(x)g(x)dx+ iσ

∫ ∞
s=0

(∫
g

eisΩ(x)Dα(x)g(x)dx

)
ds.

It is easy to see that p(α) is a compactly supported equivariant form on M with C−∞
coefficients such that D(p(α)) = 0. Indeed, we have p(α) = α − σ Dα

Dσ , where Dα
Dσ is well

defined in the distribution sense by −i
∫∞

s=0 eisDσDαds.
We see that α 7→ p(α) defines a map from H∗G,c(M0) to H−∞G,c (M). In this framework,

our distribution infdexµG(α) on g∗ is the Fourier transform of the generalized function∫
M p(α) on g.
Paradan defined, associated with an action form σ , a particular element Pσ ∈

H−∞G (M) representing 1 and supported in a neighborhood of M0 [19]. This element is
the form p(1) defined above (when M0 is compact). Most of our subsequent theorems
could be obtained by Fourier transforms of theorems proven in [20, 22] where basic
functorial properties of Pσ are proved. However, we will work on g∗ instead that on g

and we will give direct proofs.

3.9. Extension of the definition of the infinitesimal index

Let us see that the definition of the infinitesimal index extends to H∞,mG,c (M
0).

If α ∈A∞,mG,c (M) is such that Dα = 0 in a neighborhood of M0, we see that Lemma 3.4
still holds, f being a Schwartz function on g∗:

−i
d

ds

∫
M

∫
g

eisΩ(x)α(x)f̂ (x)dx=
∫

M

∫
g

eisΩ(x)σDα(x)f̂ (x)dx.

Since α is of at most polynomial growth, the function of x given by Dα(x)f̂ (x)
is still a Schwartz function of x. Thus by Fourier inversion, we again see that
−i d

ds

∫
M

∫
g eisΩ(x)α(x)f̂ (x)dx is a rapidly decreasing function of s and we may define

〈infdexµG(α), f 〉 = lim
s→∞

∫
M

∫
g

eisΩ(x)α(x)f̂ (x)dx.

We have again the formula

〈infdexµG(α), f 〉 =
∫

M
Φ(α, f )

where Φ(α, f ) is given by equation (18).
This formula shows that infdexµG(α) is a G-invariant tempered distribution on g∗.

With similar arguments, we obtain the following theorem.

Theorem 3.10. We can define a map

infdexµG :H∞,mG,c (M
0)→ S ′ (g∗)G
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setting for any [α] ∈H∞,mG,c (M
0) and for any Schwartz function f on g∗

〈infdexµG([α]), f 〉 := lim
s→∞

∫
M

∫
g

eisΩ(x)α(x)f̂ (x)dx.

If σ moves smoothly along a curve σt such that µ−1
t (0) remains equal to M0, the map

infdexµt
G remains constant.

Furthermore, using the Fourier transform F of tempered distributions,

F(infdexµG([α]))= lim
s→∞

∫
M

eisΩ(x)α(x). (19)

Remark 3.11. If f has compact support and the Fourier transform of α(x) is a
distribution with compact support on g∗, the value

∫
M

∫
g eisΩ(x)α(x)f̂ (x)dx is independent

of s when s is sufficiently large.

Let us state some immediate properties of the infinitesimal index. We recall that
our construction of the infinitesimal index map is strongly inspired by the Witten
nonabelian localization theorem [25]. In particular, we have the following ‘nonabelian
localization’ result.

Theorem 3.12. Let [α] ∈H∞,mG,c (M) and I(x) = ∫M α(x), a function on g with moderate
growth. Let σ be an action form, and let M0 be the zeros of the moment map. Then [α]
defines an element [α0] in H∞,mG,c (M

0) and

F(infdexµG([α0]))(x)= I(x). (20)

Proof. This is clear from formula (19) as
∫

M eisΩ(x)α(x) does not depend on s, since Ω(x)
is exact and α is closed with compact support. �

The left-hand side of (20) depends only on the restriction of α on a small
neighborhood of M0. Thus Theorem 3.12 says that we can compute the equivariant
integral of α on M, knowing α on a small neighborhood of M0.

Remark 3.13. Let M be a G-manifold equipped with a G-invariant Riemannian metric.
Take a G-invariant vector field V on M such that Vm at each point m ∈M is tangent to
the orbit Gm and let σ be the 1-form associated with V using the metric. Then M0 is the
set of zeros of the vector field V.
• If G is abelian, we may choose V = vx with x generic in g, and then M0 = MG, the

set of fixed points of G on M. Theorem 3.12 leads to the ‘abelian localization theorem’ of
Atiyah, Bott, Berline and Vergne [2, 6].
• When G is not necessarily abelian and M is provided with a Hamiltonian

structure with symplectic moment map ν : M → g∗, then the Kirwan vector
field Vm = exp(εν(m))m is such that M0 coincides with the critical points of the function
‖ν ‖2(we used an identification g∗ = g). Then one of the connected components of M0 is
the zero of the symplectic moment map ν, and µ and ν coincide near this component.
This is the situation considered by Witten (and extensively studied by Paradan [19])
with applications to intersection numbers of reduced spaces ν−1(0)/G (as in [15]).
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Example 3.14. • If G := {1} is trivial, H∗G,c(M0) is equal to H∗c (M) and the infinitesimal
index maps to constants, by just integration of compactly supported cohomology classes.
• If M = {pt} is a point, the moment map and Ω(x) are both 0 while M0 =M = {pt}. Its

equivariant cohomology is S [g∗]G.
By Theorem 3.5 it is then enough to compute the infinitesimal index of the class 1.

This is given by

f 7→
∫

g
f̂ (x)dx= f (0)

by the Fourier inversion formula. So, in this case the infinitesimal index of 1 is the
δ-function δ0.

More generally, we have extended the definition of infdexµG to the space P∞ (g)G of
invariant functions on g with at most polynomial growth. If α(x) is any G-invariant
function on g with polynomial growth and α̂ is its Fourier transform (a distribution on
g∗), we obtain

infdexµ
0

G (α)= α̂. (21)

• Consider M = T∗S1 with the canonical action form as in Example 2.7. Then
M0 = S1. We compute the infinitesimal index of the class 1 ∈ H∗G,c(M0) = R. Let χ(t)
be a function identically equal to 1 in a neighborhood of t = 0. Then Dσ(x)= xt+ dt∧ dθ ,
and by definition

〈infdexµG(1), f 〉 = lim
s→∞

∫
T∗S1

(∫ ∞
−∞

χ(t)eisxt+isdtdθ f̂ (x)dx

)
= lim

s→∞

∫
T∗S1

χ(t)f (st)eisdtdθ = lim
s→∞ 2π is

∫
R
χ(t)f (st)dt

= lim
s→∞ 2π i

∫
R
χ(t/s)f (t)dt.

Taking the limit, we see that

〈infdexµG(1), f 〉 = 2π i
∫

R
f (t)dt,

that is the distribution infdexµG(1) is just 2π i times the integration with respect to the
Lebesgue measure dt.
• More generally, consider M = T∗G with the canonical action form σ as in

Example 2.7 and the canonical G × G-action by left and right multiplications. Set
r := dim G and orient M via the Liouville form dσ r. We take (g, ζ ) with g ∈ G and ζ ∈ g∗
as coordinates on M = G × g∗. We write an element of g ⊕ g as (y, x). We have M0 = G
and want to compute the infinitesimal index of the class 1 ∈ H0

G×G,c(M
0)= R. Let χ be a

function with compact support, G-invariant and identically equal to 1 in a neighborhood
of 0 in g∗. This function gives also a function on T∗G = G × g∗, still denoted by χ .
Then χ(g, ζ )= χ(ζ ) is a representative of 1. Let f be a function on g∗ ⊕ g∗. Then (using
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formulas (7) and (6) and Fourier inversion), we have

〈infdexµG×G(1), f 〉 = lim
s→∞

∫
T∗G

∫
g⊕g

χ(ζ )eisdσ eis〈ζ,g−1y−x〉 f̂ (x, y)dxdy

= lim
s→∞

∫
T∗G

∫
g⊕g

χ(ζ ) (is)r
(dσ)r

r! eis〈ζ,g−1y−x〉 f̂ (x, y)dxdy

= ir lim
s→∞

∫
G×g∗

∫
g⊕g

χ(ζ )sreis〈ζ,g−1y−x〉 f̂ (x, y)dxdydζdg

= ir lim
s→∞

∫
G×g∗

χ(ζ )f (sgζ,−sζ )dζdg

= ir lim
s→∞

∫
G×g∗

χ(ζ/s)f (gζ,−ζ )dζdg.

Taking the limit, we obtain

〈infdexµG×G(1), f 〉 = ir
∫

G×g∗
f (gζ,−ζ )dζdg. (22)

• Consider now M = R2 as in Example 2.10. As we have seen, the action form σ is
1
2 (v1dv2 − v2dv1), so Dσ(x)= dv1 ∧ dv2 + x‖v ‖2 /2. Then M0 = 0.

We compute the infinitesimal index of the class 1 ∈ H∗G,c(M0). Let χ(t) be a function
on R with compact support and identically equal to 1 in a neighborhood of t = 0. We
then get

〈infdexµG(1), f 〉 = lim
s→∞

∫
R2

∫ ∞
−∞

χ(‖v ‖2)eisx ‖v ‖
2

2 +isdv1dv2 f̂ (x)dx.

Using polar coordinates on R2, and inversion of the Fourier transform, we see that

〈infdexµG(1), f 〉 = 2π i lim
s→∞

∫ ∞
0

χ(t/s)
∫ ∞
0

f (t)dt.

Taking the limit, we obtain

〈infdexµG(1), f 〉 = 2π i
∫ ∞
0

f (t)dt,

that is the distribution infdexµG(1) is just 2π i times the Heaviside distribution supported
on R+.

4. Properties of the infinitesimal index

There are several functorial properties of the infinitesimal index that we need to
investigate: locality, product, restriction, the map i!, and free action.

4.1. Locality
The easiest property is locality.

Let M be a G-action manifold with moment map µ and i : U→M an invariant open
set; then we have a mapping i∗ :AG,c(U)→AG,c(M) which induces also a mapping

i∗ : H∗G,c(U0)→ H∗G,c(M0).
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Proposition 4.2. The mapping i∗ is compatible with the infinitesimal index.

Proof. This is immediate from the definitions. �

4.3. The product of manifolds

If we have a product M1 ×M2 of two manifolds relative to two different groups G1 × G2,
we have

(M1 ×M2)
0 =M0

1 ×M0
2

and the cohomology is the product.

Proposition 4.4. The infinitesimal index of the external product of two cohomology
classes is the external product of the two distributions.

Proof. This is immediate from the definitions. �

4.5. Restriction to subgroups

Let L ⊂ G be a compact subgroup of G such that l, the Lie algebra of L, is a subalgebra
of g. The moment map µL for L is just the composition of µG with the restriction
p : g∗→ l∗. Thus µ−1

L (0)⊃ µ−1
G (0).

If f is a test function on l∗, then p∗f is a smooth function on g∗ constant along the
fibers of the projection.

Definition 4.6. We will say that a distribution Θ on g∗ is a distribution with compact
support along the fibers if for any test function f on l∗, the distribution (p∗f )Θ has
compact support on g∗.

If Θ is a distribution on g∗ with compact support along the fibers, we may define p∗Θ
as a distribution on l∗ by

〈p∗Θ, f 〉 :=
∫

g∗
(p∗f )Θ. (23)

The right-hand side is computed as the limit when T tends to∞ of 〈Θ, (p∗f )χT〉 when
χT is a smooth function with compact support and equal to 1 on the ball BT of g∗.

Let ZG be a closed G-invariant subset of M containing µ−1
L (0) (if L is normal in G and

in particular if G is abelian, we can take ZG = µ−1
L (0)). Then we have two maps

j : H∗G,c(ZG)→ H∗G,c(µ
−1
G (0))

and

r : H∗G,c(ZG)→ H∗L,c(µ
−1
L (0)).

Theorem 4.7. If [α] ∈ H∗G,c(ZG) then infdexµG
G (j[α]) is compactly supported along the

fibers of the map p : g∗→ l∗, and

p∗(infdexµG
G (j[α]))= infdexµL

L (r[α]). (24)
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Proof. Write F g∗(h) for the Fourier transform ĥ of a function h on g∗.
Let f be a test function on l∗ with support on a ball BR. We have, for χ a test function

on g∗,

〈(p∗f )infdexµG
G (j[α]), χ〉 = lim

s→∞

∫
M

∫
g

eisΩ(x)α(x)F g∗((p∗f )χ)(x)dx.

By our assumption on α, there exists ε > 0 such that Dα is equal to 0 on the subset
‖µL(m)‖ = ‖pµG(m)‖ < ε of M. The support C of (p∗f )χ is contained in the set of
y ∈ g∗ such that ‖p(y)‖ < R. The support K of Dα is contained in the set of points m
such that ‖pµG(m)‖ > ε. Thus by Proposition 3.2 and the argument of Lemma 3.4, the
distribution

χ→
∫

M

∫
g

eisΩ(x)α(x)F g∗(χp∗f )(x)dx

stabilizes as soon as s> R/ε.
Write for s0 > R/ε

〈(p∗f )infdexµG
G (j[α]), χ〉 =

∫
M

∫
g

eis0Ω(x)α(x)F g∗(χp∗f )(x)dx

=
∫

M
Ψ (s0, α, χp∗f )

where

Ψ (s0, α, χp∗f )(m) =
∑

a

[∫
g

Pa(x)eis0〈µ(m),x〉F g∗(χp∗f )(x)dx

]
eis0dσαa

=
∑

a

((Pa(−i∂)(χp∗f ) ◦ (s0µ))eis0dσαa. (25)

Applying Proposition 3.2, we have that, if K is the compact support of α, as s0 is greater
than R/ε, the form Ψ (s0, α, χp∗f ) is supported on the compact subset s0µG(K) in g∗.
This shows the first statement that infdexµG

G (j[α]) is compactly supported along the
fibers of p.

We pass next to formula (24). We then have

〈(p∗f )infdexµG
G (j[α]), χT〉 =

∫
M
Ψ (s0, α, χTp∗f )

for any T large.
Using formula (25), when T is sufficiently large, as χT is equal to 1 on the compact

subset s0µG(K), we thus have that Ψ (s0, α, χTp∗f ) is simply∑
a

((Pa(−i∂)p∗f ) ◦ (s0µ))eis0dσαa.

As p∗f is constant along the fibers, if we denote by α0 the restriction of α(x) to l, we
see that Ψ (s0, α, χTp∗f ) is equal to the differential form Ψ (s0, α0, f ) as all derivatives in
the ker p direction annihilate p∗f . We thus obtain our theorem. �
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4.8. The Thom class and the map i!
Let Z be an oriented G-manifold of dimension d and i : M ↪→ Z a G-stable oriented
submanifold of dimension n = d − k. Assume that M is an action manifold with moment
map µ and that Z is equipped with an action form σZ such that the associated moment
map µZ extends µ. Thus Z0 ∩M =M0. Under these assumptions, we will define a map

i! : H∗G,c(M0)→ H∗G,c(Z0)

preserving the infdex.
Let us recall the existence of an equivariant Thom class ([18]; see [13], p. 158,

and [21]). We assume first that M has a G-stable tubular neighborhood N in Z, with
projection p : N→M. Then there exists a unique class τM of equivariantly closed forms
on N with compact support along the fibers such that the integral p∗τM is identically
equal to 1 along each fiber. Thus for any equivariant form α(x) on M with compact
support (but not necessarily closed), we have that∫

M
α =

∫
N

p∗α ∧ τM.

In general, let us take a class [α] ∈ H∗G,c(M0) where α ∈AG,c(M) and Dα has support K
in M \M0.

Consider a G-stable open set U ⊂M with the following properties.

(i) The support of α is contained in U.

(ii) The closure of U is compact and has an open neighborhood A in Z, and M ∩ A has a
G-stable tubular neighborhood in A.

By locality, we can then substitute U with M and thus assume that the pair (Z,M) has
all the properties which insure the existence of a Thom class τM.

Consider a G-invariant Riemannian metric on the normal bundle N to M in Z.
Define Sε as the (open) disk bundle of radius ε in N . Then we can take our tubular
neighborhood in such a way that it is diffeomorphic to Sε for some ε.

We claim that we can take Sε so close to M that p−1K ∩ Sε ∩ Z0 = ∅. Indeed, p−1K ∩ Sε

is a compact set and, since K is disjoint from M0 and hence from Z0, for a sufficiently
small ε, p−1K ∩ Sε is disjoint from Z0.

Let us now fix the Thom form τM in AG,c(N ) with support in Sε .
Consider then the form p∗α ∧ τM. We have that D(p∗α ∧ τM)= p∗Dα ∧ τM has support

in p−1K ∩ Sε ⊂ Z \ Z0. It follows that p∗α ∧ τM defines an element in H∗G,c(Z0).
We claim that this element depends only on the class [α]. So first take another

Thom form τ ′M with the same properties. Then there is a form rM ∈ AG,c(Sε) such that
τM − τ ′M = DrM and

p∗α ∧ τM − p∗α ∧ τ ′M = p∗α ∧ DrM = D(p∗α ∧ rM)− p∗Dα ∧ rM

where p∗α ∧ rM has compact support and p∗Dα ∧ rM has support in Z \ Z0.
Next assume that α is supported outside M0; then again we may take τM such that

p∗α ∧ τM is supported outside Z0.
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Finally, if α = Dβ, we have p∗α ∧ τM = D(p∗β ∧ τM).
Hence we can set

i![α] := [p∗α ∧ τM]. (26)

Theorem 4.9. Assume that M is an action manifold with action form σ and moment
map µ and that Z is equipped with an action form σZ such that the associated moment
map µZ extends µ. Then the morphism

i! : H∗G,c(M0)→ H∗G,c(Z0)

preserves the infinitesimal index.

Remark 4.10. We do not need to assume that the restriction of σZ to M is the action
form σ on M, only that the moment map µZ restricts to µ.

Proof. First let us see that infdexµZ
G (i![α]) does not depend on the choice of the form σZ

on Z, if the moment map µZ restricts to µ. We can assume that Z = N. Let β = p∗α ∧ τM.
The form β is compactly supported.

Let σ1, σ0 be two 1-forms on Z and consider σt = tσ1 + (1 − t)σ0 and µt the
corresponding moment map. Set Ω(t) = Dσt. We assume that the map µt coincides
with µ on M for all t. Thus, provided we choose τM with support sufficiently close to M,
there exists an h> 0 such that on the support of Dβ, we have ‖µt‖> h> 0.

Define

I(t, s) :=
∫

N

∫
g
β(x)eisΩ(t,x)β(x)f̂ (x)dx.

We can prove that d
dt I(t, s) = 0 in the same way as we proved the invariance of the

infinitesimal index infdexµt
G along a smooth curve µt (proof of Theorem 3.5); thus we

skip the proof.
Having established the independence from σ , we choose for the final computation

σZ := p∗σ . In this case, since β = p∗α ∧ τM,

〈infdexµZ
G ([β]), f 〉 = lim

s→∞

∫
g

∫
N

p∗(eisΩ(x)α(x)) ∧ τM(x)f̂ (x)dx. (27)

As τM has integral 1 over each fiber of the projection p : N→M, we obtain that (27) is
equal to

lim
s→∞

∫
g

∫
M

eisΩ(x)α(x)f̂ (x)dx

which is our statement. �

4.11. Free action

Let G and L be two compact groups. Consider now an oriented manifold N under
G×L-action, with action 1-form σN and moment map µG×L = (µG, µL) : N→ g∗⊕ l∗. We
set N0 = µ−1

G×L(0).
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Assume that:
• the group L acts freely on N;
• 0 is a regular value of µL.
Define P= µ−1

L (0). By assumption, P is a manifold with a free L-action so

M := µ−1
L (0)/L

is a G-manifold. We will see in a short while that the orientation on N determines a
natural orientation on M.

We denote by π the projection π : P→M. The invariance of σN under L action implies
the following proposition.

Proposition 4.12. The restriction σ of σN to P verifies ιxσ = 0 for any x ∈ l and
descends to a G-invariant action form σM on M; thus M is an action manifold and
σ̄ = π∗(σM).

We denote by µ the moment map on M associated with σM. The map µ is obtained by
factoring the restriction of µG to P which is L-invariant, that is, µG = µ ◦ π on P. Since
N0 is the subset of P where µG equals 0, we see that M0 = µ−1(0), the fiber at zero of µ,
is M0 = N0/L.

Recall (Proposition 1.5) that since the action of L is free, we have an isomorphism
π∗ : H∗G,c(M0)→ H∗G×L,c(N

0).
Our goal in this section is, given a class [γ ] ∈ H∗G,c(M0), to compare infdexµG([γ ]) and

infdexµG×L
G×L (π

∗([γ ])).
As 0 is a regular value of µL, any L-stable compact subset K in P has an L-stable

neighborhood in N isomorphic to K × l∗ with the moment map µL being the projection
on the second factor. Since the computations of the infinitesimal index of a given class
with compact support are local around N0 (by Proposition 4.2), we may assume that
N = P× l∗ and that the moment map µL is the projection on the second factor. We write
an element of N as (p, ζ ) with p ∈ P, ζ ∈ l∗.

The composition of the projection η : N = P × l∗→ P and of π : P→M is a fibration
with fiber L × l∗ = T∗L. We orient M using the orientation of N and that given by the
symplectic structure on T∗L (see formula (5)).

4.12.1. An auxiliary form. Let us choose now a connection form ω ∈A1(P)⊗ l for the
free action of L on P. We want to apply Definition 2.16 to the following functions. For ζ
a point in l∗, define θζ ∈ C∞ (l)L by

θζ (x) :=
∫

L
ei〈x,lζ 〉dl=

∫
l∗

ei〈f ,x〉dβζ (f )

where dl is a Haar measure on L or in an equivalent way where dβζ (f ) is a L-invariant
measure on the orbit Lζ ⊂ l∗.

Thus for any ζ ∈ l∗, we may consider, using the curvature R (cf. formula (10)), the
G-equivariant closed form θζ (Ry) on M given by

θζ (Ry)=
∫

L
ei〈Ry,lζ 〉dl=

∫
L

ei〈−ιyω,lζ 〉ei〈R,lζ 〉dl. (28)
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We need some growth properties of the function y→ θζ (Ry). If we fix p ∈ P and ζ ∈ l∗,
let us see the following lemma.

Lemma 4.13. The function y→ θζ (Ry)(p) is the Fourier transform of a compactly
supported measure dµp,ζ on g∗ (with values in

∧
T∗p P).

Proof. Indeed, let f ∈ l∗. The function 〈−ιyω(p), f 〉 is linear in y ∈ g, so we write
〈−ιyω(p), f 〉 = 〈y, h(p, f )〉 with h(p, f ) ∈ g∗ depending smoothly on p, f . We see that

θζ (Ry)(p)=
∫

l∗
ei〈y,h(p,f )〉ei〈f ,R〉dβζ (f ),

where dβζ (f ) is an L-invariant measure supported on the orbit Lζ ⊂ l∗.
Let us integrate over the fiber of the map hp : l∗→ g∗ given by f → h(p, f ) = ξ . We

obtain that

θζ (Ry)(p)=
∫

g∗
ei〈y,ξ〉 (hp)∗(e

i〈f ,R〉dβζ (f )). (29)

In this formula, (hp)∗(e
i〈f ,R〉dβζ (f )) is a measure supported on the compact set hp(Lζ )

as dβζ (f ) is supported in the compact set Lζ . In particular, we see that, over a compact
subset of P, y→ θζ (Ry)(p) is a bounded function of y as well as all of its derivatives in y,
and estimates are uniform in ζ if ζ varies in a compact set of l∗. �

If [γ ] ∈ H∗G,c(M0), we choose a representative γ (y) which is a form with compact
support on M, depending of y in a polynomial way. Set

γ̃ζ (y) := γ (y)θζ (Ry). (30)

Proposition 4.14. The equivariant form γ̃ζ (y) is of at most polynomial growth in y. It
represents a class in H∞,mG,c (M

0) which does not depend on the choice of the connection ω

but only on the choice of the Haar measure dl.

Proof. The fact that γ̃ζ (y) is of at most polynomial growth follows from the preceding
discussion. The second statement is proved as in ([7, 8]; see [3]). �

Remark that θ0(Ry) = vol(L, dl) where vol(L, dl) is the volume of the compact Lie
group L for the Haar measure dl such that dldζ is the canonical measure on T∗L= L× l∗
(by right or left trivialization).

4.14.1. The main formula. With the notation of the previous paragraph, given
[γ ] ∈ H∗G,c(M0), we may apply the infinitesimal index construction (Theorem 3.10) to
the cohomology class [γ̃ζ ] ∈ H∞,mG,c (M

0) of the equivariant form γ̃ζ (y) = γ (y)θζ (Ry). We
have the following theorem.

Theorem 4.15. Let f1 be a test function on l∗ and f2 be a test function on g∗. Then
〈infdexµG([γ̃ζ ]), f2〉 is a smooth function of ζ and

〈infdexµG×L
G×L (π

∗([γ ])), f1f2〉 = idim L
∫

l∗
〈infdexµG([γ̃ζ ]), f2〉f1(ζ )dζ. (31)
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Remark 4.16. Formula (22) is a particular case of the above theorem. Indeed consider
M = T∗L with the double action of L × L. We take G = L as the first copy, and L as
the second copy acting freely on the right. Then P = L and M = L/L = {pt} is a point.
The equivariant curvature Ry, a form on P with value in l, is Ry(l) = −ly (formula (11)),
so γ̃ζ (y) is the invariant function

∫
L e−i〈ζ,ly〉dl and 〈infdexµG([γ̃ζ ]), f2〉 (the distribution

Fourier transform of the function γ̃ζ (y)) is
∫

L f2(−lζ )dl. The theorem above gives

〈infdexµG×L
G×L (1), f1f2〉 = idim L

∫
L×l∗

f1(ζ )f2(−lζ )dldζ

which is formula (22).

Let us first write a corollary of this theorem.

Corollary 4.17. Let f2 be a test function on g∗. Then the distribution f1 →
〈infdexµG×L

G×L (π
∗([γ ])), f1f2〉 on l∗ is a smooth density D(ζ )dζ . The value of D at 0 is

equal to idim Lvol(L, dl)〈infdexµG([γ ]), f2〉.
We now prove Theorem 4.15.

Proof. Denote by η : P × l∗→ P the projection η : (p, ζ ) 7→ p, and set ξ = π ◦ η : N→
M, ξ(p, ζ ) := π(p), p ∈ P, ζ ∈ l∗.

Let γ (y) be a compactly supported G-equivariant form on M representative of [γ ].
Any G × L-equivariant form ψ with compact support on N = P × l∗ which restricted
to P coincides with π∗γ can be taken as a representative for the cohomology class
π∗[γ ] ∈ H∗G×L,c(N

0).

In order to construct ψ , take an L-invariant function ρ : l∗→ R supported near zero
and such that ρ equals 1 on a neighborhood of 0 and define the form ψ , which is still
L-invariant and G-equivariant, by

ψ(y)(p, ζ ) := ρ(ζ )ξ∗γ (y). (32)

Recall that σ is the restriction of σN on P and consider the 1-form η∗(σ ) on N = P× l∗,
the pull-back of σ under the projection η : P×l∗→ P. Let ω ∈A1(P)⊗l be our connection
form. Then we have the following lemma.

Lemma 4.18. 〈ω, ζ 〉 is an action form on N, with the moment map for L the second
projection. Its moment map for G vanishes on P.

Consider σ0 = σN and σ1 = η∗(σ )+ 〈ω, ζ 〉 with moment maps µ0, µ1.

Lemma 4.19. The moment map µt = tµ1 + (1 − t)µ0 associated with tσ1 + (1 − t)σ0 is
such that µ−1

t (0)= N0 for all t ∈ [0, 1].
Proof. This follows from the fact that the component under L of these maps is the
second projection, so µ−1

t (0) ⊂ P for all t and moreover µ1, µ0 coincide on P. Thus
µ−1

t (0)= P0 = N0. �
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According to Theorem 3.5, we may thus assume that σN = η∗(σ )+ 〈ω, ζ 〉 and compute
with this ‘normal form’ the values of infdexµG×L

G×L .
Recall that µ :M→ g∗ is the moment map relative to G associated with σM. By abuse

of notation, we still denote by µ its pull-back by πη to N. This is the moment map
associated with η∗(σ ).

Lemma 4.20. Let Ω := DσN for (x, y) ∈ l⊕ g. At a point (p, ζ ) ∈ P× l∗, we have

Ω(x, y)= 〈x, ζ 〉 − 〈ιyω, ζ 〉 + 〈y, µ〉 + dη∗(σ )+ d〈ω, ζ 〉.
Proof. By the definition of a connection form (for the action of L), we have
〈x, ζ 〉 = −〈ιxω, ζ 〉, so 〈x, ζ 〉 − 〈ιyω, ζ 〉 is the value of the moment map at (x, y) of 〈ω, ζ 〉.
As for η∗(σ ), by the definition of P= µ−1

L (0), the part relative to L of its moment map is
equal to 0. �

We write Ω(x, y)= 〈x, ζ 〉 +Ω ′(y) with

Ω ′(y)=−〈ιyω, ζ 〉 + 〈y, µ〉 + η∗d(σ )+ d〈ω, ζ 〉
independent of x. We have

Ω ′(y)= η∗(Dσ)− 〈ιyω, ζ 〉 + d〈ω, ζ 〉. (33)

For s sufficiently large,

〈infdexµG×L
G×L (π

∗([γ ])), f1f2〉 = I(s)

with

I(s)=
∫

N

∫
g×l

eisΩ(x,y)ψ(y)f̂1(x)f̂2(y)dxdy.

Applying Fourier inversion: ∫
l
eis〈x,ζ 〉 f̂1(x)dx= f1(sζ ),

we obtain that

I(s)=
∫

N

∫
g

eisΩ ′(y)ψ(y)f1(sζ )f̂2(y)dy

where ψ(y)(p, ζ )= ρ(ζ )ξ∗γ (y) is defined by formula (32).
Write the connection form ω =∑r

i=1 ωiei on an oriented basis {e1, . . . , er} of l, and set
ζi = 〈ei, ζ 〉 for i= 1, . . . , r.

We have 〈ω, ζ 〉 =∑r
i=1 ζiωi and thus

d〈ω, ζ 〉 =
r∑

i=1

ζidωi +
r∑

i=1

dζi ∧ ωi. (34)

Let us now integrate along the fiber l∗ of the projection η : N = P × l∗→ P. We thus
need to identify the highest term of eisΩ ′(y) in the dζi. By (34) and (33), this highest term
equals

(is)r dζ1 ∧ ω1 ∧ · · · ∧ dζr ∧ ωr = (−1)
r(r+1)

2 (is)r Vω ∧ dζ
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where we set Vω := ω1 ∧ ω2 ∧ · · · ∧ ωr and dζ := dζ1 ∧ · · · ∧ dζr. We obtain

I(s) =
∫

N

∫
g

eisΩ ′(y)ψ(y)f1(sζ )f̂2(y)dy

= (−1)
r(r+1)

2 ir
∫

P×g
eisDσγ (y)f̂2(y)

(∫
l∗

sre−is〈ιyω,ζ 〉eis〈dω,ζ 〉ρ(ζ )f1(sζ )Vω ∧ dζ

)
dy.

In the integral on l∗, we change ζ to sζ and obtain

(−1)
r(r+1)

2 ir
∫

P×g
eisDσγ (y)f̂2(y)

(∫
l∗

e−i〈ιyω,ζ 〉ei〈dω,ζ 〉ρ(ζ/s)f1(ζ )Vω ∧ dζ

)
dy.

On the compact support of f1(ζ ), if s is sufficiently large, ρ(ζ/s) = 1. Also we
may replace dω by R as R − dω = 1

2 [ω,ω] is annihilated by the wedge product with
ω1 ∧ ω2 ∧ · · · ∧ ωr and obtain (for s sufficiently large)

〈infdexµG×L
G×L ψ, f1f2〉 = (−1)

r(r+1)
2 ir

∫
N

∫
g

eisη∗Dσγ (y)f̂2(y)ei〈Ry,ζ 〉f1(ζ )Vω ∧ dζdy.

Now consider the fibration N → M × l∗ with fiber L. On each fiber, the form
Vω = ω1 ∧ ω2 ∧ · · · ∧ ωr induces an orientation and restricts to a Haar measure dl
on L. Let us now integrate over the fiber. Recall that σM denotes the action form on
M. Let ΩM := DσM; we have π∗σM = σ̄ , η∗Dσ = η∗π∗ΩM. By formula (6), recalling that
r = dim L and using formula (28), we finally obtain that I(s) is equal to

idim L
∫

l∗

(∫
M

∫
g

eisΩM(y)γ (y)θζ (Ry)f̂2(y)dy

)
f1(ζ )dζ.

Remark that when ζ varies in the compact support of f1, and over a compact subset K
of M, the Fourier transform (in y) of θζ (Ry) stays supported on a fixed compact subset of
g∗. Indeed, using formula (29), we see that the Fourier transform of θζ (Ry) is supported
on the compact subset h(π−1K,Lζ ). By Remark 3.11, for s� s0,∫

M×g
eisΩM(y)γ (y)θζ (Ry)f̂2(y)dy= infdexµG([γ̃ζ ], f2〉 (35)

for any ζ in the support of f1.
Thus we obtain our claim. �

Another important particular case of the free action property is that where G is
trivial. We then have y = 0 in all the steps of the proof of Theorem 4.15. We now
summarize the result that we obtain in this particular case of Theorem 4.15. Let N be an
oriented L-manifold with action form, and assume that the group L acts freely on N and
that 0 is a regular value of µL. Let M = N0/L and let [γ ] ∈ H∗G,c(N0)= H∗c (M).

Let R be the curvature of the fibration N0→M. For any ζ ∈ l∗, we consider the closed
differential form on M given by

θζ (R)=
∫

L
ei〈R,lζ 〉dl. (36)

Here, as R is an l-valued 2-form, θζ (R) is a polynomial function of ζ.

https://doi.org/10.1017/S1474748012000722 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748012000722


The infinitesimal index 323

Then we obtain the following proposition.

Proposition 4.21. The distribution infdexµL
L ([γ ]) is a polynomial density on l∗. More

precisely,

〈infdexµL
L ([γ ]), f1〉 = idim L

∫
l∗

(∫
M
γ θζ (R)

)
f1(ζ )dζ.

In particular the value of infdexµL
L ([γ ]) at 0 is well defined and computes the integral

on the reduced space µ−1
L (0)/L of the compactly supported cohomology class associated

with [γ ]. This is essentially the Witten localization formula [14, 25].

4.22. Extension of the properties of the infinitesimal index

We have extended the definition of the infinitesimal index to H∞,mG,c (M
0). Analyzing the

proofs of the properties locality, product, and the map i!, we see that these properties
hold for the infinitesimal index map on H∞,mG,c (M

0). The proofs for the restriction
property and the free action extend, provided we are in the situation of Remark 3.11:
we consider the infinitesimal index on classes [α] ∈ H∞,mG,c (M

0) such that the Fourier
transform of α(x) is a distribution with compact support on g∗, and so the infinitesimal
index stabilizes for s large. This will always be the situation in the applications to index
formulas.

5. Some consequences of the functorial properties of the infinitesimal index

We list here some corollaries of the functorial properties: excision, product, restriction,
push-forward, and free action, proved in the preceding section.

5.1. Diagonal action and convolution

Consider two G action manifolds M1,M2 with moment maps µ1, µ2 with zeros M0
1,M0

2 .
Let ∆ be the diagonal subgroup. The moment map for ∆ is µ1 + µ2.

Let us assume that (M1 ×M2)
0
∆ = M0

1 × M0
2 . If α ∈ H∗G,c(M0

1) and β ∈ H∗G,c(M0
2),

we may apply the product property (Proposition 4.4) and the restriction property
(Theorem 4.7). As the restriction map is such that r∗f (ξ1, ξ2) = f (ξ1 + ξ2) (ξ1, ξ2 ∈ g∗),
we obtain the following proposition.

Proposition 5.2. Under the hypothesis (M1 ×M2)
0
∆ =M0

1 ×M0
2, the infinitesimal index

infdexµ1+µ2
∆ (α1 ∧ α2) is the convolution product infdexµ1

G (α1) ∗ infdexµ2
G (α2) of the

distributions infdexµ1
G (α1) and infdexµ2

G (α2).

Let us give an important example of this situation.
Let MX be a complex representation space for the action of a torus G, where

X = [a1, a2, . . . , am] is a list of nonzero weights ai ∈ Ĝ ⊂ g∗. We assume that X spans
a pointed cone in g∗. Recall the definition of the multivariate spline TX ; it is a tempered
distribution defined by

〈TX | f 〉 =
∫ ∞
0

. . .

∫ ∞
0

f

(
m∑

i=1

tiai

)
dt1 · · · dtm. (37)
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Let us consider on MX = Cm the action form such that µ(z1, . . . , zm)=
∑

i
|zi|2
2 ai. Then

M0
X = {0} and the class 1 is a class in H∗G,c(M0

X). Using our computation in Example 3.14
of infdexµG(1) in the case of R2 = C, we obtain the following formula.

Proposition 5.3.

infdexµG(1)= (2π i)m TX .

We will use this calculation in [10] to identify H∗G,c((T∗MX)
0) with a space of spline

distributions on g∗.
Another example that we will use in ğ 5.15 is the case were one of the action forms, say

σ1, is equal to 0, so µ1 = 0 and µ is the pull-back of µ2. Then

(M1 ×M2)
0
∆ =M1 ×M0

2 .

In this case, the space H∗G,c(M0
1) is simply H∗G,c(M1) and

∫
M1
α1(x) is a polynomial

function of x ∈ g. Thus infdex0
G(α1), the Fourier transform, is a distribution of support 0

on g∗.

Corollary 5.4.

infdexµ∆[α1 × α2] = infdex0
G(α1) ∗ infdexµ2

G (α2).

5.5. Induction of distributions

Assume that L ⊂ G is a subgroup; let l ⊂ g be the corresponding Lie algebras. Choose
Lebesgue measures on g, and l by fixing translation invariant top differential forms. This
determines dual measures and forms on g∗, l∗ and a Haar measure dg on G. If p is the
restriction map g∗→ l∗, we let p∗ be the integration over the fiber (with respect to the
chosen forms and orientations). It sends a test function on g∗ to a test function on l∗. Let

A(f )(ξ)=
∫

G
f (gξ)dg. (38)

The operator A transforms a test function on g∗ to an invariant test function on g∗.

Definition 5.6. For a distribution V on l∗, we define the G-invariant distribution
Indg∗

l∗ V on g∗ by

〈Indg∗
l∗ V, f 〉 = vol (L, dl)−1〈V, p∗(A(f ))〉,

f being a test function on g∗.

It is easy to see that Indg∗
l∗ V is independent of the choices of measures.

5.7. Induction of action manifolds

Assume that L ⊂ G is a subgroup. Take M an L-manifold with action form σ and
moment map µL.

Consider T∗G as a G × L-action manifold where G acts on the left and L on the right,
and the action form ω is the canonical 1-form on T∗G.
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5.7.1. The induced action manifold. Set N := T∗G × M and p1, p2 be the first and
second projections of this product manifold. We consider the action form ψ = p∗1ω + p∗2σ
on N, and denote by µ̃G×L = µ̃G ⊕ µ̃L the corresponding moment map.

Let us trivialize T∗G= G×g∗ using left trivialization (7), so we make the identification
N = G× g∗ ×M. According to the formula (7), if (g, ξ,m) ∈ N we have

µ̃G(g, ξ,m)=−gξ := −gξ, µ̃L(g, ξ,m)=−ξ |l + µL(m). (39)

We denote by N0 the zero fiber of the moment map µ̃G×L for G × L, and by M0 the
zero fiber of the moment map µL on M for L.

Lemma 5.8. We have N0 = G×M0.

Proof. From the formula (39), the set of points of N where µ̃G = 0 is G × M, and at
these points we have µ̃L(g,m)= µL(m). �

Lemma 5.9. (i) If we take the zero fiber of µ̃L, we obtain the manifold

P := µ̃−1
L (0)= {(g, ξ,m); g ∈ G, ξ ∈ g∗,m ∈M; ξ |l = µL(m)}. (40)

(ii) 0 is a regular value for the moment map µ̃L.

Proof. The first statement is immediate from formula (39). As for the second, fix g,m;
the map τ : g∗→ l∗ given by τ : ξ 7→ µ̃L(g, ξ,m) = −ξ |l + µL(m) clearly has a surjective
differential for all ξ—hence the claim. �

We are thus in the situation of ğ 4.11. The manifold N is a G × L-manifold, L acts
freely on N and 0 is a regular value of the moment map µ̃L for L. Consider the manifold
M= P/L. Applying Proposition 4.12, we see the following lemma.

Lemma 5.10. The quotient M= P/L is a G-manifold. The action form on N restricted
to P descends to M.

The induced moment map µG : P/L→ g∗ is obtained by taking the quotient from the
moment map µ̃G : (g, ξ,m)→ gξ on P.

Definition 5.11. We will say that M is the induced action manifold.

By Lemma 5.8, the closed set N0, the zero fiber of the moment map µ̃G×L, equals
G×M0 and it is contained in P. Since, by definition, on P= µ̃−1

L (0) the moment map µ̃L

equals 0, we have that on P the moment map µ̃G×L equals µ̃G. Therefore we obtain the
following lemma.

Lemma 5.12. Under the inclusions N0 ⊂ P, N0/L⊂ P/L, the zero fiber M0
G ⊂M of the

moment map µG is identified with N0/L= G×LM0.

Denote by p1, p2 the two projections of N0 = G × M0 on its factors. Denote by
π : G×M0 = N0→ N0/L= G×LM0 the quotient map.
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Thus we get the isomorphisms

H∗L,c(M0)
p∗2−−−−→ H∗G×L,c(N

0)
π∗←−−−− H∗G,c(G×L M0).

We set j= π∗−1p∗2:

j : H∗L,c(M0)
p∗2−−−−→ H∗G×L,c(N

0)
(π∗)−1−−−−→ H∗G,c(M0

G).
(41)

Remark 5.13. As in the usual case (see [12], page 33), the isomorphism j−1 can
be described as follows. Let γ (y), with y ∈ g, be an equivariant form on P/L =
M representing [γ ] ∈ H∗G,c(M0

G) = H∗G,c(G×LM0). We restrict γ to the L-invariant
submanifold M embedded in M by m 7→ (e, µL(m),m) and obtain an L-equivariant form
on M. We can represent j−1[γ ] by γ (x)|M with x ∈ l.

5.13.1. The induction formula for the infinitesimal index. Given a class [α] ∈
H∗L,c(M0), our goal is to compare infdexµL

L ([α]) and infdexµG
G (j([α])), the first being

a distribution on l∗ and the second one a distribution on g∗. We shall show that
infdexµG

G (j([α])) is induced by infdexµL
L ([α]), according to Definition 5.6.

Theorem 5.14. Let [α] ∈ H∗L,c(M0) ; then

infdexµG
G (j[α])= idim G−dim LIndg∗

l∗ (infdexµL
L ([α])). (42)

Proof. Consider the form γ := 1 × α on G × M, where α is a representative of [α]. By
definition, j= π∗−1p∗2, and we see that [γ ] = p∗2[α] = π∗j[α].

Consider the G × L-manifold N = T∗G × M. To this manifold we can apply Corollary
4.17. Let f1 be a variable test function on l∗ and f2 be a given test function on g∗. The
distribution f1→ 〈infdexµ̃G×L

G×L ([γ ]), f2f1〉 is given by a smooth density D(ζ )dζ on l∗, and
the value D(0) equals idim Lvol(L, dl)〈infdexµG

G (j[α]), f2〉.
Let us compute 〈infdexµ̃G×L

G×L ([γ ]), f2f1〉 using the fact that γ is the external product
1 × α. We consider the product manifold T∗G ×M provided with the action of G1 × G2

where G1 = G× G acts by left and right action on T∗G and G2 = L acts on M.
Consider next the embedding of G × L as a subgroup of G × G × L through
{((g, l), l), g ∈ G, l ∈ L}. Denote by

s : g⊕ l→ g⊕ g⊕ l, (a, b) 7→ (a, b, b)

the inclusion of Lie algebras. Denote by p : g∗→ l∗ the restriction map. Then for ζ ∈ l∗
and (ξ1, ξ2) ∈ g∗ ⊕ g∗ the restriction map R associated with the inclusion s is

R := s∗ : g∗ ⊕ g∗ ⊕ l∗→ g∗ ⊕ l∗, (ξ1, ξ2, ζ ) 7→ (ξ1, ζ + p(ξ2)).

Remark that our given action form on N is G× G× L-invariant and that N0 = G×M0 is
also the set of zeros of the moment map µ for the group G× G× L.

In order to compute infdexµ̃G×L
G×L ([γ ]) we may thus apply first the external

product property (Proposition 4.4) and then the restriction property, (Theorem 4.7)
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obtaining

infdexµ̃G×L
G×L (1× α)= R∗(infdexµG×G(1)⊗ infdexµL

L ([α])).
We now make this formula more explicit. Let f1 be a test function on l∗ and f2 a test

function on g∗. Using the formula (23),

〈R∗(infdexµG×G(1)⊗ infdexµL
L ([α])), f1f2〉 = lim

T→∞〈infdexµG×G(1)⊗ infdexµL
L ([α]),R∗(f1f2)χT〉.

The function R∗(f1f2)(ξ1, ξ2, ζ ) is the function f1(ζ + p(ξ2))f2(ξ1). Using formula (22) for
infdexµG×G(1) for T∗G, we obtain

lim
T→∞〈infdexµG×G(1)⊗ infdexµL

L ([α]), f1(ζ + p(ξ2))f2(ξ1)χT〉
= idim G〈infdexµL

L ([α]), q(f1, f2)〉
with (A is defined in (38))

q(f1, f2)(ζ )=
∫

g∗

∫
G

f1(ζ + p(ξ))f2(−gξ)dgdξ =
∫

g∗
f1(ζ + p(ξ))Af2(−ξ)dξ.

Integrating first on the fiber p : g∗→ l∗, then on l∗, we see that

q(f1, f2)(ζ )= f1 ∗ (p∗(Af2))(ζ )

where u ∗ v is the convolution product of test functions on l∗.
Then we obtain

〈infdexµ̃G×L
G×L ([γ ]), f1f2〉 = idim G〈infdexµL

L ([α]), f1 ∗ (p∗(Af2))(ζ )〉.
This is a smooth density with respect to ζ ∈ l∗, and if f1 tends to δ0(ζ ), then
〈infdexµ̃G×L

G×L ([γ ]), f1f2〉 tends to

idim G〈infdexµL
L ([α]), p∗(Af2)(ζ )〉 = idim Gvol(L, dl)〈Indg∗

l∗ infdexL([α]), f2(ζ )〉.
We thus obtain the wanted formula, (42). �

5.15. Maximal tori

As usual, let M be a G-manifold with a G-invariant action form σ . Let T ⊂ G be a
maximal torus. We show next how to reduce the calculation of the infinitesimal index
map for G to the calculation of the infinitesimal index map for T. Our construction is
very similar to the construction of the map KG(T∗GN)→ KT(T∗TN) at the level of K-theory
given in [1].

Associated with σ , we have the moment maps νG :M→ g∗ and νT = p ◦ νG :M→ t∗,
with p : g∗→ t∗ the restriction map.

Consider M as a T-manifold, and consider N = T∗G×M, provided, as in ğ 5.7 (here the
group L is T), with the action form ψ = p∗1ω + p∗2σ and the action of G× T: the group G
acts on T∗G by left action, and trivially on M, the group T acts on G by right action and
acts on M. We denote by µ̃G×T = µ̃G ⊕ µ̃T the corresponding moment map.

Recall, by formula (40), that

P= µ̃−1
T (0)= {(g, ξ,m); g ∈ G, ξ ∈ g∗,m ∈M; ξ |t = νT(m)}
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is a G× T-manifold on which G acts by g0 · (g, ξ,m)= (g0g, ξ,m) for g0 ∈ G, (g, ξ,m) ∈ P,
and T acts by t · (g, ξ,m)= (gt−1, tξ, tm).

We then consider M := P/T, with moment map µG([g, ξ,m]) = gξ (39). Recall that
M0

G is isomorphic to G×TM0
T embedded in P/T by [g, 0,m].

For [α] ∈ H∗G,c(M0
G), we want to produce an element r([α]) ∈ H∗G,c(M0

G) =
H∗G,c(G×TM0

T) which has the same infinitesimal index as [α].

Proposition 5.16. We can embed G×M in P through the map

γ (g,m)= (g, νG(g
−1m), g−1m).

The map γ is G × T-equivariant, where G acts on G ×M by diagonal action (left on G)
while T acts by the right action on G and not on M.

Proof. First, (g, νG(g−1m), g−1m) ∈ P since νG(g−1m)|t∗ = νT(g−1m). Next, γ (hg, hm) =
(hg, νG(g−1m), g−1m) and

γ (gt−1,m)= (gt−1, νG(tg
−1m), tg−1m)= (gt−1, tνG(g

−1m), tg−1m). �

Corollary 5.17. The map γ induces, modulo the action of T, an embedding still denoted
by γ : G/T × M ↪→M = P/T. Thus the manifold G/T × M, with diagonal G-action, is
identified with a G-invariant submanifold of M.

In fact more is true. Let q :M→ G/T × M be the projection given by q(g, ξ,m) =
(gT, gm). Let g∗ = t∗ ⊕ t⊥ be the canonical T-invariant decomposition of g∗. Then we
claim that the following proposition holds.

Proposition 5.18. qγ is the identity and q :M→ G/T ×M is a vector bundle with fiber
t⊥.

Proof. The first claim comes from the definitions. As for the second, we may identify P
with G×M × t⊥ through the map

P→ G×M × t⊥, (g, ξ,m) 7→ (g,m, ξ − νT(m)). �

Lemma 5.19. The restriction of the moment map µG on M to G/T × M is just
(gT,m) 7→ νG(m) with zeros G/T ×M0

G.

Proof. We have µG(g, ξ,m) = gξ by the previous discussion. An element (g,m)
corresponds to the triple (g, νG(g−1m), g−1m), so the claim follows since νG is
G-equivariant. �

We now apply the construction γ! of ğ 4.8 to the manifold G/T × M embedded by γ
in M.

Recall that G/T is a even dimensional manifold. Take an equivariant form β on G/T
with class

[β] = (−1)
1
2 dim G/T e(G/T)

|W| (43)
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where W is the Weyl group and e(G/T) is the equivariant Euler class. Notice that since
|W| equals the Euler characteristic of G/T,

∫
G/T [β] is equal to (−1)

1
2 dim G/T .

Thus, by Theorem 3.12, the infinitesimal index of [β] is just the δ-function on g∗.
Let [α] ∈ H∗G,c(M0

G). We then construct the element [β ∧ α] in the compactly supported
equivariant cohomology

[β ∧ α] ∈ H∗G,c((G/T ×M)0G)= H∗G,c(G/T ×M0
G).

Lemma 5.20. The infinitesimal index of [β ∧ α] is equal to (−1)
1
2 dim G/T times the

infinitesimal index of [α].
Proof. Apply Corollary 5.4. �

Under the embedding γ : G/T × M ↪→ M of action manifolds (cf. 5.17), by
Theorem 4.9, we have now a homomorphism

γ! : H∗G,c(G/T ×M0
G)→ H∗G,c(M0

G)

preserving the infdex.
We define

r([α]) := γ!([β ∧ α]) ∈ H∗G,c(M0
G). (44)

We then have, combining Lemma 5.20 with Theorem 4.9,

infdexνG
G ([α])= infdexµG

G (r[α]). (45)

On the other hand, we have the isomorphism

j : H∗T,c(M0
T)→ H∗G,c(G×TM0

T)

and we have shown in Theorem 5.14 that

infdexµG
G (j[θ ])= (−1)

1
2 dim G/T Indg∗

t∗ infdexνT
T ([θ ])

for any [θ ] ∈ H∗T,c(M0
T).

We deduce the following theorem.

Theorem 5.21. Take the following commutative diagram:

H∗G,c(M0
G)

r−−−−→ H∗G,c(G×T M0
T)

j−1−−−−→ H∗T,c(M0
T)

infdex

y infdex

y infdex

y
D′(g∗)G id−−−−→ D′(g∗)G

Indg∗
t∗←−−−− D′(t∗)

(46)

The element [λ] := j−1r([α]) ∈ H∗T,c(M0
T) is such that

infdexνG
G ([α])= Indg∗

t∗ infdexνT
T (j
−1r([α])). (47)
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Let us finally give an explicit formula for the element [λ] = j−1r([α]) ∈ H∗T,c(M0
T)

corresponding to [α] ∈ H∗G,c(M0
G).

Let Pf(x)= det1/2
t⊥ (x) be the Pfaffian associated with the action of x ∈ t in the oriented

orthogonal space t⊥.
We need the following proposition.

Proposition 5.22. The restriction of the form β(x) at the point e ∈ G/T is the
polynomial |W|−1 (2π)−

1
2 dim G/T Pf(x).

Proof. By construction, the equivariant Euler class is the restriction to G/T of the
Thom class of the tangent bundle. The fiber of the tangent bundle at the T fixed point e
is isomorphic to t⊥. Thus this class restricts at the fixed point e as (−2π)−

1
2 dim G/T Pf(x)

([18]; see [3], Theorem 7.41, and [21]). �

Recall the decomposition g∗ = t∗ ⊕ t⊥. Let us consider the map ν⊥ :M→ t⊥ which is
uniquely defined by the identity νG = νT ⊕ ν⊥. Then ν−1

T (0) ∩ ν−1
⊥ (0)= ν−1

G (0).
Denote by τ0 the T-equivariant Thom class of the embedding 0→ t⊥, a compactly

supported equivariant class on t⊥. Then τ⊥ := ν∗⊥τ0 is a closed equivariant class on M
supported on a small neighborhood A of ν−1

⊥ (0). It follows that we have the following
lemma.

Lemma 5.23. If [α] ∈ H∗G,c(M0
G), we can choose τ0 such that the class τ⊥ ∧ α defines a

class in H∗T,c(M0
T).

Proof. Let K ⊂M \M0
G be the support of Dα; then D(τ⊥ ∧ α)= τ⊥ ∧ Dα is supported in

A∩K. Since ∅ = K ∩M0
G = K ∩M0

T ∩ ν−1
⊥ (0), we can choose τ0 such that A∩K ∩M0

T = ∅.�
By Remark 5.13, an equivariant form representing j−1r([α]) is the restriction to

M = {(e, 0,m),m ∈M} of r(α)(x), when x ∈ t. We still denote it by j−1(r(α))(x).

Theorem 5.24. We can choose the Thom classes such that

j−1(r(α))(x)= |W|−1 (2π)−
1
2 dim G/T Pf(x)α(x) ∧ τ⊥(x).

Proof. Let τG/T×M be a Thom class of the bundle q :M→ G/T ×M (Proposition 5.18).
Then, by the γ! construction, the associated equivariant form on M which we denoted
by r(α) is q∗(β ∧ α) ∧ τG/T×M.

Now the bundle q :M→ G/T ×M is trivial over e ×M and isomorphic to t⊥ ×M by
(ξ,m) 7→ (e, ξ + νG(m),m).

The restriction of the Thom class τG/T×M gives a Thom class for this trivial bundle.
We can then assume that the restriction of τG/T×M is τ0(ξ).

As (e,M) is embedded by ξ = ν⊥(m), we obtain our theorem from Proposition 5.22. �
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Appendix A. Equivariant cohomology with compact supports

A.1. Compact supports

We are going to assume in this appendix that all our spaces are locally compact and
paracompact and we are going to work with Alexander–Spanier cohomology groups,
both ordinary and with compact supports, and with real coefficients. We shall denote
them by H∗ or, if we take compact supports, by H∗c . H∗ is a cohomology theory on spaces
or pairs of spaces deduced from a functorial cochain complex C(X,Z), and H∗c , the theory
with compact supports, is associated with a natural subcomplex Cc(X,Z) (see [23] ch. 6).

Let us now recall a few properties. The first is (see [23] ch. 6, p. 321, Lemma 11).

Proposition A.2. Let (X,Z) be a pair with X compact Z 6= ∅ closed. Set U := X \ Z.
Then there are natural isomorphism Hq

c (U)' Hq(X,Z).

In fact this is induced by the map of cochain complexes Cc(U)→ C(X,Z), and
composition of the inclusions Cc(U)→ Cc(X)→ C(X) and of the quotient C(X)→ C(X,Z).

In particular, if we take an open set U in a compact space X (for example we could
take the one-point compactification U+ of a locally compact space U), we get that
H∗c (U)= H∗(X,X \ U).

As an application of this, assume that Z ⊂ U is closed and U is open in a compact
space X. Set Y = X \ U and take the triple (X, Z̃,Y) with Z̃ = Z ∪ Y. Consider the
commutative diagram

0 −−−−→ C∗c (U \ Z) −−−−→ C∗c (U) −−−−→ C∗c (Z)y y y
0 −−−−→ C∗(X, Z̃) −−−−→ C∗(X,Y) −−−−→ C∗(Z̃,Y) −−−−→ 0

Using the exactness of the bottom line we deduce the long exact sequence

· · · → Hh
c (U \ Z)

i∗−−−−→ Hh
c (U)

j∗−−−−→ Hh
c (Z) −−−−→ Hh+1

c (X \ Z)→ · · · .
On the other hand, the top line induces a homomorphism of chain complexes

µ : C∗c (U)/C∗c (U \ Z)→ C∗c (Z)

and since the vertical arrows induce isomorphism in cohomology, using the five lemma
we easily deduce the following proposition.

Proposition A.3. The homomorphism µ induces an isomorphism in cohomology.

In order to compare the Alexander–Spanier and singular cohomologies, one needs to
pass to the associated sheaves (see [23] ch. 6, p. 324). Thus, under suitable topological
conditions, we obtain a natural isomorphism between Alexander–Spanier and singular
cohomologies.

In particular, consider a C∞ manifold M and a closed subset Z ⊂M. Further, assume
that Z is locally contractible (this is the case for T∗GN in T∗N, as follows from the
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description of the neighborhood of a G-orbit using the slice theorem). We then have
(see [23] ch. 6, p. 341, Corollary 7) that, under these assumptions, we can use singular
cochains and in fact, in the case of a manifold, singular C∞ cochains to compute
the cohomology since the Alexander–Spanier and singular cohomologies are naturally
isomorphic in this case.

Integrating on singular C∞ simplexes we get a commutative diagram:

0 −−−−→ A∗c(M \ Z) −−−−→ A∗c(M)y y
0 −−−−→ ∞C∗c (M \ Z) −−−−→ ∞C∗c (M)

where A∗c is the complex of differential forms with compact supports. We deduce a
homomorphism of cochain complexes

ν :A∗c(M)/A∗c(M \ Z)→∞C∗c (M)/∞C∗c (M \ Z).

Since the vertical arrows induce isomorphism in cohomology, we get a de Rham model
for H∗c (Z).

Proposition A.4. The homomorphism ν induces isomorphism in cohomology. In
particular, H∗c (Z) is naturally isomorphic to the cohomology of the complex
A∗c(M)/A∗c(M \ Z).

A.5. Classifying spaces

We now take a compact Lie group G and denote by BG its classifying space (which is
not locally compact). Recall that BG is a polyhedron with finitely many cells in each
dimension and it has a filtration (BG)0 ⊂ · · · ⊂ (BG)n ⊂ (BG)n+1 ⊂ · · · ⊂ BG by compact
manifolds with the property that the inclusion (BG)n ⊂ BG induces isomorphism in
cohomology up to degree n. For example, if G is an s-dimensional torus, BG = CP (∞)s
and we may take (BG)n = CP (n)s (indeed in this case, the inclusion induces an
isomorphism up to degree 2n− 1).

We denote by π : EG→ BG the universal fibration and set (EG)n = π−1((BG)n). Thus
(EG)n is also a compact C∞ manifold and a principal bundle over (BG)n.

Recall now that for any G-space Y, H∗G(Y)= H∗(Y×GEG).
We can define the equivariant cohomology with compact supports of a G-space as

follows. Take U locally compact. Embed U in its one-point compactification U+. The
action of G extends to U+ and we set the following definition.

Definition A.6. H∗G,c(U)= H∗G(U+,∞).
Some remarks are in order.

• If U is compact, then U+ is the disjoint union U ∪ {∞} so H∗G,c(U)= H∗G(U).
• If U is non-compact, then H∗G,c(U)= H∗(U+×GEG,BG) where BG = {∞}×GEG.
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• All the equivariant cohomologies are modules over H∗G(pt) and all the
homomorphisms are module homomorphisms.

Recall that by the properties of (BG)m for any h > 0, and for all m large enough,
Hr(BG,R) = Hr((BG)m,R) for 0 6 r 6 2h. So given a G-space X, the spectral sequences
of the fibrations X×GEG → BG and X×G (EG)m → (BG)m have the same Ep,q

r for all
r and p + q 6 h. In particular, we get for any pair (X,Z) of G-spaces that for large
m, Hh

G(X,Z) = Hh(X×G (EG)m,Z×G (EG)m). From Proposition A.2, we then deduce the
following proposition.

Proposition A.7. Let X be a G-space with X compact Hausdorff and Z 6= ∅ a closed
G-stable subspace. Set U := X \ Z. Then there is a natural isomorphism Hq

G,c(U) '
Hq

G(X,Z).
Furthermore for m large with respect to h, Hh

G,c(U)' Hh
c (U×G (EG)m).

Take now a C∞ manifold M with a C∞ action of G and a closed G-stable subset Z in M
which we assume to be locally contractible—for instance if Z is locally triangular, as for
instance when Z is semi-analytic [17]. The same is true for Z×G (EG)m for any m, so we
can apply Proposition A.4 and deduce that for m large with respect to h, Hh

G,c(Z) is the
hth cohomology group of the complex A∗c(M×G (EG)m)/A∗c((M \ Z)×G (EG)m).

But one knows (see [13]) that for any m we have a natural morphism of complexes
AG,c(M)→ A∗c(M×G (EG)m) which induces isomorphism in cohomology in small degree.
The same holds also for the open set M \ Z so we get a commutative diagram:

0 −−−−→ AG,c(M \ Z) −−−−→ AG,c(M)y y
0 −−−−→ A∗c((M \ Z)×G (EG)m)) −−−−→ A∗c(M ×G (EG)m))

which induces a morphism of complexes

ρ :AG,c(M)/AG,c(M \ Z)→A∗c(M×G (EG)m)/A∗c((M \ Z)×G (EG)m).

From this we immediately deduce the following proposition.

Proposition A.8. H∗G,c(Z) equals the cohomology of the complex A∗G,c(Z,M) =
A∗c(M)/A∗c(M \ Z).

Proof. From the above considerations we have, if m is large with respect to h, that ρ
induces an isomorphism in cohomology in degree h. Since we have seen that in degree
h the cohomology of the complex A∗c(M×G (EG)m)/A∗c((M \ Z)×G (EG)m) is Hh

G,c(Z),
everything follows. �
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équivariantes, Duke. Math. J. 50 (1983), 539–549.

8. R. Bott and L. Tu, Equivariant characteristic classes in the Cartan model, Geometry,
Analysis and Applications (Varanasi 2000), pp. 3–20 (World Sci. Publishing, River
Edge, NJ, 2001).

9. C. De Concini, C. Procesi and M. Vergne, Vector partition functions and index of
transversally elliptic operators, Transform. Groups 15 (2010), 775–811.

10. C. De Concini, C. Procesi and M. Vergne, Infinitesimal index: cohomology
computations, Transform. Groups 16 (2011), 717–735. (arXiv:math:1005.0128).

11. C. De Concini, C. Procesi and M. Vergne, Box splines and the equivariant index
theorem, To appear in JIMJ (arXiv:1012.1049).

12. M. Duflo and Shrawan Kumar, Sur la cohomologie équivariante des variétés
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