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Making use of the Karamata regular variation theory and the López-Gómez
localization method, we establish the uniqueness and asymptotic behaviour near the
boundary ∂Ω for the large solutions of the singular boundary-value problem

∆u = b(x)f(u), x ∈ Ω,

u(x) = +∞, x ∈ ∂Ω,

where Ω is a smooth bounded domain in R
N . The weight function b(x) is a

non-negative continuous function in the domain, which can vanish on the boundary
∂Ω at different rates according to the point x0 ∈ ∂Ω. f(u) is locally Lipschitz
continuous such that f(u)/u is increasing on (0, ∞) and f(u)/up = H(u) for
sufficiently large u and p > 1, here H(u) is slowly varying at infinity. Our main result
provides a sharp extension of a recent result of Xie with f satisfying
limu→∞ f(u)/up = H for some positive constants H > 0 and p > 1.

1. Introduction and main results

We are concerned with the uniqueness and exact asymptotic behaviour of large
solutions for the following elliptic problem:

∆u = b(x)f(u), x ∈ Ω,

u(x) = +∞, x ∈ ∂Ω,

}
(1.1)

where Ω ⊂ R
N is a smooth bounded domain. By a solution to (1.1) we take to

mean a function u ∈ C1
loc(Ω) which verifies the equation in the weak sense and

lim
d(x)→0

u(x) = ∞,
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where d(x) = dist(x, ∂Ω) for each x ∈ Ω. These solutions are often referred to as
positive large solutions, boundary blow-up solutions or explosive solutions.

The basic structural assumptions of f are the following:

(f1) f � 0 is locally Lipschitz continuous on [0,∞) and f(u)/u is increasing on
(0,∞);

(f2) there exist a slowly varying function H (see definition 2.1) and p > 1 such
that

lim
u→∞

f(u)
H(u)up

= 1.

We assume that the following conditions on b(x) are satisfied. For each x0 ∈ ∂Ω,
define the boundary normal sections bx0(r) as bx0(r) = b(x0 − rnx0), r > 0, r ∼ 0,
where nx0 stands for the outward unit normal at x0 ∈ ∂Ω. For any x0 ∈ ∂Ω,
assume that there exists τ > 0, such that b(x) ∈ C1(Ω̄τ (x0) ∩ Ω̄) and

bx0(r) ∈ C1(0, τ), b′
x0

(r) > 0 for each r ∈ (0, τ), (1.2)

and

lim
x∈∂Ω,x→x0,r→0

bx(r)
bx0(r)

= 1, (1.3)

where Ωτ (x0) is a ball in R
N of radius τ centred at x0.

The main purpose of this paper is, using the Karamata regular variation theory
approach introduced by Ĉırstea and Rădulescu [8–12], to study the uniqueness and
asymptotic behaviour of large solutions of (1.1) in a general framework. Our main
results are summarized in the following theorems.

Theorem 1.1. Suppose that (f1) and (f2) hold and that b(x) > 0 in Ω satisfies
(1.2)–(1.3). Then problem (1.1) possesses a unique positive solution u(x) in Ω. Let

Bx0(r) =
∫ r

0

∫ s

0
(H ◦ B−β

x0
(t))bx0(t) dt ds, (1.4)

where H appears in (f2) and (H ◦ B−β
x0

)(t) = H(B−β
x0

(t)). Then, for each x0 ∈ ∂Ω,
any positive solution u(x) of (1.1) satisfies

lim
r→0

u(x0 − rnx0)

K(x0)B−β
x0 (r)

= 1, (1.5)

where

K(x0) = [β(β + 1)C(x0) − β]β , β =
1

p − 1
, (1.6)

C(x0) = lim
r→0

[B′
x0

(r)]2

Bx0(r)bx0(r)H ◦ B−β
x0 (r)

. (1.7)

It is easy to see that Bx0(r) is an increasing C2-function on some interval (0, δ)
with sufficiently small δ > 0, and that limr→0 Bx0(r) = 0. Thus, according to [7,
lemma 3.2], we know that C(x0) � 1. Moreover, C(x0) > 1 if and only if B′

x0
(r) is
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normalized regularly varying at zero with index 1/(C(x0) − 1), and C(x0) = 1 if
and only if

lim
r→0

rB′′
x0

(r)
B′

x0
(r)

= 0,

with Bx0(r) being of the form

Bx0(r) = c exp
{

−
∫ η

r

ds

ζ(s)

}
,

for some positive constants c, η and a positive function ζ ∈ C1(0, η) such that
limr→0 ζ ′(r) = 0.

A point worth emphasizing is that the behaviour at infinity for a slowly varying
function cannot be predicted. For example, L(u) = exp{(log u)1/3 cos((log u)1/3)} is
slowly varying with limu→∞ inf L(u) = 0 and limu→∞ supL(u) = ∞. So if f satisfies
(f2), the behaviour at infinity for f(u)/up cannot be completely described. Thus,
theorem 1.1 extends the results of [4,5,14,22–26,29], since the main results of these
works were obtained for f satisfying (f1) and that

(f3) there exist p > 1 and some positive constants H such that

H = lim
u→∞

f(u)/up > 0,

which implies that f behaves like a pure power up near infinity.
It is also interesting to note that (f2) implies that f is regularly varying at

infinity with index p, written f(u) ∈ RVp (see definition 2.1). For more details,
see [19, remark 1.1].

Continuing the studies of [4,5,22,23], Huang et al . [19] also considered the bound-
ary behaviour of large solutions to problem (1.1) under the same conditions, but the
formula of the asymptotic behaviour is different, because the function Bx0(r) used
for setting the exact boundary blow-up rate of the solution to (1.1) is apparently
different.

Some slight generalizations of problem (1.1) are possible, and still we can get the
results in theorem 1.1 for a porous media logistic equation

∆um = b(x)f(u), x ∈ Ω,

u(x) = +∞, x ∈ ∂Ω,

where m > 1 (for more results for the porous media equation, see [13, 14] and the
references therein).

Another possible generalization is to consider q-Laplacian equations, that is,

∆qu = b(x)f(u), x ∈ Ω,

u(x) = +∞, x ∈ ∂Ω,

where ∆qu = div(|∇u|q−2∇u) denotes the q-Laplacian operator with q > 1.
With a little more effort, the results in this paper can be extended easily to

equations with nonlinear gradient terms

∆u ± |∇u|q = b(x)f(u), x ∈ Ω,

u(x) = +∞, x ∈ ∂Ω.
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For more results concerning elliptic boundary blow-up problems with nonlinear
gradient terms, see [2, 16,17,30,31].

For more results concerning elliptic boundary blow-up problems (apart from the
above-mentioned references), the reader is referred to [1,6,15,18,20,21,32] and the
references therein.

The rest of the paper is organized as follows. In § 2 we collect some prelimi-
nary results that are needed throughout this paper. In § 3 we give the asymptotic
behaviour of the solutions of an auxiliary problems. Theorem 1.1 will be proved in
§ 4 by the localization method introduced in [22].

2. Preliminaries

The main purpose of this section is to provide some concepts from the theory
of regular variation. For detailed accounts of the theory of regular variation, its
extensions and many of its applications, we refer the interested reader to [3,27,28].
Unless otherwise stated, and where there is no possibility of confusion, regular
variation is assumed to occur at infinity.

Definition 2.1. A positive measurable function f defined on [D,∞) for some
D > 0, is called regularly varying (at infinity) with index p ∈ R (written f ∈ RVp)
if, for all ξ > 0,

lim
u→∞

f(ξu)
f(u)

= ξp.

When the index of regular variation p is zero, we say that the function is slowly
varying. The transformation f(u) = upL(u) reduces regular variation to slow vari-
ation.

Proposition 2.2. Assume that L is slowly varying. Then the convergence

L(ξu)/L(u) → 1 as u → ∞

holds uniformly on each compact ε-set in (0,∞).

Proposition 2.3. If L is slowly varying, then

(i) lnL(u)/ lnu → 0 as u → ∞,

(ii) for any α > 0, uαL(u) → ∞ and u−αL(u) → 0 as u → ∞,

(iii) (L(u))α varies slowly for every α ∈ R,

(iv) if L1 varies slowly, so do L(u)L1(u) and L(u) + L1(u).

Now we collect some important results which will be used in the proof of theo-
rem 1.1.

Definition 2.4. A function u ∈ C2(Ω) is a (classical) subsolution to problem (1.1),
if u = +∞ on ∂Ω and

∆u � b(x)f(u), x ∈ Ω.

Similarly, ū is a (classical) supersolution to problem (1.1), if ū = +∞ on ∂Ω and

∆ū � b(x)f(ū), x ∈ Ω.
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The following comparison principle plays an important role in the proof of theo-
rem 1.1, and will be used in later sections.

Proposition 2.5. Let f be continuous on (0,∞) such that f(u)/u is increasing for
u > 0, and let b(x) ∈ C(Ω) be a non-negative function. Assume that u1, u2 ∈ C2(Ω)
are positive such that

∆u1 − b(x)f(u1) � 0 � ∆u2 − b(x)f(u2), x ∈ Ω,

lim sup
d(x,∂Ω)→0

(u2 − u1)(x) � 0.

Then we have u1 � u2 in Ω.

3. Some auxiliary problems

To prove theorem 1.1, first consider the boundary blow-up rate of problem (1.1) if
Ω is a ball in R

N and the weight function b(x) is a radially symmetric function on
the ball.

Theorem 3.1. Suppose that Ω = ΩR(x0) is a ball in R
N of radius R centred at x0

and f(u) satisfies (f1) and (f2), and

b(x) = b(R − ‖x − x0‖) = b(d(x)) = b(dist(x, ∂ΩR(x0)))

is a radially symmetric function on the ball. b ∈ C([0, R] : [0,∞)). Define

B(r) =
∫ r

0

∫ s

0
(H ◦ B−β(t))b(t) dt ds, (3.1)

C0 = lim
r→0

[B′(r)]2

B(r)b(r)H ◦ B−β(r)
. (3.2)

Then the problem (1.1) has a unique solution u satisfying

lim
d(x)→0

u(x)
KB−β(d(x))

= 1, (3.3)

where
K = [β(β + 1)C0 − β]β , β =

1
p − 1

.

Proof. For clarity, we divide the lengthy proof into several steps.

Step 1 (existence). (f2) implies that f(u) ∈ RVp, taking into account [9, theo-
rem 1.1], we derive that problem (1.1) possesses a large solutions.

Step 2 (local supersolution and subsolution to (1.1)). Let u denote an arbitrary
large solution of (1.1).

Define u±(x) = ξ±B−β(d(x)), 0 < d(x) < δ, where

ξ± =
[
β(β + 1)C0 − β

1 ∓ ε

]β

, β =
1

p − 1
,

where ε > 0 is small, and where δ is to be determined later.
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A simple calculation yields (|∇d(x)| = 1),

∇u±(x) = −ξ±βB−β−1(d(x))B′(d(x))∇d(x),

∆u±(x) = ξ±β(β + 1)B−β−2(d(x))[B′(d(x))]2 − ξ±βB−β−1(d(x))B′′(d(x))

− ξ±βB−β−1(d(x))B′(d(x))∆d(x).

Consequently,

∆u±(x) − b(x)f(u±(x)) = b(d(x))f(u±(x))[B1(d(x)) − B2(d(x)) − B3(d(x)) − 1],

where

B1(t) =
ξ±β(β + 1)B−β−2(t)[B′(t)]2

b(t)f(ξ±B−β(t))
,

B2(t) =
ξ±βB−β−1(t)B′′(t)
b(t)f(ξ±B−β(t))

,

B3(t) =
ξ±βB−β−1(t)B′(t)∆d(x)

b(t)f(ξ±B−β(t))
.

From (f2), definition 2.1 and (3.2), we find that

lim
t→0

B1(t) = ξ±β(β + 1) lim
t→0

B−β−2(t)[B′(t)]2

b(t)f(ξ±B−β(t))

= ξ±β(β + 1) lim
t→0

f(B−β(t))
f(ξ±B−β(t))

H(B−β(t))B−pβ(t)
f(B−β(t))

[B′(t)]2

B(t)b(t)H(B−β(t))

=
β(β + 1)C0

(ξ±)p−1 . (3.4)

By virtue of (3.1), we know that

B′(t) =
∫ t

0
H ◦ B−β(s)b(s) ds, B′′(t) = H(B−β(t))b(t).

Then

lim
t→0

B2(t) = ξ±β lim
t→0

B−β−1(t)B′′(t)
b(t)f(ξ±B−β(t))

= ξ±β lim
t→0

f(B−β(t))
f(ξ±B−β(t))

H(B−β(t))B−pβ(t)
f(B−β(t))

=
β

(ξ±)p−1 (3.5)

and

lim
t→0

B3(t) = ξ±β lim
t→0

B−β−1(t)B′(t)∆d(x)
b(t)f(ξ±B−β(t))

= ξ±β lim
t→0

f(B−β(t))
f(ξ±B−β(t))

H(B−β(t))B−pβ(t)
f(B−β(t))

B′(t)
b(t)H(B−β(t))

∆d(x)

= 0. (3.6)
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Thus, taking into account (3.4)–(3.6), we obtain

lim
d(x)→0

[B1(d(x)) − B2(d(x)) − B3(d(x)) − 1] = ∓ε,

which implies that there exists δ > 0 sufficiently small that, for x ∈ Ω with 0 <
d(x) < δ,

∆u+(x) − b(x)f(u+(x)) � 0,

∆u−(x) − b(x)f(u−(x)) � 0,

}
(3.7)

which implies that u±(x) are a local supersolution and subsolution to (1.1).

Step 3 (supersolution to (1.1)). Define Ωα,β = {x ∈ Ω : α < d(x) < β}. Fix σ ∈
(0, 1

4δ), and set
u+,σ(x) = u+(d − σ, s) + M+,

where (d, s) are the local coordinates of x ∈ Ωσ,δ/2, and M+ > 0 is sufficiently large
that, for σ ∈ (0, 1

4δ) and s ∈ ∂Ω,

u+,σ( 1
2δ, s) = u+( 1

2δ − σ, s) + M+ � u( 1
2δ, s). (3.8)

Note that
lim
d→σ

u+,σ(x) = ∞. (3.9)

On the other hand, in view of (3.7) and (f1), we obtain, for x ∈ Ωσ,δ/2,

∆u+,σ(x) = ∆u+(d − σ, s)
� b(x)f(u+(d − σ, s))
� b(x)f(u+(d − σ, s) + M+)
= b(x)f(u+,σ(x)).

This fact, combined with (3.8), (3.9) and proposition 2.5, shows that, for every
σ ∈ (0, 1

4δ),

u(x) � u+,σ(x) = u+(d − σ, s) + M+, x ∈ Ωσ,δ/2.

Letting σ → 0, we conclude that u(x) � u+(x)+M+ for all x ∈ Ω with 0 < d(x) <
1
2δ.

Step 4 (subsolution to (1.1)). Define

uσ(x) = θu−(d + σ, s), x ∈ Ωδ/2 := {x ∈ Ω : 0 < d(x) < 1
2δ},

where θ ∈ (0, 1) is chosen sufficiently small that

uσ( 1
4δ, s) = θu−( 1

4δ + σ, s) � u( 1
4δ, s) for all σ ∈ (0, 1

4δ), for all s ∈ ∂Ω. (3.10)

Note that
lim sup
d(x)→0

(uσ − u)(x) = −∞. (3.11)
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Using (3.7), we obtain, for x ∈ Ωδ/4,

∆uσ = θ∆u−(d + σ, s)
� θb(x)f(u−(d + σ, s))
� b(x)f(θu−(d + σ, s))
= b(x)f(uσ). (3.12)

Thus, taking into account (3.10)–(3.12) and proposition 2.5 again, we obtain

uσ(x) = θu−(d + σ, s) � u(x), x ∈ Ωδ/4.

Letting σ → 0, we find θu−(x) � u(x), x ∈ Ωδ/4.
Set

uσ,θ(x) = u−(d + σ, s) − (1 − θ)u−(δ∗, s), x ∈ Ωδ∗ , σ ∈ (0, δ/4 − δ∗).

Then, for x ∈ Ωδ∗ , we have

∆uσ,θ(x) = ∆u−(d + σ, s) � b(x)f(u−(d + σ, s)) � b(x)f(uσ,θ).

By virtue of
lim sup
d(x)→0

(uσ,θ − u)(x) = −∞

and
uσ,θ(δ∗, s) = u−(δ∗ + σ, s) − (1 − θ)u−(δ∗, s) � θu−(δ∗, s) � u(x),

we derive that

uσ,θ(x) = u−(d + σ, s) − (1 − θ)u−(δ∗, s) � u(x), x ∈ Ωδ∗ .

Letting σ → 0, we get u−(d, s) − (1 − θ)u−(δ∗, s) � u(x), x ∈ Ωδ∗ .

Step 5 (boundary behaviour). By steps 3 and 4, we arrive at

u−(x) − (1 − θ)u−(δ∗, s) � u(x) � u+(x) + M+, x ∈ Ωδ∗ ,

since u−(δ∗, s), M+ are bounded and limd(x)→0 B−β(d(x)) = ∞. Then

ξ− � lim inf
d(x)→0

u(x)
B−β(d(x))

� lim sup
d(x)→0

u(x)
B−β(d(x))

� ξ+.

Equation (3.3) follows by ε → 0.

Given a point x0 ∈ R
N , and positive real numbers r2 > r1 > 0, we denote

Ωr1,r2(x0) = {x ∈ R
N : r1 < |x − x0| < r2}.

As an immediate consequence of theorem 3.1, we obtain the following.

Corollary 3.2. Suppose that Ω = Ωr1,r2(x0). Then any positive solution u of
(1.1) satisfies

lim
d(x)→0

u(x)
KB−β(d(x))

= 1,
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where K, B and β are defined in theorem 3.1,

d(x) = d(x, ∂Ωr1,r2(x0)) =

{
r2 − |x − x0| if 1

2 (r1 + r2) � |x − x0| < r2,

|x − x0| − r1 if r1 < |x − x0| < 1
2 (r1 + r2).

4. Proof of main theorem

The main goal of this section is to prove theorem 1.1 by the localization method
introduced in [22], where the solutions of (1.1) are estimated by the large solutions
in sufficiently small interior balls and sufficiently large exterior annuli.

Proof.

Step 1. Fix ε > 0, according to (1.3), we obtain that there exist ρ = ρ(ε) ∈ (0, η)
and µ = µ(ε) such that, for all x ∈ ∂Ω ∩ Ω̄ρ(x0), r ∈ (0, µ),

1 − ε <
bx(r)
bx0(r)

=
b(x − rnx)

b(x0 − rnx0)
< 1 + ε. (4.1)

Set
B = {x − rnx : x ∈ ∂Ω ∩ Ω̄ρ(x0), r ∈ [0, µ]}.

Since ∂Ω is smooth, ρ, µ can be shortened, if necessary, so that for each y ∈ B,
there exists a unique y0 ∈ ∂Ω ∩ Ω̄ρ(x0), and r(y) ∈ [0, µ], such that

y = y0 − r(y)ny0 , r(y) = |y − y0| = dist(y, ∂Ω).

Furthermore, there exists r0 ∈ (0, min{ 1
2ρ, 1

2µ}), such that Ωr0(x0 − r0nx0) ⊂
Ω, and Ω̄r0(x0 − r0nx0) ∩ ∂Ω = {x0}. Thus there exists σ0 > 0 such that, for
σ ∈ (0, σ0], Ω̄r0(x0 − (r0 + σ)nx0) ⊂ Ω ∩ IntB.

By (1.2) and (4.1), for σ ∈ [0, σ0] and y ∈ Ω̄r0(x0 − (r0 + σ)nx0), we infer that

b(y) = b(y0 − r(y)ny0)
� (1 − ε)b(x0 − r(y)nx0)
= (1 − ε)bx0(r(y))
= (1 − ε)bx0(dist(y, ∂Ω))
� (1 − ε)bx0(dist(y, ∂Ωr0(x0 − (r0 + σ)nx0))).

Subsequently, b(y) � (1 − ε)bx0(rσ), where rσ = dist(y, ∂Ωr0(x0 − (r0 + σ)nx0)).
Consider

∆u = (1 − ε)bx0(rσ)f(u), x ∈ Ωr0(x0 − (r0 + σ)nx0),
u(x) = +∞, x ∈ ∂Ωr0(x0 − (r0 + σ)nx0).

}
(4.2)

Due to theorem 3.1, problem (4.2) has a unique solution U for each σ ∈ [0, σ0].
Furthermore,

lim
x→∂Ωr0 (x0−(r0+σ)nx0 )

U(x)
K1(x0)B1(rσ)

= (1 − ε)β ,
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where

B1(r) =
∫ r

0

∫ s

0
(H ◦ B−β

1 (t))bx0(t) dt ds,

K1(x0) = [β(β + 1)Cx0 − β]β , β =
1

p − 1
,

Cx0 = lim
t→0

[B′
1(t)]

2

B1(t)bx0(t)H ◦ B−β
1 (t)

.

Define
uσ = u|Ωr0 (x0−(r0+σ)nx0 ).

Then uσ is a bounded subsolution of (4.2). Hence, the maximum principle implies
that, for each σ ∈ [0, σ0] and x ∈ Ωr0(x0 − (r0 + σ)nx0),

uσ = u|Ωr0 (x0−(r0+σ)nx0 ) � U ,

which implies that

lim sup
x→∂Ωr0 (x0−(r0+σ)nx0 )

uσ

K1(x0)B1(rσ)
� (1 − ε)β .

Passing to the limit as σ → 0 gives

lim
r→0

u(x0 − rnx0)
K1(x0)B1(r)

� (1 − ε)β .

This is valid for any sufficiently small ε > 0. Then

lim
r→0

u(x0 − rnx0)
K1(x0)B1(r)

� 1. (4.3)

Step 2. For any x0 ∈ ∂Ω, there exist 0 < r1 < r2 and σ0 such that

Ω ⊂
⋂

0�σ�σ0

Ωr1,r2(x0 + (r1 + σ)nx0), ∂Ω ∩ Ω̄r1,r2(x0 + r1nx0) = {x0},

and r1 is sufficiently small and r2 is sufficiently large that Ω ⊂ Ωr1,r2/3(x0+r1nx0).
According to (4.1), we find that, for each y ∈ Ω2η(x0) ∩ Ω̄, where η ∈ min{ρ, µ}

is small,

b(y) = b(y0 − r(y)ny0) � (1 + ε)bx0(r(y))
= (1 + ε)bx0(dist(y, ∂Ω))
� (1 + ε)bx0(dist(y, ∂Ωr1(x0 + r1nx0)))
= (1 + ε)bx0(dist(y, ∂Ωr1,r2(x0 + r1nx0))).

Define a radially symmetric function b̃ : Ωr1,r2(x0 + r1nx0) �→ [0,∞) as

b̃(y) = (1 + ε)bx0(r),

where r = dist(y, ∂Ωr1,r2(x0 + r1nx0)) and y ∈ Ω2η(x0) ∩ Ω̄. Moreover,

b̃(dist(y, ∂Ωr1,r2(x0 + (r1 + σ)nx0))) � b(y) for all y ∈ Ω̄ and all σ ∈ [0, σ0].
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In view of corollary 3.2,

∆u = b̃(r)f(u), x ∈ Ωr1,r2(x0 + (r1 + σ)nx0),
u(x) = +∞, x ∈ ∂Ωr1,r2(x0 + (r1 + σ)nx0),

has a unique large positive solution U, where r = dist(y, ∂Ωr1,r2(x0 + (r1 + σ)nx0)),
and

lim
x→∂Ωr1,r2 (x0+(r1+σ)nx0 )

U(x)
K2(x0)B2(r)

= (1 + ε)β ,

where

B2(r) =
∫ r

0

∫ s

0
(H ◦ B−β

2 (t))bx0(t) dt ds,

K2(x0) = [β(β + 1)Cx0 − β]β , β =
1

p − 1
,

Cx0 = lim
t→0

[B′
2(t)]

2

B2(t)bx0(r)H ◦ B−β
2 (t)

.

Moreover, since U|Ω is a subsolution of (1.1), this implies that

U(x) � u(x) for all σ ∈ [0, σ0] and all x ∈ Ωr1,r2(x0 + (r1 + σ)nx0) ∩ Ω.

This yields

lim
r→0

u(x0 − rnx0)
K2(x0)B2(r)

� (1 + ε)β .

Letting σ →, we derive that

lim inf
x→x0,x∈Ωr1,r2 (x0+r1nx0 )

u(x)
K2(x0)B2(r)

� 1. (4.4)

It can easily be seen that B1(r) = B2(r) and K1(x0) = K2(x0). Using (4.3) and
(4.4), we obtain (1.5).

Step 3 (uniqueness of problem (1.1)). The uniqueness follows from theorem 1.1
by a standard argument. For completeness we include the short proof. Suppose
that u1 and u2 are solutions of (1.1) on Ω. Then, by theorem 1.1, it follows that

lim
d(x)→0

u1(x)
u2(x)

= 1.

Thus, given ε > 0, there exists δ > 0 such that

(1 − ε)u2(x) � u1(x) � (1 + ε)u2(x), x ∈ Ωδ,

where Ωδ = {x ∈ Ω : d(x, ∂Ω) < δ}. Then (f1) implies that u±(x) = (1 ± ε)u2(x)
satisfy

∆u+ � b(x)f(u+), x ∈ Ω,

∆u− � b(x)f(u−), x ∈ Ω.
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Let ω be the unique solution of

∆ω = b(x)f(ω), x ∈ Ω0,

ω = u1, x ∈ ∂Ω0,

where Ω0 = {x ∈ Ω : d(x, ∂Ω) � δ}. By the comparison principle, it follows that
u−(x) � ω(x) � u+(x), x ∈ Ω0. The uniqueness of ω implies that ω = u1, x ∈
Ω0. Consequently, (1 − ε)u2(x) � u1(x) � (1 + ε)u2(x), x ∈ Ω = Ωδ ∪ Ω0. Letting
ε → 0 we obtain that u1(x) = u2(x). This completes the proof.
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13 M. Delgado, J. López-Gómez and A. Suárez. Characterizing the existence of large solutions
for a class of sublinear problems with nonlinear diffusion. Adv. Diff. Eqns 7 (2002), 1235–
1256.
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