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Abstract

Estuarine ecosystem conditions actively influence the early life stage of fishes. This study
reports how environmental factors influenced the ichthyoplankton in a tropical estuary within
an Environmental Protection Area by comparing the structure and composition of fish eggs
and larval assemblages. A total of 1672 fish larvae and 486 fish eggs were collected. Higher
densities of larvae were recorded for Engraulidae, Characidae, Clupeidae, Gerreidae,
Mugilidae and Atherinopsidae, and higher egg densities of the families Mugilidae,
Clupeidae and Engraulidae were found. The spatio-temporal variations were determined by
the environmental predictors salinity, pH, dissolved oxygen and temperature, with salinity
influenced by precipitation as one of the main predictors of the distribution of ichthyoplank-
ton. During the rainy season, greater densities of eggs were recorded in the upper and inter-
mediate zones, mainly Characidae and Engraulidae; in the dry season, in the lower zone, there
was a greater density of larvae, particularly Atherinopsidae and Mugilidae. The information
provided in the present study contributes to our knowledge of nursery habitat requirements
for the initial development of marine migrant and resident species in tropical estuaries.

Introduction

Estuaries are known for their high environmental stress due to the large fluctuations in envir-
onmental conditions. The high dynamics of these ecosystems directly influences the level of
recruitment, representing a structuring factor for estuarine fish communities (Suzuki et al.,
2013). This high variability of physical and chemical conditions creates the environmental gra-
dients, which act as filters, allowing the persistence of species that tolerate harsh conditions
(Vasconcelos et al., 2015; Teichert et al., 2017; Lima et al., 2020). Therefore, species compos-
ition tends to change along these environmental gradients and each species is distributed
according to its genetic, physiological and life cycle characteristics in combination with how
it interacts with the physical and chemical factors of the environment (Riesch et al., 2018).

The fluctuation of abiotic characteristics actively affects the distribution patterns and abun-
dance of ichthyoplankton, since variability in recruitment occurs as a result of seasonal move-
ments influenced by physical, chemical and biological conditions, generating a variety of fish
larvae assemblages (Barletta et al., 2003; Maci & Basset, 2009; Cattani et al., 2016). Several
authors have suggesting that local variables are important predictors that influence the distri-
bution patterns of estuarine ichthyoplankton (Harris et al., 2001; Kimmerer, 2002; Lima et al.,
2015; Machado et al., 2017; Zhang et al., 2019). In particular, salinity is one of the most
important factors that influence egg survival and larval distribution because it affects metab-
olism through osmoregulation and oxygen demands (Rosa et al., 2016).

In tropical areas, levels and ranges of environmental variables can be largely determined by
the seasonal rainfall patterns (Blaber, 2002). Ichthyoplankton density patterns may conse-
quently respond to the hydrologic regime (Pringle, 2003). Thus precipitation is the key factor
that determines the characteristics of the estuaries and causes changes in salinity, transparency
and dissolved oxygen, thus influencing spawning and recruitment processes of fish species
(Henriques et al., 2017). One example comes from the estuary of the Caeté River (northern
Brazil), where it was observed that precipitation was the most important factor for the distri-
bution of eggs and larvae along the estuary (Barletta et al., 2002). Many studies emphasize the
importance of freshwater entry regimes which mediate changes in habitat conditions, which in
turn drive patterns in the distribution and recruitment of biota (Agostinho et al., 2004; Santos
et al., 2017).

The north-eastern semi-arid region of Brazil is characterized by intermittent flow in most
of its rivers, with the flow interrupted during most of the year and only becoming perennial in
areas where the rivers reach wetter regions, that is, near the river mouth on the Atlantic Ocean
(Oliveira-Silva et al., 2018). Therefore, the functioning of tropical estuaries in the semi-arid
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region is strongly influenced by the magnitude and timing of
freshwater runoff reaching the estuary, and the freshwater runoff
largely determines the salinity distribution in this ecosystem.
Moreover, the marked seasonal rainfall pattern also leads to a sea-
sonal pattern of fish recruitment (Figueiredo & Pessanha, 2015;
Lima et al., 2020). Thus, under semi-arid climate, analysing estu-
ary use at spatial and temporal scales constitutes an essential step
towards understanding and predicting the effects of environmen-
tal changes on fish recruitment in tropical estuaries. Our primary
goal was to evaluate the influence of environmental parameters on
ichthyoplankton spatiotemporal dynamics. Results from this
study provide knowledge in the face of a prolonged drought
experienced in this region, providing valuable tools for estimating
future effects of climate change and drought.

Materials and methods

Study area

The study was carried out in the Mamanguape River estuary on
the north-eastern coast of Brazil, which is part of the
Environmental Protection Area of Barra de Mamanguape
(6°43′02′′S 35°67′46′′W). The estuary area is 25 km long.
The channels are bordered by sandy/muddy tidal flats covered
by continuous mangroves, mainly Rhizophora and Avicennnia
spp., in the lower and middle zones of the estuary. Other habitats
are also present in this estuary, including mud and sand flats,
sandy beaches (close to the entrance) and seagrass beds
(Halophila decipiens, H. baillonis and Halodule wrightii). The
estuary is protected from the ocean by sandstone reefs running
along the coastline, which form a barrier adjacent to the river
mouth (Nobrega & Nishida, 2003) (Figure 1).

The region has a hot and humid climate (Köppen climate clas-
sification: with a dry summer) with a mean air temperature
between 24 and 26°C and a mean annual rainfall between 700
and 1500 mm (Alvares et al., 2013). The precipitation patterns
of the region have a rainy season (April–July) and a dry season
(August–March) (Macedo et al., 2010).

Sampling

The sampling programme was conducted on four excursions car-
ried out during two rainy season months (May and June 2016)
and two dry season months (October and November 2016).

The estuary was divided into three estuarine zones according to
the salinity gradient: upper (0.5–21.5), middle (28.2–48) and
lower (50.7–53.2). Four sites were sampled in each zone of the
estuary (upper, middle and lower) with three replicates per
month at each site in daylight under high tide conditions
(3 zones × 4 sites × 3 replicates × 4 months = 144 samples).

Ichthyoplankton samples were collected using a conical-
cylindrical plankton net (total length 1.50 m; 60 cm of mouth
opening and a mesh net size of 200 μm). A mechanical flow
meter (General Oceanic) attached to the centre of the net was
used to determine the volume of filtered water. This value was
used to calculate the larval density (number × 100 m−3) (Lima
et al., 2015). At each sampling station, horizontal plankton
hauls were performed during the day in the middle of the main
channel at spring high tides. All hauls were standardized to a
5 min hauling time, with a boat speed of 1.5 knots, to avoid indi-
vidual escape as much as possible. All samples of plankton were
stored and immediately preserved in 4% formaldehyde/seawater
(Barletta et al., 2003).

Salinity, water temperature (°C), pH, dissolved oxygen
(mg l−1), and turbidity (NTU) were measured in situ before
each sampling event using a multiparameter sensor (HORIBA
Series U-50). Primary production was also estimated by analysing
chlorophyll a content in the water following the methodology
proposed by Wetzel & Likens (1991). Precipitation data were
compiled from the Executive Agency for Water Management of
the State of Paraiba (AESA 2016 website: www.aesa.pb.gov.br).

In the laboratory, the ichthyoplankton was identified, counted
and total length (mm) measured. The identification was at least to
the family level using morphological approaches following
Figueiredo & Menezes (1978), Fahay (1983) and Richards
(2006), the total length (LT) was measured with help from the
program Image J 6.0 and the larval stages (yolk sac, pre-flexion,
flexion and post-flexion) were assessed according to the method-
ology described by Kendall et al. (1984).

Statistical analysis

A permutational multivariate analysis of variance
(PERMANOVA) (with 9999 permutations) was used to examine
spatial and temporal variations of the environmental parameters
and ichthyoplankton density, and applied for two factors: zone
(three fixed levels: upper, middle and lower) and season (two

Fig. 1. Mamanguape River estuary, with indication of the
ichthyoplankton sampling areas: (1) Upper, (2) Middle, (3)
Lower and (•) sampling point.
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fixed levels: rainy and dry). A univariate permutational analysis of
variance (PERMANOVA) was used to investigate significant dif-
ferences among the zones and seasons, and a posteriori pairwise
comparisons were used to determine significant differences. All
univariate tests were based on Euclidean distance matrices
(Anderson et al., 2008).

A principal components analysis (PCA) was applied to verify
the spatial and temporal distribution of the environmental
data (Anderson et al., 2008). Logarithmic transformations Log
(x + 1) of environmental data were performed, and the data
were subsequently standardized using a ‘normalize routine’ to
reduce the effect of the measurement units on the PCA analysis.
Prior to analysis, the full set of available variables was tested for
collinearity (draftsman plot and Spearman correlation matrix),
and redundant variables with correlations (r) >0.7 were omitted.

For the multivariate analysis, the ichthyoplankton densities were
both log-transformed by square root, and the results were used to
generate a Bray–Curtis similarity matrix. To identify correlations
between the environmental gradients and the variations in the
fish data, a distance-based linear model (DistLM) was used
(Legendre & Anderson, 1999; McArdle & Anderson, 2001). To
choose the final model, the ‘Best’ selection procedure used the
Akaike information criteria (AIC) to identify the most parsimoni-
ous explanatory models. A distance-based redundancy analysis
(dbRDA) was performed (McArdle & Anderson, 2001). In total,
four environmental explanatory variables were identified by the
exploratory DistLM and used in further analyses. The dbRDA
plot enabled us to visualize the relative contributions of each of
the predictor variables to the ichthyoplankton community struc-
ture. The families that contributed significantly to variations in
the groups that composed each zone were identified using SIMPER.

All multivariate analyses were performed with the PRIMER
software package version 6.0 (Clarke, 1993). To investigate the
seasonal variations in families, a correspondence analysis (CA)
was performed with the ‘ade4’ package in R software
(Thioulouse et al., 1997; The R Development Core Team, 2009).

Results

Environmental parameters

Details of the environmental parameters collected at Mamanguape
estuary are listed in Table 1. The permutational multivariate ana-
lysis of variance (PERMANOVA) showed that environmental data
differed among zones (Pseudo-F2.143 = 44.152; P = 0.0001) and
between seasons (Pseudo-F1.143 = 209.11; P = 0.0001). The results
from univariate analysis showed that salinity, water temperature,
pH, dissolved oxygen and chlorophyll a differed significantly
between zones and seasons (Table 2). During the rainy season,
the lowest values of salinity and chlorophyll a were recorded in
the upper zone; temperature and dissolved oxygen showed lower
values in middle zone and the highest pH values in the lower
zone (Tables 1 and 2). However, in the dry season the highest sal-
inity levels were registered in the lower zone; dissolved oxygen and
chlorophyll a in the intermediate zone and temperature and pH
recorded in the upper zone (Tables 1 & 2). Turbidity varied
significantly between zones (Table 2), with higher values in the
middle zone and lower values in the lower zone, and rainfall
varied between seasons with higher rainfall in the rainy season
(Tables 1 and 2).

In addition, the PCA plot revealed that the values of the envir-
onmental parameters in the dry season were clearly different from
those in the rainy season (Figure 2). Among the environmental
variables, rainfall, temperature, dissolved oxygen and pH were
strongly correlated with PC1, whereas turbidity and salinity
were correlated with PC2 (Table 3; Figure 2). Ta
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Composition and distribution of ichthyoplankton

A total of 1.672 fish larvae of 18 families were counted; 486 fish eggs
represented eight taxa that were captured along the channel
(Table 4), with density total of larvae 0.08 ind. × 100m−3, and the
total egg density 0.014 ind. × 100m−3. Only three freshwater fish
families were collected at the estuary: Characidae, Cichlidae and
Erythrinidae (Table 4). The PERMANOVA results showed that
there was a significant difference between the zones (Pseudo-F2.81
= 4.0716; P = 0.0001) and the seasons (Pseudo-F1.81 = 5.6259;
P = 0.0001). The highest densities of larvae were recorded in the
middle zone during the rainy season, with higher values for
Engraulidae (61.71%) and Clupeidae (16.79%). In the dry season,
the highest larval densities were recorded in the lower zone, with
the highest densities recorded for Mugilidae (43.35%) and
Engraulidae (22.21%). For eggs, the highest densities were recorded
in the lower zone in both seasons, with the highest values for
Clupeidae (36.36%) in the rainy season and Mugilidae (65.67%)
in the dry season (Table 4; Figure 3).

Based on SIMPER analysis, ∼78.77% dissimilarity was found
among the estuarine zones. During the rainy season, the highest
contributors to the dissimilarities were Characidae and
Engraulidae larvae in the upper zone; Engraulidae, Clupeidae andTa
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Fig. 2. Ordination Diagram for principal components (PCA) on environmental para-
meters in the Mamanguape River estuary, Brazilian semi-arid, coded for the zones
and hydrological periods: Rainy season: Upper (▴), Middle (▪) and Lower (•). Dry sea-
son: Upper (▵), Middle (□) and Lower (○).

Table 3. Coefficients of eigenvector of the main components (PC1 and PC2) of
the environmental parameters in the Mamanguape River estuary, semi-arid
Brazilian between the rainy and dry seasons of 2016

Coefficients of eigenvectors

Components/variable PC1 PC2

Salinity −0.141 0.583

Temperature (°C) −0.434 −0.071

pH 0.439 0.263

Dissolved oxygen (mg l−1) −0.435 0.256

Turbidity (NTU) −0.004 −0.705

Chorophyll a (μg l−1) −0.402 −0.153

Rainfall (mm) 0.498 −0.034

Eigenvector 3.80 1.39

% Cumulative variation 54.2 74.1
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Table 4. Total number and subtotal density (num. ind. 100 m−3), Percentage of density (%) and Frequency of occurrence (FO%) of eggs and fish larvae (family level) caught in Mamanguape River estuary during rainy and dry seasons

Zone/Season

FO total
Total density Upper Middle Lower

Family
Rainy Dry Rainy Dry Rainy Dry

Fish larvae Total number (%) No. × 100 m³ % % FO% % FO% % FO% % FO% % FO% % FO%

Engraulidae 619 51.61 0.03 36.19 5.42 50 26.79 30 61.17 100 9.09 18.18 9.52 31.25 22.21 57.89

Characidae 556 22.58 0.02 28.75 88.60 70 7.34 41.17

Clupeidae 189 34.40 0.009 10.91 2.71 25 4.45 20 16.79 76.47 4.18 18.18 11.11 18.75 8.38 36.84

Gerreidae 153 22.58 0.008 9.59 1.44 10 12.23 41.17 41.27 31.25 4.72 36.84

Mugilidae 50 7.52 0.002 2.78 43.35 36.84

Atherinopsidae 41 23.65 0.002 2.91 19.36 20 0.22 11.76 15.87 9.09 6.34 25 14.99 68.42

Sciaenidae 39 19.35 0.003 3.76 4.07 20 1.33 17.64 61.30 54.54 6.34 12.5 3.81 26.31

Carangidae 15 8.60 0.0007 0.86 1.08 5 0.55 17.45 3.17 12.5 1.13 10.52

Lutjanidae 11 4.30 0.0009 1.07 0.11 5.88 15.87 18.75

Serranidae 5 3.22 0.0003 0.39 0.11 5.88 4.76 6.25 0.42 5.26

Hemiramphidae 4 3.22 0.0001 0.20 0.11 5.88 3.17 9.09 0.52 5.26

Cichlidae 3 2.15 0.0002 0.28 0.18 5 5.42 10

Syngnathidae 3 3.22 0.0001 0.18 0.36 10 1.85 10

Tetraodontidae 3 2.15 0.0002 0.33 6.35 9.09 1.58 6.25

Bleniidae 3 3.22 0.0001 0.23 4.76 20 0.42 5.26

Haemulidae 1 1.07 <0.0001 0.11 2.68 10

Gobiidae 1 1.07 <0.0001 0.11 2.68 10

Erythrinidae 1 1.07 <0.0001 0.05 0.18 5

Sub-total 0.08 0.02 0.002 0.04 0.003 0.005 0.005

eggs

Mugilidae 121 25.58 0.004 33.07 35.38 20 65.67 61.53

Clupeidae 54 46.51 0.003 22.63 75.20 66.66 <0.001 100 17.84 20 36.36 42.85 12.0 53.84

Engraulidae 43 51.16 0.002 19.36 25.06 33.33 46.76 70 1.81 7.14 15.30 84.61

Carangidae 19 23.25 0.001 11.42 34.54 64.28

Sciaenidae 11 13.95 0.0006 4.74 7.27 21.42 1.10 7.69

Achiridae 10 18.60 0.0006 4.54 7.27 14.28 5.90 38.45

Gerreidae 7 4.65 0.0006 4.20 12.72 7.14

Sub-total density 0.014 0.0001 <0.001 0.003 0.004 0.005
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Gerreidae larvae in the middle zone; and Engraulidae, Gerreidae
and Atherinopsidae larvae and Clupeidae and Carangidae eggs in
the lower zone. During the dry season, Engraulidae, Sciaenidae,
Bleniidae and Clupeidae larvae had greater contributions in the
upper zone; Sciaenidae larvae and Engraulidae eggs were associated
with the middle zone; and Atherinopsidae, Clupeidae and Gerreidae
larvae and Engraulidae and Clupeidae eggs had higher contributions
in the lower zone (Table 5).

Influence of environmental filters on ichthyoplankton

The most important environmental variables that contributed to
the variation in estuarine ichthyoplankton communities were

identified by DistLM (Table 6). The Best procedure selected
four predictor variables as the strongest parameters determining
ichthyoplankton composition in relation to zones and seasons:
rainfall, turbidity, dissolved oxygen, temperature and chlorophyll
a (Figure 4). Together, these variables accounted for 14.2% of the
variation in the estuarine ichthyoplankton data. Marginal tests
identified dissolved oxygen as the variable that was most strongly
correlated with ichthyoplankton density (explained 8.42% of vari-
ation), followed by temperature (6.46%) and rainfall (4.40%)
(Table 6).

The first axis of the dbRDA represented the evident temporal
separation of the samples, with the left quadrant characterized by
samples from the rainy season and the right quadrant

Fig. 3. Spatial and temporal distribution of densities of eggs and larvae of fish caught in ichthyoplankton trawls in the Mamanguape estuary, semi-arid Brazilian.
Upper, Middle, Lower, rainy season (▪) and dry season (□). The wider the square represents the density of ichthyoplankton.

Table 5. Summary of SIMPER analysis results on density of estuarine ichthyoplankton (> 90%), between zones and seasons in Mamanguape River estuary

Upper Middle Lower

Average similarity (%) Rainy (28.92) Dry (8.14) Rainy (39.24) Dry (20.85) Rainy (12.70) Dry (19.85)

Fish larvae

Characidae 58.65

Engraulidae 38.17 61.66 63.63 14.23 18.73

Clupeidae 6.87 23.81 5.53

Gerreidae 5.95 11.63 6.73

Atherinopsidae 5.30 24.98

Lutjanidae

Sciaenidae 18.11 47.33

Bleniidae 7.36

Eggs

Clupeidae 15.88 5.34

Carangidae 40.81

Engraulidae 46.08 16.97

Mugilidae 11.13

Journal of the Marine Biological Association of the United Kingdom 271

https://doi.org/10.1017/S0025315422000467 Published online by Cambridge University Press

https://doi.org/10.1017/S0025315422000467


characterized by samples from the dry season. The second axis
split the samples along a spatial gradient, with the upper and mid-
dle samples plotted in the upper quadrant and the lower zone
samples plotted in the lower quadrant (Figure 4).

The dbRDA plot showed that the first axis explained 54.3% of
the fitted variation (r2 adjusted = 0.12507). The Atherinopsidae
larvae and the Engraulidae and Mugilidae eggs were positively
correlated with dissolved oxygen and temperature, whereas the
Carangidae eggs followed by the Characidae, Clupeidae and
Engraulidae larvae were negatively correlated with turbidity and
chlorophyll a (Figure 4). The second axis explained 21.5% of
the variation. This axis was mainly influenced by Engraulidae
and Mugilidae larvae as well as Engraulidae eggs, which were
negatively correlated with turbidity and chlorophyll a;
Carangidae larvae were positively correlated with rainfall. These
species therefore only respond to the proximity of the freshwater
river input in the upper zone (Figure 4).

Size-specific larval distribution

Larvae were present at all stages of their development in all zones
and seasons. During the rainy season, the lowest sizes of indivi-
duals were registered in the upper and lower zones. In the
upper and lower zones, the majority of larvae found were yolk
sac larvae of the Characidae and Gerreidae, respectively. In the
intermediate zone, the larvae were mostly in the pre-flexion
stage, and there was a greater representation of Engraulidae
(Figure 5).

During the dry season, in the upper zone, there was a greater
density of larvae at the flexion stage in the Atherinopsidae family

and the ‘Others’ category (namely, Lutjanidae, Serranidae and
Carangidae). In the middle zone, there was a higher representa-
tion of Gerreidae and Sciaenidae larvae in the yolk sac stage
and Atherinopsidae and ‘Others’ larvae in the flexion stage. The
lower zone was dominated by yolk sac larvae in the Mugilidae
family (Figure 5).

Discussion

In the estuary of the Mamanguape River, the ichthyoplankton
community exhibited strong spatial trends influenced by the sea-
sonal fluctuation of environmental variables, such as precipita-
tion, turbidity, dissolved oxygen, temperature and chlorophyll
a, leading to the formation of distinct assemblages in terms of
density and species richness along the estuarine gradient.
These variables operated as environmental filters in the compos-
ition of the ichthyoplankton, where freshwater species were
more abundant in the upper zone and their occurrence
decreased along the direction of ocean while the density and
occurrence of marine species generally showed the opposite spa-
tial pattern. Thus, these trends reveal the importance of local
processes in determining community species richness (Gotelli
et al., 2010), supporting the theory that abiotic environments
influence the assembly of the community, restricting which spe-
cies can be established in a given location (Houseman & Gross,
2006).

The salinity gradient varies in time and space in response to
the flow of the estuary, which seems to be one of the main forces
in determining the structure of the ichthyoplankton community
within the Mamanguape estuary. An example comes from a sub-
tropical estuary (Mississippi Sound, northern Gulf of Mexico),
where the larval distribution showed a positive correlation with
temperature and changes in salinity, due to high freshwater
input from springs (Rakocinski et al., 2019). It has also been
shown that salinity was the primary environmental driver affect-
ing ichthyoplankton in tropical estuaries (Bonecker et al., 2007;
Lima et al., 2015). In our study, the greater inflow of fresh
water led to a sudden reduction in salinity in part of the estuarine
zone allowing the occurrence of the freshwater families
Characidae and Erythrinidae. Consequently, most families of
marine origin were recorded at higher densities in the lower
zone due to the greater stability of the salinity near the entrance
of the estuary and were absent from the upper estuary. Thus, sal-
inity acted as a barrier affecting larval distribution, preventing
marine species from reaching less saline areas in the upper part

Table 6. DistLM marginal test showing the influence of environmental variables
on the estuarine ichthyoplankton (Mamanguape estuary, Brazilian semi-arid)

Variable SS Pseudo-F P Prop.

Rainfall (mm) 18,830 4.9084 0.001 4.5069

Temperature (°C) 27,016 7.1898 0.001 6.4662

pH 4983.6 1.9084 0.001 1.5069

Dissolved oxygen (mg l−1) 35,198 9.5677 0.001 8.2447

Turbidity (NTU) 4825.8 1.2153 0.281 1.1551

Chlorophyll a (μg l−1) 11,586 2.9662 0.001 2.7730

Prop, Proportion (%); SS, sum of squares.

Fig. 4. Results of the redundance analysis based in distance (DbRDA) demonstrating the environmental variables that influence the structure of the families in the
ichthyoplankton trawls in the Mamanguape estuary, Brazilian semi-arid, coded for the seasons. Rainy: Upper (▵), Middle (□ ) and Lower (○ ). Dry season: Upper
(▴), Middle (▪) and Lower (•). And the families represented by the vectors: Erythrinidae (Erythr), Characidae (Char), Clupeidae (Clup), Engraulidae (Engr), Gerreidae
(Gerrei), Mugilidae (Mugi), Atherinopsidae (Ather), Achiridae (Achir), Lutjanidae (Lutj) and Carangidae (Carang).
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of the estuary, since some species are estenohalines (Barletta et al.,
2005; Kraft et al., 2015; Henriques et al., 2017).

The decline in rainfall resulted in increased saline intrusion
into the upstream part of the estuary, associated with a reduced
inflow of fresh water, allowing the occurrence of marine species
such as those of the families Sciaenidae, Carangidae and
Bleniidae in these regions. This result was also observed by
Lima et al. (2015) in a tropical estuary (Goiania River, Brazilian
semi-arid), which verified that the increase in marine larvae dur-
ing the dry season in the upper zone was caused by the greater
influence of coastal waters. The presence of these larvae in this
part of the estuary can be attributed to the tidal stream transport
theory, which suggests that the larvae move vertically within the
water column during the flood tide and are transported by
convection through the salt wedge to the upper reaches of the
estuary (West et al., 1991). Fishes transported by this mechanism
can tolerate high amplitudes of salinity (euryhalines), allowing
them to inhabit habitats that were originally influenced by
fresh water (Camargo & Isaac, 2001; Bonecker et al., 2007).
In addition, the reduction in the volume of water due to a drought
on the coast resulted in a reduction in the area of available
estuarine habitat, with major consequences for the recruitment
of transient and resident species in the estuaries (Cavalcante
et al., 2018).

The larval density decreased from the rainy season to the dry
season. The highest captures were recorded for larval vitelline and
pre-flexion stages, represented by Lutjanidae, Gerreidae and
Carangidae. Despite the lower larval density during the dry sea-
son, there was also a greater representation of the larvae in larval
vitelline and pre-flexion stages, and eggs of Engraulidae,
Clupeidae and Mugilidae in the downstream zones, indicating
that the spawning occurred throughout the study period and
reached the peak of reproduction during the rainy season with
the greatest discharges of fresh water and decreased salinity in
the system. This result still suggests that seasonal variations in
rainfall and salinity seem to play a larger role in reproduction

and recruitment than temperature variations in tropical estuaries
(Barletta et al., 2002). Temperature seems to play an important
role for distribution of larval fish assemblages in temperate estu-
aries such as the Lima estuary (north-west Portugal) (Ramos
et al., 2006).

In addition, the high nutrient discharge that occurs during the
rainy season influences the dynamics of the larvae through an
increase in resource availability due to higher primary productiv-
ity (Hsieh et al., 2010). Consequently, there was a higher concen-
tration of chlorophyll a recorded in the middle zone of the
estuary, which coincided with the area of maximum estuarine tur-
bidity (Oliveira-Silva et al., 2018). Many larvae and juveniles
benefit from this area because of the high concentration of prey
due to the high productivity as well as the turbid waters that pro-
vide shelter from predators. These factors explain the higher larval
densities in this zone (Islam et al., 2006; Machado et al., 2017).
The high density of pre-flexion larvae of the Engraulidae and
Clupeidae families in the middle zone of the Mamanguape estu-
ary is associated with a higher concentration of zooplanktonic
organisms, which are considered the main food source for juve-
niles (Figueiredo & Pessanha, 2015). Moura et al. (2016) studied
the distribution of copepods in the estuary of the Mamanguape
River and noted the upper areas as sites of higher concentration
of zooplanktonic organisms. Additionally, these results are asso-
ciated with the ideal free distribution theory, since the resources
(food) are usually distributed at irregular ‘spots’ in nature, and
the organisms of a population adjust their distribution among
these different resource locations to maximize their fitness
(Shepherd & Litvak, 2004).

The results suggest that the influence of rainfall on salinity and
its effects on other environmental variables were important in
regulating the composition and distribution of the ichthyoplank-
ton community in the studied tropical estuary. The results also
emphasized the importance of seasonal changes in freshwater dis-
charge for ichthyoplankton, with rainfall and salinity acting as the
main environmental filter. Primary productivity, estimated by

Fig. 5. Percentage contribution of families to each developmental stage in Mamanguape River estuary (Lower, Middle, Upper) during rainy and dry seasons. Stages:
Black bars = vitelline larval; light grey = pre-flexion; dark grey = flexion; and white = post-flexion.
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algal biomass through the concentration of chlorophyll a, also was
important in determining larval density through food availability
in the middle and upper reaches of the estuary, emphasizing the
importance of these habitats as nursery areas for the initial devel-
opment of the numerous fish species in tropical estuaries. More
studies are necessary to understand the dispersion, reproduction
and recruitment mechanisms of fish species that use this import-
ant coastal ecosystem.
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