
TLP 4 (3): 371–380, 2004. c© 2004 Cambridge University Press

DOI: 10.1017/S1471068403001893 Printed in the United Kingdom

371

PROGRAMMING PEARL

Enhancing a search algorithm to perform
intelligent backtracking

MAURICE BRUYNOOGHE

Department of Computer Science, Katholieke Universiteit Leuven, Celestijnenlaan 200A,

B3001 Heverlee, Belgium

(e-mail: Maurice.Bruynooghe@cs.kuleuven.ac.be)

Submitted: 27 November 2000; Revised: 27 September 2002, and 2 June 2003; accepted 30 June 2003

Abstract

This paper illustrates how a Prolog program, using chronological backtracking to find a

solution in some search space, can be enhanced to perform intelligent backtracking. The en-

hancement crucially relies on the impurity of Prolog that allows a program to store information

when a dead end is reached. To illustrate the technique, a simple search program is enhanced.

KEYWORDS: intelligent backtracking, dependency-directed backtracking, backjumping,

conflict-directed backjumping, nogood sets, look-back

1 Introduction

The performance of backtracking algorithms for solving finite-domain constraint

satisfaction problems can be improved substantially by so called look-back and look-

ahead methods (Dechter and Frost 2002). Look-back techniques extract information

by analyzing failing search paths that are terminated by dead ends and use

that information to prune the search tree. Look-ahead techniques use constraint

propagation algorithms in an attempt to avoid such dead ends altogether. Constraint

propagation can rather easily be isolated from the search itself and can be localized

in a constraint store. Following the seminal work of Van Hentenryck (1989), look-

ahead techniques are available to the logic programmer in a large number of systems.

This is not the case for look-back methods. Intelligent backtracking has been

explored as a way of improving the backtracking behavior of logic programs

(Bruynooghe and Pereira 1984). For some time, a lot of effort has gone into adding

intelligent backtracking to Prolog implementations (see references Bruynooghe

(1991)). However, the inherent space and time costs, which must be paid even

when no backtracking occurs, impeded its introduction in real implementations.

For a long time, look-ahead methods have dominated in solving constraint

satisfaction problems. However, Rosiers and Bruynooghe (1987) have already shown

empirical evidence that look-back methods can be useful, even that it can be

https://doi.org/10.1017/S1471068403001893 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001893

372 M. Bruynooghe

interesting to combine both. Starting in the 1990s, there was renewed interest

in look-back methods (Ginsberg 1993), and in combining look-back with look-

ahead (Dechter and Frost 2002).

Look-back turned out to be the most successful of the approaches tried in

a research project aiming at detecting unsolvable queries (queries that do not

terminate, such as the query ← odd (X), even(X) for a program defining odd and

even numbers). The approach was to construct a model of the program over a finite

domain in which the query was false. The central part of this model construction

was to search for a pre-interpretation leading to the desired model, i.e. with D

the domain, to find an appropriate function Dn → D for every n-ary functor in

the program. A meta-interpreter was built which performed a backtracking search

over the solution space. A control strategy was devised which resulted in the early

detection of instances of program clauses which showed that the choices made

so far could not result in the desired model. This meta-interpreter outperformed

dedicated model generators on several problems (Bruynooghe et al. 1998). However,

it remained very sensitive to the initial ordering in which the various components

of the different functions were assigned. The point was that not all choices made so

far necessarily contributed to the evaluation of a clause instance. We experimented

with constraint techniques, and also investigated the use of intelligent backtracking.

With a small programming effort, we could enhance the meta-interpreter to support

a form of intelligent backtracking. As reported in Bruynooghe et al. (1999), this

was the most successful approach. As Prolog is a popular tool for prototyping

search problems, and because look-back methods, though useful, are not available

in off-the-shelf Prolog systems, we decided to describe for a wider audience how

to enhance a Prolog search program with a form of intelligent backtracking. The

technique crucially depends upon the impure feature of Prolog (assert/retract) that

allows storing information when a dead end is reached. The stored information

is used to decide whether a choice point should be skipped when chronological

backtracking returns to it. Hence, we propose the technique as a black pearl.

In the application mentioned above, the meta-interpreter is performing a sub-

stantial amount of computation after making a choice whereas the amount of

computation added to support intelligent backtracking is comparatively small. This

is not always the case. When the amount of computation in between choices is

small and solutions are rather easy to find, the overhead of supporting intelligent

backtracking may be larger than the savings due to the pruning of the search space.

This is the case in toy problems such as the n-queens. In the example we develop

here, there is a small speed-up.

We recall some basics of intelligent backtracking in section 2. In section 3, we

introduce the example program, and in section 4 we enhance it with intelligent

backtracking. We conclude with a discussion in section 5.

2 Intelligent backtracking

Intelligent backtracking as described in Bruynooghe (1981) is a very general schema.

It keeps track of the reason for eliminating a variable in a domain. Upon reaching

https://doi.org/10.1017/S1471068403001893 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001893

Programming pearl 373

a dead end, it identifies a culprit for the failure and jumps back to the choice point

where the culprit was assigned a value. Information about the variables assigned

in between the culprit and the dead end can be retained if still valid, as in the

dynamic backtracking of Ginsberg (1993), which can be considered as an instance

of the schema. More straightforward in a Prolog implementation is to give up

that information, this gives the backjumping algorithm (Algorithm 3.3) in Ginsberg

(1993) (intelligent backtracking with static order in Rosiers and Bruynooghe (1987)).

We follow rather closely Ginsberg (1993) for introducing it.

A Constraint Satisfaction Problem (CSP) can be identified by a triple (I, D, C)

with I a set of variables, D a mapping from variables to domains and C a set of

constraints. Each variable i ∈ I is mapped by D into a domain Di of possible values.

Each constraint c ∈ C defines a relation Rc over a set Ic ⊆ I of variables and is

satisfied for the tuples in that relation. A solution to a CSP consists of a value vi
(an assignment) for each variable i in I such that: (1) for all variables i: vi ∈ Di and,

(2) for all constraints c: with Ic = {j1, . . . , jk}, it holds that (vj1 , . . . , vjk) ∈ Rc.

A partial solution to a CSP (I, D, C) is a subset J ⊆ I and an assignment to each

variable in J . A partial solution P is ordered by the order in which the algorithm

that computes it assigns values to the variables, and is denoted by a sequence

of ordered pairs (i, vi). A pair (i, vi) indicates that variable i is assigned value vi;

IP = {i|(i, vi) ∈ P } denotes the set of variables assigned values by P .

Given a partial solution P , an eliminating explanation (cause-list in Bruynooghe

(1981)) for a variable i is a pair (vi, S) where vi ∈ Di and S ⊆ IP . It expresses that

the assignments to the variables of S by the partial solution P cannot be extended

into a solution where variable i is assigned value vi. Contrary to Ginsberg (1993),

we use an elimination mechanism that tests one value at a time. Hence we assume a

function consistent (P , i, vi) that returns true when P ∪ {(i, vi)} satisfies all constraints

over IP ∪ {i}) and a function elim(P , i, vi) that returns an eliminating explanation

(vi, S) when ¬consistent (P , i, vi).

Below, we formulate the backjumping algorithm; next we clarify its reasoning. Ei

is the set of eliminating explanations for variable i.

Algorithm 1

Given as inputs a CSP (I, D, C).

1. Set P := ∅.
2. If IP = I return P . Otherwise, select a variable i ∈ I \ IP , set Si := Di and

Ei := ∅.
3. If Si is empty then go to step 4; otherwise, remove an element vi from it.

If consistent(P , i, vi) then extend P with (i, vi) and go to step 2; otherwise add

elim(P , i, vi) to Ei and go to step 3.

4. (Si is empty and Ei has an eliminating explanation for each value in Di.) Let C

be the set of all variables appearing in the explanations of Ei.

5. If C = ∅, return failure. Otherwise, let (l, vl) be the last pair in P such that

l ∈ C . Remove from P this pair and any pair following it. Add (vl , C \ {l}) to

El , set i := l and go to step 3.

https://doi.org/10.1017/S1471068403001893 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001893

374 M. Bruynooghe

In step 3, when the extension of the partial solution is inconsistent, elim(P , i, vi)

returns a pair (vi, {j1, . . . , jm}), so that partial solution (j1, vj1), . . . , (jm, vjm), (i, vi)

violates the constraints. The inconsistency of this assignment can be expressed

by the clause: ← j1 = vj1 , . . . , jm = vjm , i = vi (the head is false, the body is a

conjunction).

In step 4, when Si is empty, we have an eliminating explanation for each value vik
in the domain Di. Hence we have a set of clauses of the form

← jk,1 = vjk,1 , . . . , jk,mk
= vjk,mk , i = vik (1)

The condition that the variable i must be assigned a value from domain Di with n

elements can be expressed by the clause (the head is a disjunction, the body is true):

i = vi1 , . . . , i = vin ← (2)

Now, one can perform hyper-resolution (Robinson 1965) between clause (2) and

clauses of the form (1) (for k from 1 to n). This gives:

← j1,1 = vj1,1 , . . . , j1,m1
= vj1,m1

, . . . , jn,1 = vjn,1 , . . . , jn,mn
= vjn,mn (3)

This expresses a conflict between the current values of the variables in the set

{j1,1, . . . , j1,m1
, . . . , jn,1, . . . , jn,mn

} = C . Hence, with l the last assigned variable in C ,

C \ {l} is an eliminating explanation for vl . The conflict C is computed in step 4.

When empty, the problem has no solution as detected in step 5. Otherwise, step 5

backtracks and adds the eliminating explanation (vl , C \{l}) to the set of eliminating

explanations of variable l.

One can observe that the algorithm does not use the individual eliminating

explanations in the set Ei = (vik , Sk), but only the set C which is the union of the

sets Sk . As we have no interest in introducing more refined forms of intelligent

backtracking, we develop Algorithm 2, where Ei holds the union of the sets Sk
in the eliminating explanations of variable i. To obtain an algorithm that closely

corresponds to the Prolog encoding we present in section 4, we reorganize the

code and introduce some more changes. The function elim(P , i, vi) that returns an

eliminating explanation (vi, S) for the current value of variable i is replaced by a

function conflict(P , i, vi) that returns the set {i} ∪ S (the variables that participate

in a conflict as represented by Equation 1). This conflict is stored in a variable C

(step 3 of Algorithm 2). It is nonempty, and i is the last assigned variable, hence the

value of i remains unchanged in step 4 and, in step 5, the eliminating explanation

C \ {i} is added to Ei. This reorganization of the code has as result that a local

conflict (the chosen value for the last assigned variable i is inconsistent with the

partial solution) and a deep conflict (all values for variable i have been eliminated)

are handled in a uniform manner: upon failure, the algorithm computes a conflict

and stores it in variable C (for the local conflict in step 3, for the deep conflict in

step 5), backtracks to the variable computed in step 4 (the “culprit”) and resumes

in step 5 with updating Ei and trying a next assignment to variable i.

https://doi.org/10.1017/S1471068403001893 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001893

Programming pearl 375

Algorithm 2

Given as input a CSP (I, D, C).

1. Set P := ∅.
2. If IP = I return P. Otherwise select a variable i ∈ I \ IP . Select a value vi from

Di. Set Si := Di \ {vi} and Ei := ∅.
3. If consistent (P , i, vi) then extend P with (i, vi) and go to step 2; otherwise set

C := conflict(P , i, vi).

4. If C = ∅ then return failure; otherwise let (l, vl) be the last pair in P such that

l ∈ C . Set i := l.

5. Add C \ {i} to Ei. If Si = ∅ then C := Ei and go to step 4; otherwise select and

remove a value vi from Si and go to step 3.

3 A search problem

The code below is, apart from the specific constraints, fairly representative for a

finite domain constraint satisfaction problem. The problem is parameterized with two

cardinalities: VarCard, the number of variables (the first argument of problem/3)

and ValueCard, the number of values in the domains of the variables (the second

argument of problem/3). The third argument of problem/3 gives the solution in

the form of a list of elements assign(i, vi). The main predicate uses init domain/2

to create a domain [1, 2, . . . ,ValueCard] and init pairs/3 to initialize Pairlist

as a list of pairs i-Di with Di the domain of variable i. The first argument of

extend solution/3 is a list of pairs i-Di with i an unassigned variable and Di

what remains of its domain; the second argument is the (consistent) partial solution

(initialized as the empty list) and the third argument is the solution. The predicate

is recursive; each iteration extends the partial solution with an assignment to the

first variable on the list of variables to be assigned. The nondeterministic predicate

my assign/2 selects the value. If desirable, one could introduce a selection function

which dynamically selects the variable to be assigned next.

Consistency of the new assignment with the partial solution is tested by the

predicates consistent1/2 and consistent2/2. They create a number of bin-

ary constraints. The binary constraints themselves are tested with the predicates

constraint1/2 and constraint2/2. What they express is not so important. The

purpose is to create a problem that is sufficiently difficult so that enhancing the pro-

gram with intelligent backtracking pays off. For the interested reader, the predicate

consistent2/2 creates a very simple constraint that verifies (using constraint1/2)

that the value of the newly assigned variable is different from the value of the

previously assigned variable. The predicate consistent1/2 creates a set of more

involved constraints. The odd numbered and even numbered variables each encode

the constraints of the n-queens problem. As a result, the solution of, for example,

problem(16,8,S) contains a solution for the 8-queens problem in the odd numbered

variables and a different (due to the constraints created by consistent2/2) solution

in the even numbered variables. Substantial search is required to find a first

solution. For example, the first solution for problem(16,8,S) is found after 32,936

https://doi.org/10.1017/S1471068403001893 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001893

376 M. Bruynooghe

assignments (using a similar set-up of constraints, a solution is found for the 8-queen

problem after only 876 assignments).

Note that the constraint checking between the new assigned variable and the other

assigned variables is done in an order that is in accordance with the order of assigning

variables. Hence consistent1/2 is not tail recursive. The order is not important

for the algorithm without intelligent backtracking. However, it is crucial to obtain

optimal intelligent backtracking: as with chronological backtracking, constraint

checking will stop at the first conflict detected and an eliminating explanation will

be derived from it. As an eliminating explanation with an older assigned variable

gives more pruning than one with a more recently assigned variable, the creation

of constraints requires one to pay attention to the order. It is done already here to

minimize the differences between this version and the enhanced version.

problem(VarCard,ValueCard,Solution) :-

init_domain(ValueCard,Domain),

init_pairs(VarCard,Domain,Pairs),

extend_solution(Pairs,[],Solution).

init_domain(ValueCard,Domain) :-

(ValueCard=0 -> Domain=[]

; ValueCard>0, ValueCard1 is ValueCard-1,

Domain=[ValueCard|Domain1],

init_domain(ValueCard1,Domain1)

).

init_pairs(VarCard,Domain,Vars) :-

(VarCard=0 -> Vars = []

; VarCard>0, VarCard1 is VarCard-1,

Vars=[VarCard-Domain|Vars1],

init_pairs(VarCard1,Domain,Vars1)

).

extend_solution([],Solution,Solution).

extend_solution([Var-Domain|Pairs],PartialSolution,Solution) :-

my_assign(Domain,Value),

consistent1(PartialSolution,assign(Var,Value)),

consistent2(PartialSolution,assign(Var,Value)),

extend_solution(Pairs,

[assign(Var,Value)|PartialSolution],

Solution).

my_assign([Value|_],Value).

my_assign([_|Domain],Value) :- my_assign(Domain,Value).

consistent1([],_).

https://doi.org/10.1017/S1471068403001893 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001893

Programming pearl 377

consistent1([_],_).

consistent1([_, Assignment1|PartialSolution],Assignment0) :-

consistent1(PartialSolution,Assignment0),

constraint1(Assignment0,Assignment1),

constraint2(Assignment0,Assignment1).

consistent2([],_).

consistent2([Assignment1|_],Assignment0) :-

constraint1(Assignment0,Assignment1).

constraint1(assign(_,Value0),assign(_,Value1)) :- Value0 \== Value1.

constraint2(assign(Var0,Value0),assign(Var1,Value1)) :-

D1 is abs(Value0-Value1),

D2 is abs(Var0-Var1)//2,

D1 \== D2.

4 Adding intelligent backtracking

Adding intelligent backtracking requires us to maintain eliminating explanations. In

Algorithm 2, a single eliminating explanation is associated with each variable. The

eliminating explanation of a variable i is initialized as empty in step 2, when assigning

a first value to the variable. It is updated in step 5, when the last assigned value

turns out to be the “culprit” of an inconsistency. This happens just before assigning

the next value to variable i. This indicates that the right place to store eliminating

explanations is as an extra argument in the predicate my assign/2. In step 4, the

algorithm has to identify the “last” variable l of a conflict (the “culprit”), just before

updating the eliminating explanation. We will also use the my assign/2 predicate to

check whether the variable it assigns corresponds to the culprit of the failure. Hence

also, the identitity of the variable should be an argument. These considerations lead

to the replacement of the my assign/2 predicate by the following my assign/4

predicate.

my_assign([Value|_],_Var,_Explanation,Value).

my_assign([_|Domain],Var,Explanation0,Value) :-

get_conflict(Conflict),

remove(Var,Conflict,Explanation1),

set_union(Explanation0,Explanation1,Explanation),

my_assign(Domain,Var,Explanation,Value).

my_assign([],_Var,Explanation,_Value) :-

save_conflict(Explanation), fail.

It is called from extend solution/4 as myassign(Domain,Var,[],Value) (what

remains of the domain is the first argument, the second argument is the variable

being assigned, the third argument is the initially empty eliminating explanation

and the fourth argument returns the assigned value). The initial call together with

https://doi.org/10.1017/S1471068403001893 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001893

378 M. Bruynooghe

the base case perform the otherwise branch of step 2. The second clause, entered

upon backtracking when the domain is nonempty, checks whether the variable

being assigned is the culprit. To do so, it needs the conflict. As this information is

computed just before failure occurs, it cannot survive backtracking when using the

pure features of Prolog. One has to rely on the impure features for asserting/updating

clauses. Either assert/1 and retract/1 or more efficient variants of specific Prolog

systems1. The call to get conflict(Conflict) picks up the saved conflict2; next,

the call remove(Var,Conflict,Explanation1) checks whether Var is part of it. If

not, my assign/4 fails and backtracking returns to the previous assignment. If Var

is the culprit, then the code performs step 5 of the algorithm: remove/3 returns the

eliminating explanation in its third argument, set union/3 adds it to the current

eliminating explanation and the recursive call checks whether the domain is empty.

If not, the base case of my assign/4 assigns a new value. If the domain is empty,

then the last clause is selected. The eliminating explanation becomes the conflict and

is saved with the call to save conflict(Explanation) that relies on the impure

features3 and the clause fails.

Further modifications are in the predicates constraint1/2 and constraint2/2

that perform the constraint checking. If a constraint fails, the variables involved in it

make up the conflict and have to be saved so that after re-entering myassign/4 the

conflict can be picked up and used to compute an eliminating explanation (step 3).

As the last assigned variable participates in all constraints, it is part of the conflict.

For example, the code for constraint1/2 becomes:

constraint1(assign(Var0,Value0),assign(Var1,Value1)) :-

(Value0 \== Value1 -> true

; save_conflict([Var0,Var1]), fail

).

The modification to constraint2/2 is similar. Recall that the order in which

constraints are checked determines the amount of pruning that is achieved. Finally,

if one is interested in more than one solution then also a conflict has to be stored

when finding a solution. It consists of all variables making up the solution. Using a

predicate allvars/2 that extracts the variables from a solution, the desired behavior

is obtained as follows:

problem(VarCard,ValueCard,Solution) :-

init_domain(ValueCard,Domain),

init_pairs(VarCard,Domain,Pairs),

extend_solution(Pairs,[],Solution),

initbacktracking(Solution).

initbacktracking(Solution) :-

allvars(Solution,Conflict),

save_conflict(Conflict).

1 In our experiments, we made use of SICStus Prolog and employed bb put/2 and bb get/2.
2 We implemented it as get conflict(Conflict) :- bb get(conflict,Conflict).
3 We implemented it as save conflict(Conflict) :- bb put(conflict,Conflict).

https://doi.org/10.1017/S1471068403001893 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001893

Programming pearl 379

The enhanced program generates the same solutions as the original, and in the

same order. For problem(16,8,S) the number of assignments goes down from

32936 to 4015 and the execution time from 140ms to 70ms; for problem(20,10,S),

the reduction is respectively from 75950 to 15813 and from 370ms to 310ms. The

achieved pruning more than compensates for the (substantial) overhead of recording

and updating conflicts4 and of the calls to remove/3 and set union/3. Note that

the speed-up decreases with larger instances of this problem. This is likely due to

the increasing overhead of the latter two predicates. Keeping the conflict set sorted

(easy here because the variable number corresponds with the order of assignment)

such that the culprit is always the first element could reduce that overhead.

5 Discussion

In this black pearl, we have illustrated by a simple example how a chronological

backtracking algorithm can be enhanced to perform intelligent backtracking. As

argued in the introduction, look-back techniques are useful in solving various search

problems. Hence exploring their application can be very worthwhile when building

a prototype solution for a problem. The technique presented here illustrates how

this can be realized with a small effort when implementing a prototype in Prolog.

Interestingly, the crucial feature is the impurity of Prolog that allows the search to

transfer information from one point in the search tree (a dead end) to another. It

illustrates that Prolog is a multi-faceted language. On the one hand it allows for pure

logic programming, on the other hand it is a very flexible tool for rapid prototyping.

Note that the savings due to the reduction of the search space could be undone by

the overhead of computing and maintaining the extra information, especially, when

the amount of computation between two choice points is small.

The combination of look-back and look-ahead techniques can be useful, and

algorithms integrating both can be found (Dechter and Frost 2002). The question

arises whether our solution can be extended to incorporate look-ahead. This requires

some work, however, much of the design can be preserved. The initialization

(init domains/3) should not only associate variables with their initial finite domain,

but also with their eliminating explanations (initially empty). Then the code for the

main iteration could be as follows:

extend_solution([],Solution,Solution).

extend_solution(Vars,PartialSolution,Solution) :-

selectbestvar(Vars,var(Var,Values,Explanation),Rest),

myassign(Values,Var,Explanation,Value),

consistent(PartialSolution,assign(Var,Value)),

propagate([assign(Var,Value)|PartialSolution],

NewPartialSolution)

extend_solution(Vars,NewPartialSolution,Solution).

4 Using bb get and bb put to count the number of assignments increases execution time of the initial
algorithm for problem(16,8,S) from 140ms to 400ms.

https://doi.org/10.1017/S1471068403001893 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001893

380 M. Bruynooghe

The predicate selectbestvar/3 is used to dynamically select the next variable to

assign. It returns the identity of the variable (Var), the available values (Values) and

the explanation (Explanation) for the eliminated values. When a partial solution is

successfully extended, the predicate propagate/2 has to take care of the constraint

propagation: eliminating values from domains and updating the corresponding

explanations after which the next iteration can start. Computing the eliminating

explanation for each eliminated value requires great care and depends on the kind

of look-ahead technique used. It is pretty straightforward for forward checking, but

requires careful analysis in the case of, for example, arc consistency as no pruning

will occur on backjumping when the elimination is attributed to all already assigned

variables.

Acknowledgements

I am grateful to Bart Demoen, Gerda Janssens and Henk Vandecasteele for useful

comments on various drafts of this pearl. I am very grateful to the reviewers. Indeed,

as often is the case, their persistence and good advice greatly contributed to the

clarity of the exposition.

References

Bruynooghe, M. 1981. Solving combinatorial search problems by intelligent backtracking.

Information Processing Letters 12, 1, 36–39.

Bruynooghe, M. 1991. Intelligent backtracking revisited. In: J.-L. Lassez and G. Plotkin,

Eds. Computational Logic, Essays in Honor of Alan Robinson, MIT Press, pp. 166–177.

Bruynooghe, M. and Pereira, L.-M. 1984. Deduction revision by intelligent backtracking.

In: J. Campbell, Ed. Implementation of Prolog, Ellis Horwood, pp. 194–215.

Bruynooghe, M., Vandecasteele, H., de Waal, D. A. and Denecker, M. 1998. Detecting

unsolvable queries for definite logic programs. In: C. Palamidessi, H. Glaser, and K. Meinke,

Eds. Principles of Declarative Programming, Proc. PLILP’98 and ALP’98: Lecture Notes in

Computer Science, pp. 118–133. Springer.

Bruynooghe, M., Vandecasteele, H., de Waal, D. A. and Denecker, M. 1999. Detecting

unsolvable queries for definite logic programs. J. Functional and Logic Programming 1999,

1–35.

Dechter, R. and Frost, D. 2002. Backjump-based backtracking for constraint satisfaction

problems. Artificial Intelligence 136, 2, 147–188.

Ginsberg, M. L. 1993. Dynamic backtracking. Journal of Artificial Intelligence Research 1,

25–46.

Robinson, J. A. 1965. Automated deduction with hyper-resolution. International Journal of

Computational Mathematics 1, 227–234.

Rosiers, W. and Bruynooghe, M. 1987. Empirical study of some constraint satisfaction

algorithms. In: P. Jorrand and V. Sgurev, Eds. Artificial Intelligence II, Methodology,

Systems, Applications, Proc. AIMSA’86, North Holland, pp. 173–180.

Van Hentenryck, P. 1989. Constraint Satisfaction in Logic Programming. MIT Press.

https://doi.org/10.1017/S1471068403001893 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068403001893

