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Abstract

Surface roughness (SR) is one of the major parameters used to govern the quality of the fused
deposition modeling (FDM)-printed products, and the FDM process parameters can be easily
regulated in order to obtain a good surface finish. The surface quality of the product produced
by the FDM is generally affected by the staircase effect that needs to be managed. Also, the
production time (PT) to fabricate the product and volume percentage error (VPE) should
be minimized to make the FDM process more efficient. The aim of this paper is to accomplish
these three objectives with the use of the parametric optimization technique integrating the
artificial neural network (ANN) and the whale optimization algorithm (WOA). The FDM
parameters which have been taken into consideration are layer thickness, nozzle temperature,
printing speed, and raster width. Experimentation has been conducted on printed samples to
examine the impact of the input parameters on SR, VPE, and PT according to Taguchi’s L27
orthogonal array. The ANN model has been built up using the experimental data, which was
further used as an objective function in the WOA with an aim to minimize output responses.
The robustness of the proposed method has been validated on the optimal combinations of
FDM process parameters.

Introduction

Rapid prototyping is used to quickly fabricate a scale model of new products to examine its
shape, size, fitment, working mechanism, and other operational and aesthetic features. The fit-
ment and working mechanism of the prototypes confirms the design features of the new pro-
ducts before initiating the production schedules. Prior to rapid prototyping, the prototypes
were formed using traditional manufacturing processes, namely casting, machining, welding,
etc. However, these traditional techniques were time-consuming and expensive. Therefore,
rapid prototypying was evolved as a new technology to make prototypes, in which a physical
part or assembly is fabricated using additive manufacturing or 3D printing. In 3D printing, the
product is made by adding a layer on another layer and the final product is obtained by con-
tinuously repeating this layer addition (Narang and Chhabra, 2017). The products are directly
obtained according to the three-dimensional computer model generated from aided design
(CAD) software supplied to the 3D printer. The applications of 3D printing process is increas-
ing exponentially in the field of product prototyping due to less involvement of post process-
ing. Similar to the prototype making, different decorative structures, human body parts, and
many end-use products are also manufactured using 3D printing. Even some researchers
are using this technology for manufacturing their experimental setup and its parts with the
desired configuration (Yadav and Kumar, 2021a, 2021b). Such applications increase the
scope of 3D printing in automotive, medical, electronics, and research sectors.

After subsequent development, the technologies under 3D printing are categorized based
on their working process and raw material used. The technologies namely stereolithography,
fused deposition modeling (FDM), drop on demand, 3DP, and laminated object manufactur-
ing are based on processes such as vatpolymerization, material extrusion, material jetting, bin-
der jetting, and sheet lamination, respectively. These techniques are dedicated for processing
polymers like Acrylonitrile butadiene styrene (ABS), polylactic acid (PLA), Polyethylene ter-
ephthalate glycol (PETG), etc. (Wimpenny et al., 2016; Gibson et al., 2020; Brennan et al.,
2021; Singh et al., 2021). To process metals and their alloys, powder-based fusion (PBF) and
directed energy deposition (DED) methods are being used. The PBF-based techniques such as
selective laser sintering and direct metal laser sintering are focused to process the materials in
powder form, whereas techniques under the DED process, namely wire arc additive manufactur-
ing (WAAM) and electron beam additive manufacturing (EBAM), are dedicated to raw material
in wire form (Liu and Shin, 2019; Hafenecker et al., 2021). With the wide coverage of manufac-
turing aspects, 3D printing becomes the emerging area of research and the choice of industries.

Among all 3D printing technologies, the FDM process is widely used because of low initial
installation and maintenance cost. The FDM process involves the basic principle of melting,
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extruding, and solidifying thermoplastic material in a predefined
shape. The extrusion system regulates melt flow by forcing raw
material through a nozzle in a heated chamber and extruded
material solidifies due to the heat loss phenomenon (Sharifabad
et al., 2021). The performance of FDM produced parts affected
by controllable parameters, namely infill pattern, number of
shells, fan speed, infill density, layer thickness, printing speed,
outer cell speed, part bed temperature, shell thickness, etc., as
shown in Figure 1. As the FDM process involves material deposi-
tion in layer upon another layer manner, this leads to staircase
effect in the final product; hence, it increases SR. SR is the devia-
tion in normal to the printing plane from the desired surface. In
prototype and decorative structures, the SR and dimensional
accuracy are the crucial requirements for the final product.
Whereas the dimensional accuracy refers to how closely the
dimensions of the fabricated object match to those of the CAD
model. The SR of FDM-produced components can be minimized
either by the optimization of effective input process parameters
or by employing post-treatments. But post-treatments involve
either the addition of one layer on the surface or removal of
one existing layer from the surface which may cause inaccuracy
in dimensions.

The optimization process begins with the generation of a large
number of experiments by varying the combination of input vari-
ables (Thakur et al. 2022). The experimental plan can be designed
by using different methods under CCD and Taguchi method. But
the Taguchi method is a reliable statistical tool for designing
experiments and optimizing processes with less experiments
(Guleria et al. 2022a). This methods employs a special set of
arrays known as orthogonal arrays, which explain how to run
the fewest number of tests possible while obtaining complete
information on all aspects that influence performance parameters
(Mitra et al., 2016). After getting output responses, mathematical
modeling and artificial techniques help in building the relation
between input and output parameters. Artificial intelligence
(AI) techniques such as artificiail neural network (ANN),
Particle Swarm Optimization (PSO), whale optimization algo-
rithm (WOA), and their hybirdization perfom better than the
optimization of conventional methods.

The ANN model is a robust nonlinear modeling approach for
prediction that uses allotted weights and activation functions to
promote the creation of linkages between input and output vari-
ables (Vaheddoost et al., 2020). This model helps in discovering
the implicit relationship in the problem-solving process to
obtain the result. For this reason, a large amount of data is
employed in the training stage, followed by the calculation of
the right output using the relationship discovered in the previous
step (Samadianfard et al., 2020). Another AI technique is WOA to
address optimization issues using an evolutionary strategy
(Mirjalili and Lewis, 2016). The humpback whales’ bubble-net
feeding pattern inspired the WOA algorithm’s hypothesis.

The researchers are employing optimization techniques such
as Response Surface Methodology (RSM) and AI algorithms to
the input parameters of FDM process for getting a low SR. In
this context, some researchers implemented hybrid ANN and
PSO to optimize the input parameters such as printing speed,
printing temperature, and outer cell speed which result in the
minimal SR of PLA material components (Saad et al., 2019;
Shirmohammadi et al., 2021). Radhwan observed that the effect
on SR of the PLA printed is components directly effected by noz-
zle temperature, filling density, pattern style, layer thickness, and
printing speed nozzle diameter (Radhwan et al., 2019). While in
case of Polycarbonate (PC), SR is directly affected by layer height
and inversely proportional to print speed and build angle
(Hartcher-O’Brien et al., 2019). Whereas the SR of copper–PEG
composite printed parts is directly proportional to layer thickness
and nozzle temperature (Singh et al., 2021). The SR of ABS com-
ponents was increased remarkable by utilizing vaproized acetone
1500 mm3 (Kesvarakul and Limpadapun, 2019). In continuation,
the effect of process parameters on the SR, production time (PT),
and build volume of printed products are tabulated in Table 1.
Some of the researchers have implemented AI algorithms in dif-
ferent research areas for various applications (Chauhan and
Vashishtha, 2021; Chauhan et al., 2021; Vashishtha and Kumar,
2021a, 2021b, 2022; Vashishtha et al., 2021 Guleria et al. 2022b).

From the literature review, it is evident that researchers have
worked extensively for the improvement of SR of PLA components
by the optimization of input parameters of FDM printer. But very

Fig. 1. FDM (a) process model and (b) controllable input parameters.
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less work has been carried in the optmization of the process param-
eters for the combinations of outcomes such as SR, dimensional
accuracy, and PT. Also very less work has been reported in the
implementation of hybrid algorithm for such desired outcomes.

Taking previous studies into account, the present work is
aimed to study the parameters of 3D printing for optimizing
input parameters, namely layer thickness, nozzle temperature,
printing speed, and raster width of FDM process for minmizing
SR, PT, and volume percentage error (VPE). In this paper, a
newly developed hybrid ANN–WOA model has been employed
for fixing up the input variables. The optical micrographs have
been taken to study the impact of input parameters on SR.

Research methodology

This paper attempts to propose optimized input parameters for the
FDM process which are aimed to prepare PLA components with
low SR, PT, and VPE to meet the demand of rapid prototyping.
The research methodology followed in accomplishing the present
research work consisted of the various aspects such as literature
review, the identification of the objective of the research issue,
designing experimental matrix using the Taguchi method L27
orthogonal array (OA), preparing samples as per research plan,

testing of samples, the optimization of input parameters for mini-
mizing the output response using hybrid algorithms, study outre-
sponse, and deriving conclusion. Figure 2 illustrates the research
methodology steps performed in concluding the research work.

Experimental design

In this study, the Taguchi design of the experimental method has
been employed to establish the relative importance of process param-
eters on outcomes of the FDM process such as SR, VPE, and the PT.
In this study, the L27 orthogonal array has been created by varying
input variables within their ranges and is tabulated in Table 2.

The input parameters, namely layer thickness, nozzle tempera-
ture, printing speed, and raster width of the FDM process, have
been considered in the present research with three levels and
three output responses calculated as shown in Table 3. White
PLA, a biodegradable material, has been used for 3D FDM printing
due to its fast prototyping, ease of printing, and cost-effectiveness.

Product modelling and testing

The 3D model of the samples has been developed in CATIA V5
software. The slicing of the model, setup of printing parameters

Table 1. Literature studied on the impact of input variables on the SR of FDM-fabricated product

References Printer Parameters
Material
used

Experimental
design Optimization Outcomes

Heshmat and
Adel (2021)

Ultimaker
original

Air jet temperature and
printing speed

PLA Full factorial
design

ANOVA Air jet temperature to minimize the SR upto
65.3%

Bintara et al.
(2021)

Creality
Ender 3

Layer height, printing time
raster angle

PLA Study Investigation Layer height directly affects the SR. Built
time inversely affects the SR.

Burke et al. (2020) Prusa i3 Printing orientation, infill %,
and nozzle diameter

PLA DOE
Full factorial
design

ANOVA SR of 12.4 μm obtained at infill of 5%, flat
orientation, and nozzle diameter of 0.2 mm

Li et al. (2021) Einstart-S
Desktop

Time, temperature, and
concentration of vapor
smoothing

PLA Taguchi
L16 OA

ANOVA The most effective factor is time followed
by temperature and the concentration of
vapor smoothing to SR

Kovan et al.
(2018)

Zmorph
printer

Layer thickness, printing
temperature, printing
orientation, infill %, and
filament feed rate

PLA Study Investigation iSR increases as increase in layer thickness
in an upright printing direction. Low
printing temperature gives a good surface
finish.

Yang et al. (2019) Raise3D N2
plus

Nozzle diameter, hot end
temperature, extrusion flow,
printing speed, and layer
thickness

PLA CCD GA-RSM Maximum SR obtained at the high level of
nozzle diameter, thick layers, high
extrusion, and printing speed. These
parameters inversely affect the built time.

Fountas et al.
(2021)

Prusa i3 Number of contours, printing
temperature, infill %, and
infill pattern

PLA L9 OA ANOVA SR affected by printing temperature most.

Pramanik et al.
(2019)

Hydra 400 Printing speed, nozzle
temperature, infill %, and
layer thickness

ABS CCD ANOVA SR affected by print speed and nozzle
temperature the most and then infill % and
layer height

Horvath et al.
(2007)

FDM-1650 Model temperature, infill
pattern, and layer thickness

ABS 400 DOE
Full factorial

ANOVA At lower thickness, the low value of SR
obtained. Highest model temperature gives
low surface roughness.

Kumar et al.
(2014)

FDM
FORTUS
400mc

Layer thickness, air gap,
raster width, and infill
orientation

ABS Taguchi’s
design L32 OA

ANOVA Layer thickness is directly proportional to
SR.

Sammaiah et al.
(2020) Talalwa
et al. (n.d.)

PRAMAAN
500

Raster height and infill
density

ABS Study Investigation SR of 11.6 μm at infill of 20% with the raster
height of 0.26 mm
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according to the Taguchi design of experiments, and the calcula-
tion of the tool path have been performed in Cura 4.5 software.
The toolpath with set parameters has been transferred to the
Ultimaker S5 (300 × 250 × 320 mm3) 3D printer using a flash
drive through the USB port. The flow process of 3D design to
final printing has been depicted in Figure 3. The response

parameters such as SR, dimensional accuracy, and time are
taken to build the specimen, which have been measured after
the completion of 3D printing using a contact-type SR tester
(Talysurf model), digital vernier calliper (Mitutoyo), and digital
stopwatch, respectively, as shown in Figure 5a. The average of
three observations is considered for dimension measurement
and SR on the front (face A), side (face B), and top (face C) sur-
faces as shown in Figure 4b. The ANN prediction models with
Levenberg–Marquardt have been developed. The objective func-
tions obtained from the models have been optimized using the
whale optimizaton algorithm. The validation of these optimized
parameters has been done by comparing them with experimental
values (Figure 5).

AI algorithms

The relationships have been developed between input parameters
and output response using ANNs and WOA. The hybrid algo-
rithm ANN–WOA is used for the optimization of output
response.

Fig. 2. Flow chart of the methodology adopted.

Table 2. Process variables and their levels

S.
No. Input variable

Symbol
used Unit Low High

1 Layer
thickness

LT mm 0.06 0.15

2 Nozzle
temperature

NT oC 190 200

3 Printing speed PS mm/
s

50 90

4 Raster width RW mm 0.35 0.49
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Table 3. Input parameters and output responses

Input variable Output response

Run LT NT PS RW PT (min s)

SR (Ra)

VPEFace A Face B Face C)

1 0.06 210 50 0.35 24.32 4.80 5.80 2.20 3

2 0.06 210 50 0.35 23.55 4.75 5.75 2.12 3

3 0.06 210 50 0.35 24.05 4.90 5.65 2.19 3

4 0.06 200 70 0.42 19.32 5.00 5.00 2.40 3

5 0.06 200 70 0.42 19.02 4.85 4.95 2.35 3

6 0.06 200 70 0.42 19.14 5.10 5.05 2.48 3

7 0.06 190 90 0.49 17.32 6.00 4.60 2.60 3

8 0.06 190 90 0.49 17.18 6.23 4.52 2.75 3

9 0.06 190 90 0.49 17.22 5.72 4.70 2.51 3

10 0.1 210 70 0.49 11.45 5.80 5.20 2.80 5

11 0.1 210 70 0.49 11.32 5.75 5.14 2.65 5

12 0.1 210 70 0.49 11.24 5.65 5.32 3.00 5

13 0.1 200 90 0.35 10.23 6.20 6.00 3.00 4

14 0.1 200 90 0.35 10.15 6.15 5.85 2.89 4

15 0.1 200 90 0.35 10.18 6.12 5.92 2.95 4

16 0.1 190 50 0.42 15.25 6.40 6.60 1.80 2

17 0.1 190 50 0.42 15.02 6.45 6.55 1.75 2

18 0.1 190 50 0.42 15.22 6.38 6.65 1.90 2

19 0.15 210 90 0.42 7.02 9.80 9.80 3.80 5

20 0.15 210 90 0.42 6.57 9.75 9.75 3.81 5

21 0.15 210 90 0.42 7.14 9.85 9.77 3.75 5

22 0.15 200 50 0.49 8.14 10.00 9.20 4.60 5

23 0.15 200 50 0.49 8.12 9.82 9.25 4.45 5

24 0.15 200 50 0.49 8.15 9.92 9.30 4.55 5

25 0.15 190 70 0.35 7.23 10.00 11.00 4.20 5

26 0.15 190 70 0.35 7.22 10.05 10.85 4.15 5

27 0.15 190 70 0.35 7.35 9.95 10.95 4.17 5

Fig. 3. Flow process.
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Artificial neural network

In this research, MATLAB version 2019b has been utilized to con-
struct and prepare a self-learning model, that is, feed-forward
backpropagation neural network which involves the range of acti-
vation functions, large numbers of neurons, and hidden layers.
The parameters of the model have been optimized using a multi-
layered feed-forward perceptron technique. In the training stage –
Levenberg–Marquardt (LM) back-propagation method in the
hidden and output layers – tangent and linear transfer functions
were utilized. As a result, the Hessian and Jacobian matrix have
been obtained.

H = JT J (1)

where H and J are Hessian and Jacobian matrix, and J contains

the errors.

J =

∂e1,1
∂w1

∂e1,1
∂w2

. . .
∂e1,1
∂wn

∂e1,2
∂w1

∂e1,2
∂w2

. . .
∂e1,2
∂wn. . . . . . . . . . . .

∂e1,m
∂w1

∂e1,m
∂w2

. . .
∂e1,m
∂wn. . . . . . . . . . . .

∂e p,1
∂w1

∂e p,m
∂w2

. . .
∂e p,1
∂wn

∂e p,2
∂w1

∂e p,2
∂w2

. . .
∂e p,2
∂wn. . . . . . . . . . . .

∂e p,m
∂w1

∂e p,m
∂w2

. . .
∂e p,m
∂wn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

Fig. 4. (a) FDM-printed specimen and (b) SR tested on face A, face B, and face C.

Fig. 5. (a) SR test (Talysurf model) and (b) digital vernier calliper (Mitutoyo) for dimension measurement.
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p = pattern index, ranging 1–p
m = output index, ranging 1–m,
i and j = weight indices, ranging 1–n, where n refers to the total

number of weights.

The entries of the Jacobian matrix are calculated by the follow-
ing equation:

∂e p,m
∂wj,i

= −dm,jyj,i (3)

where δ is the parameter for neuron j and output m, yji is the out-
put, i is the ith input node of neuron j, wji is the bias weight of
neuron j (Yu and Wilamowski, 2011).

For rapid convergence to minimum mean square error (MSE),
all the input parameters were normalized (−1 to 1) by using Eq.
(4):

Yn = 2
Yr − Yr min

Yr max − Yr min
− 1 (4)

where Yn, Yr, Yr min, and Yr max are normalized, raw, minimum,
and maximum values of input parameters, respectively
(Taghavifar and Mardani, 2014). The developed ANN model
was tested for the minimal MSE and large regression value (RL)
to obtain the optimal model.

MSE = 1
N
S(Xa − Xb)

2 (5)

RL = 1− S(Xa − Xb)
2

S(Xa − Xm)
2 (6)

where N is the total experiment, and Xa, Xb, and Xm are experi-
mental, predicted, and mean values, respectively.

Whale optimization algorithm

Inspiration
Whales are magnificent animals. They are regarded as the world’s
largest animals. An adult whale may have up to a length of 30 m
and a weight of 180 tonnes. Whales are fascinating animals
because they are thought to be very intelligent and emotional.

By blowing bubbles around the rings, the Humpback Whales
seek little fish and other aquatic organisms. By swimming around
prey in a decreasing circle, they produce characteristic bubbles
along a spiral-shaped pathway as shown in Figure 6. The prey is
the target in the WOA algorithm and the likely position of whales
near the prey. There are two phases to the WOA. The first is
exploitation, which involves encircling the target and employing
the bubble spiral assault tactic. Prey are chosen at random in
the second stage, which is referred to as exploration (Mafarja
and Mirjalili, 2018).

Encircling prey
Whales trace the position of prey (best solution) and surround it.
The whale thinks that the present best solution is the target prey
or is near to it. Since the next location of prey cannot be predicted
by whale. Therefore, the other prey update their position to the
optimal location. This conduct is explained as follows:

�D = |�C · �X(t)− �X(t)| (7)

�X(t + 1) = ( �X∗)(�t)− �A · �D (8)

where t is the present iteration, C and A are coefficient vectors, X
is the location vector, and X* denotes the best solution achieved. A
and C are calculated by the following equations:

�A = 2�a · �r − �a (9)

�C = 2 · �r (10)

Fig. 6. Humpback whales spiral path and updating position.
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In the exploration and exploitation stages, a lowered from 2 to
0 throughout iterations, r is the arbitrary vector in between 0 to 1.
In the WOA, a is lowered using the following formula to achieve
diminishing encircling behavior in a trap:

a = a− t 2/(Max− itr) (11)

where t is a recurring integer and Max-itr is the maximum num-
ber of iterations that can be done.

Exploitation phase
To replicate the spiral-shaped search, the gap between the most
well-known searches (X*) and a search factor (X ) is determined

as:

�X(t + 1) = D′� · ebl · cos (2pl)+ X∗��
(t) (12)

where l is the arbitrary integer [−1,1], b is constant, and ith is
the place of whale, and the D

′
is prey (best solution), which are

determined as follows:

D′ = | X∗��
(t)− �X(t)| (13)

Whales swim in a spiral pattern to target their prey. The
chance of the selection among spiral mode and shrinking toward
the circle point by the whale has 50% and this behavior is

Fig. 7. Hybrid ANN and WOA algorithm.

Fig. 8. Normal probability plot for SR of (a) face A, (b) face B, (c) face C, and the main effect plot for SR of (d) face A, (e) face B, and (f) face C.
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Fig. 9. Optical micrographs of specimen for face A (a) run 2 and (b) run 26, face B at (c) run 8 and (d) at run 25, and face C at (f) run 17 and (g) run 22.
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represented by:

�X(t + 1) = Eqn (11) if p , 0.5
Eqn (12) if p . 0.5

{
(14)

where p is the arbitrary number and its value is in between 0
and 1.

Exploration phase
Instead of requiring solutions to search randomly depending on
the location of the prey identified so far, a randomly picked solu-
tion is utilized to revise the location in the WOA to improve

exploration. As a result, a vector A with arbitrary values > 1 or
< 1 is used to compel a solution to depart from the best-known
search agent. The mathematical model is as follows:

�D = |�C · Xrand
����− �X| (15)

�X(t + 1) = Xrand
����− �A · �D (16)

where Xrand
����

is a arbitrary location vector (a arbitrary whale)
selected from the current population.

Fig. 10. Main effect plot for VPE.

Fig. 11. Main effect plot for PT.
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ANN–WOA hybrid model

The block diagram describes the hybrid ANN–WOA algorithm as
shown in Figure 7.

Results and discussion

The SR, PT, and VPE has been tested for each specimen as per the
planned experimental design Taguchi L27 OA. The input param-
eters and output responses have been tabulated in Table 3.

Analysis of variance

To analyze the significance and fitness of the established model,
analysis of variance (ANOVA) is used (Liu et al., 2014). The influ-
ence of the input factors on the output response, namely SR of
face A, face B, and face C, PT, and VPE, which are investigated
using ANOVA with 95% confidence level, has been depicted in
Tables A.1–A.8 (appendix A). The quadratic model has been

developed for all the responses. The significance of the parameters
evaluated by the (P-value) probability value (Liu et al., 2014). The
parameters’ corresponding P-values <0.05 are significant. The
predicted value of R2 has been utilized to assess the established
model’s ability to predict. The difference between predicted and
adjusted R2 values should be below 0.20 to ensure a satisfactory
agreement.

From Table A.1 (appendix A), ANOVA for SR of face A shows
that process parameters such as layer thickness, nozzle tempera-
ture, printing speed, and their square terms are significant,
whereas raster width and its square term are insignificant because
raster is infill of the product. For face B refer to Table A.2 (appen-
dix A), the parameters such as layer thickness, nozzle tempera-
ture, raster width, and their square terms are significant,
whereas printing speed and its square terms become insignificant.
Referring to Table A.3 (appendix A) for face C, all considered
parameters and their square terms are significant. It implies
that all the terms affect the SR of face C. The influence of process
parameters on responses has been discussed using optical micro-
graphs in the section “Effect of process parameters on SR”.

ANOVA for PT refers to Table A.5 (appendix A), and all the
considered parameters and their square terms are significant. It
means that PT depends on process parameters, namely layer
thickness, nozzle temperature, printing speed, and raster width.

From Table A.6 (appendix A), ANOVA for VPE depicts that
nozzle temperature, printing speed, raster width, and their square
terms are significant. The input parameter layer thickness is sig-
nificant, whereas its square term is insignificant. The regression
equations of the all the output response are listed in appendix
A from Eqs (A1)–(A5).

Effect of process parameters on SR

The normal probability plot of residuals follows the straight line
which shows its uniform distribution, as depicted in Figure 8a–c.
The effect of process parameters on response has been studied
through main effect plots, as shown in Figure 8d–f.

From the main effect plot, layer thickness has a direct impact
on the SR on all three faces, namely face A, face B, and face
C. Because thick layers contribute a large staircase effect, hence
surface roughness increases. The effect of nozzle temperature on
the surface roughness of all three faces is studied through
Figure 8d–f. Figure 8d depicts that SR decreases on increasing
the nozzle temperature because at low temperature layers did
not get diffuse to each other, hence rough surface obtained at
low nozzle temperature. But from Figure 8f, SR first increases as
increase in nozzle temperature then decreases as further increase
in temperature because at final printing of layers nozzle tempera-
ture reduces its temperature from the set value. The effect of
printing speed on surface roughness of face A has been seen
from Figure 8d that the on increasing printing speed, the SR
decreases, and the reverse effect has been seen in case of face C
(Figure 8f). Raster width does affect the surface rougness of face
A, but it affect the SR of face B and face C.

Study of SR through optical micrographs
To study the correlation between SR and input variables, the opti-
cal microscopic images have been taken of specimens as shown in
Figure 9. For studying the SR behavior of face A, micrographs of
two runs have been chosen for further study, run 2 and run 26,
where the SR (Ra) value is best and worst, respectively. At run
2, the SR (Ra) value is least (means best) because layer thickness

Table 4. ANN predicted output response

Run PT

Surface roughness

VPEFace A Face B Face C

1 7.39 4.82 8.59 2.81 4.08

2 7.39 4.82 8.59 2.81 4.08

3 7.39 4.82 8.59 2.81 4.08

4 7.65 5.95 10.36 4.58 2.20

5 7.65 5.95 10.36 4.58 2.20

6 7.65 5.95 10.36 4.58 2.20

7 7.56 7.23 5.70 4.59 5.27

8 7.56 7.23 5.70 4.59 5.27

9 7.56 7.23 5.70 4.59 5.27

10 23.36 4.95 10.51 4.49 2.82

11 23.36 4.95 10.51 4.49 2.82

12 23.36 4.95 10.51 4.49 2.82

13 9.24 4.80 10.52 4.35 5.83

14 9.24 4.80 10.52 4.35 5.83

15 9.24 4.80 10.52 4.35 5.83

16 6.70 7.76 8.74 4.07 4.45

17 6.70 7.76 8.74 4.07 4.45

18 6.70 7.76 8.74 4.07 4.45

19 16.19 4.75 7.89 2.84 5.51

20 16.19 4.75 7.89 2.84 5.51

21 16.19 4.75 7.89 2.84 5.51

22 14.95 4.82 5.42 2.22 3.98

23 14.95 4.82 5.42 2.22 3.98

24 14.95 4.82 5.42 2.22 3.98

25 6.70 4.89 9.17 3.41 6.09

26 6.70 4.89 9.17 3.41 6.09

27 6.70 4.89 9.17 3.41 6.09
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Fig. 12. Regression curves of (a) training, (b) testing, (c) validation, (d) overall, (e) histogram, (f) MSE curve, and (g) gradient, mu and validation check curve.
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is minimum and nozzle temperature is high. Due to the high tem-
perature of the nozzle, the layer got mixed into each other.
Moreover, at run 26, the SR (Ra) is higher (means worst) due
to a higher level of layer thickness and low nozzle temperature,
which cause not proper diffusion of layers into each other.
Input parameters, namely printing speed and raster width, have
an insignificant impact on SR.

For face B, run 4 and run 25 are considered where the SR (Ra)
values are best and worst, respectively. Layer thickness, nozzle
temperature, print speed, and raster width at run 4 were
0.06 mm, 200°C, 70 mm/s2, and 0.35, whereas at run 25 they
were was 0.15 mm, 190°C, 90 mm/s2, and 0.42 mm, respectively.
That shows that at lower layer thickness, the SR would be best
and at higher it would be worst. In addition to that at higher noz-
zle temperature, layers got diffused into each other and a better
surface finish was obtained.

Further, while studying the SR of face C, there is no such dif-
ference in the value of SR in low and high. The little difference is
due to the difference in raster width.

Volume percentage error

The VPE of the 3D-printed samples is tabulated in Table 3.
Dimensions are measured through a digital vernier calliper and
compared with the CAD dimensions. From Figure 10, it has
been seen that on increasing the temperature and layer thickness,
the VPE increases because high layer thickness leads to dimen-
sional inaccuracy and high temperature causes atoricous product.
On increasing print speed, VPE increases then decreases at a higher
value. Jayanth et al. (2018) observed the same behavior. High
deviation in the middle value raster width has been observed.

Production time

In 3D printing of the specimens, from Figure 11, it can be seen
that layer thickness has a major influence on PT; on increasing

the layer thickness, the PT decreases exponentially due to high
deposition of material on large thickness, resulting in decreasing
the PT. Nozzle temperature does not exhibit significant effect
on PT. On increasing printing speed, the PT decreases because
fast speed reduces the time to production. Dimensions are mea-
sured through a digital vernier calliper and compared with the
CAD dimensions. Whereas at low and middle levels of raster
width, no significant effect on the PT has been observed but as
raster width increases then slightly decreases in PT reported.

Hybrid WOA and ANN analysis

The input process parameter matrix of order 27 × 4 and output
response matrix of order 27 × 5 have been retrieved from
Table 2. These matrices have been used for training, testing,
and validation of the ANN model. The ANN predicted output
responses have been tabulated (Table 4).

The regression values obtained through the trial-and-error
procedure with 10 hidden layers using feed-forward and LM
backpropagation algorithm are 0.992 for training point, 0.99311
for validation, 0.9949 for testing, and 0.99734 overall as shown
in Figure 12a, b, and d, respectively.

From Figure 12g, the gradient function in backpropagation
descent at epoch 6 with the value of 2.1031×10−14 minimize the
function in iterative manner by updating parameters such as
weight and bias. And mu is the momentum update having a
value of 1×10−9 at epoch 6. It is included to parameter with
updated weight, which helps the gradient descent to avoid the
problem of minima that may affect the convergence error. The
validation check is used to end the learning of model and its
value to define the number of successive trials for iterations.

The best validation performance has been obtained at the 6th
iteration with a minimum MSE of 0.15376 as shown in
Figure 12e. An error histogram of 20 runs has been plotted
between the target (experimental) and predicted output values

Fig. 13. Convergence behaviour plot.

Table 5. Validiation test

LT (mm) NT (°C) PS (mm2/s) RW (mm) PT (min:s)

SR (Ra) (μm)

VEPFace A Face B Face C

0.06 205.9933 90 0.49 15:45 4.8 4.9 1.95 0.02
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as shown in Figure 12f, which depicts the error ranges from
−1.369 to 1.173.

The developed ANN model has been saved as net.mat file and
loaded into the WOA fitness function for optimization. The val-
ues of p in this study were 0.65 and 0.37, respectively. In addition,
the population size was limited to 30, with a maximum iteration
of 1000. The optimal input factors have been found to minimize
the SR, time taken, and VPE. The convergence of objective func-
tion with respect to the number of generations has been depicted
in Figure 13. The minimum value of objective function is
obtained at optimized input variable, that is, layer thickness
0.06 mm, nozzle temperature 205.9933°C, printing speed of
90 m/s, and raster width 0.49 mm.

Validation test

A validation test has been performed on the optimized parameter
suggested by the hybrid ANN–WOA algorithm. Three specimens
have been prepared on the suggested parameters and their average
test results are tabulated in Table 5. The hybrid algorithm’s results
at predicted parameters are very close to the experimental results.

Conclusion

The L27 orthogonal array was utilized to correlate between input
variables and output parameters, such as SR, PT, and VPE, for the
FDM-processed PLA, and the following are the findings:

1. The layer thickness and nozzle temperature have the greatest
effect on SR. The maximum SR obtains at thick layers, but sur-
face roughness minimum at low nozzle temperature. When
compared to layer thickness, raster width has less effect on sur-
face roughness.

2. For face A, minimum SR, that is, 4.75 μm, has been obtained
using input variables – layer thickness of 0.06 mm, nozzle tem-
perature at 210°C, print speed of 50 mm/s2, and raster width of
0.35 mm.

3. On face B, the minimum SR value, that is, 2.75 μm, has been
observed when input parameters – layer thickness, nozzle tem-
perature, print speed, and raster width – are 0.06 mm, 190°C,
90 mm/s2, and 0.49 mm, respectively.

4. The minimum SR of face C has been observed 1.75 μm at
input parameters – layer thickness, nozzle temperature, print
speed, and raster width are 0.1 mm, 190°C, 50 mm/s2, and
0.42 mm, respectively.

5. While 3D printing of 1000 mm3 cube shape, PT reduces to
6 min and 57 s on increasing the layer thickness, print speed,
and nozzle temperature to high levels.

6. The VPE in fabricating the cube of 10 mm dimension reaches
to 2% on lowering the layer thickness and nozzle temperature
to 0.1 mm and 190°C, respectively.

7. The performance of ANN prediction model increased when
hybridized with WOA, as it involves exploration/exploitation
for searching best solution.

8. The significant input factors have been successfully modeled
using AI algorithms such as WOA and ANN, and results
are verified through validation tests. The minimum SR of
face A – 4.8 μm, face B – 4.9 μm, and face C – 1.95 μm, PT
15.75 min, and VPE 2 (%) are obtained at optimized input
variables.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0890060422000142.
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