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ABSTRACT

We start by describing how, in some cases, we can use variance-related premium
principles in ratemaking, when the claim numbers and individual claim amounts
are independent. We use quasi-likelihood generalized linear models, under the
assumption that the variance function is a power function of the mean of
the underlying random variable. We extend this approach to the cases where the
claim numbers are correlated. Some alternatives to deal with dependent risks are
presented, taking explicitly into account overdispersion. We present regression
models covering the bivariate Poisson, the generalized bivariate negative bino-
mial and the bivariate Poisson–Laguerre polynomial, which nest the bivariate
negative binomial. We apply these models to a portfolio of the Portuguese in-
surance company Tranquilidade and compare the results obtained.
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1. INTRODUCTION

The aim of an actuary when defining a tariff, is that the premiums match the
risks as closely as possible. This is achieved by differentiating the risks on the
basis of observable risk factors.

In the last decades, actuaries have used generalized linear models
(GLM) — see Nelder and Wedderburn (1972) or Denuit et al. (2006) — to
construct motor insurance tariff structures. Brockman et al. (1992) provides
a survey of application of GLMs to motor insurance ratemaking. Implicitly,
when doing so, the premium calculation principle used is the expected value
principle. The premium is calculated proportionally to the conditional expected
value of the aggregate claims, given a set of tariff variables. It is assumed, inmost
cases, independence between claim numbers and individual claim amounts. The
conditional expected value of these two variables is estimated separately and the

Astin Bulletin 47(3), 875-894. doi: 10.1017/asb.2017.16 C© 2017 by Astin Bulletin. All rights reserved.

https://doi.org/10.1017/asb.2017.16 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.16


876 J. M. ANDRADE E SILVA AND M. DE LOURDES CENTENO

two estimates aremultiplied.When the tariff structure is multiplicative, the tariff
can be interpreted in an aggregated way. In the GLM framework, the estimators
are calculated by maximizing the log-likelihood of the underlying distributions,
which are assumed to belong to the exponential family. As it is well known,
this assumption can be relaxed and the parameters estimated consistently using
quasi-likelihood, in which case we only have to model the expected value and
the variance function.

First, we show that, although in the GLM framework, most actuaries use
the expected value principle for ratemaking purposes, there is no reason for not
using variance-related premium principles as explained in Section 2. Second,
we discuss ratemaking when risks are correlated through claim numbers, which
is a situation that occurs very often in practice. There is some work already
done on this topic, namely Bermudez (2009). We introduce, in Section 3, other
options to model bivariate counting data taking overdispersion explicitly into
account. We present four models, which include the bivariate Poisson and the
bivariate negative binomial. We could have opted by other bivariate techniques,
like copula-based approaches for counting data, see Shi and Valdez (2014) and
Genest and Neslehova (2007), but in this paper, we gave preference to closed
form models.

In Section 4, we provide an example with data from the Portuguese insurance
company Tranquilidade and compare the results obtained with the four models,
as well as with the corresponding independent cases.

Finally, Section 5 concludes.

2. VARIANCE-RELATED PREMIUM PRINCIPLES

Let Si be the aggregate claim amount of policy i, for a given period of time. We
assume that Si is a compound random variable, i.e., that

Si =
Ni∑
j=0

Yi j ,

where Ni is the number of claims for the same period of time, Yi0 ≡ 0 and{
Yi j

}
j=1,2,... are i.i.d. random variable and independent of Ni , representing the

individual claim amounts. Under these assumptions,

E[Si ] = E[Ni ]E[Yi ] = μNiμYi

and
Var[Si ] = μNiVar[Yi ] + Var[Ni ]μ2

Yi ,

where Yi is identically distributed to Yi j .
In most regression models, it is assumed that Var[Ni ] and Var[Yi ] are func-

tions of μNi and of μYi , respectively, which implies that Var[Si ] can be expressed
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as a function of μNi and μYi . For example, if

Var[Ni ] = ψμNi (1)

and

Var [Yi ] = φμ2
Yi , (2)

we get the quasi-Poisson–Gammamodel (i.e., we combine the quasi-Poisson for
the claim counts with a Gamma model for the severities), for which

Var[Si ] = (ψ + φ)μNiμ
2
Yi . (3)

Given the row vectors of covariates Xi = (X1, X2, . . . , Xp1) and Zi =
(Z1, Z2, . . . , Zp2) to explain the conditional expected values of Ni and Yi , re-
spectively (all or some of the covariates can be the same), and using a log-link
function, the conditional expected values are given by

E[Ni |Xi ] = exp(Xiβ) (4)

and

E[Yi |Zi ] = exp(Ziγ ), (5)

where β and γ are two vectors with dimensions p1 and p2, respectively.
When using the expected value principle, the premium associated to policy

i, given Xi and Zi , is of the form

PEV
i = (1 + α) exp(Xiβ + Ziγ ), α > 0, (6)

where α is the loading coefficient, and when using a related variance premium
principle for the quasi-Poisson–Gamma model is

PRV
i = exp(Xiβ + Ziγ )+g ((ψ + φ) exp(Xiβ + 2Ziγ )) , (7)

where g(.) is an increasing and non-negative function. For the variance principle
g(x) = δx, with δ > 0, and for the standard deviation principle g(x) = δ

√
x,

with δ > 0. Note that, for a given α, for the variance principle, and for δ calcu-
lated in such a way that the global premiums are the same, the main difference
between (6) and (7) is that the variance principle penalizesmore the policies with
higher expected claim amount.

The parameter estimation is straightforward: β is obtained by quasi-
likelihood of the claim number observations and γ is obtained by quasi-
likelihood of the individual claim amounts. The parameters ψ and φ, are es-
timated in each model using, for instance, the moment estimator based on the
chi-square statistic (see McCullagh and Nelder 1989).
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3. BIVARIATE REGRESSION MODELS

In this section, we consider, for each policy, a model involving two risks, depen-
dent through the number of claims. For policy i, let {Y(k)

i j } j=1,2,... be the claim size

random variables for risk k, k = 1, 2. We assume that, for k = 1, 2, {Y(k)
i j } j=1,2,...

are i.i.d. random variables. Let S(1)
i and S(2)

i be the aggregate claim amounts for
the first and second risks, respectively, with

S(k)
i =

N(k)
i∑
j=0

Y(k)
i j , (8)

where N(k)
i is the number of claims of policy i and risk k in a given period of

time. We consider that Y(1)
i0 ≡ Y(2)

i0 ≡ 0, that {Y(1)
i j } j=1,2,... are independent of

{Y(2)
i j } j=1,2,... and that both are independent of N(1)

i and N(2)
i . The aggregate

claim amount for policy i is

Si = S(1)
i + S(2)

i , (9)

with expected value

E[Si ] = μN(1)
i

μY(1)
i

+ μN(2)
i

μY(2)
i

, (10)

and variance

Var[Si ] = μN(1)
i
Var[Y(1)

i ] + Var[N(1)
i ]

(
μY(1)

i

)2

+μN(2)
i
Var[Y(2)

i ] + Var[N(2)
i ]

(
μY(2)

i

)2
(11)

+2μY(1)
i

μY(2)
i
Cov(N(1)

i , N(2)
i ).

As themain purpose of the paper is to analyse dependency on claim frequen-
cies our focus will be on the claim numbers behaviour. We begin by presenting
two models based on the bivariate Poisson distribution and then we consider
two generalizations of the bivariate negative binomial distribution to deal with
overdispersion, which is a phenomenon that is present in many insurance data
sets. For sake of simplicity, we present the results using the gamma distribution
for the claim severity but these results are easily extended to all distributions
where the variance is given by Var[Yi ] = φμk

Yi , for a given constant k.

3.1. Bivariate Poisson models

Let
N(1)
i = K (1)

i + Ki and N(2)
i = K (2)

i + Ki , (12)
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where K (1)
i , K (2)

i and Ki are independent Poisson random variables with pa-
rameters λ

(1)
i , λ

(2)
i and λi , respectively, i.e., (N(1)

i , N(2)
i ) is the bivariate Poisson

distribution, studied byHolgate (1964) (see also Johnson et al. 1997).Hence, S(1)
i

and S(2)
i are correlated through Ki . This model was, among others, considered

in the context of actuarial science by Wang (1998), Walhin (2001), Cossete and
Marceau (2000) and Centeno (2005). In this model,

Cov(N(1)
i , N(2)

i ) = λi .

In the Poisson–Gamma framework, (11) is equivalent to

Var[Si ] = (
1 + φ(1)) μN(1)

i

(
μY(1)

i

)2
+ (

1 + φ(2)) μN(2)
i

(
μY(2)

i

)2
+ 2μY(1)

i
μY(2)

i
λi ,

(13)
where φ(1) and φ(2) are the dispersion parameters of risks 1 and 2, respectively
(see (2)).

Note that under these models, the covariance between the two risks is always
assumed positive, since it is equal to the mean of the common Poisson random
variable, which is not a real problem for most insurance applications. Note also
that in the Poisson regression models, the heterogeneity of the portfolio is only
considered through the means of the endogenous random variables which can
be quite different.

The main difference between the next two models lies on the way the covari-
ates are introduced. While the Kocherlakota and Kocherlakota (2001) model
explains the means of the observed variables N(1)

i and N(2)
i , the Karlis and Nt-

zoufras (2005) model explains the means of the latent variables K (1)
i , K (2)

i and
Ki . These different approaches lead to different result interpretations and as it
will be seen in our example to quite different estimates for the premiums.

3.1.1. K–K bivariate Poisson regression model (KKBIP). Kocherlakota and
Kocherlakota (2001) considered that the common random variable Ki hasmean
λ, independent of i, i.e., that λi = λ, i = 1, 2, . . . The bivariate Poisson distri-
bution is

f (n(1)
i , n(2)

i ) = exp(−λ
(1)
i − λ

(2)
i − λ)h(n(1)

i , n(2)
i ), (14)

where

h(n(1)
i , n(2)

i ) =
min(n(1)

i ,n(2)
i )∑

j=0

(λ
(1)
i )n

(1)
i − j (λ

(2)
i )n

(2)
i − jλ j

(n(1)
i − j)!(n(2)

i − j)! j !
. (15)

For this distribution, μN(1)
i

= λ
(1)
i +λ, μN(2)

i
= λ

(2)
i +λ and Cov(N(1)

i , N(2)
i ) = λ.

The response variables (N(1)
i , N(2)

i ) are related with the covariates X(1)
i and X(2)

i
through

E[N(k)
i |X(k)

i ] = exp(X(k)
i β(k)),k = 1, 2. (16)
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The maximum likelihood estimators of β(1) = (β
(1)
1 , . . . , β(1)

p1 ), β(2) =
(β

(2)
1 , . . . , β(2)

p1 ) and λ were derived in Kocherlakota and Kocherlakota (2001),
as well as the second-order derivatives of the likelihood function. In this model,
the parameter λ is a nuisance parameter, used only for estimation purposes.

The related variance premium principle for a policy i is

PRV
i =

∑
k=1,2

exp(X(k)
i β(k)+Z(k)

i γ (k))+g (Var[Si ]) , (17)

where for the Bivariate Poisson–Gamma model

Var[Si |X(1)
i ,X(2)

i ,Z(1)
i ,Z(2)

i ] = (
1 + φ(1)) exp(X(1)

i β(1) + 2Z(1)
i γ (1)) +

+ (
1 + φ(2)) exp(X(2)

i β(2) + 2Z(2)
i γ (2))

+2λ exp(Z(1)
i γ (1) + Z(2)

i γ (2)). (18)

The parameters β(k), γ (k), k = 1, 2 and λ are estimated by the maximum likeli-
hood function of the bivariate random variable.

The bivariate Poisson model has a limitation on its applicability. As pointed
out by Holgate (1964), the correlation coefficient between N(1)

i and N(2)
i , equals

to λ/
√

μN(1)
i

μN(2)
i

, cannot exceed the square root of the ratio of the smaller to
the larger of the means of the two marginal distributions, i.e.,

corr(N(1)
i , N(2)

i ) = λ√
μN(1)

i
μN(2)

i

< min

(√
μN(1)

i

μN(2)
i

,

√
μN(2)

i

μN(1)
i

)
, (19)

which is equivalent to
λ < min(μN(1)

i
, μN(2)

i
). (20)

This condition is obviously implicit in the model, due to (12). In Kocherlakota
and Kocherlakota (2001), as μN(1)

i
and μN(2)

i
are explained by the covariates X(1)

i

and X(2)
i and λ needs to be estimated (depending indirectly on the covariates)

the test to the appropriateness of the model can not be done a priori. This may
be a reason whyKocherlakota andKocherlakota (2001) model, although highly
cited, is rarely used.

3.1.2. K–N bivariate Poisson regression model (KNBIP). In the model con-
sidered by Karlis and Ntzoufras (2005) and applied by Bermudez (2009) in the
context ofmotor insurance, the random variable Ki hasmean λi , not necessarily
constant for all i. The regression model considered is

λ
(1)
i = exp

(
X(1)
i w(1)

)
,

λ
(2)
i = exp(X(2)

i w(2)),
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λi = exp(Xiw), (21)

where X(1)
i , X(2)

i and Xi are now the set of covariates used to model the param-
eters λ

(1)
i , λ

(2)
i and λi , respectively. In this model,

E[N(k)
i |X(k)

i ] = exp
(
X(k)
i w(k)

)
+ exp(Xiw),k = 1, 2.

So, if an effect is present in w(1) and w, its effect is no longer multiplicative.
Even in the case where λi is assumed constant (no covariates) and the covariates
used to estimate λ

(1)
i and λ

(2)
i are the same used in regression (16) this model is

different from the model described earlier. Karlis and Ntzoufras (2005) have
also considered a generalization of the model by inflating the diagonal. In their
article, they implemented the model in R using an EM algorithm to maximize
the log-likelihood function of the claim numbers.

In this model, we have

E[Si |X(1)
i ,X(2)

i ,Xi ,Z
(1)
i ,Z(2)

i ] = exp
(
X(1)
i w(1) + Z(1)

i γ (1)
)

+ exp(Xiw + Z(1)
i γ (1)) + exp

(
X(2)
i w(2) + Z(2)

i γ (2)
)

+ exp(Xiw + Z(2)
i γ (2)),

(22)

and in the Bivariate Poisson–Gamma framework we have

Var[Si |X(1)
i ,X(2)

i ,Xi ,Z
(1)
i ,Z(2)

i ] = (
1 + φ(1)) (

exp
(
X(1)
i w(1)

)
+ exp(Xiw)) exp

(
2Z(1)

i γ (1)
)

+ (
1 + φ(2)) (

exp
(
X(2)
i w(2)

)
+ exp(Xiw)) exp

(
2Z(2)

i γ (2)
)

+ 2 exp(Xiw + Z(1)
i γ (1) + Z(2)

i γ (2)). (23)

Karlis and Ntzoufras (2005) model is forcing condition (19) to be satisfied,
so one should be careful about the appropriateness of the model in a specific
situation.

3.2. Generalized bivariate negative binomial models

For many insurance data sets, the Poisson regression model does not capture all
the heterogeneity of the portfolio. Amixed Poisson regression model appears as
a natural alternative. Among these models, the negative binomial model (con-
sidering the gamma as the mixing distribution) is the most popular. In the first
model, Gurmu and Elder propose a generalization of the gamma for the mixing
distribution, which is the same for both risks. In the second model, each risk
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is influenced by its own mixing distribution, which is a generalization of the
gamma distribution, and the two mixing distributions may be correlated.

3.2.1. Generalized bivariate negative binomial regression model (GBINB). In
this subsection, we consider the model proposed by Gurmu and Elder (2000) to

describe
(
N(1)
i , N(2)

i

)
to allow for overdispersion. In this model, Vi is an unob-

served heterogeneity component with density g(vi ) given by

g(vi ) = vα−1
i βα

	(α)(1 + c2)
e−βvi

[
1 + c

α − βvi√
α

]2

, vi > 0. (24)

It is also assumed that (V1,V2, . . .) are i.i.d. random variables and that given
Vi = vi the variables N

(k)
i , k = 1, 2 are independent Poisson random variables

with mean μN(k)
i

vi, k = 1, 2. This model, referred as generalized bivariate nega-
tive binomial (GBINB), nests when c = 0 a bivariate negative binomial.

As it is usual, the mean of the unobserved heterogeneity is set equal to unity,
which is to say,

β = 1
1 + c2

(
α − 2c

√
α + c2(α + 2)

)
. (25)

The conditional expected values are

E
[
N(k)
i |X(k)

i

]
= exp(X(k)

i β(k)),k = 1, 2, (26)

and Gurmu and Elder (2000) show that the probability function of
(
N(1)
i , N(2)

i

)
can be written as

f (n(1)
i , n(2)

i ) =

⎡⎢⎢⎣ 2∏
k=1

(
μN(k)

i

)n(k)
i

n(k)
i !

⎤⎥⎥⎦ 	(n(1)
i + n(2)

i + α)

	(α)
β−n(1)

i −n(2)
i

×
(
1 +

μN(1)
i

+ μN(2)
i

β

)−(α+n(1)
i +n(2)

i )


i , (27)

where


i = 1
1 + c2

[
1 + 2c

√
α(1 − ηi ) + c2α(1 − 2ηi + ηiζi )

]
, (28)

with ηi = α+n(1)
i +n(2)

i
α

(1 +
μ
N(1)
i

+μ
N(2)
i

β
)−1 and ζi = α+1+n(1)

i +n(2)
i

α
(1 +

μ
N(1)
i

+μ
N(2)
i

β
)−1.

As, given Vi = vi , S
(1)
i and S(2)

i are independent compound Poisson random
variables, we have that
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Var[Si ] = E[Var[Si |Vi ]] + Var[E[Si |Vi ]] =

= μN(1)
i

(
Var

[
Y(1)
i

]
+

(
μY(1)

i

)2
)

+ μN(2)
i

(
Var

[
Y(2)
i

]
+

(
μY(2)

i

)2
)

+

+
(
μN(1)

i
μY(1)

i
+ μN(2)

i
μY(2)

i

)2
Var[Vi ], (29)

with

Var[Vi ] = 1
1 + c2

(α + 1)
β2

[
α − 4c

√
α + c2(α + 6)

] − 1, (30)

which is easily expressed in terms of the parameters to be estimated, when the
individual claim amounts are Gamma distributed by

Var[Si |X(1)
i ,X(2)

i ,Z(1)
i ,Z(2)

i ] = (
1 + φ(1)) exp (

X(1)
i β(1) + 2Z(1)

i γ (1)
)

+ (
1 + φ(2)) exp (

X(2)
i β(2) + 2Z(2)

i γ (2)
)

+
[
exp

(
X(1)
i β(1) + Z(1)

i γ (1)
)

+ exp
(
X(2)
i β(2) + Z(2)

i γ (2)
)]2

Var[Vi ]. (31)

3.2.2. Bivariate Poisson–Laguerre polynomial regression model (BIPL). This
model, proposed by Gurmu and Elder (2007), differs from the previous one, in
the sense that the dependence between, N(1)

i and N(2)
i is modelled by means of

correlated unobserved heterogeneity components V(1)
i and V(2)

i . Each compo-
nent affects only the respective event count, but Si will be affected by both. Let
the mixing distribution be g(v(1)

i , v
(2)
i ), so that

f (n(1)
i , n(2)

i ) =
∫ ∞

0

∫ ∞

0

2∏
k=1

exp(−μN(k)
i

v
(k)
i ) (μN(k)

i
v

(k)
i )n

(k)
i

n(k)
i !

g(v(1)
i , v

(2)
i )dv

(1)
i dv

(2)
i .

(32)
Denoting by M(−μN(1)

i
, −μN(2)

i
) = E[exp(−μN(1)

i
v

(1)
i − μN(2)

i
v

(2)
i )] the bivariate

moment generating function of (v(1)
i , v

(2)
i ) evaluated at (−μN(1)

i
−μN(2)

i
), (32) can

be written as

f (n(1)
i , n(2)

i ) =

⎡⎢⎢⎣ 2∏
k=1

(
μN(k)

i

)n(k)
i

n(k)
i !

⎤⎥⎥⎦M(n(1)
i ,n(2)

i )(−μN(1)
i

, −μN(2)
i

), (33)

where M(n(1)
i ,n(2)

i )(−μN(1)
i

, −μN(2)
i

) denotes the derivative of M(−μN(1)
i

, −μN(2)
i

) of

order r = n(1)
i + n(2)

i , i.e., M(n(1)
i ,n(2)

i )(−μN(1)
i

, −μN(2)
i

) = ∂rM(−μN(1)
i

, −μN(2)
i

)/
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∂(−μN(1)
i

)n
(1)
i ∂(−μN(2)

i
)n

(2)
i . The authors propose the mixing density

g(v(1)
i , v

(2)
i ) = w(v

(1)
i )w(v

(2)
i )

(1 + ρ2)

[
1 + ρP(1)

1 (v
(1)
i )P(2)

1 (v
(2)
i )

]2
, (34)

where w(v
(k)
i ) is a gamma density with parameters (α(k), β(k)), and

P(k)
1 (v

(k)
i ) =

√
α(k) − β(k)

√
α(k)

v
(k)
i (35)

is the first-order polynomial with unit variance and ρ =
corr(P(1)

1 (V(1)), P(2)
1 (V(2))) is an unknown correlation parameter. g(v(1)

i , v
(2)
i )

can be regarded as a variant of a bivariate gamma distribution (ρ = 0 leads
to two independent negative binomials). The bivariate probability density
function of the claim numbers are in this case

f (n(1)
i , n(2)

i ) =
[

2∏
k=1

	(n(k)
i + α(k))

	(α(k))n(k)
i !

(
μN(k)

i

β(k)

)n(k)
i

(
1 +

μN(k)
i

β(k)

)−(α(k)+n(k)
i )

]

∗
i (36)

with

β(k) = 1
1 + ρ2

[
α(k) + ρ2(α(k) + 2)

]
, k = 1, 2, (37)

and


∗
i = 1

1 + ρ2

[
1 + 2ρ

√
α(1)α(2)(1 − η

(1)
i )(1 − η

(2)
i ) + ρ2α(1)α(2)

× (1 − 2η(1)
i + η

(1)
i ζ

(1)
i )(1 − 2η(2)

i + η
(2)
i ζ

(2)
i )

]
, (38)

where

η
(k)
i = n(k)

i + α(k)

α(k)

(
1 +

μN(k)
i

β(k)

)−1

and

ζ
(k)
i = n(k)

i + 1 + α(k)

α(k)

(
1 +

μN(k)
i

β(k)

)−1

, k = 1, 2.

The p.d.f. (36) in the form (33) with

M(n(1)
i ,n(2)

i )(−μN(1)
i

, −μN(2)
i

)

=
[

2∏
k=1

	(n(k)
i + α(k))

	(α(k))

(
β(k))α(k) (

β(k) + μN(k)
i

)−(α(k)+n(k)
i )

]

∗
i . (39)
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We can derive Var[Si ] obtaining

Var[Si ] = μN(1)
i

(
Var

[
Y(1)
i

]
+

(
μY(1)

i

)2
)

+ μN(2)
i

(
Var

[
Y(2)
i

]
+

(
μY(2)

i

)2
)

+
(
μN(1)

i

)2 (
μY(1)

i

)2
Var[V(1)

i ] +
(
μN(2)

i

)2 (
μY(2)

i

)2
Var[V(2)

i ]

+ 2μN(1)
i

μN(2)
i

μY(1)
i

μY(2)
i
Cov(V(1)

i ,V(2)
i ) (40)

with

Var[V(1)
i ] = M(2,0)(0, 0) − 1 =

(
α(1) + 1

) [
α(1) + ρ2(α(1) + 6)

](
β(1)

)2
(1 + ρ2)

− 1, (41)

Var[V(2)
i ] = M(0,2)(0, 0) − 1 =

(
α(2) + 1

) [
α(2) + ρ2(α(2) + 6)

](
β(2)

)2
(1 + ρ2)

− 1, (42)

and

Cov(V(1)
i ,V(2)

i ) = M(1,1)(0, 0) − 1

= α(1)α(2) + 2ρ
√

α(1)α(2) + ρ2(α(1) + 2)(α(2) + 2)
β(1)β(2)

− 1. (43)

We can express (40) in terms of the regressors, when the individual claim
amounts are Gamma distributed, obtaining

Var[Si |X(1)
i ,X(2)

i ,Z(1)
i ,Z(2)

i ] = (
1 + φ(1)) exp (

X(1)
i β(1) + 2Z(1)

i γ (1)
)

+ (
1 + φ(2)) exp (

X(2)
i β(2) + 2Z(2)

i γ (2)
)

+ exp
(
2X(1)

i β(1) + 2Z(1)
i γ (1)

)
Var [V(1)

i ]

+ exp
(
2X(2)

i β(2) + 2Z(2)
i γ (2)

)2
Var [V(2)

i ]

+ 2 exp
(
X(1)
i β(1) + Z(1)

i γ (1) + X(2)
i β(2) + Z(2)

i γ (2)
)
Cov(V(1)

i ,V(2)
i ). (44)

4. APPLICATION OF THE MODELS

Our database consists of the full sample of the Ambulatory Health Insurance
portfolio of the Portuguese insurance company Tranquilidade.We have the data
of all policies of the year 2007 and each policy can have several persons insured.
The total number of persons insured (for the full year) is 19,457. Our unit risk is
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TABLE 1

CONDITIONAL RELATIVE FREQUENCY OF N(2) GIVEN N(1).

N(1)\N(2) 0 1 2 3 4 5 6 7 > 7

0 0.9131 0.0471 0.0195 0.0098 0.0055 0.0021 0.0015 0.0007 0.0007
1 0.5653 0.2653 0.0830 0.0456 0.0219 0.0102 0.0038 0.0012 0.0038
2 0.3712 0.2696 0.1608 0.0994 0.0529 0.0252 0.0098 0.0047 0.0064
3 0.2871 0.2245 0.1739 0.1316 0.0893 0.0381 0.0292 0.0131 0.0131
4 0.2379 0.1990 0.1651 0.1499 0.1050 0.0584 0.0364 0.0220 0.0262
5 0.2202 0.1619 0.1476 0.1345 0.1202 0.0774 0.0512 0.0357 0.0512
6 0.1594 0.1449 0.1576 0.1087 0.1250 0.1033 0.0851 0.0471 0.0688
7 0.1733 0.1570 0.1270 0.1109 0.0878 0.0785 0.0808 0.0647 0.1201

the person insured and our database includes for each person: age (at the date of
the policy renewal), policy age (at the date of the policy renewal), region, gender
and information on the number of doctor visits, N(1), and its costs, Y(1), as well
as the number and severity of other treatments, N(2) andY(2), respectively. From
Table 1, which gives the conditional frequency of N(2) given N(1) (for example,
0.0471 is the frequency that N(2) = 1 given that N(1) = 0), we can conclude
that these variables are strongly dependent, since the values are completely dif-
ferent from one row to another. The observed correlation coefficient is 0.5761.
As it is expected, we have a large dispersion for each of the counting variables
(xN(1) = 1.900 while s2N(1) = 6.771 and xN(2) = 1.186 while s2N(2) = 4.639) which
is expected to be, at least partially, kept by the Poisson regression model.

We classified the data, using only dummy variables in the models and, for
the sake of simplicity of presentation, we used the same explanatory variables
for all the models (X(1)

i = X(2)
i = Z(1)

i = Z(2)
i = Xi ). The explanatory variables

are summarized in Table 2. It is worth mentioning that, in our study, a change
on the region variables, can induce problems on the application ofKocherlakota
andKocherlakota (2001) model. The estimate for λwould be too high, violating
for a couple of groups the constraint λ < min(μN(1)

i
, μN(2)

i
).

The reference group (intercept) is considered to be a male, less than 2 years
old, policy age less than 1 year and from one of the coastal districts of Aveiro,
Braga, Coimbra, Faro, Leiria, Lisboa, Porto, Santarém and Setúbal.

All the results are based on the maximum likelihood estimates and the
standard errors are calculated using the asymptotic distribution of the maxi-
mum likelihood estimators. All estimations were performed using the function
nlm (non-linear minimization) of the R package. For the Karlis and Ntzoufras
model, we replicated their EM (expectation-maximization) algorithm.

Table 3, shows for each model and the respective independent cases (Dou-
ble Poisson — DP — for the Poisson model and PBIPL with ρ = 0 for the
negative binomial model) the estimated parameters, the log-likelihood and the
AIC. As it is well known, the quasi-likelihood and likelihood parameter esti-
mates are the same. The values obtained for the overdispersion parameter in the

https://doi.org/10.1017/asb.2017.16 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2017.16


RATEMAKING OF DEPENDENT RISKS 887

TABLE 2

EXPLANATORY VARIABLES.

Variable Definition

Xi1 Equals 1 for Women
Xi2 Equals 1 When Age ∈ [2, 6)
Xi3 Equals 1 When Age ∈ [6, 11)
Xi4 Equals 1 When Age ∈ [11, 16)
Xi5 Equals 1 When Age ∈ [16, 21)
Xi6 Equals 1 When Age ∈ [21, 31)
Xi7 Equals 1 When Age ∈ [31, 41)
Xi8 Equals 1 When Age ∈ [41, 51)
Xi9 Equals 1 When Age ∈ [51, 61)
Xi10 Equals 1 When Age ≥ 61
Xi11 Equals 1 When Policy Age ∈ [1, 4)
Xi12 Equals 1 When Policy Age ≥ 4
Xi13 Equals 1 When the Region ∈ Interior Districts

quasi–Poisson models are 3.1553 and 3.5310 for risks 1 and 2, respectively. The
results obtained with the KNBIP model are not presented, since they are not
comparable with the others (the effects of each factor in theKNBIPmodel is not
multiplicative). The log-likelihood and the AIC of the KNBIP is−71085.11 and
142248.22, respectively which are similar to the values obtained by the KKBIP
model.

From the Akaike’s Information Criterion (AIC) or the likelihood criterion,
the worst fit is given by the DP. This model does not capture neither the het-
erogeneity nor the dependence of the data. Even, introducing dependence using
the bivariate Poisson as in the KKBIP model the fit is poor. The independent
negative binomial model (given by BIPL with ρ = 0) improves the fit, but the
GBINB regression model is the best of the models, followed by the same model
with c = 0 (bivariate negative binomial). Note that, even when c = 0, there is
some kind of dependence in the GBINB.

We can conclude that the models assuming independence are strongly re-
jected using any statistical criteria as expected.Moreover, the Poisson regression
structure was unable to capture the heterogeneity of the data and consequently
the negative binomial models and its generalizations present a much better fit.
Finally, it is interesting to observe that although the BIPL model has more pa-
rameters than the GBINB the latter presents a better fit.

In Table 4, we detailed the output obtained for theGBINBmodel, presenting
the estimated coefficients as well as their standard error to illustrate the statisti-
cal significance of the results.

Table 5 shows the parameter estimates of the severity for both variables,
considered independent and Gamma distributed. The significance of some of
the parameters indicates that we could merge some of the policy age groups
and not to discriminate according to geographical zone the severity of the
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TABLE 3

PARAMETER ESTIMATES FOR CLAIM NUMBERS.

DP KKBIP GBINB c = 0 GBINB BIPL ρ = 0 BIPL

k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2 k = 1 k = 2

Intercept 1.3330 −0.7991 1.4286 −0.2797 1.3390 −0.7299 1.3153 −0.7535 1.3339 −0.7294 1.3073 −0.8030
β

(k)
1 0.3176 0.5397 0.2189 0.2991 0.3738 0.4988 0.3693 0.4949 0.3654 0.5036 0.2740 0.3854

β
(k)
2 −0.4412 0.0709 −0.4387 −0.0478 −0.4372 0.0720 −0.4122 0.0973 −0.4405 0.0756 −0.3876 0.1751

β
(k)
3 −1.0206 −0.2144 −0.9136 −0.0457 −1.0233 −0.2192 −0.9821 −0.1779 −1.0288 −0.2163 −0.9123 −0.0354

β
(k)
4 −1.3575 −0.1963 −1.1798 −0.0393 −1.3637 −0.2013 −1.3488 −0.1866 −1.3658 −0.2053 −1.2350 0.0020

β
(k)
5 −1.2509 0.3990 −1.2099 0.2114 −1.2961 0.3436 −1.3047 0.3358 −1.2964 0.3651 −1.1426 0.5881

β
(k)
6 −1.1136 0.5626 −1.1753 0.1672 −1.1607 0.4943 −1.1224 0.5327 −1.1527 0.4947 −1.0987 0.6311

β
(k)
7 −1.0567 0.7156 −1.1444 0.3014 −1.0983 0.6535 −1.0630 0.6891 −1.0914 0.6548 −1.0541 0.7764

β
(k)
8 −1.0036 0.8919 −1.1257 0.4493 −1.0366 0.8478 −1.0014 0.8831 −1.0282 0.8417 −1.0151 0.9470

β
(k)
9 −0.7854 1.0811 −0.9307 0.6207 −0.7935 1.0614 −0.7620 1.0931 −0.7932 1.0574 −0.8206 1.1181

β
(k)
10 −0.4065 1.3411 −0.4852 0.9663 −0.3964 1.3380 −0.3835 1.3511 −0.3992 1.3398 −0.5698 1.2151

β
(k)
11 0.1351 0.1546 0.1023 0.0438 0.1254 0.1562 0.1171 0.1470 0.1324 0.1503 0.1109 0.1328

β
(k)
12 0.2089 0.2437 0.1613 0.1018 0.1961 0.2393 0.1833 0.2259 0.2033 0.2284 0.1633 0.1894

β
(k)
13 −0.5447 −0.5563 −0.2958 −0.0728 −0.5480 −0.5937 −0.5291 −0.5746 −0.5437 −0.5706 −0.3986 −0.4165

Other α̂ =0.5908 α̂ = 0.5673 α̂1 = 0.7872
α̂1 = 0.8385
α̂2 = 0.3944

parameters λ̂ = 0.6639 ĉ = 0.2157 α̂2 = 0.4634 ρ̂ = 0.697422413
Log-likelihood −78202.92 −71381.13 −57726.35 −57697.79 −62531.53 −58441.28
AIC 156348.84 142819.26 115509.70 115453.58 125120.06 116939.56
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TABLE 4

PARAMETER ESTIMATES AND STANDARD ERRORS FOR GBINB.

N(1) N(2)

Coef. St. Errors Coef. St. Errors

Intercept 1.3153 0.0543 −0.7535 0.0713
β

(k)
1 0.3693 0.0215 0.4949 0.0231

β
(k)
2 −0.4122 0.0629 0.0973 0.0819

β
(k)
3 −0.9821 0.0650 −0.1779 0.0845

β
(k)
4 −1.3488 0.0745 −0.1866 0.0934

β
(k)
5 −1.3047 0.0736 0.3358 0.0886

β
(k)
6 −1.1224 0.0577 0.5327 0.0740

β
(k)
7 −1.0630 0.0578 0.6891 0.0740

β
(k)
8 −1.0014 0.0606 0.8831 0.0761

β
(k)
9 −0.7620 0.0653 1.0931 0.0801

β
(k)
10 −0.3835 0.0974 1.3511 0.1091

β
(k)
11 0.1171 0.0279 0.1470 0.0303

β
(k)
12 0.1833 0.0324 0.2259 0.0347

β
(k)
13 −0.5291 0.0320 −0.5746 0.0349

Doctor’s Visits. With respect to the severity of the other treatments, a merger
of the youngest age groups could be considered. As the main purpose of the
paper is to discuss dependency through the claim numbers, we do not pursue
this analysis and keep the covariates unchanged.

We have calculated the premium associated to S using both the expected
value and the standard deviation principle for all the models. To compare the
results obtained by the different models, we started by setting the total premium
of the portfolio to a value, such that the loading is 25% of the expected ag-
gregate claim amount, for the DP. Then the loading coefficient for each of the
premiums/models was calculated, to get the set premium.

Although, apparently similar, the two dependent Poisson models, KKBIP
and KNBIP, can lead to different results, as can be seen in Figure 1, where the
box-plot of the ratio between the premiums is presented, for both the expected
value principle and the standard deviation principle.

The premiums calculated according to the standard deviation principle tend
to originate a narrower band of premiums than the ones obtained with the ex-
pected value principle for our data set. The exception is the results obtained for
the BIPL model. Figure 2 shows for each model the ratio between the standard
deviation and the expected value premium principles as a function of the latter
premium.

To have a closer look at the impact of the different models, at the individual
level, we defined five profiles corresponding to the 5, 25, 50, 75 and 95 percentiles
of the rank of the premiums obtained for the DP using the expected value prin-
ciple. Profile 1 is a male, between 31 and 40 years old, new policy and from the
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TABLE 5

PARAMETER ESTIMATES FOR CLAIM SEVERITY.

Y(1) Y(2)

Coef. St. errors Coef. St. errors

Intercept 3.8103 0.0072 3.8841 0.0522
γ

(k)
1 0.0174 0.0038 −0.0347 0.0141

γ
(k)
2 −0.0286 0.0085 −0.0374 0.0594

γ
(k)
3 −0.0485 0.0097 −0.0365 0.0622

γ
(k)
4 −0.0932 0.0126 0.1413 0.0682

γ
(k)
5 −0.1374 0.0125 0.2572 0.0622

γ
(k)
6 −0.1260 0.0081 0.3752 0.0533

γ
(k)
7 −0.1052 0.0080 0.4106 0.0530

γ
(k)
8 −0.1175 0.0086 0.4802 0.0536

γ
(k)
9 −0.1321 0.0093 0.5523 0.0548

γ
(k)
10 −0.0998 0.0137 0.5212 0.0640

γ
(k)
11 −0.0040 0.0050 −0.0313 0.0187

γ
(k)
12 0.0347 0.0058 −0.0538 0.0207

γ
(k)
13 −0.0058 0.0067 0.0480 0.0237

Other Parameters φ(1) = 0.1331 φ(2) = 1.0820
Log-Likelihood −148303 −120877
AIC 296,633 24,1781

7.0
8.0

9.0
0.1

1.1

KNBIP/KKBIP EV principle

8.0
9.0

0.1
1.1

KNBIP/KKBIP SD principle

FIGURE 1: KNBIB versus KKBIP models.

interior. Profile 2 is a male, between 21 and 30 years old, policy age between 1
and 3 years and from the coast. Profile 3 differs from profile 2 only on the age,
which is between 2 and 5 years old. The same happens for Profile 4 which age
is between 51 and 60 years old. Finally, profile 5 is a female, between 51 and
60 years old, new policy and from the coast. Tables 6 and 7 show the number of
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FIGURE 2: Standard deviation principle versus expected value principle.
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TABLE 6

PREMIUMS FOR THE DIFFERENT MODELS, ACCORDING TO THE EXPECTED VALUE PRINCIPLE.

DP GBINB BIPL
Profile no risks and Q-DP KKBIP KNBIP c = 0 GBINB ρ = 0 BIPL

1 82 89.34 142.76 133.73 86.24 89.13 87.82 109.88
2 1,100 149.65 152.33 157.25 146.16 147.36 146.63 157.04
3 564 184.57 207.76 204.10 186.77 185.87 186.73 195.70
4 372 255.87 242.67 229.30 262.72 263.06 261.71 260.29
5 90 351.54 299.62 291.45 359.76 361.94 358.87 326.45

Highest Premium 582.73 485.13 551.45 603.52 588.19 600.74 443.64
Lowest Premium 44.5 99.45 104.76 44.77 45.32 45.06 61.12

Ratio 13.09 4.88 5.26 13.48 12.98 13.33 7.26

TABLE 7

PREMIUMS FOR THE DIFFERENT MODELS ACCORDING TO THE STANDARD DEVIATION PRINCIPLE.

GBINB BIPL
Profile no risks DP Q-DP KKBIP KNBIP c = 0 GBINB ρ = 0 BIPL

1 82 101.12 100.74 154.14 145.15 92.01 116.74 93.30 111.12
2 1,100 155.56 155.31 158.88 163.27 147.79 159.09 148.17 156.41
3 564 178.32 180.22 198.84 195.89 185.63 179.79 185.59 192.29
4 372 257.48 256.50 243.91 231.66 261.68 258.82 260.86 259.64
5 90 344.38 343.04 294.63 287.55 356.39 338.46 355.67 330.27

Highest Premium 542.91 541.82 451.10 509.59 596.95 548.13 594.69 473.14
Lowest Premium 52.59 52.94 109.46 114.08 46.58 53.37 46.82 59.44

Ratio 10.32 10.23 4.12 4.47 12.81 10.27 12.70 7.96

risks (policies), the premiums for these profiles, when the different models are
used, and when using the expected value and the standard deviation principles,
respectively. Information about the highest and the lowest of the premiums for
each model is also given.

Although the total amount of premiums is the same whatever the model
and the principle used, we can see that, at individual level, things are different,
with the exception of the quasi-DP that originates premiums very similar to
the DP, although the overdispersion parameters were quite different from 1.
When the expected value principle is used, we obtain two main groups: the first
one is composed by the DP and the approaches based on the negative binomial
distribution except the BIPL. The second one includes the approaches based
on the (correlated) bivariate Poisson (KKBIP and KNBIP). The BIPL behaves
somewhere in the middle.

The ratios between the highest premium over the lowest one confirms that
the first group leads to a much larger variability among risks (ratio around 13
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versus ratio around 5) when compared to the second one. As expected, the BIPL
presents a ratio of 7.3 between the ratios of the two groups.

When the standard deviation principle is used, results are quite similar: the
same groups appear and individual premiums are in line with those obtained
using the expected value principle. For our data, the standard deviation principle
originates lower ratios between the extreme premiumswhich can be a good point
for the definition of the tariff.

5. CONCLUSIONS

For this data set, we can conclude that taking dependence into account mat-
ters. Moreover, the Poisson or quasi-Poisson regression structure was unable to
capture the heterogeneity of the data and consequently the negative binomial
models, and their generalizations, present a much better fit. The standard devi-
ation principle leads to narrower scales than the expected value principle.

Based on the comments of the previous section and on the fitness of the
models, if we had to choose a model, we would decide by the BIPL model.

Some of the models, namely the Poisson (see Johnson et al. 1997, pp. 139–
147) and the GBINB can be generalized to more than two risks. The general-
ization of the BIPL model would be more complex.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the constructive comments made by two
anonymous referees, which helped to improve the quality of the paper. The au-
thors are grateful to the insurance company Tranquilidade, that provided the
data used in this work. The authors were partially supported by the project
CEMAPRE – MULTI/00491 financed by FCT/MEC through national funds
and when applicable co-financed by FEDER, under the Partnership Agreement
PT2020.

REFERENCES

BERMUDEZ, L. (2009) A priori ratemaking using bivariate Poisson regression models. Insurance:
Mathematics & Economics, 44, 135–141. doi:10.1016/j.insmatheco.2008.11.005

BROCKMAN,M.J. andWRIGHT,M.A. (1992) Statistical motor rating:Making effective use of your
data set. Journal of the Institute of Actuaries, 119(3), 457–543.

CENTENO, M.L. (2005) Dependent risks and excess of loss reinsurance. Insurance: Mathematics &
Economics, 37, 229–238. doi:10.1016/j.insmatheco.2004.12.001

COSSETE, H. and MARCEAU, E. (2000) The discrete-time risk model with correlated classes of
businesses. Insurance: Mathematics & Economics, 26, 133–149.
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