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Abstract

Reasoning on defeasible knowledge is a topic of interest in the area of description logics, as it is
related to the need of representing exceptional instances in knowledge bases. In this direction,
in our previous works we presented a framework for representing (contextualized) OWL RL
knowledge bases with a notion of justified exceptions on defeasible axioms: reasoning in such
framework is realized by a translation into ASP programs. The resulting reasoning process
for OWL RL, however, introduces a complex encoding in order to capture reasoning on the
negative information needed for reasoning on exceptions. In this paper, we apply the justified
exception approach to knowledge bases in DL-LiteR, that is, the language underlying OWL QL.
We provide a definition for DL-LiteR knowledge bases with defeasible axioms and study their
semantic and computational properties. In particular, we study the effects of exceptions over
unnamed individuals. The limited form of DL-LiteR axioms allows us to formulate a simpler ASP
encoding, where reasoning on negative information is managed by direct rules. The resulting
materialization method gives rise to a complete reasoning procedure for instance checking in
DL-LiteR with defeasible axioms.1

KEYWORDS: defeasible knowledge, description logics, answer set programming, justifiable ex-
ceptions

1 Introduction

Representing defeasible information is a topic of interest in the area of description logics

(DLs), as it is related to the need of accommodating the presence of exceptional instances

in knowledge bases. This interest led to different proposals for non-monotonic features

in DLs based on different notions of defeasibility, for example, Bonatti et al . (2015),

Bonatti et al . (2006), Britz and Varzinczak (2016), Casini and Straccia (2010), Giordano

1 This paper is an extended and revised version of a conference paper appearing in the proceedings of
the 3rd International Joint Conference on Rules and Reasoning (RuleML+RR 2019) Bozzato et al .
(2019a).
∗ We thank the reviewers for their constructive comments and suggestions to improve this paper.
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et al . (2013), Pensel and Turhan (2018). In this direction, we presented in Bozzato et al .

(2018) an approach to represent defeasible information in contextualized DL knowledge

bases by introducing a notion of justifiable exceptions that has been inspired by ideas

in Buccafurri et al . (1999): general defeasible axioms can be overridden by more specific

exceptional instances if their application would provably lead to inconsistency. For ex-

ample2, we can express that “in general, concerts are expensive” as a defeasible concept

inclusion Concert � Expensive. However, for a specific instance free concert of Concert

representing a free concert we may want to “override” the defeasible axiom (i.e. disregard

its application): in our approach this is possible, provided that one can prove a set of

assertions {Concert(free concert),¬Expensive(free concert)} that justify the exception

for this individual.

In our seminal paper Bozzato et al . (2018), we concentrated on reasoning over

SROIQ-RL based knowledge bases: SROIQ-RL corresponds to the language of the

OWL RL profile of the Web Ontology Language (OWL) Motik et al . (2009) and allows for

tractable reasoning. In particular, this language emerges from the SROIQ language Hor-

rocks et al . (2006) and dl-programs Grosof et al . (2003). Remarkably, SROIQ-RL can

be seen as an intersection of DLs and Horn logic programs.

In Bozzato et al . (2018) reasoning in SROIQ-RL knowledge bases is realized by a

translation to datalog (under answer sets semantics), which provides a complete materi-

alization calculus in the style of Krötzsch (2010) for instance checking and conjunctive

query (CQ) answering. While the translation covers the full SROIQ-RL language, it

needs a complex encoding to represent reasoning on exceptions. In particular, it relies on

proofs by contradiction to ensure completeness in presence of negative disjunctive infor-

mation. In fact, negative disjunctive information is not easily expressible in datalog: for

example, from A�B � C and ¬C(a) we can derive (¬A � ¬B)(a), which is not directly

representable by datalog rules. Also, a naive use of disjunction in rule heads does not

overcome this problem. For this reason, in Bozzato et al . (2018) inference on negative

literals is obtained as an encoding of a “test” for contradiction of such literals in the

deduction rules of the datalog translation.

In this paper, we consider the case of knowledge bases with defeasible axioms in the

description logic DL-LiteR Calvanese et al . (2007), which corresponds to the language

underlying the OWL QL Profile Motik et al . (2009). As in the case of SROIQ-RL, also
DL-LiteR is a Horn logic and thus can be related to logic programs. In fact, DL-LiteR is

a class of existential rules and falls then into the linear fragment Cal̀ı et al . (2012).

It is indeed interesting to show the applicability of our defeasible reasoning approach to

the well-known DL-Lite family: by adopting DL-LiteR as the base logic, we need to take

unnamed individuals introduced by existential quantifiers into account, especially for the

justifications of exceptions. Defeasible axioms like D(Concert � ∃hasOrganizer), which

says that concerts have some organizer, allow for a smooth handling. On the other hand,

if we have axioms like ∃hasOrganizer− � Organizer , which informally assigns a type,

and D(Organizer � Company), then overridings can happen over unnamed individuals

relative to this axiom. The problem for reasoning with such unnamed elements is that

they can have different interpretations in different models of the knowledge base, while,

for determining the applicability of a defeasible axiom or its overriding, we need to

identify the exceptional domain elements.

2 see (Bozzato et al . 2018, Example 2).
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Moreover, with respect to the translation to datalog, we show that due to the restricted

form of its axioms, the DL-LiteR language allows us to give a less involved datalog

encoding in which reasoning on negative information is directly encoded in datalog rules;

for more background, we refer to the discussion on “justification safeness” in Bozzato

et al . (2018).

The choice of studying the application of our methods to DL-LiteR knowledge bases

is indeed motivated by the interest in covering the OWL QL fragment of OWL 2, which

is relevant from an application perspective. More importantly, from a formal perspec-

tive, DL-LiteR allows for the use of unnamed individuals in inverse roles which are not

available in EL⊥ Bozzato et al . (2019b) and SROIQ-RL Bozzato et al . (2018): thus,

the techniques for managing unnamed individuals, especially in exceptions, need to be

adapted to the expressivity of DL-LiteR. Another reason of our interest in DL-LiteR
stands in the fact that it is a standard DL which falls in the fragment where no rea-

soning on disjunctive negative information is needed for deductions on exceptions: this

shows a notable example of “justification safe” language which, as noted above, allows

us to formulate a simpler version of the datalog encoding for instance checking.

The contributions of this paper can be summarized as follows:

– In Section 3 we provide a definition of defeasible DL knowledge base (DKB) with jus-

tified models that draws from the definition of Contextualized Knowledge Repositories

(CKR) Bozzato et al . (2012); Bozzato and Serafini (2013); Serafini and Homola (2012)

with defeasible axioms provided in Bozzato et al . (2018). This allows us to concentrate

on the defeasible reasoning aspects without considering the aspects related to con-

text representation. In the case of DL-LiteR, we consider the effects of reasoning with

unnamed individuals and of their admission in the exceptions of defeasible axioms.

In particular, we consider models in which exceptions can only occur on individuals

named in the DKB (called exception safety).

– In Section 4, we study the semantic properties of DKB models. In particular, in the case

of exception safe DKBs, we show that their models preserve conditions from Bozzato

et al . (2018) that allow us to concentrate on minimal models that are restricted to the

individual names occurring in the knowledge base. These properties are important to

verify the feasibility of the reasoning method based on the datalog translation that we

provide in the later sections.

– For exception safe DKBs based on DL-LiteR, we provide in Section 5 a translation

to datalog (under answer set semantics Gelfond and Lifschitz (1991)) that alters the

translation in Bozzato et al . (2014), Bozzato et al . (2018) and prove its correctness

for instance checking. Notably, the fact that reasoning on negative disjunctive infor-

mation is not needed allows us to provide a simpler translation without the involving

“test” environments mechanism of Bozzato et al . (2018). The datalog translation for

DL-LiteR DKBs is included in the latest version of the CKRew (CKR datalog rewriter)

prototype Bozzato et al . (2018), which is available online.3

– In Section 6 we provide complexity results for reasoning problems on exception safe

DKBs based on DL-LiteR. Deciding satisfiability of such a DKB with respect to jus-

tified models is tractable, while inference of an axiom under cautious (i.e. certainty)

3 http://ckrew.fbk.eu/.
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semantics is co-NP-complete in general. Moreover, CQ answering is shown to be Πp
2-

complete.

– In Section 7 we discuss how reasoning on unnamed exceptional instances affects the

complexity, and in particular how the notion of exception safety can be generalized

in a way such that the techniques developed and the results obtained can be lifted to

this setting. We present for this the class of n-derivation exception (de) safe programs,

which for a few (n bounded by a constant) unnamed individuals in exceptions stays

within the same complexity and for polynomially many faces an increase by at most

one level in the polynomial hierarchy. Furthermore, we discuss how it is possible to

extend the current datalog translation to manage unnamed elements under de-safety.

With respect to the initial conference paper presented at RuleML+RR 2019 Bozzato

et al . (2019a), this version of the paper extends the work by including a study of prop-

erties of DKB models and justifications over unnamed individuals in Sections 3 and 7,

where the notion of n-de safe DKBs is introduced and the extension of results to this

setting is discussed. The current paper also includes a more detailed study for semantic

properties of DKB models (Section 4) and complexity of reasoning problems (Section 6).

With respect to the ASP translation, rules have been slightly simplified; moreover, the

current translation has been implemented in the CKRew prototype. Finally, with respect

to the conference paper, we provide further details and comparisons on related work in

Section 8. To increase readability and the comprehension of the contributions, additional

details and proofs of the results are reported in the Appendix.

2 Preliminaries

Description logics and DL-LiteR language. We assume the common definitions of

description logics Baader et al . (2003) and the definition of the logic DL-LiteR Calvanese

et al . (2007): we summarize in the following the basic definitions used in this work. For

ease of reference, we present in Table A1 in the Appendix the details of syntax and

semantics of DL-LiteR.

A DL vocabulary Σ consists of the mutually disjoint countably infinite sets NC of

atomic concepts, NR of atomic roles, and NI of individual constants. Intuitively, concepts

represent classes of objects (e.g. PhDStudent), roles represent binary relations across

objects (e.g. hasCourse), and individual names identify specific elements of the domain

(e.g. bob). Complex concepts are then recursively defined as the smallest sets containing

all concepts that can be inductively constructed using the constructors of the considered

DL language (see, e.g. Table A1 for DL-LiteR).

A DL-LiteR knowledge base K = 〈T ,R,A〉 consists of: a TBox T containing general

concept inclusion (GCI) axioms C � D where C,D are concepts, of the form:

C := A | ∃R D := A | ¬C | ∃R,

where A ∈ NC and R ∈ NR;4 an RBox R containing role inclusion (RIA) axioms S � R,

reflexivity, irreflexivity, inverse and role disjointness axioms, where S,R are roles; and an

ABox A composed of assertions of the forms D(a), R(a, b), with R ∈ NR and a, b ∈ NI.

4 In the following, we will use C to denote a left side concept and D as a right side concept.
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Example 1

The TBox T may include concept inclusion expressions such as PhDStudent �
¬∃hasCourse; the RBox R may contain a role inclusion hasAdvisor � isStudentOf ;

and finally, the ABox A may contain assertions ¬Professor(bob), hasAdvisor(bob,
alice).5 �

A DL interpretation is a pair I = 〈ΔI , ·I〉 where ΔI is a non-empty set called domain and

·I is the interpretation function which assigns denotations for language elements: aI ∈
ΔI , for a ∈ NI; AI ⊆ ΔI , for A ∈ NC; RI ⊆ ΔI ×ΔI , for R ∈ NR. The interpretation

of nonatomic concepts and roles is defined by the evaluation of their description logic

operators (see Table A1 and Calvanese et al . (2007) for DL-LiteR). An interpretation

I satisfies an axiom φ, denoted I |=DL φ, if it verifies the respective semantic condition,

in particular: for φ = D(a), aI ∈ DI ; for φ = R(a, b), 〈aI , bI〉 ∈ RI ; for φ = C � D,

CI ⊆ DI (resp. for RIAs). I is a model of K, denoted I |=DLK, if it satisfies all axioms

of K.

Example 2 (cont’d)

An interpretation I satisfies ¬Professor(bob) if bobI /∈ ProfessorI , and I satisfies

PhDStudent � ¬∃hasCourse if, for every element d of PhDStudentI , there does not

exist some domain element e such that 〈d, e〉 ∈ hasCourseI . �

Without loss of generality, we adopt the standard name assumption (SNA) in the DL

context (see de Bruijn et al . (2008), Eiter et al . (2008) for more details). That is, we

assume an infinite subset NIS ⊆ NI of individual constants, called standard names s.t.

in every interpretation I we have (i) ΔI = NIIS = {cI | c ∈ NIS}; (ii) cI 
= dI , for every
distinct c, d ∈ NIS . Thus, we may assume that ΔI = NIS and cI = c for each c ∈ NIS .

The unique name assumption (UNA) corresponds to assuming c 
= d for all constants

in NI \NIS resp. occurring in the knowledge base.6 We confine here to knowledge bases

without reflexivity axioms. The reason is that reflexivity allows one to derive positive

properties for any (named and unnamed) individual, thus complicating the treatment of

defeasible axioms.

Datalog programs and Answer Sets. We express our rules in datalog with negation

under answer sets semantics. In fact, we use here two kinds of negation7: strong (“classi-

cal”) negation ¬ and weak (default) negation not under the interpretation of answer sets

semantics Gelfond and Lifschitz (1991); the latter is in particular needed for representing

defeasibility.

A signature is a tuple 〈C,P〉 of a finite set C of constants and a finite set P of

predicates. We assume a set V of variables ; the elements of C ∪V are terms. An atom

is of the form p(t1, . . . , tn) where p ∈ P and t1, . . . , tn, are terms. A literal l is either a

positive literal p or a negative literal ¬p, where p is an atom and ¬ is strong negation.

Literals of the form p, ¬p are complementary. We denote with ¬.l the opposite of literal

5 For simplicity, in the following examples, we may represent knowledge bases as set of axioms with
implicit separation of TBox, RBox and ABox.

6 Under the SNA, equality between elements can be embedded using a binary predicate ≈ that satisfies
the usual congruence axioms Fitting (1996).

7 Strong negation can be easily emulated using fresh atoms and weak negation resp. constraints. While
it does not yield higher expressiveness, it is more convenient for presentation.
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l, that is, ¬.p = ¬p and ¬.¬p = p for an atom p. A (datalog) rule r is an expression:

a← b1, . . . , bk, not bk+1, . . . , not bm, (1)

where a, b1, . . . , bm are literals. We denote with Head(r) the head a of rule r and with

Body(r) = {b1, . . . , bk, not bk+1, . . . , not bm} the body of r, respectively. A (datalog)

program P is a finite set of rules. An atom (rule etc.) is ground if no variables occur in it.

A ground substitution σ for 〈C,P〉 is any function σ :V→ C; the ground instance of an

atom (rule, etc.) χ from σ, denoted χσ, is obtained by replacing in χ each occurrence of

variable v ∈ V with σ(v). A fact H is a ground rule r with empty body. The grounding of

a rule r, grnd(r), is the set of all ground instances of r, and the grounding of a program

P is grnd(P ) =
⋃

r∈P grnd(r).

Given a program P , the (Herbrand) universe UP of P is the set of all constants

occurring in P and the (Herbrand) base BP of P is the set of all the ground literals

constructable from the predicates in P and the constants in UP . An interpretation I ⊆ BP

is any satisfiable subset of BP (i.e. not containing complementary literals); a literal l is

true in I, denoted I |= l, if l ∈ I, and l is false in I if ¬.l is true. Given a rule r ∈ grnd(P ),

we say that Body(r) is true in I, denoted I |= Body(r), if (i) I |= b for each literal

b ∈ Body(r) and (ii) I 
|= b for each literal not b ∈ Body(r). A rule r is satisfied in I,

denoted I |= r, if either I |= Head(r) or I 
|= Body(r). An interpretation I is a model of

P , denoted I |= P , if I |= r for each r ∈ grnd(P ); moreover, I is minimal, if I ′ 
|= P for

each subset I ′ ⊂ I.

Given an interpretation I for P , the reduct of P w.r.t. I Gelfond and Lifschitz (1991),

denoted by GI(P ), is the set of rules obtained from grnd(P ) by (i) removing every rule

r such that I |= l for some not l ∈ Body(r); and (ii) removing the NAF part from the

bodies of the remaining rules. Then, I is an answer set of P , if I is a minimal model of

GI(P ); the minimal model is unique and exists iff GI(P ) has some model. Moreover, if

M is an answer set for P , then M is a minimal model of P . We say that a literal a ∈ BP

is a consequence of P and write P |= a if every answer set M of P fulfills M |= a.

3 DL knowledge base with justifiable exceptions

In this paper we concentrate on reasoning over a DL knowledge base enriched with de-

feasible axioms, whose syntax and interpretation are analogous to Bozzato et al . (2018).

With respect to the contextual framework presented in Bozzato et al . (2018), this cor-

responds to reasoning inside a single local context: while this simplifies the presentation

of defeasibility aspects and the resulting reasoning method for the case of DL-LiteR, it

can be generalized to the original case of multiple local contexts.

Syntax. Given a DL language LΣ based on a DL vocabulary Σ = NC ∪ NR ∪ NI, a

defeasible axiom is any expression of the form D(α), where α ∈ LΣ.

We denote with LD
Σ the DL language extending LΣ with the set of defeasible axioms

in LΣ. On the base of such language, we provide our definition of knowledge base with

defeasible axioms.

Definition 1 (defeasible knowledge base, DKB)

A defeasible knowledge base (DKB) K on a vocabulary Σ is a DL knowledge base

over LD
Σ.
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In the following, we tacitly consider DKBs based on DL-LiteR.

Example 3

We introduce a simple example showing the definition and interpretation of a defeasible

existential axiom. In the organization of a university research department, we want to

specify that “in general” department members need also to teach at least a course. On

the other hand, PhD students, while recognized as department members, are not allowed

to hold a course. We can represent this scenario as a DKB Kdept where:

Kdept :

⎧⎪⎨⎪⎩
D(DeptMember � ∃hasCourse),Professor � DeptMember ,

PhDStudent � DeptMember ,PhDStudent � ¬∃hasCourse,
Professor(alice), PhDStudent(bob)

⎫⎪⎬⎪⎭ .

Intuitively, we want to override the fact that there exists some course assigned to the

PhD student bob. On the other hand, for the individual alice no overriding should happen

and the defeasible axiom can be applied. �

Semantics. We can now define a model based interpretation of DKBs, in particular by

providing a semantic characterization to defeasible axioms.

Similarly to the case of SROIQ-RL in Bozzato et al . (2018), we can express DL-LiteR
knowledge bases in first-order (FO) logic, where every axiom α ∈ LΣ is translated into

an equivalent FO sentence ∀�x.φα(�x) where �x contains all free variables of φα depending

on the type of the axiom. The translation, depending on the axiom types, is natural and

can be defined analogously to the FO translation presented in Bozzato et al . (2018).8

In the case of existential axioms of the kind α = A � ∃R, the FO translation φα(�x) is

defined as:

A(x1)→ R(x1, fR(x1)) ;

that is, we introduce a Skolem function fR(x1) which represents new “existential” in-

dividuals. Formally, for every atomic role R ∈ NR we define a Skolem function fR. In

particular, for a set of individual names N ⊆ NI, we will write sk(N) to denote the

extension of N with the set of Skolem constants for elements in N , that is, for each name

a ∈ N , sk(N) also contains fR(a) for each fR as above.

After this transformation, the resulting formulas φα(�x) amount semantically to Horn

formulas, since left side concepts C can be expressed by an existential positive FO for-

mula, and right side concepts D by a conjunction of Horn clauses. The following property

from (Bozzato et al . 2018, Section 3.2) is then preserved for DL-LiteR knowledge bases.

Lemma 1

For a DL knowledge base K on LΣ, its FO translation φK :=
∧

α∈K∀�x.φα(�x) is semanti-

cally equivalent to a conjunction of universal Horn clauses.

We remark that the introduction of Skolem functions does not allow us to work on proper

Herbrand models of the original language as in Bozzato et al . (2018), since they introduce

new Skolem terms in the language. As we will see in the following, exceptions on these

elements need further conditions to be defined.

With these considerations on the definition of FO translation, we can now provide our

definition of axiom instantiation:

8 A FO translation for DL-LiteR axioms is provided in Appendix B.
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Table 1. (Minimal) clashing sets for DL-LiteR clashing assumptions.

〈A(a), a〉 : {¬A(a)}
〈¬A(a), a〉 : {A(a)}

〈R(a, b), (a, b)〉 : {¬R(a, b)}
〈A � B, e〉 : {A(e),¬B(e)}
〈A � ¬B, e〉 : {A(e), B(e)}
〈∃R � B, e〉 : {∃R(e),¬B(e)}
〈A � ∃R, e〉 : {A(e),¬∃R(e)}

〈R � T, (e1, e2)〉 : {R(e1, e2),¬T (e1.e2)}
〈Dis(R,S), (e1, e2)〉 : {R(e1, e2), S(e1, e2)}
〈Inv(R,S), (e1, e2)〉 : {R(e1, e2),¬S(e2, e1)},

{¬R(e1, e2), S(e2, e1)}
〈Irr(R), e〉 : {R(e, e)}

Definition 2 (axiom instantiation)

Given an axiom α ∈ LΣ with FO translation ∀�x.φα(�x), the instantiation of α with a

tuple e of individuals in NI, written α(e), is the specialization of α to e, that is, φα(e),

depending on the type of α.

Note that, since we are assuming standard names, this basically means that we can

express instantiations (and exceptions) to any element of the domain (identified by a

standard name in NIS). We next introduce clashing assumptions and clashing sets.

Definition 3 (clashing assumptions and sets)

A clashing assumption is a pair 〈α, e〉 s.t. α(e) is an instantiation for an axiom α ∈ LΣ.

A clashing set for a clashing assumption 〈α, e〉 is a satisfiable set S that consists of ABox

assertions over LΣ and negated ABox assertions of the forms ¬C(a) and ¬R(a, b) such

that S ∪ {α(e)} is unsatisfiable.

A clashing assumption 〈α, e〉 represents that α(e) is not satisfiable, while a clashing set

S provides an assertional “justification” for the assumption of local overriding of α on e.

In Table 1 we show the form of clashing sets for axioms of DL-LiteR. For example, in

the case of an atomic concept inclusion defeasible axiom D(A � B) in a context c, a

clashing assumption 〈A � B, e〉 states the assumption that A � B is not satisfiable for e

in c; a clashing set S = {A(e),¬B(e)} provides a justification for the assumption on the

overriding of A � B on e in c. We can then extend the notion of DL interpretation with

a set of clashing assumptions.

Definition 4 (CAS interpretation)

A CAS interpretation is a structure ICAS = 〈I, χ〉 where I = 〈ΔI , ·I〉 is a DL interpre-

tation for Σ and χ is a set of clashing assumptions.

By extending the notion of satisfaction with respect to CAS interpretations, we can

disregard the application of defeasible axioms to the exceptional elements in the sets of

clashing assumptions. For convenience, we call two DL interpretations I1 and I2 NI-

congruent, if cI1 = cI2 holds for every c ∈ NI.

Definition 5 (CAS model)

Given a DKB K, a CAS interpretation ICAS = 〈I, χ〉 is a CAS model for K (denoted

ICAS |= K), if the following holds:

(i) for every α ∈ LΣ in K, I |= α;

(ii) for every D(α) ∈ K (where α ∈ LΣ), with |�x|-tuple �d of elements in NIΣ such that
�d /∈ {e | 〈α, e〉 ∈ χ}, we have I |= φα(�d).
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We say that a clashing assumption 〈α, e〉 ∈ χ is justified for a CAS -model ICAS = 〈I, χ〉,
if some clashing set S = S〈α,e〉 exists such that, for every CAS model I ′CAS = 〈I ′, χ〉 of
K that is NI-congruent with ICAS , it holds that I ′ |= S〈α,e〉. We then consider as DKB

models only the CAS models where all clashing assumptions are justified.

Definition 6 (justified CAS model and DKB model)

A CAS -model ICAS = 〈I, χ〉 of a DKB K is justified, if every 〈α, e〉 ∈ χ is justified.

An interpretation I is a DKB model of K (in symbols, I |= K), if K has some justified

CAS -model ICAS = 〈I, χ〉.

Example 4

Reconsidering Kdept in Example 3, a CAS model providing the intended interpretation

of defeasible axioms is ICASdept
= 〈I, χdept 〉 where bobI 
= aliceI and χdept = {〈α, bob〉}

with α = DeptMember � ∃hasCourse. The fact that this model is justified is verifiable

considering that for the clashing set S = {DeptMember(bob), ¬∃hasCourse(bob)} we

have I |= S. On the other hand, note that a similar clashing assumption for alice is not

justifiable: it is not possible from the contents of Kdept to derive a clashing set S′ such
that S′ ∪ {α(alice)} is unsatisfiable. By Definition 5, this allows us to apply α to this

individual as expected and thus I |= ∃hasCourse(alice). �

Example 5 (Nixon Diamond)

Note that different combinations of clashing assumptions can lead to different and al-

ternative justified CAS models and thus alternative DKB models. We can show this by

considering the classic example of the Nixon Diamond as presented in (Bonatti et al .

2015, Example 9) (see also the example in (Bozzato et al . 2018, Section 7.4)). Let Knd

be a DKB defined as follows:

Knd :

{
D(Quacker � Pacifist),D(Republican � ¬Pacifist),
Quacker(nixon), Republican(nixon)

}
.

This DKB has two possible overridings of the two defeasible axioms (hav-

ing the same priority), which lead to two possible DKB models I1 and

I2. In particular, in model I1 we have a clashing assumption χ1 =

{〈Republican � ¬Pacifist ,nixon〉} that is justified by the clashing set

{Republican(nixon),Pacifist(nixon)}: in this model we have that I1 |= Pacifist(nixon).

Similarly, in model I2 we have the clashing assumption χ2 = {〈Quaker �
Pacifist ,nixon〉} with clashing set {Quaker(nixon),¬Pacifist(nixon)}: then, in this

model I2 |= ¬Pacifist(nixon).
Thus, we obtain that Knd 
|= Pacifist(nixon) and Knd 
|= ¬Pacifist(nixon). Simi-

larly, the approach presented in Bonatti et al . (2015) can not derive Pacifist(nixon) or

¬Pacifist(nixon): however, as we have shown in Bozzato et al . (2018), differently from

this approach, in our semantics we can use the alternative models to enable “reason-

ing by cases”. For example, consider the DKB K′
nd obtained from Knd by substituting

D(Republican � ¬Pacifist) with the axioms D(Republican � Hawk), Hawk � ¬Pacifist ,
Hawk � Activist ,Pacifist � Activist . Then, differently from Bonatti et al . (2015), even

with alternative models given by the possible instantiation of clashing assumptions, we

obtain that K′
nd |= Activist(nixon). �
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We are interested in DKB models ICAS = 〈I, χ〉 in which clashing assumptions 〈α, e〉 ∈ χ

are admitted over individuals that are both named and unnamed in the knowledge base.

That is, we want to admit also exceptions over individuals introduced by existential

axioms. However, we should have the means to limit the existence of such individuals in

exceptions in order to control the reasoning from such models.

Let us denote by NK the individuals occurring in K. A condition that allows us to

control the number of unnamed individuals in models is the following.

Definition 7 (n-boundedness)

A CAS interpretation ICAS = 〈I, χ〉 for a DKB K is n-bounded for n ≥ 0, if in χ at

most n elements occur that are not named by K, that is, it holds that |uniK(ICAS )| ≤ n

where uniK(ICAS ) = {eI1 , . . . , eIk ∈ NIS | 〈α, (e1, . . . , ek)〉 ∈ χ} \ {cI | c ∈ NK}.

If this condition holds, we can show that unnamed individuals appearing in clashing

assumptions can be always linked to named individuals from the DKB. Given a DKB K,
let us denote by Ks the knowledge base where all defeasible axioms are turned into strict

axioms.

Lemma 2

Suppose that ICAS = 〈I, χ〉 is a justified CAS model of a DKB K and that an element e

occurring in 〈α, e〉 ∈ χ is not named by K. Then, there exists a role chain RI
1 (e0, e1), . . . ,

RI
m(em−1, em) where e0 = aI for some a ∈ NK, em = e, and ei+1 = fRi+1

(ei).

That is, elements in clashing assumptions that are not named by the DKB must be linked

to it by a “Skolem chain”.

As our main definition for limiting models to n-bounded CAS interpretations, we

consider the following syntactic condition restricting unnamed individuals appearing in

clashing sets.

Definition 8 (n-derivation exception (de) safety)

A DKB K is n-derivation exception (de) safe, if m ≤ n Skolem terms t1, . . . , tm exist

such that for every positive assertion D(e1) resp. R(e1, e2) from a possible clashing set

S〈α,e〉 for any D(α) ∈ K and atom D(t′1) resp. R(t′1, t
′
2) that is derivable from Ks (in

FO under Skolemization), it holds that we have t′1 ∈ NK ∪ {t1, . . . , tm} resp. t′1, t
′
2 ∈

NK ∪ {t1, . . . , tm}.

In particular, for n = 0 we obtain that no exception on an unnamed individual can be

derived: in this case, we say that K is exception safe. If K is acyclic,9 then it is n-de safe

for some n that is exponential in the size of K in general, which drops to polynomial if

derivations are feasible in constantly many steps.

Example 6 (Ex. 4 cont’d)

Reconsider the CAS model ICASdept
= 〈I, χdept 〉 where χdept = {〈α, bob〉} with bobI 
=

aliceI , and α = DeptMember � ∃hasCourse. If we make α strict, we cannot derive a

clashing set S = {DeptMember(e), ¬∃hasCourse(e)} where e is an unnamed individual;

to derive DeptMember(e), it would require some axiom ∃R− � DeptMember where some

unnamed individual is introduced by some axiom A � ∃R; however, no such former

axioms can be derived, and thus Kdept is exception safe. �

9 K is acyclic, if there is no sequence of axioms E0 � E1, E1 � E2,. . . , Ek−1 � Ek such that Ek = E0.
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However, if K is cyclic, it may be not n-de safe for every n ≥ 0.

Example 7

Let us consider the DKB K = {Employee � ∃hasSupervisor ,
∃hasSupervisor− � Employee, D(∃hasSupervisor− � ⊥), Employee(alice)}.10 In-

formally, every employee and so alice has a supervisor that is an employee, and

unless provable to the contrary, an individual is not a supervisor. This KB has an

infinite feed of Skolem terms fn(alice), n ≥ 1 into the defeasible axiom by the chain

hasSupervisor(alice, f(alice)), hasSupervisor(f(alice), f(f(alice))), . . .. Thus, K is not

n-de safe for any n ≥ 0. It has two non-isomorphic DKB models: one, I1CAS , where we

have an exception to D(∃hasSupervisor− � ⊥) for alice (thus the model is 0-bounded)

and f(alice) = alice, and another one, I2CAS , where we have an exception for f(alice)

and alice 
= f(alice), f(alice) = f(f(alice)) (the model is 1-bounded). No longer Skolem

chain of three different elements is possible: then two exceptions would be needed, which

then are however not provable. If we add the assertion ¬∃hasSupervisor−(alice) to K
stating that alice is not a supervisor, then only the DKB model I2CAS remains; adding

the assertion Employee(bob) instead, we obtain under UNA a further DKB model I3CAS

with an exception of D(∃hasSupervisor− � ⊥) for bob; an exception for both alice and

bob is infeasible as this would not be justifiable. �

A syntactic property of DKBs that is useful to be verified is related to the reachability

of unnamed elements in derivations.

Definition 9 (n-chain safety)

A DKB K is n-chain safe, if from Ks only role chains R1(a, t1), . . . , Rm(tm−1, tm) where

a ∈ NK and the t1, . . . , tm are distinct Skolem terms can be derived such that m ≤ n.

This condition, in particular, is verified in the case that K is acyclic: in this case the

maximum length of chains is determined by the chains of existential axioms in K.
If a DKB K is n-chain safe then it is also m-de safe for some m that is exponentially

bounded by n. On the other hand, Kmay be n-de safe but notm-chain safe for anym ≥ 0:

in the latter case, recursion through axioms that do not feed into defeasible axioms occur.

For instance, if we drop in Example 7 the defeasible axiom D(∃hasSupervisor− � ⊥),
then the resulting K is trivially exception safe but not n-chain bounded. For our purposes,

we shall call a DKB K recursive, if K is not n-de bounded for any n ≥ 0.

In case of exception safe (i.e. 0-de safe) DKBs we obtain the following result.

Proposition 1

Let ICAS = 〈I, χ〉 be a CAS model of DKB K and let K′ result from K by pushing

equality w.r.t. I, that is, replace all a, b∈NK s.t. aI = bI by one representative. If K′ is
exception safe, then ICAS can be justified only if every 〈α, e〉 ∈χ is over NK.

We remark that the condition of exception safety can be tested in polynomial time, by

non-deterministically unfolding the axioms (resolution-style, or forward in a chase). In

fact, we obtain the following result.

Proposition 2

Deciding whether a given DKB K is exception safe is feasible in NLogSpace, and whether

it is n-de safe in PTime, if n is bounded by a polynomial in the size of K.

10 Here, ⊥ is the empty concept (“falsity”) emulated by ⊥ � A, ⊥ � ¬A for a fresh concept name A.
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Syntactic classes ensuring exception safety can be singled out: simple examples of these

can be the class of DKBs containing no existential axioms or the class where no inverse

roles and no defeasible role axioms appear in the DKB.

Checking chain-safety is tractable, similarly to testing exception safety.

Proposition 3

Deciding whether a given DKB K is n-chain safe, where n ≥ 0, is feasible in NLogSpace.

We remark that both checking exceptions and n-chain safety are in fact NLogSpace-

complete, as the hardness is inherited from the NLogSpace-completeness of DL-LiteR
(which holds already in the absence of existential axioms).

4 Semantic properties

DKB models have interesting semantic properties similar to those exhibited by CKR

models in Bozzato et al . (2018). In this section we provide a review of such properties: in

particular, these results are important to show the feasibility of the reasoning approach

presented in Section 5.

For example, we can prove that justified CAS models have a non-monotonic be-

havior with respect to the contents of DKBs, cf. (Bozzato et al . 2018, Prop. 4, non-

monotonicity).

Proposition 4 (non-monotonicity)

Suppose ICAS = 〈I, χ〉 is a justified CAS model of a DKB K′. Then, ICAS is not

necessarily a justified CAS model of every K ⊂ K′.

Proof

This property can be easily verified by considering the interpretation of defeasible axioms

and their justification. Let us suppose that D(A � B) ∈ K (cases for other defeasible

axioms can be shown similarly) and {A(c),¬B(c)} ⊆ K. If we consider a justified CAS

model ICAS = 〈I, χ〉 for K, then the defeasible axiom is not applied to the exceptional

instance c in the interpretation: that is, 〈A � B, c〉 ∈ χ and S = {A(c),¬B(c)} is a

clashing set for such exception. However, if we consider K′ = K \ {¬B(c)}, then in S

is no longer verified by models of K′: thus the clashing assumption 〈A � B, c〉 can no

longer be justified and ICAS is not a justified model for K′. �

Another property of justified CAS models that we can show is non-redundancy of jus-

tifications, cf. (Bozzato et al . 2018, Prop. 6, minimality of justification). Basically, this

means that in justified models clashing assumptions are minimal, in the sense that no

assumption can be omitted.

Proposition 5 (non-redundancy)

Suppose ICAS = 〈I, χ〉 and I ′CAS = 〈I ′, χ′〉 are NI-congruent justified CAS models of a

DKB K, then χ′ 
⊂ χ holds.

Proof

Let us consider 〈α, e〉 ∈ χ \ χ′. Then, given that I ′CAS is a model for K, it holds that

I ′ |= α(e) (i.e. e is not an exceptional instance of the defeasible axiom D(α)). Given that

https://doi.org/10.1017/S1471068421000132 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000132


266 L. Bozzato et al.

all clashing assumptions in χ are justified, then there exists a clashing set S = S〈α,e〉
for the clashing assumption 〈α, e〉 such that I |= S. Moreover, by the definition of

justification, for every other I ′′CAS = 〈I ′′, χ〉 for K that is NI-congruent with ICAS , it

holds that I ′′ |= S.

Let us consider I ′′′CAS = 〈I ′, χ〉. Given that I ′CAS |= K and χ′ ⊆ χ, we have that also

I ′′′CAS |= K. Moreover, since I ′′′CAS is NI-congruent with ICAS , we have I ′ |= S. Then,

I ′ |= S ∪ {α(e)}: however this contradicts the fact that S is a clashing set for α(e). This

proves the fact that χ′ 
⊂ χ must hold. �

We remark that, as a consequence of this property, exceptions in DKBmodels are minimal

(i.e. minimally justified): thus, in our approach this minimality property is derived from

the definition of the interpretation of defeasible axioms and it is not explicitly required

in its definition.

As shown in Lemma 1, DL-LiteR knowledge bases can be represented as Horn the-

ories: however, differently from SROIQ-RL (Bozzato et al . 2018, Prop. 7, intersection

property), the use of Skolem functions does not allow us to properly preserve the inter-

section property of Horn theories and a revised notion of model intersection is needed,

cf. (de Bruijn et al . 2011, Proof for Prop. 6.7). Formally, for two NI-congruent DL in-

terpretations I1 and I2, we denote by I1 ∩̃N I2 the NI-congruent “intersection” inter-

pretation over a set of ground terms N (i.e. a set of individual names and the possible

instantiations of Skolem functions over them) defined as follows:

– ΔJ = {[tI1 , tI2 ] | t ∈ N};
– tJ = [tI1 , tI2 ], for t ∈ N ;

– [d1, d2] ∈ CJ iff d1 ∈ CI1 and d2 ∈ CI2 , for C ∈ NC;

– ([d1, d2], [e1, e2]) ∈ RJ iff (d1, e1) ∈ RI1 and (d2, e2) ∈ RI2 , for R ∈ NR;

where we abbreviate J = I1∩̃NI2. Note that, while for the NI-congruence we have

that aI1 = aI2 for individual names a ∈ N ∩NI, it is not necessarily true that tI1 = tI2

for some Skolem term t ∈ N : in this case, by the definition above, in the “intersection”

interpretation we consider tJ (i.e. tI1˜∩NI2) as the “conjunction” of the interpretations

of t in the two models. Extending this construction to CAS interpretations, we need to

ensure that the interpretation of the joined interpretations is coherent on exceptions.

Namely, we require the following property:

If tIi = e and some clashing assumption 〈α, e〉 with e ∈ e exists, then tI1 = tI2 . (∗)

Then, the following result can be shown:

Proposition 6

Let IiCAS = 〈Ii, χ〉, i ∈ {1, 2}, be NI-congruent CAS models of a DKB K fulfilling (∗).
Then, ICAS = 〈I, χ〉, where I = I1∩̃NI2 and N includes all individual names occurring

in K and for each element e occurring in χ some t ∈ N such that tI1 = e(= tI2), is also a

CAS model of K.11 Furthermore, if some IiCAS , i ∈ {1, 2}, is justified and K is exception

safe, then ICAS is justified.

A consequence of this result is that a least justified CAS model exists for exception safe

DKBs relative to a name assignment, which we define as any interpretation ν : NI→ Δ

11 Technically, we view here [e, e] ∈ ΔI as e; the assumption ensures we have infinitely many standard
names left.
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of the individual constants on the domain Δ (respecting SNA). The name assignment

of a CAS interpretation ICAS = 〈I, χ〉 is the one induced by NII . We call a clashing

assumption χ for a DKB K satisfiable (resp., justified) for a name assignment ν, if K has

some CAS model (resp., justified CAS model) ICAS with name assignment ν. Then, by

using the construction of “intersection” interpretations over CAS -models of K for a given

satisfiable χ, we obtain the following result. Denote for a CAS model ICAS = 〈I, χ〉 by
AtN (ICAS ) = {A(t), R(t, t′) | t, t′ ∈ N , A ∈ NC, R ∈ NR, I |= A(t), I |= R(t, t′)} the set

of all atomic concepts and roles over N satisfied by ICAS , and define ICAS ⊆N I ′CAS for

CAS models ICAS and I ′CAS by AtN (ICAS ) ⊆ AtN (I ′CAS ).

Corollary 1 (least model property)

If a clashing assumption χ for an exception safe DKB K is satisfiable for name assignment

ν, then K has an ⊆N -least (unique minimal)12 CAS model ÎK(χ, ν) = 〈Î, χ〉 on N
that contains all Skolem terms of individual constants, that is, for every CAS model

I ′CAS = 〈I ′, χ〉 relative to ν, it holds that ICAS ⊆N I ′CAS . Furthermore, ÎK(χ, ν) is

justified if χ is justified.

We note that, moreover, a Skolem term t over an individual constant c can occur in the

least model ÎK(χ, ν) if and only if it has an alias in K, that is, some c′ ∈ NK such that

ν(c′) = ν(c) exists; thus, ÎK(χ, ν) is fully characterized by its restriction to NK. We also

note that we can reason independently from (in)equalities that emerge from the name

assignment ν regarding exceptions, since modulo ν, no new Skolem terms can occur in

derived positive atoms. This also means that (in)equalities do not affect (relative to ν)

the conditions for n-de safety.

As in the case of SROIQ-RL knowledge bases in Bozzato et al . (2018), in order to

formulate a reasoning method it is important to show that also in DL-LiteR knowledge

bases (and DKBs) we can concentrate on reasoning over the named part of an interpre-

tation. Notably, in the case of DL-LiteR we need to extend this notion to consider the

interpretation of Skolem individuals.

We say I is named relative to N ⊆ sk(NI)\NIS , if (i) CI ⊆ N I and RI ⊆ N I×N I for

each C ∈ NC and R ∈ NR; (ii) for every Skolem function f and a ∈ N ∩NI, f(a)I ∈ N I .
Moreover, for a DL-LiteR knowledge base K, if cI 
= dI for any distinct c, d ∈ N and N
includes sk(NK) (i.e. all constants that occur in K and their Skolem constants), we call

I a pseudo Herbrand interpretation for K relative to N .

Let for any N ⊆ NI \ NIS the N -restriction of I, denoted by IN , be the interpre-

tation that results from I by: (i) restricting CI to sk(N)I for all C ∈ NC and RI to

sk(N)I×sk(N)I for every R ∈ NR; (ii) redirecting any role of the type (e1, e2) ∈ RI

with e1 ∈ sk(N) and e1 /∈ sk(N) to (e1, g) ∈ RI with g 
= e1 and g ∈ sk(N)I \NI (i.e.

g is the interpretation of some Skolem term on N). Then, we can obtain the following

lemma over such interpretation restrictions.

Lemma 3

Suppose I is a model of a DL-LiteR knowledge base K and N ⊆ NI \ NIS includes all

individuals occurring in K. Then, the N -restriction IN is named w.r.t. sk(N) and a

model of K.

12 We consider uniqueness modulo equivalence, that is, that ICAS ⊆N I′
CAS and I′

CAS ⊆N ICAS
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In the case of exception safe DKBs, this property can be extended to CAS interpretations

ICAS = 〈I, χ〉 of DKB K. Considering N that includes each individual constant that

occurs in K, a CAS interpretation INCAS = 〈IN , χN 〉 can be obtained from ICAS by

(i) replacing I with its N -restriction IN , (ii) removing each clashing assumption 〈α,d〉
from χ where d is not over N , and (iii) interpreting each constant symbol c ∈ sk(NI) \
(sk(N) ∪ NIS) by some arbitrary element not in sk(N)I . In particular, we consider the

case of N = NK consisting of the individual constants that occur in K. Then, we obtain:

Theorem 1 (named model focus)

Let ICAS be a CAS model of an exception safe DKB K and suppose NK ⊆ N ⊆ NI\NIS .
Then, also INCAS , and in particular INK

CAS , is a CAS model for K. Furthermore, INCAS is

justified if ICAS is justified, and every clashing assumption 〈α, e〉 in INCAS is justified by

some clashing set S formulated with constants from sk(N).

Proof

Suppose that ICAS |= K, with ICAS = 〈I, χ〉. Then, by the Definition 5 of CAS model, if

we consider the restriction INCAS = 〈IN , χN 〉, from Lemma 3 we directly obtain condition

(i) on strict axioms in K, that is, for every α ∈ LΣ in K, IN |= α. We can prove

also the satisfaction of condition (ii) on the interpretation of defeasible axioms. Let

d /∈ {e | 〈α, e〉 ∈ χN} for D(α) ∈ K. If d is over N , then by Lemma 3 we obtain that

I |= α(d) and thus IN |= α(d). Otherwise, if d is not over N , then as noted in the

proof of previous lemma, in the translation to Horn clauses φα(d) there must be a clause

γi(d, �xi) where some constant outside N occurs in the antecedent. This causes γi(d, �xi)

to evaluate to false for every assignment on �xi.

We can show that if ICAS is justified, then INCAS is also justified. Let us assume

that INCAS is not justified: then there exists a 〈α, e〉 ∈ χN (and thus also 〈α, e〉 ∈ χ)

that is not justified. By the definition of justification, this means that for every clashing

set S = S〈α,e〉 for 〈α, e〉, there exists some CAS model IN ′
CAS = 〈IN ′

, χN 〉 of K that

is NI-congruent to INCAS and IN ′ 
|= S. In particular, this must hold for the clashing

set S providing the justification of 〈α, e〉 in ICAS . Consider then the interpretation

I ′CAS = 〈I ′, χ〉, corresponding to changing the interpretations of symbols in I to the

interpretation of IN ′
: then, I ′CAS is NI-congruent with ICAS , but I ′CAS 
|= S. This

contradicts the fact that ICAS is justified: thus, INCAS is justified as well.

Finally, the fact that every 〈α, e〉 in INCAS is justified by some clashing set S over

sk(N) can be verified by considering that S can be expressed in (a grounding of) Horn

clauses and INCAS |= S. Thus an equivalent renaming of constants in S over sk(N) can

be provided. �

The following property is useful in order to prove the correctness of justifications: the

result provides a characterization of justification based on the least model ÎK(χ, ν) for a
clashing assumption set χ and a name assignment ν.

Theorem 2 (justified CAS characterization)

Let χ be a satisfiable clashing assumptions set for an exception safe DKB K and name

assignment ν. Then, χ is justified iff 〈α, e〉 ∈ χ implies some clashing set S = S〈α,e〉
exists such that
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Table 2. Normal form for K axioms from LΣ

Strict axioms: for A,B ∈ NC, R,S ∈ NR, a, b ∈ NI:

A(a) R(a, b) A � B A � ¬B ∃R � A∃R A∃R � ∃R
R � S Dis(R,S) Inv(R,S) Irr(R)

Defeasible axioms: for A,B ∈ NC, R,S ∈ NR:

D(A � B) D(R � S) Inv(R,S) Irr(R)

(i) Î |= β, for each positive β ∈ S, where ÎK(χ, ν) = (Î, χ), and
(ii) no CAS model ICAS = 〈I, χ〉 with name assignment ν exists s.t. I |= β for some

¬β ∈ S.

In the following sections, we concentrate on reasoning in exception safe DKBs under

UNA (on elements of K); we will discuss the possible extensions for more general DKBs.

5 Datalog translation for DL-LiteR DKB

We present a datalog translation for reasoning onDL-LiteR DKBs which refines the trans-

lation provided in Bozzato et al . (2018). The translation provides a reasoning method

for positive instance queries w.r.t. entailment on DKB models for exception safe DKBs.

An important aspect of this translation is that, due to the form of DL-LiteR axioms, no

inference on disjunctive negative information is needed for the reasoning on derivations of

clashing sets. Thus, reasoning by contradiction using “test environments” is not needed

and we can directly encode negative reasoning as rules on negative literals: with respect

to the discussion in Bozzato et al . (2018), we can say that DL-LiteR thus represents an

inherently “justification safe” fragment which then allows us to formulate such a direct

datalog encoding. With respect to the interpretation of right-hand side existential ax-

ioms, we follow the approach of Krötzsch (2010): for every axiom of the kind α = A � ∃R,

an auxiliary abstract individual auxα is added in the translation to represent the class

of all R-successors introduced by α.

We introduce a normal form for axioms of DL-LiteR (in Table 2) which allows us

to simplify the formulation of reasoning rules. We can provide rules to transform any

DL-LiteR DKB into normal form and show that the rewritten DKB is equivalent to the

original (see Lemma 4 and the discussion following in Appendix C.3.1). In the normal-

ization, we introduce new concept names A∃R to simplify the management of existential

formulas ∃R in rules for defeasible axioms: we assume that, for every role R, axioms

A∃R � ∃R, ∃R � A∃R are added to the DKB. Note that, with respect to the previous

formulation of normal form provided in Bozzato et al . (2018), we further simplified the

case for defeasible assertions and negative inclusions, as they can be represented using

(defeasible) class and role inclusions with auxiliary symbols.

Lemma 4

Every DKB K can be transformed in linear time into an equivalent DKB K′ which has

modulo auxiliary symbols the same DKB models, and such that n-de safety and n-chain

safety are preserved.
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Translation rules overview. We can now present the components of our datalog trans-

lation for DL-LiteR based DKBs. As in the original formulation in Bozzato et al . (2014),

Bozzato et al . (2018), which extended the encoding without defeasibility proposed in Boz-

zato and Serafini (2013) (inspired by the materialization calculus in Krötzsch (2010)),

the translation includes sets of input rules (which encode DL axioms and signature in

datalog), deduction rules (datalog rules providing instance level inference) and output

rules (that encode, in terms of a datalog fact, the ABox assertion to be proved). The

translation is composed by the following sets of rules:

DL-LiteR input and output rules: rules in Idlr encode as datalog facts the DL-LiteR ax-

ioms and signature of the input DKB. For example, in the case of existential axioms,13

these are translated by rule (idlr-supex) as A � ∃R �→ {supEx(A,R, auxα)}. Note that

this rule, in the spirit of Krötzsch (2010), introduces an auxiliary element auxα, which

intuitively represents the class of all new R-successors generated by the axiom α. Simi-

larly, output rules in O encode in datalog the ABox assertions to be proved. These rules

are provided in Table 3.

DL-LiteR deduction rules: rules in Pdlr (in Table 3) add deduction rules for ABox rea-

soning. In the case of existential axioms, the rule (pdlr-supex) introduces a new relation

to the auxiliary individual as follows:

tripled(x, r, x′)← supEx(y, r, x′), instd(x, y).

In this translation the reasoning on negative information is directly encoded by “contra-

positive” versions of the rules. For example, with respect to previous rule, we have the

negative rule (pdlr-nsupex):

¬instd(x, y)← supEx(y, r, w), const(x), all nrel(x, r),

where all nrel(x, r) verifies that ¬triple(x, r, y) holds for all const(y) by an iteration

over all constants.

Defeasible axioms input translations: the set of input rules ID (shown in Table 4) provides

the translation of defeasible axioms D(α) in the DKB: in other words, they are used to

specify that the axiom α needs to be considered as defeasible. For example, D(A � B) is

translated to def subclass(A,B). Note that, by the definition of the normal form, the

existential axioms are “compiled out” from defeasible axioms (i.e. defeasible existential

axioms can be expressed by using the newly added A∃R concepts).

Overriding rules: rules for defeasible axioms provide the different conditions for the cor-

rect interpretation of defeasibility: the overriding rules define conditions (corresponding

to clashing sets) for recognizing an exceptional instance. For example, for axioms of the

form D(A � B), the translation introduces the rule (ovr-subc):

ovr(subClass, x, y, z)← def subclass(y, z), instd(x, y),¬instd(x, z).

Note that in this version of the calculus, the reasoning on negative information (of the

clashing sets) is directly encoded in the deduction rules. Overriding rules in PD are shown

in Table 4.

Defeasible application rules: another set of rules in PD defines the defeasible application

of such axioms: intuitively, defeasible axioms are applied only to instances that have not

13 Note that, by the normal form above, this kind of axioms is in the form A∃R � ∃R.
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Table 3. DL-LiteR input, deduction and output rules

DL-LiteR input translation Idlr(S)

(idlr-nom) a ∈ NI �→ {nom(a)}
(idlr-cls) A ∈ NC �→ {cls(A)}
(idlr-rol) R ∈ NR �→ {rol(R)}
(idlr-inst) A(a) �→ {insta(a,A)}
(idlr-triple) R(a, b) �→ {triplea(a,R, b)}
(idlr-subc) A � B �→ {subClass(A,B)}

(idlr-subex) ∃R � B �→ {subEx(R,B)}
(idlr-supex) A � ∃R �→ {supEx(A,R, auxα)}
(idlr-subr) R � S �→ {subRole(R,S)}
(idlr-dis) Dis(R,S) �→ {dis(R,S)}
(idlr-inv) Inv(R,S) �→ {inv(R,S)}
(idlr-irr) Irr(R) �→ {irr(R)}

DL-LiteR deduction rules Pdlr

(pdlr-instd) instd(x, z) ← insta(x, z).
(pdlr-tripled) tripled(x, r, y) ← triplea(x, r, y).

(pdlr-subc) instd(x, z) ← subClass(y, z), instd(x, y).
(pdlr-supnot) ¬instd(x, z) ← supNot(y, z), instd(x, y).
(pdlr-subex) instd(x, z) ← subEx(v, z), tripled(x, v, x′).
(pdlr-supex) tripled(x, r, x′) ← supEx(y, r, x′), instd(x, y).
(pdlr-subr) tripled(x,w, x′) ← subRole(v, w), tripled(x, v, x′).
(pdlr-dis1) ¬tripled(x, u, y) ← dis(u, v), tripled(x, v, y).
(pdlr-dis2) ¬tripled(x, v, y) ← dis(u, v), tripled(x, u, y).
(pdlr-inv1) tripled(y, v, x) ← inv(u, v), tripled(x, u, y).
(pdlr-inv2) tripled(y, u, x) ← inv(u, v), tripled(x, v, y).
(pdlr-irr) ¬tripled(x, u, x) ← irr(u), const(x).

(pdlr-nsubc) ¬instd(x, y) ← subClass(y, z),¬instd(x, z).
(pdlr-nsupnot) instd(x, y) ← supNot(y, z),¬instd(x, z).
(pdlr-nsubex) ¬tripled(x, v, x′) ← subEx(v, z), const(x′),¬instd(x, z).
(pdlr-nsupex) ¬instd(x, y) ← supEx(y, r, w), const(x), all nrel(x, r).

(pdlr-nsubr) ¬tripled(x, v, x′) ← subRole(v, w),¬tripled(x,w, x′).
(pdlr-ninv1) ¬tripled(y, v, x) ← inv(u, v),¬tripled(x, u, y).
(pdlr-ninv2) ¬tripled(y, u, x) ← inv(u, v),¬tripled(x, v, y).
(pdlr-allnrel1) all nrel step(x, r, y) ← first(y),¬tripled(x, r, y).
(pdlr-allnrel2) all nrel step(x, r, y) ← all nrel step(x, r, y′), next(y′, y),¬tripled(x, r, y).
(pdlr-allnrel3) all nrel(x, r) ← last(y), all nrel step(x, r, y).

Output translation O(α)

(o-concept) A(a) �→ {A(a)}
(o-role) R(a, b) �→ {R(a, b)}

been recognized as exceptional. For example, the rule (app-subc) applies a defeasible

concept inclusion D(A � B):

instd(x, z)← def subclass(y, z), instd(x, y), not ovr(subClass, x, y, z).

Defeasible application rules are provided in Table 4.

Translation process. Given a DKB K in DL-LiteR normal form, a program PK(K)
that encodes query answering for K is obtained as:

PK(K) = Pdlr ∪ PD ∪ Idlr(K) ∪ ID(K).
Moreover, PK(K) is completed with a set of supporting facts about constants: for

every literal nom(c) or supEx(a, r, c) in PK(K), const(c) is added to PK(K). Then,

given an arbitrary enumeration c0, . . . , cn s.t. each const(ci) ∈ PK(K), the facts
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Table 4. Input and deduction rules for defeasible axioms

Input rules for defeasible axioms ID(S)

(id-subc) D(A � B) �→ { def subclass(A,B). }
(id-subr) D(R � S) �→ { def subr(R,S). }
(id-inv) D(Inv(R,S)) �→ { def inv(R,S). }
(id-irr) D(Irr(R)) �→ { def irr(R). }

Deduction rules for defeasible axioms PD: overriding rules

(ovr-subc) ovr(subClass, x, y, z)← def subclass(y, z), instd(x, y),¬instd(x, z).
(ovr-subr) ovr(subRole, x, y, r, s)← def subr(r, s), tripled(x, r, y),¬tripled(x, s, y).
(ovr-inv1) ovr(inv, x, y, r, s)← def inv(r, s), tripled(x, r, y),¬tripled(y, s, x).
(ovr-inv2) ovr(inv, x, y, r, s)← def inv(r, s), tripled(y, s, x),¬tripled(x, r, y).
(ovr-irr) ovr(irr, x, r)← def irr(r), tripled(x, r, x).

Deduction rules for defeasible axioms PD: application rules

(app-subc) instd(x, z) ← def subclass(y, z), instd(x, y), not ovr(subClass, x, y, z).
(app-subr) tripled(x,w, y) ← def subr(v, w), tripled(x, v, y), not ovr(subRole, x, y, v, w).
(app-inv1) tripled(y, v, x) ← def inv(u, v), tripled(x, u, y), not ovr(inv, x, y, u, v).
(app-inv2) tripled(x, u, y) ← def inv(u, v), tripled(y, v, x), not ovr(inv, x, y, u, v).
(app-irr) ¬tripled(x, u, x) ← def irr(u), const(x), not ovr(irr, x, u).

(app-nsubc) ¬instd(x, y) ← def subclass(y, z),¬instd(x, z), not ovr(subClass, x, y, z).
(app-nsubr) ¬tripled(x, v, y) ← def subr(v, w),¬tripled(x,w, y), not ovr(subRole, x, y, v, w).
(app-ninv1) ¬tripled(y, v, x) ← def inv(u, v),¬tripled(x, u, y), not ovr(inv, x, y, u, v).
(app-ninv2) ¬tripled(x, u, y) ← def inv(u, v),¬tripled(y, v, x), not ovr(inv, x, y, u, v).

first(c0), last(cn) and next(ci, ci+1) with 0 ≤ i < n are added to PK(K). Query

answering K |= α is then obtained by testing whether the (instance) query, translated to

datalog by O(α), is a consequence of PK(K), that is, whether PK(K) |= O(α) holds.

Note that we use a linear ordering of constants in an encoding by means of the pred-

icates first, last and next, which allows us to verify universal sentences over all con-

stants (in our case, negation on roles), by walking through them starting at the first

constant over the next one until the last constant is reached. We note that verifying

universal sentences can also accomplished by means of aggregates in ASP Alviano and

Faber (2018): however, we chose to use this simpler method in order to keep the standard

interpretation of ASP programs.

Correctness. The presented translation procedure provides a sound and complete ma-

terialization calculus for instance checking on DL-LiteR DKBs in normal form.

As in Bozzato et al . (2018), the proof for this result can be verified by establishing

a correspondence between minimal justified models of K and answer sets of PK(K).
Besides the simpler structure of the final program, the proof is simplified by the direct

formulation of rules for negative reasoning. Another new aspect of the proof in the case

of DL-LiteR resides in the management of existential axioms, since there is the need

to define a correspondence between the auxiliary individuals in the translation and the

interpretation of existential axioms in the semantics: we follow the approach of Krötzsch

(2010), where in building the correspondence with justified models, auxiliary constants

auxα are mapped to the class of Skolem individuals for existential axioms α. We remark
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that this collective encoding of unnamed individuals is possible since, in the case of

exception safe DKBs, no exceptions can appear on such individuals: thus, differently

from named individuals (which need to single out exceptional elements of the domain),

there is no need to identify single unnamed elements of the domain.

As in Bozzato et al . (2018), in our translation we consider UNA on elements of K
and named models, that is, interpretations restricted to sk(NK). Thus, we can show the

correctness result on the least model for K with respect to a set of clashing assumptions

χ, that will be denoted by Î(χ).
Let ICAS = 〈I, χ〉 be a justified named CAS model. We define the set of overriding

assumptions OVR(ICAS ) = { ovr(p(e)) | 〈α, e〉 ∈ χ, Idlr(α) = p }. Given a CAS interpre-

tation ICAS , we define a corresponding interpretation I(ICAS ) for PK(K) by including

the following atoms in it:

(1) all facts of PK(K);
(2) instd(a,A), if I |= A(a) and ¬instd(a,A), if I |= ¬A(a);
(3) tripled(a,R, b), if I |= R(a, b) and ¬tripled(a,R, b), if I |= ¬R(a, b);

(4) tripled(a,R, auxα), if I |= ∃R(a) for α = A � ∃R;

(5) all nrel(a,R) if I |= ¬∃R(a);

(6) each ovr-literal from OVR(ICAS );

The next proposition shows that the least models of K can be represented by the answer

sets of the program PK(K).

Proposition 7

Let K be an exception safe DKB in DL-LiteR normal form. Then:

(i) for every (named) justified clashing assumption χ, the interpretation S = I(Î(χ))
is an answer set of PK(K);

(ii) every answer set S of PK(K) is of the form S = I(Î(χ)) where χ is a (named)

justified clashing assumption for K.

The correctness of the translation with respect to instance checking is obtained as a

direct consequence of Proposition 7.

Theorem 3

Let K be an exception safe DKB in DL-LiteR normal form, and let α ∈ LΣ such that

the output translation O(α) is defined. Then, K |= α iff PK(K) |= O(α).

Prototype implementation. A proof-of-concept implementation of the presented dat-

alog translation for DL-LiteR DKBs has been included in the latest version of the CKRew

(CKR datalog rewriter) prototype Bozzato et al . (2018). CKRew is a Java-based com-

mand line application that accepts as input RDF files representing (contextualized)

knowledge bases with defeasible axioms and produces as output a single .dlv text file

with the datalog rewriting for the input KB. The current version of the prototype includes

an option to accept as input a single RDF file containing a DL-LiteR DKB (represented as

OWL axioms in the normal form of Table 2) and apply the datalog translation presented

above.

The latest version of CKRew , together with sample RDF files implementing the knowl-

edge base of Example 3, is available on-line at: http://ckrew.fbk.eu/.
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6 Complexity of reasoning problems

In this section, we turn to the computational complexity of reasoning from a DKB. As in

the previous section, we shall pay special attention to adopting the UNA on knowledge

bases, in particular when we consider lower complexity bounds. As UNA on DKBs is

easy to express in DL-LiteR, the results will carry over to the case without assumptions.

6.1 Satisfiability

We first consider the satisfiability problem, that is, deciding whether a given DL-LiteR
DKB has some DKB model. As it turns out, defeasible axioms do not increase the

complexity with respect to satisfiability of DL-LiteR, due to the following property.

Proposition 8

Let K be a normalized DL-LiteR DKB, and let χ′ = {〈α, e〉 | D(α) ∈ K, e is over

standard names } be the clashing assumption with all exceptions possible. Then, K has

some justified CAS model ICAS = 〈I, χ〉 such that χ ⊆ χ′ iff K has some CAS model

ICAS = 〈I, χ′〉.

That is, a DKB K has a DKB model iff the DL-LiteR KB consisting of the non-defeasible

axioms in K has a model. We note that in the argument for this proposition, no particular

NI-congruence is considered. Conditions such as UNA or other equivalence relations over

the individuals in K can be accommodated (using Horn axioms).

Thus, DKB satisfiability testing with arbitrary exceptions boils down to testing

whether K is satisfiable if all defeasible axioms are dropped, which is tractable.

Theorem 4

Deciding whether a given arbitrary DL-LiteR DKB K has some DKB model is

NLogSpace-complete in combined complexity and FO rewritable in data complexity.

Proof

We can normalize K efficiently in linear time (and in fact logspace) while preserving

exception safety, so we may assume K is of this form. We then can test whether K
with defeasible axioms dropped, which is an ordinary DL-LiteR KB, is satisfiable; it is

well-known that this is feasible in NLogSpace Calvanese et al . (2007). The NLogSpace-

hardness is inherited from the combined complexity of KB satisfiability in DL-LiteR,

which is NLogSpace-complete.

As regards data complexity, it is well-known that instance checking and satisfiability

testing for DL-LiteR are FO rewritable Calvanese et al . (2007); this has been shown

by a reformulation algorithm, which informally unfolds the axioms α(�x) (i.e. performs

resolution viewing axioms as clauses), such that deriving an instance A(a) reduces to

presence of certain assertions in the ABox. We can use the same rewriting and apply it

to K with all defeasible axioms dropped. �

We note that while satisfiability is tractable for arbitrary DKB models in general, this

does not necessarily hold under restrictions on exceptions, as the construction in the proof

of Proposition 8 depends on the enumeration; in particular, deciding the existence of

some DKB model with no exceptions involving unnamed individuals (i.e. of a 0-bounded

justified DKB model) is intractable; this can be shown, for example, by an adaption of
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an NP-hardness proof for 0-bounded justified model existence for defeasible EL⊥ context

knowledge repositories in Bozzato et al . (2019b). On the other hand, under a condition

that ensures that some DKB model is 0-bounded if any DKB model exists, we retain

tractability. In particular:

Corollary 2

Deciding whether a given exception-safe DKB K has some DKB model is NLogSpace-

complete in combined complexity and FO rewritable in data complexity.

In passing, we remark that for exception safe DKBs K, checking whether an interpretation

I is a DKB model of K is tractable (as follows from the ASP encoding), as is constructing

some arbitrary DKB model; however, we focus in the sequel here on inference.

6.2 Entailment checking

As regards inference, entailment checking of axioms from the DKB models of an exception

safe DKB is intractable: there can be exponentially many justified clashing assumptions

for such models, even under UNA; finding a DKB model that violates an axiom turns

out to be difficult.

Theorem 5

Given an exception safe DKB K and an axiom α, deciding whether K |= α is co-NP-

complete; this holds also for data complexity and instance checking, that is, α is an

assertion of the form A(a).

Proof (Sketch)

To refute K |= α, we need to show that some justified CAS model ICAS = 〈I, χ〉 of K
exists such that I 
|= α. Without loss of generality, we assume that α is normalized.

Given χ and a name assignment ν, we can prove the refutation depending on the

type of α. For example, if α is an inclusion axiom A � B, then we need to show that

for some element e it holds that I |= A(e) and I |= ¬B(e). To deal with this, we

first incorporate ν into K, by pushing (in)equalities w.r.t. ν (replace all equal constants

by one representative, add axioms that enforce inequalities a 
= b, for example, stating

Aa(a), ¬Ab(b) where Aa and Ab are fresh concept names). We then add to K the axioms

Aux � A, Aux � ¬B. We may then assume without loss of generality that I |= Aux(e),

that is, I 
|= ¬Aux(e). We next add to K an assertion Ae(ae), where Ae and ae are a fresh

concept and individual name, respectively; this serves to give e a name if it is outside the

elements named in I by Skolem terms. We then check whether ¬Aux(ae) is not derivable

from the resulting DKB K′ under χ; this holds iff some I with e not named by some

Skolem term of K exists. Otherwise, e must be named by some Skolem term t of K. We

thus check that for none such t, ¬Aux(t) is derivable from K′ under χ; the depth of t can

be polynomially bounded. The checks can be done in non-deterministic logspace, and

thus deciding K 
|= α under χ is feasible in polynomial time. The cases for other forms

of α can be shown similarly and are described in the full proof in Appendix C.4.

Thus, to decide K 
|= α, we can guess a justified clashing assumption χ overNK together

with a clashing set S〈α,e〉 for each 〈α, e〉 ∈ χ for a name assignment ν. We then check

relative to ν (i) that χ is satisfiable, (ii) that all S〈α,e〉 are derivable from K under χ
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and ν, and (iii) that K 
|= α. Each of the steps (i)–(iii) is feasible in polynomial time.

Consequently, the entailment problem K |= α is in co-NP.

The co-NP-hardness can be shown by a reduction from inconsistency-tolerant reasoning

from DL-LiteR KBs under AR-semantics Lembo et al . (2010). The result for DL-LiteR
KBs can be easily extended to exception safe DKBs and to data complexity (further

details are provided in the full proof in Appendix C.4). �

We observe that the co-NP-hardness proof in Lembo et al . (2010) used many role restric-

tions and inverse roles; for combined complexity, co-NP-hardness of entailment in absence

of any role names can be derived from results about propositional circumscription.

Proposition 9

Given a DKB K, deciding whether K |= α is co-NP-hard even if no roles occur in K and

α is an assertion A(a).

While the proof of Proposition 9 establishes co-NP-hardness of entailment for combined

complexity under UNA when roles are absent (and for the case without UNA as well),

this setting has tractable data complexity: we can consider the axioms for individuals a

separately, and if the GCI axioms are fixed only few axioms per individual exist. This also

holds if role axioms but no existential restrictions are permitted, as we can concentrate

on the pairs a, b and b, a of individuals. The question remains how much of the latter is

possible while staying tractable.

6.3 Conjunctive query answering

A conjunctive query (CQ) is a formula Q(�x) = ∃�y.γ(�x, �y) where �x, �y are disjoint lists

of different variables and γ(�x, �y) = γ1 ∧ · · · ∧ γm is a conjunction of atoms γi = αi(�ti),

1 ≤ i ≤ m where αi is either a concept name or a role name and �ti is a tuple of variables

from �x ∪ �y and individual constants that matches the arity of αi. The CQ is Boolean (a

BCQ), if �x is empty.

A CAS interpretation ICAS = 〈I, χ〉 satisfies a BCQ Q, denoted ICAS |= Q, if a query

matches, that is, some substitution ϑ : �y → NIs exists such that I |= αi(�tiϑ) for all

i = 1, . . . ,m. A DKB K entails Q, denoted K |= Q, if every DKB model of K entails Q.

The (certain) answers for a general CQ Q(�x) are then as usual the tuples �c of individual

names such that K |= Q(�c).

Example 8 (Example 4 cont’d)

Consider the CQ Q(x) = ∃y.DeptMember(x) ∧ hasCourse(x, y) on the DKB Kdept in

Example 3. In Example 4, we discussed that Kdept has a justified CAS model ICAS =

〈I, χ〉 with an exception for bob on the axiom α = DeptMember � ∃hasCourse, while
alice has no exception. Thus, the query Q has a match in ICAS by ϑ = {x �→ aliceI , y �→
fI
hasCourse(x)}, where fI

hasCourse is the Skolem function in I; in fact, in every such justified

CAS model ICAS the query has this match. If alice and bob are regarded different, that

is, under the unique name assumption, no other justified CAS model exists; thus alice is

the (only) certain answer of the query. �

Deciding whether a BCQ Q has a query match in a DL-LiteR KB is known to be NP-

complete, cf. Calvanese et al . (2007). As multiple (even exponentially many) clashing

assumptions may lead to different DKB models, and as for each such assumption the
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query must have a match, BCQ answering from exception safe DKBs is at the second

level of the polynomial hierarchy.

Theorem 6

Given an exception safe DKB K and a Boolean CQ Q, deciding whether K |= Q is (i)

Πp
2-complete in combined complexity and (ii) co-NP-complete in data complexity.

Proof (Sketch)

To start with (i), as for membership in Πp
2, to refute Q we can guess for a justified CAS

model ICAS = 〈I, χ〉 such that ICAS 
|= Q the clashing assumption χ on NK and a

name assignment ν. Since K is exception safe, we can decide in NLogSpace whether χ is

satisfiable relative to ν using the entailment method for positive and negative assertions

in the proof of Theorem 5; note that ν can be pushed to K and indeed can give rise to a

desired justified CAS model ICAS of K. We then can use an NP oracle to check whether

for some polynomial number of Skolem terms ST , where the number depends on Q and

K, the query has a match on NK ∪ ST in a least CAS model ICAS = 〈I, χ〉 of K; to this

end, each atom A(t) resp. R(t, t′) in the match must be derived by applying the axioms

(that is, by unraveling INK
CAS ); this will ensure that a match exists in each CAS model

ICAS = 〈I, χ〉 of K. If the oracle answer is no, then some ICAS such that ICAS 
|= Q

exists. Consequently, refuting K |= Q is in Σp
2, which proves the membership part.

The Πp
2-hardness of (i) is shown by a reduction from a generalization of deciding

whether a graph is 3-colorable: given an (undirected) graph G = (V,E), can every color

assignment to the nodes of degree 1 in G (i.e. source nodes) be extended to a 3-coloring

of G? This problem is Πp
2-complete (see Lemma 5 in Appendix C.4). The construction

for such reduction is provided in the full proof in Appendix C.4.

(ii) As for data complexity, we note that the check where Q has no match in any

I ′′CAS is feasible in polynomial time, as the number of variables in the query is fixed

and thus only constantly many Skolem terms ST have to be added to NK for a query

match in a least CAS model ICAS = 〈I, χ〉 of K, for which only polynomially many

possibilities exist; furthermore, the inference of atoms A(t) resp. R(t, t′) is feasible in

polynomial time. Hence, the problem is in co-NP. The co-NP-hardness follows from

Theorem 5. �

7 Reasoning on unnamed individuals

In the sections above, we have concentrated on exception safe DKBs, where no exceptions

on unnamed individuals are possible. However, this is not a real limitation in principle,

as unnamed individuals may be named. Specifically, we note the following property of n-

bounded CAS models (recall from Definition 7 that uniK(ICAS ) are the domain elements

in clashing assumptions not named by individuals in K):

Proposition 10

Let ICAS = 〈I, χ〉 be a CAS model of a DKB K such that uniK(ICAS ) = {e1, . . . , em}.
Let c1, . . . , cm be fresh individual names, and A be a fresh concept. Then, I ′CAS = 〈I ′, χ〉
where cI

′
i = ei, i = 1, . . . ,m and AI′

= {e1, . . . , em} is a CAS model of K′ = K ∪
{A(c1), . . . , A(cm)}.
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That is, we can name unnamed individuals in clashing assumptions, and in this way turn

an n-bounded CAS model into a 0-bounded CAS model. In particular, if n is polynomial

in the size of K we can do this with polynomial overhead.

However, when we reason from a DKB K under a (named) clashing assumption χ,

the issue rises whether for a Skolem term f(t) and a clashing assumption 〈α, e〉, where
e is named by an individual a, say, the exception is applicable (if f(t) = a) or not (if

f(t) 
= a) in a model. This in fact complicates reasoning, and to decide whether a given

partial CAS interpretation ICAS = 〈I, χ〉 where all exceptions are individuals in K can

be extended to some justified CAS model of K is no longer easy to accomplish. If K is

n-de safe, we have to consider such terms f1(t1), . . . , fm(tm) for m ≤ n and possibly

collapse them with some individuals in K. This leads to an exponential explosion, even

if n = O(|K|k) is polynomial in the size of K. As it turns out, already deciding whether

K has for χ some CAS model is intractable in this setting, which can be decided by a

proper guess of the (in)equality for all fi(ti). More precisely, the following property can

be shown.

Proposition 11

Given an n-de safe DKB K, where n is polynomial in the size of K, and a clashing

assumption χ defined on NK, deciding whether K has (i) some arbitrary CAS model

resp. (ii) some justified CAS model of form ICAS = 〈I, χ〉 is NP-complete resp. Dp-

complete14 in general but feasible in polynomial time if n is bounded by a constant.

As regards properties of justified CAS models, Proposition 6 readily generalizes from

exception safe to n-de safe DKBs if the (in)equalities of the Skolem terms t1, . . . , tm
with individuals are fixed; hence, a least justified CAS model exists relative to such fixed

(in)equalities and a name assignment ν.

The intractability in Proposition 11 holds even under data complexity and when K is

k-chain bounded for a small constant k. Furthermore, we obtain as a side result from the

proof that DKB model checking, that is, deciding whether an interpretation I is a DKB

model of a given K, is co-NP-hard and for such DKBs co-NP-complete.

As a consequence of the previous result, reasoning when a few (constantly many chains)

to exceptions exist is not more expensive than if no such chains exist; for polynomially

many chains, axiom inference gets more expensive.

Theorem 7

Given an n-de safe DKB K, where n is bounded by a polynomial in |K|, (i) deciding

K |= α for an axiom α and (ii) BCQ answering K |= Q are both Πp
2-complete. In case n

is bounded by a constant, (i) is co-NP-complete while (ii) remains Πp
2-hard.

The results in the theorem hold in fact under data complexity. Intuitively, the complexity

of BCQ-Answering does not increase in the n-de bounded case, as checking whether a

guess for a clashing assumption χ that allows to refute the query Q does not add further

complexity in general, since checking whether a query Q has no match in an ABox is

already co-NP-hard. It does so, however, if the query Q is just an assertion A(a).

Towards an ASP encoding. A possible approach for extending the ASP encoding in

Section 5 in this regard, then, would be as follows. We may consider the different “equality

14 Dp consists loosely speaking of the “conjunction” of independent instances I1 and I2 of two problems
in NP and co-NP, respectively (e.g. SAT-UNSAT).
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environments”, where each environment e is given by the condition fi(ti) = aij for some

individual aij , using test environments similar as in Bozzato et al . (2018): for each fi(ti),

we introduce a predicate ski and an argument xi in the predicates for the derivation,

where ski and xi can take any individual name ai or fi(ti); we add propagation rules

that push equalities, of form

instd(xi, z, x1, . . . , xm)← instd(x, z, x1, . . . , xm), ski(x). (2)

¬instd(xi, z, x1, . . . , xm)← ¬instd(x, z, x1, . . . , xm), ski(x). (3)

and similar for tripled; furthermore, with a technique similar as in the rules (pdlr-

allnrel1) – (pdlr-allnrel3) for all nrel we can check whether a derivation succeeds for

all environments. As an alternative, we may consider using (recursive) aggregates to

perform this check. Furthermore, the set of auxiliary constants is extended with further

constants that allow to build the Skolem paths f1(t1), . . . , fm(tm). For m bounded by

a constant, this would lead to a fixed program, where the Skolem chains are provided as

data; the latter might be determined inside an ASP encoding as well, which however is

more involving.

8 Related work

The relation of the justified exception approach to nonmonotonic description logics was

discussed in Bozzato et al . (2018), where in particular an in-depth comparison w.r.t.

typicality in DLs Giordano et al . (2013), normality Bonatti et al . (2011) and overriding

Bonatti et al . (2015) was given. A distinctive feature of our approach, linked to the

interpretation of exception candidates as different clashing assumptions, is the possibility

to “reason by cases” inside the alternative justified models (as we have demonstrated over

the Nixon Diamond problem in Example 5). Note that we do not consider a preference

ordering across defeasible axioms, but all alternative interpretations that justify their

clashing assumptions (cf. also (Bozzato et al. 2018) where a preference is defined by the

KB contextual structure).

In particular, compared to Bozzato et al . (2018), in this paper we work on a different

language: particularly, DL-LiteR allows for reasoning with unnamed individuals and their

use in inverse roles, as detailed in the sections above. Moreover, we are not considering

contextual aspects of the previous works, for example, knowledge propagation by eval

operator and local interpretation of knowledge. Note that, with respect to the notion

of defeasibility expressed on the CKR contexts structure, we have a slightly different

interpretation for DKBs: while in CKR we defined defeasibility over the inheritance from

more general to more specific contexts, in DKBs we consider exceptions on the “local”

application of defeasible axioms to the elements of the knowledge base. We remark that

the results shown for DKBs could be then extended to CKRs in order to study the

interaction of DL-LiteR features with contextual structures and overriding preferences.

The introduction of non-monotonic features in the DL-Lite family and, more in gen-

eral, to low complexity DLs has been the subject of many works, mostly with the goal

of preserving the low complexity properties of the base logic in the extension. For ex-

ample, in Bonatti et al . (2011) an in-depth study of the complexity of reasoning with

circumscription in DL-LiteR and EL was presented: the idea is to verify whether syntactic

restrictions of these languages can be useful to limit the complexity of the non-monotonic
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version of these languages. The work considers defeasibility on inclusion axioms of the

kind C �n D, which intuitively can be read as “an instance of C is normally an instance

of D”. Conflicts across defeasible inclusions are solved by providing a priority on such

axioms: an option to define priority is to use the specificity of defeasible inclusions, that

is C1 �n D1 is preferred to C2 �n D2 if C1 is subsumed by C2. Different fragments of

DL-LiteR and EL are considered to limit the complexity of the reasoning problems. In the

case of DL-LiteR, it is shown that such syntactic restrictions allow to limit the complexity

of instance checking to Πp
2. For EL, its extension to circumscription is ExpTime-hard and

more restrictions are needed to limit its complexity to the second level of the polynomial

hierarchy.

Similarly, in Giordano et al . (2011) the authors studied the complexity of the appli-

cation of their typicality approach to low complexity description logics. They note that

the introduction of the typicality operator to ALC leads to an increase in complexity of

reasoning (query entailment becomes Co-Nexp
NP ): thus, their goal is to find (fragments

of) low level description logics where the extension to typicality has a limited impact on

the complexity of entailment. In Giordano et al . (2011), an extension to typicality of

the DLs DL-Litec and EL⊥ is proposed and their complexity properties are studied. It

is shown that, in the case of EL⊥, the extension with typical concept inclusions (called

EL⊥Tmin) is ExpTime-hard. However, by limiting to left local KBs in EL⊥ (i.e. using a

fragment of EL⊥ that restricts the form of left side concepts in concept inclusions), one

can show that complexity can be limited to Πp
2. Similarly, the extension of DL-Litec can

be shown to have the same Πp
2 complexity upper bound. Notably, the complexity bounds

for EL⊥ and DL-Litec match the ones proved in Bonatti et al . (2011).

A recent work in this direction is Pensel and Turhan (2017), Pensel and Turhan (2018),

where a defeasible version of EL⊥ was obtained: as an interesting parallel with the work

presented in our paper, the goal of such work is to overcome issues with the approach

by Casini and Straccia (2010) on the interpretation of defeasible properties on quantified

concepts, especially in nested expressions. This approach is based on an extension of

classical canonical models of EL⊥, called typicality models, where multiple representa-

tives for each concept are used to identify different versions of the same concept under

different levels of typicality. Using typicality models the authors show that they can ob-

tain stronger versions of rational and relevant entailment that do not neglect defeasible

information in nested quantifications. The authors also present a reasoning algorithm for

instance checking under the proposed semantics by a variant of the materialization-based

approach that only uses the expressivity of EL⊥. Finally, the computational complex-

ity of the defeasible subsumption and instance checking under the different semantics

is investigated: in particular, the definition of the materialization method extending the

reasoning to defeasibility while keeping the expressivity of the base logic EL⊥ provides

the evidence that complexity of reasoning need not to increase in this logic. This ap-

proach is different from ours, which works on all models and uses factual justifications

that need to be derived: on the other hand, canonical models are useful for characteriza-

tion and implementation, thus we could investigate some of the results in these papers

in the extension of our work.

Example 9 (Inheritance blocking)

In studying the properties of rational and minimal relevant closure, Pensel and Turhan

(2018) highlight that rational closure suffers from the problem of inheritance blocking,
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intuitively the effect where all properties of superclasses of an exceptional class C are

not inherited, even if they are not related to the “exceptionality” of C. In the case of

our semantics, we have shown in Bozzato et al . (2018) by means of the Situs inversus

example from Bonatti et al . (2015) that we can deal with property inheritance at the

instance level.

We show that inheritance can be also preserved when reasoning involves unnamed

individuals, by rephrasing Example 3.2 from Pensel and Turhan (2018). Consider the

DKB Korg defined as:

Korg :

⎧⎪⎨⎪⎩
Boss �Worker , Boss � ¬∃hasSuperior , ∃hasSuperior− � Boss

D(Worker � ∃hasSuperior), D(Worker � Productive),

D(Boss � Responsible), Worker(bob), ¬Boss(bob)

⎫⎪⎬⎪⎭ .

Similarly to Example 7, this DKB admits a model ICAS where we have an exception on

α = Worker � ∃hasSuperior for the (unnamed) boss f(bob) of bob, with f(bob) 
= bob.

However, we have no reason to override the other properties of Boss on f(bob), thus

we have ICAS |= Responsible(f(bob)) and ICAS |= Productive(f(bob)). Also, if we add

¬Productive(bob) to Korg, the overriding of the respective axiom does not influence the

applicability of α to bob.

As shown by Pensel and Turhan (2018), rational closure by the materialization-based

approach of Casini and Straccia (2010) fails to derive information on such existential

individuals; thus, for example, it can not derive Productive(f(bob)). Similar considera-

tions on inheritance blocking can be drawn for DLs with typicality as those presented

in Giordano et al . (2011). �

Another recent work about reasoning on non-monotonic versions of the EL family

is Casini et al . (2019). The paper considered the logic ELO⊥ (i.e. the extension of EL⊥
with nominals) and studies the problem of (non-monotonic) concept subsumption, where

the non-monotonic aspects are represented via rational closure. The authors provided a

polynomial time subsumption algorithm for ELO⊥ under rational closure that, notably,

reduces the problem to a series of classical monotonic subsumption tests in the same

language. This allows to use the customary (monotonic) EL based reasoners to implement

the reasoning method.

A recent approach related to our work is Eiter et al . (2016), in which inconsistency-

tolerant query answering over a set of existential rules was studied. The authors con-

sidered removing errors from ontological axioms that lead to inconsistency, with the

possibility to specify a set of axioms that should not be touched. They introduced two

semantics for BCQ Answering on existential rules, in which a maximal set of designated

rules (GR semantics) or rule instances (LGR semantics) is kept while maintaining con-

sistency. This dually corresponds to the inherent minimality of clashing assumptions in

justified DKB models, with the difference that in Eiter et al . (2016) no proof of a clashing

set or a similar certificate is required for removing a rule instance. Exceptions may be

harder to obtain under LGR semantics; for example, in Example 7, no exception for alice

to the defeasible axiom is possible, and thus only models with an unnamed supervisor

for alice exist. Notably, for LGR semantics minimal removal checking is polynomial for

such rule sets, while testing whether a corresponding clashing assumption is justified is

intractable (cf. Proposition 11). Closer relationship with LGR semantics remains to be

clarified in future work.
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9 Conclusion

In this paper, we considered the justified exception approach in Bozzato et al . (2018) for

reasoning on DL-LiteR KBs with defeasible axioms. With respect to our previous works,

we had to consider the problem of reasoning with unnamed individuals introduced by

existential axioms, especially when they are involved in the reasoning over exceptions: we

provided different characterizations of DKB models with respect to the use of unnamed

individuals and their presence in exceptions. Considering DKBs where exceptions can

appear only on named individuals, we studied the semantic properties of DKB models

and we analyzed the complexity of the main reasoning problems. We have shown that

the limited language of DL-LiteR allows us to formulate a direct datalog translation to

reason on derivations for negative information in instance checking. Finally, we provided

some insights in the case of reasoning with exceptions on existential individuals and a

direction for extending the datalog translation in this regard.

While the focus of this work lies mostly in the area of Description Logics, where we ex-

tend current languages to deal with non-monotonicity, we note that this work also shows

the strength of LP and ASP technologies: in particular, we have that ASP provides a

practical way to encode and solve tasks such as conjunctive query answering in other

logical systems. Moreover, by comparing our previously defined ASP encodings, we note

that by the declarative nature of ASP, the management of the new aspects of DL-LiteR
can be encoded by an adaptation of the program rules. This shows some flexibility of

the rule-based approach, which is in particular valuable for developing prototypical im-

plementations.

As discussed in the previous sections, reasoning with unnamed individuals in excep-

tions can be further studied to obtain more insights, possibly with a refinement or further

elaboration of the ASP encoding sketched in Section 7. In particular, it would be interest-

ing to explore possible variants of the exception semantics that we considered here, from

comparison with and inspired by related work such as the one discussed in Section 8.

Using Skolem terms in exceptions, which underlies the approach in Eiter et al . (2016),

may be an option, but the consequences will have to be carefully considered, as issues

with Skolemization in non-monotonic reasoning are folklore.

The complexity results obtained for n-de safe DKBs imply that some encoding in

ASP is possible that uses predicates of arity bounded by a constant, in contrast to the

rules (2)–(3) sketched in Section 7, with rule bodies that have a variable (possible large)

number of literals. In other contexts, such bounded-arity encodings proved to be useful

using solvers based on decomposition techniques Bichler et al . (2016). It thus would

be interesting to see whether this approach could be fruitfully used for encoding DKB

reasoning with unnamed individuals as well.

Finally, we plan to apply the current results on DL-LiteR in the framework of CKR

with hierarchies as in Bozzato et al. (2018), for which the current results have to be

extended to the respective setting. Imposing preference on exceptions in the hierarchy

may however increase the complexity and thus require language constructs that offer

increased expressivity, such as optimization (e.g. by weak constraints) or disjunction in

rules heads.
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Y. Kazakov, and M. Krötzsch, Eds. CEUR Workshop Proceedings, vol. 1014. CEUR-WS.org,
552–572.

Bozzato, L., Serafini, L. and Eiter, T. 2018. Reasoning with justifiable exceptions in contex-
tual hierarchies. In 16th International Conference on Principles of Knowledge Representation
and Reasoning (KR 2018), M. Thielscher, F. Toni, and F. Wolter, Eds. AAAI Press, 329–338.

Britz, K. and Varzinczak, I. J. 2016. Introducing role defeasibility in description logics. In
15th European Conference on Logics in Artificial Intelligence (JELIA 2016), L. Michael and
A. C. Kakas, Eds. LNCS, vol. 10021. 174–189.

Buccafurri, F., Faber, W. and Leone, N. 1999. Disjunctive logic programs with inheritance.
In 16th International Conference on Logic Programming (ICLP 1999), D. D. Schreye, Ed. MIT
Press, 79–93.

Cadoli, M. and Lenzerini, M. 1994. The complexity of propositional closed world reasoning
and circumscription. Journal of Computer and System Sciences 48, 2, 255–310.

Cal̀ı, A., Gottlob, G. and Lukasiewicz, T. 2012. A general datalog-based framework for
tractable query answering over ontologies. J. Web Semant. 14, 57–83.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M. and Rosati, R. 2007. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family. J. Automated
Reasoning 39, 3, 385–429.

https://doi.org/10.1017/S1471068421000132 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068421000132


284 L. Bozzato et al.

Casini, G. and Straccia, U. 2010. Rational closure for defeasible description logics. See Jan-
hunen and Niemelä (2010), 77–90.
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Appendix A Description logic DL-LiteR

In Table A1 we present the syntax and semantics of operators included in the description

logic DL-LiteR. Further rules for the composition of axioms in DL-LiteR are specified in

Section 2.

Appendix B FO translation for DL-LiteR

In Table B1 we provide a FO translation for axioms in DL-LiteR. Given a DL-LiteR axiom

α in LΣ, the formula ∀�x.φα(�x), where �x = x1, x2, . . . , xn is a list of variables, expresses α

as a first-order formula. The translation rules for φα(�x) are recursively defined by set of

rules βE(�x, xc) for left side and γE(�x, xc) for right side expressions, shown at the bottom

of Table B1.

By the definition of this translation, Lemma 1 can then be proved analogously to

the case of the FO translation for SROIQ-RL provided in (Bozzato et al . 2018, Ap-

pendix A.2). Intuitively, it is possible to show that, using the provided translation, ev-

ery DL-LiteR axiom can be expressed as a universal Horn sentence ∀�x.φα(�x), where

�x = x1, . . . , xn is a list of free variables. Hence, φα(�x) can be written as φα(�x) =∧�
i=1 ∀�xi.γi(�x, �xi), where each γi is a Horn clause of the form

γi(�x, �xi) = p1(�x, �xi,1) ∧ · · · ∧ pk(�x, �xi,k)→ p0(�x, �xi,0), (B1)

where (i) each pi is a concept name or a role name with possibly p0 = ⊥ (falsum); and

(ii) each variable in �x, �xi,j occurs in the antecedent (safety), and �xi = �xi,0, . . . , �xi,k.

Appendix C Proofs of Main Results

C.1 DL knowledge base with justifiable exceptions

Proposition 1

Let ICAS = 〈I, χ〉 be a CAS model of DKB K and let K′ result from K by pushing

equality w.r.t. I, that is, replace all a, b∈NK s.t. aI = bI by one representative. If K′ is
exception safe, then ICAS can be justified only if every 〈α, e〉 ∈χ is over NK.

Proof

Suppose ICAS is justified and some 〈α, e〉 ∈ χ is not over NK, that is, for some e in

e we have e /∈ NI
K. Then, by definition of justification, some clashing set S for 〈α, e〉
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Table A.1. Syntax and Semantics of DL-LiteR operators, where A is any atomic concept,

C and D are any concepts, P and R are any atomic roles, S and Q are any (possibly

complex) roles, a and b are any individual constants.

Concept constructors Syntax Semantics

Atomic concept A AI

Complement ¬C ΔI \ CI

Existential restriction ∃R {x ∈ ΔI | ∃y. 〈x, y〉 ∈ RI}

Role constructors Syntax Semantics

Atomic role R RI

Role complement ¬S ΔI ×ΔI \ SI

Inverse role R− {〈y, x〉 ∣∣ 〈x, y〉 ∈ RI}

Axioms Syntax Semantics

Concept inclusion C � D CI ⊆ DI

Role inclusion S � Q SI ⊆ QI

Role disjointness Dis(P,R) P I ∩RI = ∅
Role inverse Inv(P,R) P I =

{〈y, x〉 ∣∣ 〈x, y〉 ∈ RI}

Reflexivity assertion Ref(R) {〈x, x〉 |x ∈ ΔI} ⊆ RI

Irreflexivity assertion Irr(R) RI ∩ {〈x, x〉 |x ∈ ΔI} = ∅
Concept assertion C(a) aI ∈ CI

Role assertion S(a, b)
〈
aI , bI

〉 ∈ SI

with e not over NK is satisfied in all CAS models I ′CAS of K that are NI-congruent with

ICAS . This means that S can be derived with axiom unfolding restricted by the clashing

assumptions in χ. But then S can also be derived without restrictions, and thus from

the knowledge base K′
s. However, this means that K′ is not exception safe, which is a

contradiction. �

Proposition 2

Deciding whether a given DKB K is exception safe is feasible in NLogSpace, and whether

it is n-de safe in PTime, if n is bounded by a polynomial in the size of K.

Proof

Apparently, K is not exception safe, if some Skolem term t1 resp. Skolem terms t1, t2 exists

such that an atom D(t1) resp. R(t1, t2) can be derived from the first-order rewriting φKs

of Ks such that an assertion D(e1) resp. R(e1, e2) occurs in a clashing set for some

possible exception 〈α,�e〉 to a defeasible axiom D(α) in K. Such D(e1) resp. R(e1, e2) can

be guessed and the derivation of D(t1) resp. R(t1, t2) be non-deterministically checked

by applying iteratively the axioms and deriving atoms α0(�t
0), α1(�t

1), . . . , αi(�t
i) = D(t1)

resp. αi(�t
i) = R(t1, t2); at each step, it is sufficient to store merely the type of each

argument (Skolem term, NK individual) of αj and to require that t1 resp. some of t1, t2
is a Skolem term. This is feasible in non-deterministic logspace.
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Table B.1. Translation φα(�x), �x = x1, . . . , xn, of DL-LiteR axioms α in LΣ to

first-order logic.

Translation φα(�x) for axioms α

D(a) �→ γD(a)
R(a, b) �→ R(a, b)
¬R(a, b) �→ ¬R(a, b)

C � D �→ βC(x1)→γD(x1)
R � T �→ R(x1, x2)→T (x1, x2)

Dis(R,S) �→ (R(x1, x2)→¬S(x1, x2)) ∧
(S(x1, x2)→¬R(x1, x2))

Inv(R,S) �→ (R(x1, x2)→S(x2, x1)) ∧
(S(x1, x2)→R(x2, x1))

Ref(R) �→ R(x1, x1)
Irr(R) �→ ¬R(x1, x1)

Translation βE(�x) for (left side) expressions E

A �→ A(x1)
∃R �→ R(x1, x2)

Translation γE(�x) for (right side) expressions E

A �→ A(x1)
¬C1 �→ ¬βC1(x1)
∃R �→ R(x1, fR(x1))

As for n-de safety where n > 0, one can first similarly check whether a derivation with

a cycle is possible, such that atoms D(t1) and D(t′1) resp. R(t1, t2) and R(t′1, t
′
2) can be

derived where t1 is a subterm of t′1 resp. t1 is a subterm of t′1 or t2 is a subterm of t′2.
This can be done with additional book-keeping in nondeterministic logspace.

If such a cycle exists, then K is not n-de safe for any n ≥ 0. Otherwise, we can

systematically enumerate the terms t1 resp. t1, t2 in a lexicographic fashion. To this

end, we determine for an individual a ∈ NK all assertions Ri(a, fRi
(a)) that hold for it;

each gives rise to a child fRi
(a), and by repeated application (where again all assertions

Ri(fRi
(a), fRj

(a)) are determined) we obtain a tree whose depth is linearly bounded.

We can traverse this tree in a depth first manner where, before expanding, we ask at

the current node whether some atom D(t1) resp. R(t1, t2) as above is reachable (which

then contains some new Skolem term not seen so far). This test is, like computing all

assertions R(t, fR(t)) for t feasible in nondeterministic logspace. In this way, the number

of nodes explored until n+1 different terms are found is polynomial in n, and the effort

for each node is polynomial; as there are linearly many starting nodes, the overall effort is

polynomial in n. Thus if n is polynomially bounded in the size of K, the overall effort

is polynomial in the size of K as well. �

Proposition 3

Deciding whether a given DKB K is n-chain safe, where n ≥ 0, is feasible in NLogSpace.

Proof

This test can be made by an algorithm similar to the one checking exception safety. It

nondeterministically builds a chain R1(a, t1), . . . , Rm(tm−1, tm) starting from the asser-

tions in Ks, where it records at each point just the predicate name Ri and the type of

the arguments. It increases a counter whenever by applying some axiom a new Skolem

term fRi
(t) is introduced; if the counter exceeds n, then K is not n-chain safe. Since

logarithmic workspace is sufficient for the book-keeping, the result follows. �
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C.2 Semantic properties

Proposition 6

Let IiCAS = 〈Ii, χ〉, i ∈ {1, 2}, be NI-congruent CAS models of a DKB K fulfilling (∗).
Then, ICAS = 〈I, χ〉, where I = I1∩̃NI2 and N includes all individual names occurring

in K and for each element e occurring in χ some t ∈ N such that tI1 = e(= tI2), is also

a CAS model of K. Furthermore, if some IiCAS , i ∈ {1, 2}, is justified and K is exception

safe, then ICAS is justified.

Proof

By Lemma 1, we have that the FO translation φK of a DKB K is equivalent to a

conjunction of Horn clauses. Since IiCAS = 〈Ii, χ〉, i ∈ {1, 2} are CAS models of K,
we can consider their “intersection” model I = I1∩̃NI2 over the set N correspond-

ing to NK extended with its grounding on Skolem functions. We can prove that ICAS

is indeed a model for K: let us suppose that in I we have that some Horn clause

γ(�x) = a1(�x), . . . , an(�x) → b(�x) from φK is violated for some variable assignment σ

for �x = x1, . . . , xk. Since all elements of I1∩̃NI2 are named by some term in N , the

assignment is of the form σ(xi) = ti with ti ∈ N for i ∈ {1, . . . , k}. Since each ti is inter-

preted in I by [tI1 , tI2 ], by the interpretation of concepts and roles in I it follows that

each aiσ is true in both I1 and I2. Furthermore, as γ(�x) is violated for σ, the axiom α in

K that led to γ(�x) does not have an exception for σ in ICAS ; hence, from the property

(∗) it follows that γ(�x) has neither for the assignment σ1(xi) = tI1
i , i ∈ {1, . . . , k}, an

exception in I1CAS nor for the assignment σ2(xi) = tI2
i , i ∈ {1, . . . , k}, in I2CAS ; thus b(�x)

is true for σi in Ii, i = 1, 2. By construction, this means b(�x) is true for σ in I, and thus

γ(�x) is satisfied for σ in I, which is a contradiction. Hence ICAS = 〈I1∩̃NI2, χ〉 is also

a CAS model for K.
With respect to justification, let us assume without loss of generality that I1CAS is

justified. Hence, if 〈α, e〉 ∈ χ, then we have that there exists a clashing set S〈α,e〉 for

this clashing assumption such that for every NI-congruent I ′CAS it holds that I ′CAS |=
S〈α,e〉. Moreover, considering K to be exception safe, all exceptions in χ are named by

individuals. Then, for the justified model I1CAS , for every Skolem term t ∈ N , we must

have tI1 
= cI1 if c ∈ NI appears in an exception. Thus, since ICAS is NI-congruent

with I1CAS and property (∗) holds, it follows that also the intersection model ICAS is

justified. �

Corollary 1 (least model property)

If a clashing assumption χ for an exception safe DKB K is satisfiable for name assignment

ν, then K has an ⊆N -least (unique minimal) CAS model ÎK(χ, ν) = 〈Î, χ〉 on N that

contains all Skolem terms of individual constants, that is, for every CAS model I ′CAS =

〈I ′, χ〉 relative to ν, it holds that ICAS ⊆N I ′CAS . Furthermore, ÎK(χ, ν) is justified if χ

is justified.

Proof

Given that χ is satisfiable, consider any CAS model ICAS = 〈I, χ〉 for K with name

assignment ν. Then, some model I ′CAS = 〈I ′, χ〉 such that I ′CAS ⊆N ICAS exists that is

founded, that is, has the following property:
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If R(e1, e2) is true in I ′CAS , then a sequence α1(e1) = R(e1, e2), α2(e2),. . . ,αk(ek) of

atoms with domain elements such that:

(1) αi(ei) is obtained from αi+1(ei+1) by applying an axiom (resp. the rule for it)

where αi(ei) is the head and αi+1(ei+1) is the body, and both are satisfied;

(2) some A(t1) or S(t1, t2) in K exists such that αk(ek) = A(tI
′

1 ) resp. αk(ek) =

S(tI
′

1 , tI
′

2 ).

If this were not the case for some R(e1, e2) in ICAS , that is, its truth is not “founded”

in the facts in K, we could set R(e1, e2) and, recursively along all possible such chains,

all αi(ei) to false and obtain a smaller model; eliminating all such R(e1, e2) (at once or

alternatively in an iterative process) yields a founded model I ′CAS .

Now if R(e1, e2) is true in I ′CAS , starting from A(t1) resp. S(t1, t2), we can apply the

same axioms (rules) as in (1) w.r.t. Ks, using Skolemization and obtain R(t, t′). Since
K is exception safe, if the first (resp. second) argument of R can appear in a clashing

assumption, t (resp. t′) must not be a Skolem term, but a constant. This is analogous

for A(e1) where A can occur in a clashing assumption.

Let now I1CAS = 〈I1, χ〉 and I2CAS = 〈I2, χ〉 be two founded models of K relative to

ν. Considering condition (∗), if tI1 = e holds where e occurs in a clashing assumption,

then t = c must hold for some constant c (in fact, for some c ∈ K). As I2CAS interprets

constants in the same way, we thus have tI1 = tI2 so the intersection property holds. Thus

by Proposition 6, ICAS = 〈I1∩̃NI2, χ〉 is also a model of K. We claim that I1CAS ⊆N
ICAS holds, that is, for each atom α ∈ AtN (I1CAS ), I1 |= α implies I |= α. Towards

a contradiction, suppose I1 |= α but I ′ 
|= α, and consider α = R(t, t′). As I1CAS is

founded, R(t, t′) must result, modulo ν, from a derivation chain of an atom R(e1, e2)

showing foundedness. The bottom of this chain, αk(�t) = A(t1) resp. αk = S(t1, t2) is a

fact in K, and thus I ′ |= αk(�t). By an inductive argument, we obtain that the axiom

that has been applied to derive αi−1(ei−1) from αi(ei) in the chain from αk(ek) to

α1 = R(e1, e2) in I1 can be applied in I ′ to derive the same αi−1(�ti−1) from αi(�ti) as in

I ′, as the axiom is also applicable to αi(�ti) in I2. Thus, I ′ |= α1, that is, I ′ |= R(t, t′),
which is a contradiction. The case of α = A(t1) is analogous. Thus, I1CAS ⊆N ICAS

holds, which means by transitivity that I1CAS ⊆N I2CAS . As I2CAS can be an arbitrary

founded CAS model, it follows that I1CAS is a ⊆N -least founded CAS model; and as for

every CAS model ICAS some founded CAS model I2CAS exists such that I2CAS ⊆N ICAS ,

I1CAS is a ⊆N -least CAS model ÎK(χ, ν) of K, as as claimed. By symmetry, also has I2CAS

this property. Justification of ÎK(χ, ν) is immediate from Proposition 6. �

Lemma 3

Suppose I is a model of a DL-LiteR knowledge base K and N ⊆ NI \ NIS includes all

individuals occurring in K. Then, the N -restriction IN is named w.r.t. sk(N) and a

model of K.

Proof

By Lemma 1, we have that φK represents the contents of K as a first-order formula.

As discussed in Appendix B, this formula can be written as a conjunction φα(�x) =∧�
i=1 ∀�xi.γi(�x, �xi), where each γi(�x, �xi) is a Horn clause. By construction, IN is named

relative to sk(N). Moreover, in any assignment θ : �xi �→ NIs, γiθ evaluates to false in IN
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whenever there is some θ(x) /∈ sk(N) with x ∈ �xi. It follows that, if γi is verified under

I and θ, then it is also verified by IN and θ. This implies that if I |= φK then IN |= φK,
and thus IN is a named model for K. �

Theorem 2 (justified CAS characterization)

Let χ be a satisfiable clashing assumptions set for an exception safe DKB K and name

assignment ν. Then, χ is justified iff 〈α, e〉 ∈ χ implies some clashing set S = S〈α,e〉
exists such that

(i) Î |= β, for each positive β ∈ S, where ÎK(χ, ν) = (Î, χ), and
(ii) no CAS model ICAS = 〈I, χ〉 with name assignment ν exists s.t. I |= β for some

¬β ∈ S.

Proof

Since χ is satisfiable, then for Corollary 1 there exists a least CAS model ÎK(χ, ν) =

(Î, χ).
Then, we can show that the justification is characterized by the conditions on the

validity of clashing sets. Let us suppose that χ is justified. Then, ÎK(χ, ν) is justified:

this implies that, by definition, for every 〈α, e〉 ∈ χ there exists a clashing set S = S〈α,e〉
such that, for every CAS model I ′CAS = 〈I ′, χ〉 that is NI-congruent with ÎK(χ, ν), we
have that I ′ |= S. This directly verifies items (i) and (ii).

On the other hand, let us suppose that for every 〈α, e〉 ∈ χ there exists some clashing

set S = S〈α,e〉 such that items (i) and (ii) hold. Considering a CAS model I ′CAS = 〈I ′, χ〉
that is NI-congruent with ÎK(χ, ν), it holds that from (i) I ′ |= β for every positive β ∈ S.

Moreover, condition (ii) implies that I ′ |= ¬β for every negative assertion ¬β ∈ S. Thus,

〈α, e〉 ∈ χ is justified in χ: hence, ÎK(χ, ν) is justified. �

C.3 Datalog translation for DL-LiteR DKB

C.3.1 Normal form

Lemma 4

Every DKB K can be transformed in linear time into an equivalent DKB K′ which has

modulo auxiliary symbols the same DKB models, and such that n-de safety and n-chain

safety are preserved.

Proof

Using the new concept names A∃R, all strict inclusion axioms C � D can be easily

expressed in the given form. Negative concept assertions ¬C(a) can be expressed by

Aa(a) and Aa � ¬C, where Aa is a fresh concept name. Similarly, negative role assertions

¬R(a, b) can be expressed by R′(a, b) and Dis(R,R′) where R′ is a fresh role name.

As regards defeasible axioms, we can express D(¬C(a)) by Aa(a) and D(Aa � ¬C),

where Aa is as above, and furthermore D(A � ¬B) by D(A � A′) and B � ¬A′, where A′

is a fresh concept name. Finally, we can express D(¬R(a, b)) by R′(a, b), D(R′ � S), and

Dis(R,S), where R′ and S are fresh role names. It can be seen that for each justified CAS

model ICAS = 〈I, χ〉 of the original DKB, some justified CAS model I ′CAS = 〈I ′, χ′〉
for the DKB obtained by a rewriting step exists, where χ′ is obtained by modifying
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exceptions in χ according to the rewriting in the obvious way. In the same way, one

obtains from each justified CAS model I ′CAS = 〈I ′, χ′〉 of the rewritten DKB a justified

CAS model of the original DKB. The rewriting does not use existential axioms, and thus

n-de safety and n-chain safety are preserved. �

With respect to the equivalence result defined in Lemma 4, one interesting aspect would

be strong equivalence Lifschitz et al . (2001) between the original DKB K and the trans-

formed DKB K′. In the non-monotonic setting, two theories Γ and Γ′ are strongly equiva-

lent if, for any other theory H, Γ∪H and Γ′∪H have the same models. For our purposes,

we would need to carefully define and analyze this notion, taking auxiliary symbols into

account, cf. Woltran (2008). The very limited form of changes by the normal form trans-

formation and the syntax of DL-LiteR suggest that a relativized equivalence may prevail,

possible under adaptations.

C.3.2 Translation correctness

Let ICAS = 〈I, χ〉 be a justified named CAS model. We define the set of overriding

assumptions OVR(ICAS ) = { ovr(p(e)) | 〈α, e〉 ∈ χ, Idlr(α) = p }. Given a CAS inter-

pretation ICAS , we can define a corresponding interpretation S = I(ICAS ) for PK(K):
the construction is similar to the one in Bozzato et al . (2018), by extending it to negative

literals and providing an interpretation for existential individuals:

(1). l ∈ S, if l ∈ PK(K);
(2). instd(a,A) ∈ S, if I |= A(a) and ¬instd(a,A) ∈ S, if I |= ¬A(a);
(3). tripled(a,R, b) ∈ S, if I |= R(a, b) and ¬tripled(a,R, b) ∈ S, if I |= ¬R(a, b);

(4). tripled(a,R, auxα) ∈ S, if I |= ∃R(a) for α = A � ∃R;

(5). all nrel(a,R) ∈ S if I |= ¬∃R(a);

(6). ovr(p(e)) ∈ S, if ovr(p(e)) ∈ OVR(ICAS );

Proposition 7

Let K be an exception safe DKB in DL-LiteR normal form. Then:

(i). for every (named) justified clashing assumption χ, the interpretation S = I(Î(χ))
is an answer set of PK(K);

(ii). every answer set S of PK(K) is of the form S = I(Î(χ)) where χ is a (named)

justified clashing assumption for K.

Proof

We consider S = I(Î(χ)) built as above and reason over the reduct GS(PK(K)) of

PK(K) with respect to S. By definition, the reduct GS(PK(K)) is the set of rules re-

sulting from the ground instances of rules of PK(K) after the removal of (i) every rule

r such that S |= l for some NAF literal not l ∈ Body(r); and (ii) the NAF part (i.e.

ovr literals) from the bodies of the remaining rules. Basically, GS(PK(K)) contains

all ground rules from PK(K) that are not falsified by some NAF literal in S: in par-

ticular, this excludes application rules for the axiom instances that are recognized as

overridden.

Item (i) can be proved by showing that given a justified χ, S is an answer set for

GS(PK(K)) (and thus PK(K)). The proof follows the same reasoning of the one in
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(Bozzato et al . 2018, Lemma 6), where the fact that I(Î(χ)) satisfies rules of the form

(pdlr-supex) in PK(K) is verified by the condition (4) on existential formulas in the

construction of the model above.

We first show that S |= GS(PK(K)): for every rule instance r ∈ GS(PK(K)) we show

that S |= r holds by examining the possible rule forms that occur in the reduction.

In the following we show some of the most relevant cases, while the other cases can

be proven with similar reasoning. Assuming that S |= Body(r) for a rule instance r in

grnd(PK(K)), we show that Head(r) ∈ S.

– (pdlr-instd): then insta(a,A) ∈ S and, by definition of the translation, A(a) ∈ K.
This implies that Î |= A(a) and thus instd(a,A) is added to S.

– (pdlr-subc): then {subClass(A,B), instd(a,A)} ⊆ S. By definition of the transla-

tion we have A � B ∈ K. Then, for the construction of S = I(Î(χ)), Î |= A(a). This

implies that Î |= B(a) and instd(a,B) is added to S.

– (pdlr-supex): then {supEx(A,R, auxα), instd(a,A)} ⊆ S (with auxα a new constant

relative to the considered existential axiom α). By definition of the input translation,

we have that A � ∃R ∈ K. Moreover, by the construction of S, we have Î |= A(a).

This implies that Î |= ∃R(a): thus, by the conditions defining the construction of S,

tripled(a,R, auxα) is added to S.

– (pdlr-nsupex): then {supEx(A,R, auxα), const(a), all nrel(a,R)} ⊆ S. By defini-

tion of the translation, we have that A � ∃R ∈ K and a is a constant (i.e. either

an individual name appearing in K or any other auxiliary existential constant auxβ).

Moreover, by the construction of S, since all nrel(a,R) ∈ S it holds that Î |= ¬∃R(a).

This implies that Î |= ¬A(a) and then ¬instd(a,A) is added to S.

– (ovr-subc): then {def subclass(A,B), instd(a,A),¬instd(a,B)} ⊆ S. By defini-

tion of the translation, we have that D(A � B) ∈ K and, by the construction of S,

Î |= A(a) and Î |= ¬B(a). Thus, Î satisfies the clashing set {A(a),¬B(a)} for the

clashing assumption 〈A � B, a〉. This implies that 〈A � B, a〉 ∈ χ and by construction

ovr(subClass, a, A,B) is added to S.

– (app-subc): then {def subclass(A,B), instd(a,A)} ⊆ S. As r ∈ GS(PK(K)), we
have that ovr(subClass, a, A,B) /∈ OVR(Î(χ)) and hence 〈A � B, a〉 /∈ χ. By defini-

tion, A � B ∈ K and, by the construction of S, Î |= A(a). Thus, for the definition of

CAS -model and the semantics, instd(a,B) is added to S.

To show that S is indeed an answer set for GS(PK(K)), we have to prove its minimal-

ity with respect to the rules in the reduction. We can show that no model S′ ⊆ S of

GS(PK(K)) such that S′ 
= S can exist: as Î(χ) is the least model of K w.r.t. χ, S′ can
not be a proper subset of S on any of the facts from the input translations, nor on the

derivable instance level facts (instd, tripled or their negation). Thus, S′ needs to con-

tain all atoms on ovr from S, as for every corresponding clashing assumption 〈α, e〉 ∈ χ

the body of some overriding rule in PK(K) that encodes a clashing set for 〈α, e〉 will be
satisfied. Thus, S′ = S must hold.

For item (ii), we can show that from any answer set S we can build a justified model IS
for K such that S = I(Î(χ)) holds. The model can be defined similarly to the original

proof in Bozzato et al . (2018), but we need to consider auxiliary individuals in the domain
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of IS . Considering an answer set S for PK(K), we can build a model IS = 〈IS , χS〉 as
follows:

– ΔIS = {c | c ∈ NIΣ} ∪ {auxα | α = A � ∃R ∈ K};
– aIS = a, for every a ∈ NIΣ and auxiliary constant of the kind auxα;

– AIS = {d ∈ ΔIS | S |= instd(d,A)}, for every A ∈ NC;

– RIS = {(d, d′) ∈ ΔIS ×ΔIS |S |= tripled(d,R, d′)} for R ∈ NR;

Finally, χS = {〈α, e〉 | Idlr(α) = p, ovr(p(e)) ∈ S}. We need to show that IS is a least

justified CAS model for K, that is:

(a) for every α ∈ LΣ in K, IS |= α;

(b) for every D(α) ∈ K (where α ∈ LΣ), with |�x|-tuple �d of elements in NIΣ such that
�d /∈ {e | 〈α, e〉 ∈ χ}, we have IS |= φα(�d).

The claim can then be proven by considering the effect of deduction rules for existential

axioms in GS(PK(K)): auxiliary individuals provide the domain elements in IS needed

to verify this kind of axioms.

In particular, condition (a) can be shown by cases considering the form of all of the

(strict) axioms β ∈ LΣ that can occur in K. We show in the following some of the cases

(the others are similar):

– Let β = A(a) ∈ K, then, by rule (pdlr-instd), S |= instd(a,A). This directly implies

that aIS ∈ AIS .

– Let β = A � B ∈ K, then S |= subClass(A,B). If d ∈ AIS , then by definition S |=
instd(d,A): by rule (pdlr-subc) we obtain that S |= instd(d,B) and thus d ∈ BIS .

On the other hand, let us assume that e ∈ ¬BIS with S |= ¬instd(e,B): then, by the

negative rule (pdlr-nsubc) we have that S |= ¬instd(e,A). This implies that e ∈ ¬AIS ,

since otherwise we would have instd(e,A) ∈ S and S would be inconsistent. Note that

if we assume e ∈ ¬BIS but S 
|= ¬instd(e,B), we also obtain that e ∈ ¬AIS , otherwise

by (pdlr-instd) and the definition of IS we would derive that e ∈ ¬BIS .

– Let β = A � ∃R ∈ K, then S |= supEx(A,R, auxβ). If d ∈ AIS , then by definition

S |= instd(d,A). By rule (pdlr-supex) we obtain that S |= tripled(d,R, auxβ). By

the definition of IS , this means that there exists an e ∈ ΔIS such that (d, e) ∈ RIS :

this implies that IS |= ∃R(d). On the other hand, if we consider an e ∈ ΔIS such

that e ∈ ¬∃RIS and S |= ¬tripled(e,R, c) for each const(c) in S (i.e. for each

c ∈ ΔIS ). Then, by the definition of IS and the rules (pdlr-allnrel1) – (pdlr-allnrel3)

it holds that S |= all nrel(e,R). By the negative rule (pdlr-nsupex), we have that

S |= ¬instd(e,A). As above, we have that e ∈ ¬AIS , as otherwise we would have

instd(e,A) ∈ S and S would be inconsistent.

For condition (b), let us assume that D(β) ∈ K with β ∈ LΣ. Let β = A � B. Then, by

definition of the translation, we have that S |= def subclass(A,B). Let us suppose that

bIS ∈ AIS : then S |= instd(b, A). Supposing that 〈A � B, b〉 /∈ χS , then by definition

ovr(subClass, b, A,B) /∈ OVR(Î(χ)). By the definition of the reduction, the correspond-

ing instantiation of rule (app-subc) has not been removed from GS(PK(K)). This implies

that S |= instd(b,B) and thus bIS ∈ BIS . The contrapositive case for bIS ∈ ¬BIS and

the cases for the other forms of defeasible axioms can be proved similarly.
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Thus, IS is a CAS model ofK: moreover, we can show that IS = Î(χS) holds. Assuming

that I ⊂ IS is a CAS model of K with clashing assumption χS , we can construct an

interpretation S′ ⊂ S such that S′ |= GS(PK(K)), by removing (at least) one instance-

level fact instd(d,A) or tripled(d,R, d′) from S. However, this would contradict that

S is an answer set of PK(K): thus, it holds that IS = Î(χS).

The justification of χS follows by verifying that the new formulation of overriding rules

correctly encodes the possible clashing sets for the input defeasible axioms. Formally,

since any 〈α, e〉 ∈ χS is due to ovr(p(e)) ∈ S and ovr(p(e)) is derived from the reduct

GS(PK(K)), it follows that S must satisfy some overriding rule r for p(e). This means

that IS must satisfy the clashing set S〈α,e〉 for 〈α, e〉 encoded by the rule r. By the

property defined in Theorem 2 it follows that the clashing assumption 〈α, e〉 is justified:
thus, χS is justified. �

C.4 Complexity of reasoning problems

C.4.1 Satisfiability

Lemma 5

Given a graph G = (V,E), deciding whether every color assignment to the nodes of

degree 1 in G is can be extended to a 3-coloring of G is Πp
2-complete.

Proof

The problem is in Πp
2, since a guess for a coloring κ of the degree 1 nodes of E that can

not be extended to a 3-coloring of G can be checked with a call to a co-NP-oracle.

The Πp
2-hardness is shown by a reduction from evaluating QBFs of the form

Φ = ∀X∃Y E, where E =
∧

i Ci is in CNF and each clause Ci has size 3; to

this end, a reduction of 3SAT to 3-colorability can be easily generalized, for exam-

ple, the one in https://www.cs.princeton.edu/courses/archive/spring07/cos226/

lectures/23Reductions.pdf. In this and similar reductions, a graph G is constructed

from E that is 3-colorable iff E is satisfiable. This graph has nodes vp and v¬p that

correspond to the literals p, ¬p of the variables p occurring in E, such that color assign-

ments to vp resp. v¬p correspond to truth assignments to the literals; furthermore, it has

a distinguished node B, such that vp, v¬p, and B form a triangle for each p.

We may assume that G has no node of degree 1 (else we would involve that node with

two fresh nodes in a triangle). To encode X, we connect to each vx for x ∈ X a fresh

node v′x, which becomes a source. Furthermore, we connect fresh nodes z1 and z2 to B

and to each other (forming a triangle), and connect further fresh nodes z′1 and z′2 to z1
and z2, respectively. The purpose of the latter gadget is to ensure that in each 3-coloring

of the resulting graph G′, the node B must have the color of either z′1 or z′2. This will

then allow to easily reduce checking whether for an assignment σ to X, E(σ(X), Y ) is

satisfiable to an 3-coloring extension test.

The claim is that Φ evaluates to true iff every color assignment κ to the nodes v′p is

extendible to a 3-coloring of G′.
(⇐) Suppose every coloring to the v′p is extendible to a 3-coloring of G′. Then, if we

color z′1 and z′2 with b, also B is colored with b. If we have a truth assignment σ to X

and set κ(vp) = g if σ(p) = true and κ(vp) = r if σ(p) = false, the extending 3-coloring
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must encode a truth assignment μ such that E(σ(X), μ(Y )) evaluates to true, by the

properties of the graph G.

(⇒) Conversely, suppose Φ evaluates to true, and consider and coloring κ of the degree-

1 nodes. We can extend κ to a 3-coloring of G′ as follows. Suppose the node z′1 has the

color b; then we can color z1, z2 and B such that the latter also has the color b. Now

for each x ∈ X we color vx with g and v¬x with r if n′
x has color r, and vx with r and

v¬x with g otherwise; thus, the coloring of the nodes vx, v¬x reflects a truth assignment

to X. As Φ evaluates to true, we can color all other vp and v¬p nodes, as well as the

auxiliary nodes such that we obtain a 3-coloring of G′. �

Proposition 8

Let K be a normalized DL-LiteR DKB, and let χ′ = {〈α, e〉 | D(α) ∈ K, e is over

standard names } be the clashing assumption with all exceptions possible. Then, K has

some justified CAS model ICAS = 〈I, χ〉 such that χ ⊆ χ′ iff K has some CAS model

ICAS = 〈I, χ′〉.

Proof

(⇒) Every justified CAS model ICAS = 〈I, χ〉 of K is a CAS model ICAS = 〈I, χ〉 of K,
and since χ ⊆ χ′, also I ′CAS = 〈I, χ′〉 is a CAS model of K as every exception 〈α, e〉 in
ICAS is also made in I ′CAS (and possibly more exceptions are made).

(⇐) Suppose that K has some CAS model of the form I ′CAS = 〈I, χ′〉. We then can

construct some justified CAS model of K by trying to remove, one by one, the clashing

assumptions 〈α, e〉 in χ′. To this end, let Δ0 consist of the FO translation ∀�xφα(�x) of all

non-defeasible axioms in K, plus all instances φα(e) of defeasible axioms D(α) in K such

that 〈α, e〉 /∈ χ0. Furthermore, let ex1, ex2,. . . , exi = 〈αi, ei〉, . . . be a (possibly infinite)

enumeration of χ0, and let χ0 = χ. We then build the sequences theories Δi and clashing

sets χi, i ≥ 1 inductively as follows:

(Δi+1, χi+1) =

{
(Δi, χi) if Δi ∪ {φαi

(ei)} is unsatisfiable
(Δi ∪ {φαi

(ei)}, χi \ {〈αi, ei〉} otherwise
.

We obtain then that Δ =
⋃

i≥0 Δi is satisfiable iff Δ0 is satisfiable, and in the latter case

it satisfies χ =
⋂

i≥0 χi; furthermore, if 〈αi+1, ei+1〉 was not removed, then Δi |= ¬φαi
(ei)

and thus Δ |= ¬φαi
(ei). The formula ¬φαi

(ei) amounts for axioms αi of the defeasible

(normal) form A � (¬)B, R � S, Dis(R,S), and Irr(R), to the minimal clashing set

in Table 1; for Inv(R,S), it amounts to R(e1, e2) ∧ ¬S(e2, e1) ∨ ¬R(e1, e2) ∧ S(e2, e1),

which is logically equivalent to (R(e1, e2)∨S(e2, e1))∧ (¬R(e1, e2)∨¬S(e2, e1)). As Δ is

Horn and Δ |= R(e1, e2)∨S(e2, e1), it follows that either Δ |= R(e1, e2) or Δ |= S(e2, e1)

holds; thus either Δ |= R(e1, e2) ∧ ¬S(e2, e1) or Δ |= ¬R(e1, e2) ∧ S(e2, e1) holds, that

is, one of the two clashing sets is indeed derived.

Consequently, every model I of Δ gives rise to a justified CAS model ICAS = 〈I, χ〉
of K. �

C.4.2 Entailment checking

Theorem 5

Given an exception safe DKB K and an axiom α, deciding K |= α is co-NP-complete;

this holds also for data complexity and instance checking, that is, α is of the form A(a)

for some assertion A(a).
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Proof

To refute K |= α, we need to show that some justified CAS model ICAS = 〈I, χ〉 of K
exists such that I 
|= α. Without loss of generality, we assume that α is normalized.

Depending on the type of α, given χ and a name assignment ν, a we push the latter

first to K and then proceed as follows.

(a) If α is an assertion A(a), R(a, b), ¬A(a), or ¬R(a, b) we can check the existence of

ICAS by the use of Theorem 1, and we can assume that I is named relative to N

with N = sk(NK). That is, we can use the materialization calculus relative to χ,

and verify given a justified χ that α can not be derived.

(b) If α is an inclusion axiom A � B, then we need to show that for some element e

it holds that I |= A(e) and I |= ¬B(e). To deal with this, we first add to K the

axioms Aux � A, Aux � ¬B; this does not compromise exception safety nor that χ

is justified. We may then assume without loss of generality that I |= Aux(e), that

is, I 
|= ¬Aux(e).

We next add to K an assertion Ae(ae), where Ae and ae are a fresh concept and

individual name, respectively; this serves to give e a name if it is outside the elements

named in I by Skolem terms. This addition again does neither compromise exception

safety nor that χ is justified, and I can be adjusted to it.

We then check whether ¬Aux(ae) is not derivable from the resulting DKB K′ under
χ; this holds iff some I with e not named by some Skolem term of the K exists.

Otherwise, e must be named by some Skolem term t of K. We thus check that for

none such t, ¬Aux(t) is derivable from K′ under χ; the depth of t can be polynomially

bounded.

The checks can be done in nondeterministic logspace, and thus deciding K 
|= α

under χ is feasible in polynomial time.

(c) if α is a role inclusion axiom R � S, then we need to show that for some elements

e, e′ it holds that I |= R(e, e′) and I |= ¬S(e, e′). Similarly as for A � B above,

we can use an auxiliary role Aux and axioms Aux � R, Aux � ¬S, proceed with

assuming that I 
|= ¬Aux(e, e′), introduce ae, ae′ for e, e′ in K, and test then that

from K′ under χ, ¬Aux(t, t′) is not derivable, where t, t′ range over the Skolem terms

of depth bounded by a polynomial and ae resp. ae′ , where e = e′ must be respected.

Again, this allows us to show that K 
|= α under χ in polynomial time.

(d) in all other cases, we can proceed similarly as in a) and b), as to refute α, we need

to show that for some element e (resp. elements e, e′), I satisfies some literals αi(e),

1 = 1, . . . , k. (resp. αi(e, e
′), 1 = 1, . . . , k). In particular, for A � ¬B: A(e), B(e);

for Dis(R,S): R(e, e′), S(e, e′); for Irr(R): R(e, e′); for Inv(R,S): either R(e, e′),
¬S(e, e′) or ¬R(e, e′), S(e, e′). Along the same lines as above we can introduce an

auxiliary concept resp. role Aux, individual names ae, ae′ etc. and decide K 
|= α

under χ in polynomial time.

Thus, to decide K 
|= α, we can guess a justified clashing assumption χ over NK together

with a clashing set S〈α,e〉 for each 〈α, e〉 ∈ χ and check (i) that χ is satisfiable, (ii) that

all S〈α,e〉 are derivable from K under χ, and (iii) that K 
|= α. Each of the steps (i)–(iii)

is feasible in polynomial time. Consequently, the entailment problem K |= α is in co-NP.

co-NP-hardness. The co-NP-hardness can be shown by a reduction from inconsistency-

tolerant reasoning from DL-LiteR KBs under AR-semantics Lembo et al . (2010). Given
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a DL-LiteR KB K = A ∪ T with ABox A and TBox T , a repair is a maximal subset

A′ ⊆ A such that K′ = A′ ∪ T is satisfiable; an assertion α is AR-entailed by K, if
K′ |= α for every repair K′ of K. As shown by Lembo et al., deciding AR-entailment is

co-NP-hard; this continues to hold under UNA and if all assertions involve only concept

resp. role names.

Let K̂= T ∪ {D(α) | α∈A}, that is, all assertions from K are defeasible. As easily

seen, under this assumption the maximal repairs A′ correspond to the justified clashing

assumptions by χ = {〈α, e〉 | α(e) ∈ A \ A′}. Thus, K AR-entails α iff K̂ |= α, proving

co-NP-hardness. Furthermore, in order to establish the result for exception safety without

looking further into the structure of K, we may apply the normal form transformation of

Lemma 4; as defeasible assertions D(A(a)) are transformed to A′(a) and D(A′ � A) and

since A′ does not occur on the right hand side of any axiom, no Skolem terms can be

derived that feeds into the positive literal of the clashing set {A′(a),¬A(a)}; similarly,

D(R(a, b)) is translated to R′(a, b) and D(R′ � R) and similarly exception safety is

warranted.

As Lembo et al. proved the co-NP-hardness under data complexity, with the normal

form transformation (which then requires merely the addition of the assertions A′(a) resp.
R′(a, b), or a renaming of the symbols) the claimed result for data complexity follows.�

Proposition 9

Given a DKB K, deciding where K |= α is co-NP-hard even if no roles occur in K and α

is an assertion A(a).

Proof

Cadoli and Lenzerini (Theorem 16 1994) showed that given a positive propositional 2CNF

F over variables V , deciding whether an atom z is a circumscriptive consequence of F

is co-NP-hard if all variables except z are minimized. In circumscription, the latter is

denoted as CIRC (F ;P ;Z) |= z where P = V \ Z and Z = {z}, where CIRC (F ;P ;Z)

is defined as a QBF with free variables V ; semantically, CIRC (F ;P ;Z) captures the

P ;Z-minimal models of F , which are the models M of F for which no model M ′ of F
exists such that (a) M ∩Q = M ′ ∩Q, where Q = V − (P ∪Z), and (b) M ′ ∩P ⊂M ∩P .

We reduce the inference CIRC (F ;P,Q;Z) |= z to entailment K |= A(a), where the

variables in V are used as concept names, as follows.

– For each clause c = x∨ y in F , we add to K an axiom x � ¬y if z 
= x, y and an axiom

x � z (resp. y � z) if z= y (resp. x= z). Informally, we flip in this representation the

polarity of all variables except z, in order to obtain DL-LiteR axioms.

– Furthermore, for each variable x 
= z, we add a defeasible assertion D(x(a)), where a

is a fixed individual.

This construction effects that the justified DKB models of K correspond to the

models of CIRC (F ;P, ∅; {z}), where the minimality of exceptions in justified DKB

models emulates the minimality of circumscription models. Formally, K |= z(a) iff

CIRC (F ;P, ∅; {z}) |= z.

(⇐) Suppose K 
|= z(a); then, some justified model I = 〈I, χ〉 of K exists such that

I 
|= z(a). Let M = {v ∈ V | v 
= z, I 
|= v(a)}; we claim that M is a P ;Z-minimal

model of F . Suppose this is not the case. Then, some model M ′ of F exists such that
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(a) and (b) hold. Then, some variable v ∈ (M ∩ P ) \ (M ′ ∩ P ) exists, which means that

F ∪ {¬x | x 
= z, x ∈ V −M} 
|= v. As I 
|= v(a), an exception to D(v(a)) was made in χ.

However, by switching v(a) in I to true, we obtain an NI-congruent CAS interpretation

I ′ that satisfies K relative to χ. This means that the exception to D(v(a)) is not justified,

which is a contradiction.

(⇒) Suppose that CIRC (F ;P, ∅; {z}) 
|= z, that is, some P ;Z-minimal model M of

F exists such that M 
|= z. We define I = 〈I, χ〉 where I |= v(a) iff v ∈ V \M and χ

contains all exceptions for D(v(a)) where v ∈M . Similarly as in the if-case, it is argued

that I is a justified model of K. As I 
|= z(a), it follows that K 
|= z(a). This concludes

the proof of the claim.

Similarly as in the proof of Theorem 5, the defeasible assertions D(x(a)) can be moved

to defeasible axioms D(c � x) with a single assertion c(a). �

C.4.3 Conjunctive query answering

Theorem 6

Given an exception safe DKB K and a Boolean CQ Q, deciding whether K |= Q is (i)

Πp
2-complete in combined complexity and (ii) co-NP-complete in data complexity.

Proof

To start with (i), as for membership in Πp
2, to refute Q we can guess for a justified CAS

model ICAS = 〈I, χ〉 such that ICAS 
|= Q the clashing assumption χ on NK and a name

assignment ν, which we can push to the knowledge base. Since K is exception safe, we

can decide in NLogSpace whether χ is satisfiable relative to ν (which can be pushed to

K) and can indeed give rise to a desired justified CAS model ICAS of K. We then can

use an NP oracle to check whether for some polynomial number of Skolem terms ST ,

where the number depends on Q and K, the query has a match on NK ∪ ST in the least

CAS model ÎK(χ, ν) of K; to this end, each atom A(t) resp. R(t, t′) in the match must

be derived by applying the axioms (that is, by unraveling INK
CAS ); this will ensure that

a match exists in each CAS model ICAS = 〈I, χ〉 of K. If the oracle answer is no, then

some ICAS such that ICAS 
|= Q exists. Consequently, refuting K |= Q is in Σp
2, which

proves the membership part.

The Πp
2-hardness of (i) is shown by a reduction from a generalization of deciding

whether a graph is 3-colorable: given an (undirected) graph G = (V,E), can every color

assignment to the nodes of degree 1 in G (i.e. source nodes) be extended to a 3-coloring

of G? This problem is Πp
2-complete (see Lemma 5).

We construct a DKB K as follows. We use roles R, Rr, Rg, Rb, and E, and as individual

names r, g, b and each v ∈ V , where we assume that names are unique (this can be easily

enforced by adding further auxiliary axioms). Informally, R and the Rc serve to encode

color assignments to nodes and E to represent the edges of the graph. We add to K the

following axioms:

– defeasible axioms D(Rr(v, r)), D(Rg(v, g)), D(Rb(v, b)), for each node v of degree 
= 1;

– Rr � R, Rg � R, Rb � R;

– ∃Rr � ¬∃Rg, ∃Rr � ¬∃Rb, ∃Rg � ¬∃Rb;
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and the assertions

– R(v, r) R(v, g), R(v, b) for each non-source v;

– E(r, g), E(r, b), E(g, b), E(g, r), E(b, r), E(b, g).

Intuitively, we must make for each source node v an exception to two of the three axioms

D(Rr(v, r)), D(Rg(v, g)), D(Rb(v, b)), and in this way assign a color to v. For example,

for assigning red (r) the exceptions are Rg(v, g)) and Rb(v, b) which have the minimal

clashing sets {¬Rg(v, g)} and {¬Rb(v, b)}, respectively; for the other assignments this is

analogous. Every choice κ of a coloring for the sources in G thus gives rise to a natural

justified clashing assumption CASκ.

The Boolean query that we construct is

Q = ∃�y
∧
v∈V

R(v, yv) ∧
∧

e=(v,v′)∈E

E(yv, yv′).

Informally, the graph G is encoded in Q, where the variables yv range over the colors of

the nodes v; with R(v, yv) we pick a color for a match where for sources only the color

chosen by κ is available, while for the other nodes all three colors r, g, b are available.

The E-atoms enforce that adjacent nodes must have different color.

It is then not difficult to verify that K |= Q holds under UNA iff for every coloring κ of

the sources, we have ICASκ
|= Q, that is, the coloring κ of the sources can be extended

to a 3-coloring of the whole graph G. As K is clearly constructable from G in polynomial

time, this proves Πp
2-hardness.

(ii) As for data complexity, we note that the check where Q has no match in any I ′′CAS

is feasible in polynomial time, as the number of variables in the query is fixed and thus

only constantly many Skolem terms ST have to be added to NK for a query match in

the least CAS model ÎK(χ, ν) of K, for which only polynomially many possibilities exist;

furthermore, the inference of atoms A(t) resp. R(t, t′) is feasible in polynomial time.

Hence, the problem is in co-NP. The co-NP-hardness follows from Theorem 5. �

C.5 Complexity of reasoning problems with unnamed individuals

Proposition 11

Given an n-de safe DKB K, where n is polynomial in the size of K, and a clashing

assumption χ defined on NK, deciding whether K has (i) some arbitrary CAS model

resp. (ii) some justified CAS model of form ICAS = 〈I, χ〉 is NP-complete resp. Dp-

complete in general but feasible in polynomial time if n is bounded by a constant.

Proof

We can compute the (polynomially many) Skolem terms ti, i = 1, . . . ,m ≤ n that feed

into clashing assumptions for K using the algorithm in the proof of Proposition 2 for

deciding n-de safety in polynomial time.

As for (i), in order to show that some CAS model ICAS = 〈I, χ〉 of K exists, we need

to show that no inconsistency can be derived from K under χ relative to some name

assigmment ν (which can be pushed to K).
We guess for each i = 1, . . . ,m whether ti = aj holds for one or none of the individuals

a1, . . . , an that name exceptions in χ. Relative to this guess, we then decide in polynomial

time whether K is satisfiable.
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To this end, we slightly modify a common algorithm that decides unsatisfiability

in absence of defeasible axioms by nondeterministically deriving opposite assertions

D(t),¬D(t) resp. R(t, t′), ¬(t, t′) from at most two assertions in K in polynomially many

steps using logarithmic workspace; these assertions are either over NK, the same Skolem

term t or t′ = fR(t) for some role R, where outside NK we need not store t. In the

extension, we keep track of which terms t̄, t̄′ in the assertion (¬)D(t̄h) resp. (¬)R(t̄h, t̄
′
h)

derived in step h are among the subterms of some t1, . . . , tm; and if t̄ = ti resp. t̄
′ = ti

and ti = aj is in the guess, then D(aj), R(aj , t̄
′) resp. R(t̄, aj) can be derived.

As there are only polynomially many subterms of t1, . . . , tm (otherwise K would be

recursive, thus not n-de bounded), the bookkeeping for respecting the subterms is feasible

in logarithmic work space (each subterm t may have an identifier id(t), and a table

computed before hand holds (id(t), R, id(fR(t)))).

As the algorithm works in polynomial time, we can decide in this way also whether K
is satisfiable under χ relative to a name assignment ν.

As for (ii), we must in addition to (i) check that for each clashing assumption 〈α, e〉
in χ, some clashing set S〈α,e〉 can be derived. We utilize here a similar guess and check

algorithm as in (i) to decide whether a given assertion α is not derivable from K under

χ; that is, we guess ti = aj for all terms ti and then check in nondeterministic logspace

that α can not be derived. Hence, deciding that for some 〈α, e〉 no clashing set S〈α,e〉 is

derivable is in NP, which implies that the additional check is in co-NP. Consequently, in

case (ii) membership in Dp follows.

If n is bounded by a constant, then in the algorithm above the guess for the equalities

ti = aj can be eliminated, by cycling through all (polynomially) many possibilities, which

results in PTime membership.

For the hardness proofs, for (i) we reduce deciding 3-colorability of a graph G = (V,E)

to deciding CAS model existence; we provide for this a construction that can be reused

for (ii).

We construct K as follows. For each edge ei = (vi,1, vi,2) in E = {e1, . . . , em}, we intro-
duce two individuals vi,1 and vi,2, and for each vi,j we introduce three further individuals

coli,j , c1i,j and c2i,j . Informally, the latter three individuals will serve to take the three

colors red, green, and blue by roles Rr , Rg , and Rb such that the color assigned to coli,j
will be the color assigned to the occurrence of the node vi,j in the edge ei.

The alignment of colors assigned to vi,j and vi′,j′ that represent the same node vk
in V = {v1, . . . , vn} will be ensured with the help of an auxiliary node checkvk

. To

this end, the nodes coli,j and coli′,j′ will send their assigned colors to this node using

roles RCheck , GCheck and BCheck , which tests for their equality. That vi,1 and vi,2 are

colored differently will be checked with the help of auxiliary roles RNeighbor , GNeighbor ,

BNeighbor .

Finally, we use an individual esc that allows us to model a state in which no vi,j has

a color assigned. This state however, requires an exception to an axiom.

In the construction, we use a domain predicate, expressed by a concept Dom that

will be asserted for all individuals in K and enforced to be false for all other elements;

roles between individuals can only be in the domain, thus do not involve unnamed

individuals. Furthermore, we shall restrict roles between individuals by negative role

assertions.
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The DKB K consists of the following assertions, axioms and defeasible axioms:

1. V (vi,j) for all vi,j and Dom(a) for each a = vi,j , coli,j , c1i,j , c2i,j , e, checkvk
, esc,

esc′;
2. V � ∃R, V � ∃G, V � ∃B;

3. ∃R− � ¬∃G−, ∃G− � ¬∃B−, ∃R− � ¬∃B−;
4. ∃R− � ∃RNeighbor , ∃G− � ∃GNeighbor , ∃B− � ∃BNeighbor ;
5. ∃R− � ¬∃RNeighbor−, ∃G− � ¬∃GNeighbor−, ∃B− � ¬∃BNeighbor−;
6. ∃R− � ∃RCheck , ∃G− � ∃GCheck , ∃B− � ∃BCheck ;
7. ∃RCheck− � ¬∃GCheck−, ∃GCheck− � ¬∃BCheck−, ∃RCheck− � ¬∃BCheck−

8. ∃R− � ¬E;

9. for each role X, we add the axiom ∃X− � Dom and limit its range by adding

¬X(a, b) for each pair (a, b) of individuals from above that is not allowed as follows:

– for R,G,B we allow (vi,j , coli,j), (vi,j , c1i,j), (vi,j , c2i,j), and for R in addition

(vi,j , esc);

– for RCheck , GCheck , BCheck , we allow (coli,j , checkk), (c1i,j , c1i,j), (c2i,j , c2i,j),

were vi,j = vk, and (esc, esc);

– for RNeighbor , GNeighbor , BNeighbor , we allow (coli,j , coli′,j′), (coli′,j′ , coli,j),

where vi,j = vk, vi′,j′ = v′k, and (vk, v
′
k) ∈ E; furthermore (c1i,j , c2i,j) and

(c2i,j , c1i,j), for all vi,j , and (esc, esc′);

10. D(Dom � ⊥) and D(E(esc)).

We define the clashing assumption χ to have an exception of D(Dom � ⊥) for all

individuals a where have asserted Dom(a) above.

We note that K has for χ′ = χ ∪ {〈E(esc), ()〉} (i.e. when making also an

exception to D(E(esc))) a CAS model I ′CAS = 〈I ′, χ′〉: if in I ′ the atomic

concept instances are those mentioned in (1), and the role instances atoms are:

R(vi,j , esc), RCheck(esc, esc′), RNeighbor(esc, esc′); G(vi,j , c1i,j), GCheck(c1i,j , c2i,j);

and B(vi,j , c2i,j), VCheck(c2i,j , c1i,j) for all vi,j ; then by defining the Skolem functions

appropriately we can obtain a CAS model which is named by NK.
On the other hand, it turns out that K has some CAS model ICAS = 〈I, χ〉 (i.e. when

making no exception to D(E(esc))) under UNA iff G is 3-colorable.

To see this, if G is 3-colorable, then we can reassign the roles R(vi,j , esc), G(vi,j , c1i,j),

and B(vi,j , c2i,j) in I ′ to C(vi,j , coli,j), C1(vi,j , c1i,j), and C2(vi,j , c2i,j) to where

C is the color of the node vk such that vi,j = vk in the 3-coloring, and C1

and C2 are the other two colors. This then requires to set up, in a determined

way, for coli,j the role instances CCheck(coli,j , checki,j) and CNeighbor(coli,j , coli′,j′),

where vi,j = vk and vi′,j′ = vk′ and (vk, v
′
k) ∈ E, for c1i,j the role instances

C1Check(c1i,j , c1i,j), C1Neighbor(c1i,j , c2i,j), and for for c2i,j analogously the role in-

stances C2Check(c2i,j , c2i,j), C2Neighbor(c2i,j , c1i,j). Finally, we make E(esc) true (fur-

ther roles RCheck(esc, esc′), RNeighbor(esc, esc′) could be removed). The resulting CAS

interpretation ICAS is then a model of K.
Conversely, if K has some CAS model ICAS = 〈I, χ〉, then E(esc) is satisfied in

it. Hence no role R(vi,j , esc) is satisfied in ICAS , which means that for each vi,j ,

for some color C, C ∈ {R,G,B} the role C(vi,j , coli.j) holds in I. As then the role

CCheck(coli,j , checkk) also holds, by the axioms in (7) all vi′,j′ that correspond to the
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node vk will have the same color C. Furthermore, the axiom ∃C− � ¬∃CNeighbor− is

satisfied, which implies that v1,2 has a different color C ′ 
= C. Thus, we obtain from ICAS

a 3-coloring of the graph G. This proves the NP-hardness of case (i).

We show the Dp-hardness of case (ii) by a reduction from 3COL-3UNCOL, that is,

given graphs G1 and G2, decide whether G1 is 3-colorable and G2 is not 3-colorable. We

observe that the DKB K defined for the graph G above has some justified CAS model of

the form ICAS = 〈I, χ ∪ {〈E(esc), ()〉}〉 iff G is not 3-colorable.

We thus take for G1 and G2 two copies K1 and K2, respectively of the construction as

above (using disjoint vocabularies), and set K = K1∪K2 and χ = χ1\{〈E1(esc1), ()〉}∪χ2.

Then, K some justified CAS model of form ICAS = 〈I, χ〉 iff G1 is 3-colorable and G2 is

not 3-colorable.

As easily seen, K is acyclic and its TBox is the same for each graph G. Hence, K is

k-chain bounded for some constant k and thus also n-de bounded for some n polynomial

in |K′|. This proves the result under the stated restrictions, which moreover also holds

under data complexity. �

We remark that from the proof of Proposition 11, we obtain that DKB model checking,

that is, decide whether an interpretation I is a DKB model of an DKB K is co-NP-hard,

as the CAS model I ′CAS for the DKB K constructed for the graph G is justified iff G is

not 3-colorable. On the other hand, for n-de safe K where n is bounded by a polynomial

in the size of K, the problem is in co-NP since it reduces to checking whether the clashing

assumption χ that contains all instances of axioms of K over NK that are violated by I,
is justified. That is, for such DKBs, the model checking problem is co-NP-complete.

Theorem 7

Given an n-de safe DKB K, where n is bounded by a polynomial in |K|, (i) deciding

K |= α for an axiom α and (ii) BCQ answering K |= Q are both Πp
2-complete. In case n

is bounded by a constant, (i) is co-NP-complete while (ii) remains Πp
2-hard.

Proof

Regarding the Πp
2-membership results, to show in (i) that K 
|= α, we can similarly

proceed as in Theorem 5 and guess a clashing assumption χ for K on NK and a name

assignment ν then check by Proposition 11 with an NP-oracle that some justified CAS

model ICAS = 〈I, χ〉 exists relative to ν. If so, we check whether K 
|= α relative to χ

and ν using an NP oracle, where we proceed depending on the type of α as follows:

– If α is a positive or negative assertion, then we use the guess and check algorithm

described in the proof of case (ii) of Proposition 11.

– In the other cases, we proceed similarly as in the proof of Theorem 5: we introduce an

auxiliary concept resp. role Aux, fresh individual names ae resp. ae′ and check that,

relative to χ and a guess for the equalities ti = aj of the Skolem terms t1, . . . , tm that

feed into clashing assumptions for K (which can be computed in polynomial time, cf.

proof of Proposition 2) to the individuals a1, . . . , an that name exceptions in χ, we can

not derive ¬Aux(t) resp. ¬Aux(t, t′) for some terms t, t′ that range over the Skolem

terms of polynomially bounded depth and ae resp. ae′ . The algorithm in the proof of

item (i) of Proposition 11 can be adjusted to this end, so that it runs in polynomial

time.
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Hence, deciding K 
|= α is in Σp
2, and thus deciding K |= α is in Πp

2.

In (ii), to show K 
|= Q we likewise guess a clashing assumption χ on NK and a name

assignment ν, and we check using an NP oracle that some justified CAS model of form

ICAS = 〈I, χ〉 relative to ν exists.

We then compute the (polynomially many) Skolem terms ti, i = 1, . . . ,m that feed into

clashing assumptions, which is feasible in polynomial time (cf. proof of Proposition 2).

We then guess for each ti whether ti = aj holds for a single aj or none, where a1, . . . , an
are all the individuals that name exceptions in χ. We then can use an NP oracle to guess

polynomially many Skolem terms ST that are connected to NK, including the subterms

of all ti, where the number depends on Q and K, and a match of the query Q on NK∪ST ,
for which we test the derivability of each atom A(t) resp. R(t, t′) in the match. By the

least model property, this will ensure that this partial model given by the match can

indeed be extended to a model

It follows that deciding K 
|= Q is in Σp
2, which means deciding K |= Q is in Πp

2.

As for (i) in case n is bounded by a constant k, we can by Proposition 11 eliminate

the NP oracle and obtain membership in co-NP.

To show the Πp
2-hardness for (i), we extend the encoding of graph non-3-colorability

in the proof of Proposition 11 in order to encode the constrained 3-colorability problem

of Lemma 5.

We first note that the DKB K constructed for the graph G = (V,E) allows under

UNA for a justified CAS model of form ICAS = 〈I, χ〉 such that 〈E(esc), ()〉 ∈ χ′ iff G

is not 3-colorable. To see this, recall that the constructed χ is justified iff G is not 3-

colorable. By construction of K, each justified CAS model I ′CAS = 〈I ′, χ′〉 of K such that

〈E(esc), ()〉 ∈ χ′ must satisfy χ ⊆ χ′; thus by non-redundancy of clashing assumptions

(Proposition 5), it follows that χ = χ′. Furthermore, we have that K |= ¬E(esc) if G is

not 3-colorable and K |= E(esc) otherwise.

Suppose now that vd1
, . . . , vdm

are the nodes in G of degree 1. We use additional

concepts S, FR, FG, FB and add the following assertions, axioms and defeasible axioms:

1. S(checkdj
), for all j = 1, . . . ,m

2. D(S � FR), D(S � FG), D(S � FB)

3. FR � ¬FG, FG � ¬FB , FR � ¬FB

4. FC � ¬∃C1Check−, FC � ¬∃C2Check− where C ∈ {R,G,B} and C1, C2 are the

remaining colors {R,G,B} \ {C}.

Intuitively, (1)-(3) allow us to select one of the colors for each node vdj
of degree 1. This

selection must be in alignment with possible color checks via CCheck roles issued by nodes

checki′,j′ that correspond to vdj
, that is, if color C is selected, then only incoming CCheck

arcs are possible for checkdj
. Furthermore, by non-redundancy of clashing assumptions

some color for vdj
must be selected, as ¬FC(checki′,j′) can not be proven for all three

colors C simultaneously from the axioms (3) and (4) because CCheck− can be true at

checki,j for at most one color C. Thus, each clashing assumption of a justified CAS model

of the the resulting DKB K′ must encode a color assignment ρ to the nodes vd1
, . . . , vdm

.

For an arbitrary such ρ, we obtain a CAS model IρCAS = 〈Iρ, χρ〉 of K′ from the

candidate justified CAS model ICAS = 〈I, χ〉 described in the proof of Proposition 11

by making, for each vdj
, checkdj

an instance of D and of FC where C = ρ(vdj
) is the

color of vdj
and adding 〈D � FC1

, checkdj
〉, 〈D � FC2

, checkdj
〉 to χ for the remaining
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colors C1 and C2. It then holds that IρCAS is a justified CAS model of K′ iff the coloring

ρ is not extendable to a 3-coloring of the full graph G.

By construction of K′ and the non-redundancy of clashing assumptions, it follows that

every justified CAS model I ′CAS = 〈I ′, χ′〉 of K′ such that 〈E(esc), ()〉 ∈ χ′ must under

UNA be of the form χ′ = χρ for some coloring ρ. It follows that K′ 
|= E(esc) iff some

coloring ρ is not extendable to a 3-coloring of the full graph G; hence deciding K |= E(esc)

is Πp
2-hard.

Like K in the proof of Proposition 11, also DKB K′ is acyclic and its TBox is the

same for each graph G, and thus along the same lines the result holds under the stated

restrictions and under data complexity.

The hardness results for the other cases follow from the results on exception safe

DKBs. �
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