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We examine the problem of prescribing the macroscale boundary condition to
the solute convective–diffusive mass transport equation at a heterogeneous surface
consisting of reactive circular disks distributed uniformly on a non-reactive surface.
The reaction rate at the disks is characterized by a first-order kinetics. This problem
was examined by Shah & Shaqfeh (J. Fluid Mech., vol. 782, 2015, pp. 260–299)
who obtained the boundary condition in terms of an effective first-order rate constant,
which they determined as a function of the Péclet number Pe = γ̇ a2/D, the fraction
φ of the surface area occupied by the reactive disks and the non-dimensional
reaction rate constant K = ka/D. Here, a is the radius of the disks, D is the solute
diffusivity, γ̇ is the wall shear rate and k is the first-order surface-reaction rate
constant. Their analysis assumed that Pe and K are O(1) while the ratio of the
microscale a to the macroscale H is small. The macroscale transport process is
convection–diffusion dominated under these conditions. We examine here the case
when the non-dimensional numbers based on the macroscale H are O(1). In this
limit the microscale transport problem is reaction rate dominated. We find that the
boundary condition can be expressed in terms of an effective rate constant only up
to O(ε), where ε = a/H. Higher-order expressions for the mass flux involve both the
macroscopic concentration and its surface gradient. The O(ε) microscale problem is
relatively easy to solve as the convective effects are unimportant and it is possible
to obtain analytical expressions for the effective rate constant as a function of φ
for both periodic and random arrangement of the disks without having to solve
the boundary integral equation as was done by Shah and Shaqfeh. The results thus
obtained are shown to be in good agreement with those obtained numerically by Shah
and Shaqfeh for Pe = 0. In a separate study, Shah et al. (J. Fluid Mech., vol. 811,
2017, pp. 372–399) examined the inverse-geometry problem in which the disks are
inert and the rest of the surface surrounding them is reactive. We show that the two
problems are related when Pe = 0 and kH/D = O(1). Finally, a related problem of
determining the current density at a surface consisting of an array of microelectrodes
is also examined and the analytical results obtained for the current density are found
to agree well with the computed values obtained by solving the integral equation
numerically by Lucas et al. (SIAM J. Appl. Maths, vol. 57(6), 1997, pp. 1615–1638)
over a wide range of parameters characterizing this problem.
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1. Introduction
Mass transfer of a reactant by diffusion and convection in a fluid coupled with a

chemical reaction at a surface occurs in numerous processes. For the surfaces that
are uniformly reactive with known reaction kinetics, the analytical description for
determining the total reaction rate and the reactant concentration distribution in the
fluid is well established. In practice, however, the surfaces are often heterogeneous,
and determining the concentration distribution accounting fully for the heterogeneity
remains challenging. We examine here a simplified model in which the surface
is smooth and consists of reactive surfaces that are all circular disks of radius a
uniformly distributed on an otherwise non-reactive surface. The kinetics at these
disks are simple, characterized by a first-order surface-reaction rate constant k (units:
m s−1). If the scale of the heterogeneity (i.e. a) is small compared to the macroscale
H (e.g. the width of a channel formed by two parallel heterogeneous walls), then it
may be possible to solve an appropriate microscale problem – on the scale of the
disk radius – and use the solution to prescribe the boundary conditions appropriate
for the macroscale problem. This was done by Shah & Shaqfeh (2015) who first
determined the total reaction rate per disk as a function of the fraction φ of the
area occupied by the disks, the Péclet number Pe= γ̇ a2/D, and the non-dimensional
reaction rate K = ka/D, known as the Damköhler number. Here, γ̇ is the shear rate
in the fluid near the wall and D is the diffusivity of the reactant in the fluid. These
investigators next carried out a matched asymptotic analysis for small ε ≡ a/H to
show that the boundary condition for the macroscale problem corresponds to treating
the entire surface with a homogeneous effective surface-reaction rate constant keff ,
which they determined for several values of Pe, φ and K for both periodic as well
as random arrays of the reactive disks. The microscale problem solved by Shah &
Shaqfeh (2015) assumed that the average concentration at the surface is constant.
The macroscale concentration, however, varies, in general, along the surface, and the
conditions under which the calculations based on the constant average concentration
assumption may be used for the macroscale analysis were not discussed.

The limit ε = a/H→ 0 for a given reactive system can be examined in at least
two different manners. In the first one, the non-dimensional numbers based on the
radius of the reactive disks (i.e. ka/D and γ̇ a2/D) and φ are treated as fixed, i.e.
O(1) quantities, as H becomes increasingly large in the limit process. This is the
limit investigated in detail by Shah & Shaqfeh (2015). A consequence of fixing
the non-dimensional numbers based on the microscale and then taking the limit
a/H→ 0 is that the non-dimensional reaction rate and the Péclet number based on
the macroscale become large, of O(ε−1) and O(ε−2), respectively. The mass transfer
process in this limit is therefore diffusion–convection limited on the macroscale and
even the simple boundary condition of vanishing concentration of the reactant at the
wall is sufficient for determining the concentration distribution in the fluid and the
mass flux at the wall, making it somewhat unnecessary to specify the mixed reactive
boundary condition at the walls in the macroscale description, unless determining the
small, but finite, concentration near the wall is of interest. The other limit process,
the one that we shall examine in the present study, treats the non-dimensional rate
constant and the Péclet number based on the macroscale H as O(1) quantities. In
this limit, the leading-order microscale description becomes reaction rate dominated
since the non-dimensional reaction rate based on a is vanishingly small, of O(ε). To
obtain useful results for the case when both ka/D and a/H are small but finite, it
is necessary to evaluate several terms in the matched asymptotic expansions on the
micro- and macroscales. The present analysis shows that the macroscale boundary
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352 A. S. Sangani

condition can be expressed in terms of an effective rate constant only up to O(ε)
and that this effective rate constant can be determined by solving the microscale
problem by taking the average concentration to be constant as was done by Shah &
Shaqfeh (2015). At O(ε2), the surface-reaction rate depends, in general, on both the
concentration and its macroscale gradient along the surface suggesting thereby that
the concept of an effective rate constant which yields the macroscale reaction rate in
terms of macroscale concentration is not always valid. In the limit process pursued in
the present study, the effective reaction rate constant at O(1) is given by the trivial
result keff = φk while the next, the O(ε) correction to the effective reaction rate,
requires solving a simpler problem involving the Laplace equation on the microscale.
We determine this correction analytically for both the spatially periodic and the
random arrangement of the disks. While the analysis is strictly valid for small K, we
find that its Padé approximant provides surprisingly accurate estimates even when K
is not small. We also show that the results are also useful for estimating the effective
reaction rate constant for a problem recently examined by Shah, Lin & Shaqfeh
(2017) in which the disks are chemically inert but the surrounding surface is reactive.

We also consider a related problem of determining the current density at a surface
consisting of an array of microelectrodes that was examined in detail previously by
Lucas, Sipcic & Stone (1997) and show that the analytical results obtained for the
effective reaction rate can be applied to this problem as well provided that the non-
dimensional bulk reaction rate constant is small.

2. Formulation of the problem
The reactant concentration satisfies the following non-dimensional equation under

steady state conditions:

Peouj
∂c
∂xj
=∇

2c. (2.1)

Here, the distances are non-dimensionalized by diving by the macroscale length
H, the velocity is non-dimensionalized by the characteristic fluid velocity U, and
Peo =UH/D is the macroscale Péclet number. The above equation is valid when the
diffusion coefficient is constant and the mass flux generated by the diffusion is small
compared to the mass flux due to the fluid flow, conditions that are often satisfied in
practice. We are interested in determining the macroscale boundary condition at the
reacting walls. The mass flux of the reactant at the wall due to diffusion must equal
the rate of consumption by the reaction at the surface, i.e.

nj
∂c
∂xj
=

Hqw

D
, (2.2)

where qw is the rate of reaction per unit area of the wall and nj is the unit vector
normal to the wall and pointing into the fluid. For the first-order reaction kinetics, the
rate at a point xw is given by

qw(xw)= k
∫
|x−xw|6ε

〈c〉1(xw|x)p(x) dA, (2.3)

where p(x) is the probability density for finding a disk with its centre at x and
〈c〉1(xw|x) is the conditionally averaged concentration with the centre of a disk fixed
at x. The integration is carried out over the centres of all the disks on the plane

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

58
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.588
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x3 = 0 that contain xw. This integral can be related to the integral over a disk whose
centre is at xw by treating the conditionally averaged concentration as a function of
two variables, with the first representing the position vector relative to the centre of
a disk and the second representing the centre of the disk:

〈c〉1(xw|x)≡ 〈c〉1(r, xw − r). (2.4)

Since the variations with respect to the second variable are expected to be small as
they depend on the macroscale variations, we can use the Taylor series expansion to
obtain

qw(xw) = k
∫

r6ε
〈c〉1(r, xw)p(xw) dA− k

∂

∂xiw

∫
r6ε

ri〈c〉1(r, xw)p(xw) dA

+
k
2!

∂2

∂xiw∂xjw

∫
r6ε

rirj〈c〉1(r, xw)p(xw) dA+ · · · . (2.5)

To determine the conditionally averaged field near a disk, let us rescale the distances
by the radius of the disk according to

x= xw + εX. (2.6)

The region near the disk, with X=O(1), will be referred to as the inner region and
the concentration 〈c〉1 in this region will be denoted by C to distinguish it from the
outer region concentration 〈c〉1, which will be denoted simply by c. For the sake of
simplicity, we shall consider the case of uni-directional flow along the x1-axis, as was
done by Shah & Shaqfeh (2015). The mass conservation equation for this special case
reduces in the inner region to

∇
2
XC= ε2PeoτwX3

∂C
∂X1
+O(ε3), (2.7)

where τw = (∂u1/∂x3)w is the non-dimensional shear rate at the wall, x3-axis being
along the normal vector nj and ∇2

X is the Laplacian operator based on the inner region
variable X. The boundary condition at the wall X3 = 0 is given by

∂C
∂X3
=

{
εKoC on the reactive disks,
0 otherwise, (2.8)

where Ko = kH/D is the non-dimensional rate constant based on the macroscale. The
boundary conditions far from the centre of the disk are obtained from the matching
requirement with the solution in the outer region. The latter must be obtained by
solving the macroscale equations (2.1)–(2.2) together with a suitable closure relation
for qw.

Let the macroscale concentration expanded near xw be given by

c= cw + ε

(
∂c
∂xj

)
w

Xj +O(ε2). (2.9)

Equation (2.9) then provides the matching condition for the inner region solution, C,
as |X| →∞. Let us expand, subject to a posteriori verification, the concentration in
the inner region in the powers of ε:

C=C0
+ εC1

+ ε2C2
+ · · · . (2.10)
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354 A. S. Sangani

The leading-order term C0 is trivial to determine since it satisfiesthe Laplace equation
with a vanishing flux at X3 = 0, and the matching with the outer region solution
therefore yields

C0
≡ cw. (2.11)

Substituting 〈c〉1 = cw in (2.5) yields the leading-order estimate for qw:

qw = φkcw +O(ε), (2.12)

where φ = πε2p(xw) is the area fraction of the disks. To this leading-order
approximation, the wall flux is independent of the shape or the spatial distribution of
the reactive patches on the surface. This, of course, is not the case for the higher-order
corrections. The next term, C1, in the inner region satisfies the Laplace equation with
the boundary condition at the wall given by

∂C1

∂X3
=

{
Kocw on the reactive disks,
0 otherwise, (2.13)

plus the matching requirement with the outer region (cf. (2.9))

C1
→

(
∂c
∂xj

)
w

Xj as |X|→∞. (2.14)

The solvability condition for a quantity satisfying the Laplace equation requires that
the total flux at X3 = 0 must match that at the infinity:

φKocw =

(
∂c
∂x3

)
w

. (2.15)

Unlike C0, the spatial distribution of the disks must also be specified to determine
C1. Let us suppose that the disks are arranged in a periodic array with each unit cell
consisting of N disks. Let the centres of the disks in the basic unit cell be denoted
by Xα, α = 1, 2, . . . ,N, with X1

= 0 being the test disk, fixed at x= xw.
This completes the formulation of the problem for C1. In the next section, we

present the results for the special cases corresponding to a simple periodic array with
N = 1 and a random array with N� 1.

3. Results for C1

The concentration C1 is given by the sum of the terms that vary linearly in the
plane parallel to the wall plus a term that depends linearly on the constant cw:

C1
=

(
∂c
∂x1

)
w

X1 +

(
∂c
∂x2

)
w

X2 +C∗ (3.1)

with C∗ satisfying the Laplace equation together with the conditions given by (2.13)
at X3 = 0.

It can be shown that

C∗(X)=−
Kocw

2π

N∑
α=1

∫
|Y|61

G(X−Xα
− Y) dAY, (3.2)
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Effective reaction rate on a heterogeneous surface 355

where G is the periodic Green’s function for the Laplace equation satisfying

∇
2
XG(X)=−4π

∑
XL

δD(X−XL). (3.3)

Here, δD is the Dirac’s delta function and XL are the lattice position vectors of the
periodic array. The sum is over all the lattice vectors. This Green’s function has the
limiting behaviour

G(X)→
1

|X−XL|
as |X−XL|→ 0 and G=−

2π

τ
|X3| for |X3| � 1, (3.4a,b)

where τ is the area of the unit cell. Physically, the Green’s function represents a
solution of the heat conduction problem with heat sources at the lattice points of a
doubly periodic array on the plane X3 = 0. Far from these sources, i.e. at distances
large compared to the lattice dimension, the temperature decreases linearly with |X3|.
The last condition gives C∗→KoNπX3cw/τ =KoφcwX3, which upon using (2.15), can
be shown to satisfy the matching condition for C1.

Note that, since the boundary condition at X3 = 0 is independent of the tangential
components of the concentration gradient, the dependence of C1 on the surface
gradient of the concentration is trivial and this simplifies the analysis considerably.

The Green’s function G is related to the function ψ1 in Sangani & Behl (1989) by

G=ψ1 − 2π|X3|/τ . (3.5)

Sangani & Behl (1989) have described in detail the methods for evaluating ψ1. This
function decays exponentially at large |X3|.

It should be noted that C∗ can be evaluated simply by carrying out integrations in
(3.2). This is in contrast to the most multi-particle interaction problems in which an
integral equation must be solved for determining the concentration or the velocity field.
This simplification occurs in the present problem because of the Neumann boundary
condition at the wall X3 = 0 which specifies the flux at the boundary.

The overall rate of reaction per unit area of the wall, qw, can be evaluated to O(ε)
using the expression for C1 as given by (3.1). The integral of the first two terms on
the right-hand side of (3.1) over the test disk vanishes and therefore only C∗, which
is proportional to cw, contributes to the integral. Thus, to O(ε), the reaction rate can
be expressed in terms of an effective surface-reaction rate constant keff , i.e. qw= keff cw,
with

keff

kφ
= 1− εK0F, (3.6)

where F is related to the average of C∗ over the test disk:

F=
1

2π2

∫
|X|61

dAX

N∑
α=1

∫
|Y|61

G(X− Y) dAY. (3.7)

We shall evaluate F for two special cases.

3.1. Periodic array
Let us first consider the case of a periodic array with N= 1. To evaluate the integrals
in (3.7), we decompose the Green’s function into singular and regular terms at the
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origin: G=Gs
+Gr with Gs(X)= 1/|X|, and integrate the two separately. The singular

part is integrated using the formulas

1
π

∫
|X|>|Y|

1
|X− Y|

dAY =

∞∑
n=0

[P2n(0)]2
|X|

n+ 1
, (3.8)

1
π

∫
|X|6|Y|61

1
|X− Y|

dAY = 2
∞∑

n=0

[P2n(0)]2
(|X|2n

− |X|)
1− 2n

. (3.9)

Equation (3.8) was derived using the Taylor series expansion of the integrand for small
Y and integrating each term separately while (3.9) was obtained using the Taylor series
expansion for X.

Substituting (3.8) and (3.9) into (3.7) and carrying out integration over X we obtain
the contribution to F resulting from the singular part of the Green’s function:

Fs
=

1
2π2

∫
|X|61

dAX

∫
|Y|61

1
|X− Y|

dAY =

∞∑
n=0

2
3
[P2n(0)]2

n+ 1
=

8
3π
. (3.10)

The last equality in (3.10) was obtained by making use of the fact that the infinite
series is related to a well-known integral identity for the Euler integral K:

K(r)=
π

2

∞∑
n=0

[P2n(0)]2r2n
;

∫ 1

0
K(r) d(r2)= 2. (3.11a,b)

The result (3.10) was also obtained previously using the Hankel transform technique
by Bender & Stone (1993) who examined the reaction–diffusion problem for an
isolated disk.

Next, let us evaluate the contribution from the regular part Gr of the Green’s
function at the origin arising from the rest of the lattice points. Since this function
is regular over the entire disk area, we use the Taylor series expansion:

Gr(X− Y)=
∞∑

n=0

1
n!
(X− Y)(n)(·)n∇(n)Gr(0), (3.12)

where we have used the notation

(S)(n)(·)n∇(n)
= Si1Si2 . . . Sin

∂n

∂Si1∂Si2 . . . ∂Sin
, (3.13)

with S=X− Y. We next use the binomial expansion

(X− Y)(n) =
n∑

s=0

n!
(n− s)!s!

X(s)Y(n−s), (3.14)

to obtain ∫
|X|61

∫
|Y|61

Gr(X− Y) dAX dAY

=

∞∑
n=0

n∑
s=0

n!
(n− s)!s!

∫
|X|61

dAX X(s)
∫
|Y|61

dAY Y(n−s)(·)n∇(n)Gr(0). (3.15)
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We carry out the angular integration of X(s) over a circle of constant radius |X| first.
For even values of s, the integral can be expressed in terms of products of two-
dimensional Kronecker delta functions in the x1 − x2 plane, i.e. (δi1 + δi2), which
also equals δij − δi3δj3, while the integral vanishes for the odd values of s. Since Gr

satisfies the Laplace equation, the terms resulting from the multiplication of δij with
the gradients of Gr vanish. This gives∫

|X|61
X(2s)(·)2s

∇
(2s)Gr dAX =

2π

2s+ 1
(2s− 1)!!
(2s)!!

(−1)s
(
∂

∂X3

)2s

Gr. (3.16)

The integration over Y can be carried out in a similar manner and the final result for
the double integration in (3.7) (with N = 1) is

F =
8

3π
+

1
2

Gr(0)−
1
8
∂2Gr

∂X2
3
(0)+

5
128

∂4Gr

∂X4
3
(0)+ · · ·

=
8

3π
+

∞∑
n=0

cn

(
∂

∂X3

)2n

Gr(0), (3.17)

with cn given by

cn =
(−1)n

22n+1

n∑
s=0

1
(s!)2((n− s)!)2

1
(s+ 1)(n− s+ 1)

. (3.18)

The derivatives of the Green’s function can be evaluated using the expressions given
in Sangani & Behl (1989). The details are given in the appendix where we take the
opportunity to correct some of the expressions given in that study. Substituting for the
numerical values of the derivatives of Gr we obtain, for square arrays,

F =
8

3π
+ φ1/2

[ −1.1002+ 0.2028φ + 0.1023φ2
+ 0.0393φ3

+ 0.0481φ4
+ 0.0288φ5

+ 0.0400φ6
+ · · · ], (3.19)

and for, hexagonal arrays,

F =
8

3π
+ φ1/2

[ −1.1061+ 0.1996φ + 0.0316φ2
+ 0.0116φ3

+ 0.0058φ4
+ 0.0034φ5

+ 0.0022φ6
+ · · · ] . (3.20)

Figure 1 shows the results for F obtained by including up to the first 32 terms in the
series for both square and hexagonal arrays. We see that, at least up to φ= 0.7, F as
a function of φ is essentially the same for both arrays and lower than for the random
arrays to be considered next. The expressions given by (3.19) and (3.20) are accurate
to within about 5 % for φ up to 0.35.

3.2. Random arrays
Let us now consider the case in which the disks are arranged randomly, with the
spatial distribution corresponding to a hard-disk molecular system. The results for this
case will be obtained by first considering N randomly placed disks within a unit cell
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FIGURE 1. F as a function of the area fraction φ of the disks for hexagonal (solid line),
square (stars) and random arrays (dashed line).

of a periodic array and then taking the limit N →∞. Taking ensemble average of
(3.7) over many hard-disk configurations, we obtain

F=
1

2π2

∫
R

∫
|X|61

∫
|Y|61

P(R|0)G(R+X− Y) dAR dAX dAY, (3.21)

where P(R|0) is the pair-probability density (in the inner region scaled variables) for
finding a disk with its centre at R given that a disk exists at the origin of the unit
cell and the integration over R is over the entire unit cell while that over X and Y
are over the area of the two disks at the origin and at R. The pair-probability density
for the hard-disk configuration is given by

P(R|0)=
{
δ2D(R) for R< 2,
(φ/π)g(R) for R > 2, (3.22)

where g(R) is the radial distribution function and δ2D is Dirac’s delta function in the
two-dimensional space. The integration over R is split into two parts with the singular,
Dirac delta function part of the pair-probability density yielding the contribution to F
corresponding to an isolated disk, i.e. 8/3π. For R> 2, the integrations over X and
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Y can be carried out also as before using the Taylor series expansion. This yields

F=
8

3π
+
φ

π

∫
R>2

∞∑
n=0

cn
∂2n

∂X2n
3

G(R)g(R) dAR, (3.23)

with cn given by (3.18). In the limit N → ∞, the unit cell size is much larger
than unity and G may be replaced by the infinite-space Green’s function: G =
1/R + O(N−1/2) for R of O(1). This approximation for the Green’s function can be
used for evaluating the terms with n > 1 in the above expression since they decay as
R−3 or faster. The n= 0 term needs to be treated separately. Accordingly, we write

F =
8

3π
+
φ

π

[
c0

∫
R>2

G(R) dAR + c0

∫
R>2

G(R)[g(R)− 1] dAR

+

∫
R>2

∞∑
n=1

cn
∂2nR−1

∂X2n
3

g(R) dAR

]
. (3.24)

The first integral on the right-hand side of the above expression is evaluated using the
fact that the average of G over the unit cell is zero. Therefore∫

R>2
G(R) dAR =−

∫
R<2

G(R) dAR =−4π, (3.25)

where we have used G = 1/R for R < 2. The remaining two integrals in (3.25) can
be evaluated by substituting G = 1/R and carrying out integrals from R = 2 to ∞
provided that g(R) − 1 decays faster than 1/R at infinity. The derivatives of G are
evaluated using

∂2nR−1

∂X2n
3
=
(2n)!
R2n+1

P2n(0). (3.26)

For very dilute hard-disk arrays g(R)= 1+O(φ). Substituting for cn from (3.18) into
(3.24) and carrying out integrations yields

F=
8

3π
− 1.8618φ +O(φ2). (3.27)

The radial distribution function for the non-dilute hard-disk random arrays can
be determined approximately by solving the Percus–Yevick equation. For the
three-dimensional (3-D) case of hard-spheres, this equation permits an analytical
solution but for the 2-D case of hard disks, this equation must be solved numerically
(Chae, Ree & Ree 1969; Adda-Bedia, Katzav & Vella 2008). We used the method
described by Adda-Bedia et al. (2008), according to which g(R) is expanded in
powers of φ:

g(R)= 1+
∞∑

k=1

φkgk(R) (3.28)

and gk(R) subsequently determined by solving an integro-differential equation. gk has
a compact support, being non-zero only for 26 R6 2k+ 2. Adda-Bedia et al. (2008)
computed terms up to k = 50 and compared the radial distribution function thus
determined with the results obtained using Monte Carlo simulations for φ = 0.62 and
found an excellent agreement. The integro-differential equation for each gk is solved
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numerically by converting it into a system of linear algebraic equation by discretizing
both the derivative and the integral terms. Calculations were done for four different
discretizations, with the minimum being 1R = 0.02, and the results were used to
extrapolate for 1R= 0. The coefficient of the O(φk) term fk in the expansion for F
in powers of φ is then evaluated using

fk =

∫ 2k

2
22k−1π1−k

∞∑
n=0

cnP2n(0)(2n)!R−2n dR. (3.29)

Substituting (3.28) into (3.24), it is possible to determine F in power series of φ.
The first few terms are given below

F=
8

3π
− 1.8618φ + 1.347φ2

− 0.465φ3
+ 0.149φ4

− 0.03φ5
+ 0.01φ6

+ · · · . (3.30)

The coefficients of the last two terms are only approximate as their convergence
with decreasing 1R is somewhat slow. This, however, does not affect significantly
the overall value of F shown in figure 1 where we see that F for random arrays is
significantly greater than for square and hexagonal arrays.

4. The O(ε2) problem

Since the leading O(1) term C0 in the inner region is a constant, the convective term
in (2.7) does not contribute to the inner region governing equation even for the O(ε2)

correction C2. In other words, C2 also satisfies the Laplace equation. The boundary
condition on the surface of the reactive disks at the wall is given by

∂C2

∂X3
=KoC1

=Ko

[
X1

(
∂c
∂x1

)
w

+ X2

(
∂c
∂x2

)
w

+C∗
]
, (4.1)

and the matching with the outer region requires that

C2
→

1
2

(
∂2c
∂xi∂xj

)
w

XjXk as |X|→∞. (4.2)

Since C∗ is linear in cw, we see that C2 is linear in both the concentration and its
surface gradients. This is similar to C1 which also depended linearly on both the
concentration and its gradients. But, whereas the part of C1 that depended on the
gradients did not contribute to the overall reaction rate, it can be shown that O(ε2)

contribution to the rate will depend on both the concentration and its surface gradient.
In other words, the concept of the effective rate constant does not hold in general at
O(ε2). We should note that the last two integrals on the right-hand side of (2.5) do
not contribute to the macroscopic flux up to O(ε) but may also contribute at O(ε2).
Finally, it can be shown, from the formal solution for C2, that the part of the overall
flux that depends linearly on the surface gradient involves a lattice sum that is not
absolutely convergent suggesting thereby that its contribution to qw will depend on the
location of xw relative to the macroscopic boundaries of the wall. Thus, estimating the
O(ε2) correction to the flux will be far more cumbersome.
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5. Comparison with the Shah and Shaqfeh analysis
As mentioned in the introduction, Shah & Shaqfeh (2015) considered the case when

the non-dimensional numbers based on the radius a of the disks, i.e. K≡ ak/D= εKo
and Pe = a2γ̇ / D = Peoτwε

2 are O(1) constants. The analysis by Juhasz & Deen
(1991) also considered the same case except that these investigators examined one-
dimensional heterogeneous surfaces with the strips of reactive patches. In both studies,
the outer region equations are given by, in lieu of (2.1) and (2.2),

∇
2c= ε−2Peτ−1

w uj
∂c
∂xj
, (5.1)

nj
∂c
∂xj
= ε−1q∗w, (5.2)

where q∗w = aqw/D. We note that both τw and q∗w/cw are O(1) when the macroscale
Reynolds number and ka/D are O(1). Both studies provided no justification for
ignoring gradients in the average (macroscale) concentration parallel to the wall.

According to (5.1), the outer region is convection dominated so that, to leading
order, the concentration does not change along the streamline, and hence at the wall
x3→ 0 (in the outer region). There exists a mass transfer boundary layer of thickness
O((ε2/Pe)1/3) which is small compared to the macroscale but large compared to the
microscale. Under these conditions the flux of the solute normal to the wall will
be much greater than that along the wall and therefore the surface gradient of the
solute concentration is relatively unimportant. In the case of small or zero Péclet
numbers, where one may expect the average concentration variation along the surface
to become important, we can estimate the magnitude of the concentration gradient
parallel to the surface as follows. Let us suppose that we have a diffusion in a long
pore with heterogeneous wall and that the average concentration is depleting along its
axis, which coincides with the x1-axis, due to the reaction at the pore wall. We must
then have the diffusion term ∂2c/∂x2

1 comparable to the rate of reaction, i.e. ε−1Keff c,
where Keff = keff a/D is the effective Damköhler number based on the radius of the
disks. This yields ∂c/∂x1 ∼ ε

−1/2c since Keff is O(1) when ka/D = O(1). Therefore,
the boundary condition in terms of an effective rate constant remains valid to O(1)
regardless of the Péclet number as long as ka/D is O(1) or Ko is O(ε−1). The error
due to the neglect of the variation in the macroscale concentration along the surface
is O(ε1/2) when Pe= 0 and O(ε) when Pe is O(1).

The terms containing the concentration gradient parallel to the wall in (4.1) can be
neglected when Ko is large and one may proceed with the calculation of C2 and the
higher-order terms to produce an expression for keff in a series of powers of Ko but
solving numerically the integral equation for selected values of Ko or, equivalently, K
would be less cumbersome as was done by Shah & Shaqfeh (2015).

It is interesting to compare the results obtained in the present study with those
by Shah & Shaqfeh (2015) even though they correspond to different limits. Shah &
Shaqfeh (2015) presented their results in terms of a Sherwood number, which is the
same as the effective Damköhler number based on the radius of the disk divided by
the area fraction of the reactive disks, i.e.

Sh=
keff a
Dφ
=K[1− εKoF+O(ε2)], (5.3)

with K = εKo = ka/D. Shah & Shaqfeh (2015) presented results for K equal to 0.1,
1, 10 and 300 at various φ and Pe for both square and random arrays. Since our
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analysis is accurate only for small K and Pe, we choose the following equivalent
Padé approximant for comparison purposes, which ensures that Sh is finite even when
K =∞:

Sh=
K

1+ εKoF+O(ε2)
'

K
1+KF

. (5.4)

Let us first consider the case of an isolated disk (φ → 0) for which F = 8/
(3π) ' 0.85. The term on the extreme right-hand side of (5.4) expanded for small
K gives Sh = K[1 − 0.85K + 0.72K2

− 0.61K3
+ · · ·] which compares well with the

exact result obtained by Bender & Stone (1993): Sh = K[1 − 0.85K + 0.73K2
−

0.63K3
+ O(K4)]. At the other extreme (i.e. K→∞), Sh→ 3π/8 ' 1.18 according

to the above approximation. This is within approximately 7 % of the exact result
Sh→ 4/π' 1.27 for K =∞. Thus, the Padé approximation (5.4) provides reasonably
accurate estimates for the entire range of values of K for the single disk. Since F
decreases as φ is increased, one may expect that the Padé approximant given by (5.4)
will provide reasonably accurate estimates for the entire range of values of φ and K
for Pe= 0.

Shah & Shaqfeh (2015) present somewhat limited results for small Pe. For
Pe = 10−3 they present results for φ = 0.00126 and φ = 0.064 in their figure 9.
The results for the former are essentially the same as for an isolated disks and so
we shall compare only the results for φ = 0.064 for which F = 0.57 (cf. figure 1).
For K = 1, the approximation (5.4) predicts Sh= 0.64 which is essentially the same
as one obtained by Shah & Shaqfeh (2015). For K = 10, the approximation gives
Sh = 1.49 compared to approximately 1.51 obtained by Shah & Shaqfeh (2015),
and for K = 300, Sh= 1.94 predicted by (5.4) is approximately 8 % lower than that
obtained by Shah & Shaqfeh (2015).

Additional results for non-dilute arrays are presented in figure 12 of Shah &
Shaqfeh (2015) in terms a variable η ≡ K/Sh − 1, which, in our approximation,
simply equals KF. These calculations were limited to Pe= 2. For φ = 0.4, F= 0.208
and, therefore η = 0.208 for K = 1, a result that is in perfect agreement with Shah
& Shaqfeh (2015). Likewise, for φ = 0.6, F equals 0.104 so that η is also 0.104
for K = 1 which, once again, is essentially the same as the one obtained by Shah &
Shaqfeh (2015). The same applies to φ = 0.2 for which F= 0.376.

Shah & Shaqfeh (2015) also show the results for random arrays in their figure 12.
Here, surprisingly, they find that the results for the random arrays are essentially the
same as those for the periodic arrays in contrast to the results of the present study. For
example, according to the results shown in figure 1, F, and hence η/K, for random
arrays is approximately 0.52 for φ = 0.2, which is approximately 40 % greater than
0.376 for square arrays. Shah & Shaqfeh (2015) obtained η/K equal to approximately
0.41 for the entire range of K, a result that is significantly lower. Similar discrepancy
is observed for other values of φ. These investigators used random arrays with only
ten disks per unit cell in obtaining their results and it is possible that this resulted in
a gross underestimate of η. The particle–particle interactions are long ranged and lead
to substantial errors for small N, especially at small K for which the conditionally
averaged disturbance is not screened. This is similar to the well-studied problem of
finite N errors in the Stokes flow sedimentation problem (see, e.g. Ladd (1990); Mo
& Sangani (1994); Dodd et al. (1995)). It can be shown that for small K, F(N)
determined from the numerical simulations with N disks per unit cell of a square
array is given by

F(N)= F− 1.1002S(0)(φ/N)1/2 +O(1/N). (5.5)
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This correction arises due to the influence of the periodic images of the test disk
and its immediate vicinity. Here, S(0) is the zero-wavenumber structure factor for
the array. Its value for random arrays with hard-disk configurations can be estimated
using the expression given by Chae et al. (1969) (also given by equation (28) in
Dodd et al. (1995)). For φ = 0.2, S(0) = 0.42 and therefore the finite N error in
F equals 0.07. If we add this correction to the result obtained by Shah & Shaqfeh
(2015) we obtain F = 0.48, a value that is approximately 10 % lower than that
indicated in figure 1. For φ = 0.4, S(0) equals 0.15 and the finite N correction to
F is approximately 0.03. According to figure 1, F equals 0.2 and 0.3, respectively,
for square and random arrays. The corresponding results as read from figure 12 of
Shah & Shaqfeh (2015) are approximately 0.21 and 0.25. Once again if we add the
finite N correction to their random array result, then we obtain an estimate that is
approximately 10 % different. Shah & Shaqfeh (2015) obtained their results for Pe= 2
and it is possible that the finite Pe affects the random array results more than for the
square arrays as the concentration wakes in the latter case would be expected to be
shielded by the upstream disks.

Apart from the above differences, which are most likely resulting from the finite N
simulations by Shah & Shaqfeh (2015), we conclude that (5.4) provides reasonably
accurate estimates for Sh for most values of φ and K, at small Péclet numbers.

It may be noted that (5.4) may be expressed alternatively as Sh−1
= K−1

+ F
according to which the overall resistance can be thought of as the sum of the
resistances due to finite reaction and diffusion times.

5.1. Reactive surfaces blocked by inert disks
In a sequel, Shah et al. (2017) examined the inverse problem in which the surface
X3= 0 consists of a periodic array of non-reactive disks embedded onto an otherwise
reactive surface with a first-order kinetics characterized by the rate constant k. If, once
again, we consider the case when Ko and φ are O(1), then the concentration in the
inner region is given by

C= cw + ε

[
KocwX3 +

(
∂c
∂x1

)
w

X1 +

(
∂c
∂x2

)
w

X2 −C∗
]
+O(ε2), (5.6)

with C∗ given by (3.2). The first term inside the square brackets on the right-hand side
of the above equation ensures that the concentration gradient component normal to the
wall equals Kocw on the reactive surface. The last term inside the square brackets has
an opposite sign compared to that in (3.1) and it ensures that the flux on the inert
disk is zero. Since the integral of C∗ over the unit cell is zero, the integral over the
reactive surface is just the opposite of the integral over the inert disks. We therefore
obtain the following expression for the effective reaction rate:

keff

k
= 1− φ − εKoφF+O(ε2), (5.7)

where φ is the area fraction of the inert disks. The above result is equivalent to its
Padé approximant

keff

k
=

(1− φ)2

1− φ + εKoφF+O(ε2)
. (5.8)
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Shah et al. (2017) present their results in terms of the effective Damköhler number
normalized by the area fraction of the reactive surface, Sp ≡ keff a/(D(1 − φ)).
Substituting K = ka/D= εKo in (5.8) we obtain

Sp =
(1− φ)K

1− φ + φKF
. (5.9)

The above results is exact for small K up to O(K2). Let us examine its behaviour for
K →∞ and φ→ 0. It satisfies the obvious condition that Sp = K if φ = 0 for all
K. On the other hand, Sp→ 1/(φF(0)) = 3π/(8φ) if K =∞ and φ→ 0 – half the
correct asymptote Sp→ 3π/(4φ) (Tio & Sadhal (1991); Shah et al. (2017)). Therefore
we expect (5.9) to provide reasonably accurate estimates provided that K is not too
large and φ is not too small.

Numerical results for Pe = 0 are presented in figure 6 of Shah et al. (2017) for
K = 1, 10 and 300 and for φ = 0.05, 0.1, 0.2 and 0.3. The results for K = 1 are
essentially the same as given by the approximate relation (5.9). The variation in Sp is
rather small for K = 1 as it varies from 0.97 to 0.89 as φ is varied from 0.05 to 0.3.
It is interesting to note that at φ = 0.5 the result Sp = 0.87 for the inert disks is the
same as for Sh for the reactive disks so that at least for this case the same effective
Damköhler number is obtained whether the disks are reactive or inert. For K = 10,
the approximate relation (5.9) predicts Sp to vary from 7.6 to 4.5 as φ is varied from
0.05 to 0.3 compared to the respective range from 8.5 to 5 obtained by Shah et al.
(2017) indicating that (5.9) may be used to estimate Sp to within approximately 10 %
for K 6 10.

Note that (5.9) may be expressed alternatively in terms of resistances due to finite
reaction and diffusion times: S−1

p =K−1
+ φF/(1− φ). The diffusive resistance due to

the inert disks is φ/(1− φ) times that due to the reactive disks.

6. Steady state current in arrays of surface microelectrodes
A related problem of determining current through a heterogeneous electrode surface

consisting of a square array of circular microelectrodes was examined by Lucas et al.
(1997). The problem formulation is described in detail by Bender & Stone (1993)
in which a species is generated by a first-order reaction in the bulk electrolyte,
diffuses through the electrolyte, and releases an electron via a reversible reaction at
the electrodes. A suitably defined non-dimensional concentration Φ satisfies

∇
2
XΦ = α

2Φ, (6.1)

with the boundary condition Φ→ 0 at infinity and

Φ = 1+
1
K
∂Φ

∂X3
, (6.2)

at the surface of the circular electrodes of radii unity on the plane X3 = 0. On the
remaining passive surface at X3 = 0, the flux ∂Φ/∂X3 equals zero. The quantity of
interest is the current density, which can be related to the integral of the species flux
over an electrode:

Q=−
∫
|X|61

∂Φ

∂X3
dA=K

∫
|X|61

(1−Φ) dA. (6.3)
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The constant α2 in (6.1) is the non-dimensional reaction rate constant for the reaction
in the bulk while K is the constant based on the reactions at the microelectrode
surface. Lucas et al. (1997) have examined the same set of equations for a periodic
array of microelectrodes. They presented results for Q as a function of α, K, and the
area fraction φ of the microelectrodes. In this section we show that their results for
small α can be related to the those obtained in the present study.

We consider the case when both α and K are small, with K = αKo, Ko being O(1).
In the outer region, at large distances from the electrodes, Φ is given by

Φ =Φw exp(−αX3), (6.4)

with the constant Φw expanded in the power series:

Φw =Φ
0
w + αΦ

1
w + α

2Φ2
w + · · · . (6.5)

This outer region solution provides boundary conditions for the inner region expansion
as X3→∞. In the inner region we write

Φ =Φ0
+ αΦ1

+ α2Φ2
+ · · · , (6.6)

where both Φ0 and Φ1 satisfy the Laplace equation, and ∇2Φ2
= Φ0. It is easy to

show that Φ0
≡Φ0

w and that Φ1 is the same as that given by (3.2) for C∗ with Kcw
in that equation replaced by Ko(Φ

0
w− 1). Therefore it can be shown that, as X3→∞,

the inner region solution behaves as

Φ = Φ0
w + α[Koφ(Φ

0
w − 1)X3 +Φ

1
w]

+α2
[Φ0

wX2
3/2+ φX3Ko(Φ

1
w −KoF(Φ0

w − 1))+Φ2
w] + · · · , (6.7)

which, on comparing with (6.5) for small X3, leads to

Φ0
w =

φKo

1+ φKo
; Φ1

w =−
φK2

oF
(1+ φKo)2

. (6.8a,b)

The integrated flux over an electrode is therefore given by

Q=π

[
αKo

1+ φKo
−

α2K2
oF

(1+ φKo)2
+O(α3)

]
. (6.9)

On substituting K = αKo and rearranging the above expression requiring that Q must
remain positive for all values of K yields

Q=
πK

1+ FK + φK/α
. (6.10)

The behaviour for large X3 as given by (6.7) requires that X3 be large compared to
the unit cell size. The outer region solution given by (6.4) is therefore valid provided
that α−1

� φ−1/2, or for φ >α2
� 1. Our analysis is of course valid strictly for α� 1

but the use of the Padé approximant (6.10) may extend the range of applicability to
even the case when α and K are not small. Lucas et al. (1997) present results for
Q for several values of α, K, and φ in their figures 7–9, 11 and 12. Their results
are in very good agreement, within 5 %–10 %, with those given by (6.10) as long as
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α/φ1/2 < 1 even for K =∞. For example, for α = 0.5 and K =∞, equation (6.10)
predicts Q equal to 2.73, 3.38 and 4.06 for, respectively, φ equal to 0.5, 0.35 and
0.2. These agree reasonably well with, respectively, 2.8, 3.55 and 4.4 obtained by
Lucas et al. (1997) for the same conditions. Likewise, for α= 1, K=∞ and φ= 0.71,
equation (6.10) predicts Q = 4.05 which compares well with 4.1 obtained by Lucas
et al. (1997). For φ = 0.5 the corresponding values are, respectively, 4.83 and 5.2.
Note that for this last case α/φ1/2

= 1.4 somewhat higher than the aforementioned
restriction. This suggests that (6.10) may also be used for estimating Q for random
arrays provided that φ is not too small.

Finally, it should be noted that (6.10) may be expressed alternatively as π/Q =
K−1
+ F + φ/α according to which the overall resistance is the sum of resistances

due to finite surface reaction, diffusion and bulk reaction times.

7. Conclusion

We have examined three problems involving heterogeneous surfaces. The reaction
problems are characterized by a/H, ka/D, φ and Pe. Depending on their values there
are different possibilities of how the limit a/H→ 0 should be taken to model a given
system. The present study is applicable to the reaction rate dominated systems that
are relevant to heterogeneous catalysis as properly designed catalyst typically employ
minimal amount of catalyst and the trend in catalysis is towards making nanoscale
deposition of the catalytic material on passive substrates for which the Péclet number
based on the microscale is typically small. We showed that for such systems, the
first correction accounting for the finite diffusion time is relatively straightforward as
it requires a simple double integration to be carried out over the reactive regions. At
higher orders, the concept of a simple effective reaction rate is valid only if a/H is
small compared to ka/D. We also found that the Padé approximants based on this
asymptotic analysis provides estimates that are accurate over surprisingly large range
of values of φ and ka/D. Although the analysis was carried out for the special case
of a first-order reaction kinetics, its extension to more complex kinetics is relatively
straightforward as only the linearized rate expression around cw is necessary for
evaluating the leading effect of the finite diffusion time. Finally, we also derived an
expression for the current density for an array of microelectrodes for the case when
the bulk reaction rate constant α2 is small and showed that the Padé approximant
of this also provides estimates that are accurate over wide ranges of values of the
parameters.

Appendix. Evaluation of the derivatives of the periodic Green’s function

The derivatives of the Green’s function were evaluated using the expressions given
in Sangani & Behl (1989). Note that G = ψ1 − (2π/τ)|X3|. Sangani & Behl (1989)
present three methods for evaluating the derivatives of ψ1, of which the method 2
based on the Ewald’s technique is suitable for evaluating the lower-order, and the
method 3 for the higher-order derivatives. The method 1, which is suitable for larger
values of X3, is not needed in the present study. The expressions given by Sangani &
Behl (1989) contained errors in their equations (20), (25) and (28). These are corrected
here. The correct expression for ψ1 using the Ewald’s technique is

ψ1 =
1
τ
[CI +CII −CIII], (A 1)
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with CI–CIII defined as in Sangani & Behl (1989). Note that the sign in the front of
CIII was incorrect in Sangani & Behl (1989). The derivatives at X = 0 are evaluated
by the following expressions according to the method 2:

∂nCI

∂Xn
3
= τρ−1/2

∑
xL

2s6n∑
s=0

(−1)n+sn!
s!

(
π

ρ

)n−s

Φn−s−1/2(π|XL|
2/ρ), (A 2)

∂nCII

∂Xn
3
= (−1)3n/2(2π)n/2ρ(1−n)/2(n− 1)!!

∑
qL 6=0

Φ−n/2−1/2(πρ|qL|
2), (A 3)

∂nCIII

∂Xn
3
=−2ρ1/2(−1)n/2

(
π

ρ

)n/2 n!
(n/2)!(n− 1)

. (A 4)

Here, XL and qL are, respectively, the vectors in the real and reciprocal space, ρ is an
arbitrary constant whose value may be chosen such that the sums in both the real and
reciprocal space converge rapidly (ρ = h2 was chosen in the present study), and Φ is
the incomplete Gamma function. Since we are interested in only the regular part of
the derivatives of Gr at origin, the incomplete Gamma function should be evaluated
by its regular part at origin as given by

Φr
n(0)=−1/(n+ 1). (A 5)

The above equations are specialized form of the more general expressions given in
Sangani & Behl (1989) and correct two additional errors in that study. (Φn−s−m−1/2 in
their (25) should be Φn−s−m+1/2 and the factor p − 2m − 1/2 in the denominator in
their (28) should be replaced by p−m+ 1/2. Note that all the computational results
reported in Sangani & Behl (1989) were free of these errors that resulted only during
the preparation of the manuscript of that study.)

For higher-order derivatives, the method 3 can be used, according to which

∂nGr

∂Xn
3
=

∑
XL 6=0

(−1)nPn(0)n!|XL|
−n−1. (A 6)

The above sum is convergent for n > 2. We used the method 2 for n 6 6 and the
method 3 for larger n although, for verification purposes, both methods were used for
n= 4 and n= 6 to check that the derivatives evaluated by the two methods method
agree with each other.
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