
TLP 17 (1): 49–74, 2017. C© Cambridge University Press 2016

doi:10.1017/S1471068416000107 First published online 3 May 2016

49

Enablers and inhibitors in causal justifications
of logic programs�

PEDRO CABALAR and JORGE FANDINNO

Department of Computer Science, University of Corunna, A Corunna, Spain

(e-mail: cabalar@udc.es, jorge.fandino@udc.es)

submitted 21 October 2015; revised 26 January 2016; accepted 26 February 2016

Abstract

In this paper, we propose an extension of logic programming where each default literal

derived from the well-founded model is associated to a justification represented as an algebraic

expression. This expression contains both causal explanations (in the form of proof graphs

built with rule labels) and terms under the scope of negation that stand for conditions that

enable or disable the application of causal rules. Using some examples, we discuss how these

new conditions, we respectively call enablers and inhibitors, are intimately related to default

negation and have an essentially different nature from regular cause-effect relations. The most

important result is a formal comparison to the recent algebraic approaches for justifications

in logic programming: Why-not Provenance and Causal Graphs. We show that the current

approach extends both Why-not Provenance and Causal Graphs justifications under the well-

founded semantics and, as a byproduct, we also establish a formal relation between these two

approaches.

KEYWORDS: causal justifications, well-founded semantics, stable models, answer set pro-

gramming

1 Introduction

The strong connection between non-monotonic reasoning and logic programming

(LP) semantics for default negation has made possible that LP tools became

nowadays an important paradigm for knowledge representation and problem-

solving in Artificial Intelligence. In particular, Answer Set Programming (Marek and

Truszczyński 1999; Niemelä 1999) has established as a preeminent LP paradigm for

practical non-monotonic reasoning with applications in diverse areas of Artificial

Intelligence including planning, reasoning about actions, diagnosis, abduction and

beyond. The Answer Set Programming paradigm is based on the stable models

semantics (Gelfond and Lifschitz 1988) and is also closely related to the other

mainly accepted interpretation for default negation, well-founded semantics (Van

� This is an extended version of a paper presented at the Logic Programming and Non-monotonic
Reasoning Conference (LPNMR 2015), invited as a rapid communication in TPLP. The authors
acknowledge the assistance of the conference program chairs Giovambattista Ianni and Miroslaw
Truszczynski.

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

50 P. Cabalar and J. Fandinno

Gelder et al. 1991). One interesting difference between these two LP semantics and

classical models (or even other non-monotonic reasoning approaches) is that true

atoms in LP must be founded or justified by a given derivation. These justifications

are not provided in the semantics itself, but can be syntactically built in some way in

terms of the program rules, as studied in several approaches (Denecker and Schreye

1993; Specht 1993; Pemmasani et al. 2004; Gebser et al. 2008; Pontelli et al. 2009;

Oetsch et al. 2010; Schulz and Toni 2016).

Rather than manipulating justifications as mere syntactic objects, two recent

approaches have considered extended multi-valued semantics for LP where justifica-

tions are treated as algebraic constructions: Why-not Provenance (WnP) (Damásio

et al. 2013) and Causal Graphs (CG) (Cabalar et al. 2014a). Although these two

approaches present formal similarities, they start from different understandings of

the idea of justification. On the one hand, WnP answers the query “why literal L

might hold” by providing conjunctions of hypothetical modifications on the program

that would allow deriving L. These modifications include rule labels, expressions like

not(A) with A an atom, or negations ‘¬’ of the two previous cases. As an example,

a justification for L like r1 ∧ not(p) ∧ ¬r2 ∧ ¬not(q) means that the presence of rule

r1 and the absence of atom p would allow deriving L (hypothetically) if both rule r2
were removed and atom q were added to the program. If we want to explain why L

actually holds, we have to restrict to justifications without ‘¬’, that is, those without

program modifications (which will be the focus of this paper).

On the other hand, CG-justifications start from identifying program rules as

causal laws so that, for instance, (p ← q) can be read as “event q causes effect p”.

Under this viewpoint, (positive) rules offer a natural way for capturing the concept

of causal production, i.e. a continuous chain of events that has helped to cause or

produce an effect (Hall 2004; Hall 2007). The explanation of a true atom is made

in terms of graphs formed by rule labels that reflect the ordered rule applications

required for deriving that atom. These graphs are obtained by algebraic operations

exclusively applied on the positive part of the program. Default negation in CG is

understood as absence of cause and, consequently, a false atom has no justification.

The explanation of an atom A in CG is more detailed than in WnP, since the

former contains graphs that correspond to all relevant proofs of A, whereas in

WnP we just get conjunctions that do not reflect any particular ordering among

rule applications. However, as explained before, CG does not capture the effect

of default negation in a given derivation and, sometimes, this information is very

valuable, especially if we want to answer questions of the form “why not”.

As in the previous paper on CG (Cabalar et al. 2014a), our final goal is to

achieve an elaboration tolerant representation of causality that allows reasoning

about cause–effect relations. Under this perspective, although WnP is more oriented

to program debugging, its possibility of dealing with hypothetical reasoning of

the form “why not” would be an interesting feature to deal with counterfactuals,

since several approaches to causality (see Section 5) are based on this concept.

To understand the kind of problems, we are interested in, consider the following

example. A drug d in James Bond’s drink causes his paralysis p provided that he

was not given an antidote a that day. We know that Bond’s enemy, Dr. No, poured

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

Enablers and inhibitors in causal justifications of logic programs 51

the drug:

p← d, not a (1)

d (2)

In this case, it is obvious that d causes p, whereas the absence of a just enables the

application of the rule. Now, suppose we are said that Bond is daily administered

an antidote by the MI6, unless it is a holiday h:

a← not h (3)

Adding this rule makes a become an inhibitor of p, as it prevents d to cause p by

rule (1). But suppose now that we are in a holiday, that is, fact h is added to the

program (1)–(3). Then, the inhibitor a is disabled and d causes p again. However,

we do not consider that the holiday h is a (productive) cause for Bond’s paralysis p

although, indeed, the latter counterfactually depends on the former: “had not been

a holiday h, Bond would have not been paralysed”. We will say that the fact h,

which disables inhibitor a, is an enabler of p, as it allows applying rule (1).

In this work, we propose dealing with these concepts of enablers and inhibitors

by augmenting CG justifications with a new negation operator ‘∼’ in the CG

causal algebra. We show that this new approach, which we call Extended Causal

Justifications (ECJ), captures WnP justifications under the well-founded semantics,

establishing a formal relation between WnP and CG as a byproduct.

The rest of the paper is structured as follows. The next section defines the new

approach. Sections 3 and 4 explain the formal relations to CG and WnP through

a running example. Section 5 studies several examples of causal scenarios from the

literature and finally, Section 6 concludes the paper. The online appendix contains

an auxiliary figure depicting some common algebraic properties and the formal

proofs of theorems from the previous sections.

2 Extended causal justifications (ECJ)

A signature is a pair 〈At, Lb〉 of sets that respectively represent atoms (or propositions)

and labels. Intuitively, each atom in At will be assigned justifications built with rule

labels from Lb. In principle, the intersection At∩Lb does not need to be empty: we

may sometimes find it convenient to label a rule using an atom name (normally, the

head atom). Justifications will be expressions that combine four different algebraic

operators: a product ‘∗’ representing conjunction or joint causation; a sum ‘+’

representing alternative causes; a non-commutative product ‘·’ that captures the

sequential order that follows from rule applications; and a non-classical negation ‘∼’
which will precede inhibitors (negated labels) and enablers (doubly negated labels).

Definition 1 (Terms)

Given a set of labels Lb, a term, t is recursively defined as one of the following

expressions t ::= l |
∏

S |
∑

S | t1 · t2 | ∼t1, where l ∈ Lb, t1, t2 are in their turn

terms and S is a (possibly empty and possibly infinite) set of terms. A term is

elementary if it has the form l, ∼l or ∼∼l with l ∈ Lb being a label. �

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

52 P. Cabalar and J. Fandinno

Associativity

t · (u·w) = (t·u) · w

Absorption

t = t + u · t · w
u · t · w = t ∗ u · t · w

Identity

t = 1 · t
t = t · 1

Annihilator

0 = t · 0
0 = 0 · t

Idempotency

x · x = x

Addition distributivity

t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Product distributivity

c ·d · e = (c ·d)∗ (d · e) with d �= 1
c · (d ∗ e) = (c ·d)∗ (c · e)
(c∗d) · e = (c · e)∗ (d · e)

Fig. 1. Properties of the ‘·’ operator (c, d, e are terms without ‘+’ and x is an elementary

term). Distributivity is also satisfied over infinite sums and products.

Pseudo-complement

t ∗ ∼t = 0
∼∼∼t = ∼t

De Morgan

∼(t+u) = (∼t ∗∼u)
∼(t ∗u) = (∼t+∼u)

Weak excl. middle

∼t + ∼∼t = 1

appl. negation

∼(t · u) = ∼(t ∗ u)

Fig. 2. Properties of the ‘∼’ operator.

When S = {t1, . . . , tn} is finite, we simply write
∏

S as t1 ∗ · · · ∗ tn and
∑

S as

t1 + · · · + tn. Moreover, when S = ∅, we denote
∏

S by 1 and
∑

S by 0, as usual,

and these will be the identities of the product ‘∗’ and the addition ‘+’, respectively.

We assume that ‘·’ has higher priority than ‘∗’ and, in turn, ‘∗’ has higher priority

than ‘+’.

Definition 2 (Values)

A (causal) value is each equivalence class of terms under axioms for a completely

distributive (complete) lattice with meet ‘∗’ and join ‘+’ plus the axioms of Figures 1

and 2. The set of (causal) values is denoted by VLb. �

Note that 〈VLb,+, ∗,∼ , 0, 1〉 is a completely distributive Stone algebra (a pseudo-

complemented, completely distributive, complete lattice which satisfies the weak

excluded middle axiom) whose meet and join are, as usual, the product ‘∗’ and the

addition ‘+’. Informally speaking, this means that these two operators satisfy the

properties of a Boolean algebra but without negation.

Note also that all three operations, ‘∗’, ‘+’ and ‘·’ are associative. Product ‘∗’
and addition ‘+’ are also commutative, and they hold the usual absorption and

distributive laws with respect to infinite sums and products of a completely

distributive lattice.

The axioms for ‘·’ in Figure 1 are directly extracted from the CG algebraic

structure. For a more detailed explanation on their induced behaviour, see Cabalar

et al. (2014a). The new contribution in this paper with respect to the CG algebra

is the introduction of the ‘∼’ operator whose meaning is captured by the axioms

in Figure 2. As we can see, this operator satisfies De Morgan laws and acts as

a complement for the product t ∗ ∼t = 0. However, it diverges from a classical

Boolean negation in some aspects. In the general case, the axioms ∼∼t = t (double

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

Enablers and inhibitors in causal justifications of logic programs 53

negation) and t + ∼t = 1 (excluded middle) are not valid. Instead1, we can replace

a triple negation ∼∼∼t by ∼t, and we have a weak version of the excluded middle

axiom ∼t + ∼∼t = 1. The negation of an application is defined as the negation

of the product ∼(t · u) def= ∼(t ∗ u) which, in turn, is equivalent to ∼(u ∗ t), since ∗
is commutative. In other words, under negation, the rule application ordering is

disregarded. It is not difficult to see that we can apply the axioms of negation to

reach an equivalent expression that avoids its application to other operators. We

say that a term is in negation normal form if no other operator is in the scope of

negation ‘∼’. Moreover, a negation normal form term is in disjuntive normal form

(DNF) if: (1) no sum is in the scope of another operator; (2) only elementary terms

are in the scope of application and (3) every product is transitively closed, that is,

of the form of a·b ∗ b·c ∗ a·c. Without loss of generality, we assume from now that

all functions defined over causal terms are applied over their DNF form, although,

we will usually write them in negation normal form for short.

The lattice order relation is defined as usual in the following way:

t � u iff (t ∗ u = t) iff (t + u = u)

Consequently, 1 and 0 are respectively the top and bottom elements with respect to

relation �.

Definition 3 (Labelled logic program)

Given a signature 〈At, Lb〉, a (labelled logic) program P is a set of rules of the form:

ri : H ← B1, . . . , Bm, not C1, . . . , not Cn (4)

where ri ∈ Lb is a label or ri = 1, H (the head of the rule) is an atom, and Bi’s and

Ci’s (the body of the rule) are either atoms or terms. �

When n = 0, we say that the rule is positive, furthermore, if in addition m = 0 we

say that the rule is a fact and omit the symbol ‘←’. When ri ∈ Lb, we say that the

rule is labelled; otherwise ri = 1 and we omit both ri and ‘:’. By these conventions,

for instance, an unlabelled fact A is actually an abbreviation of (1 : A←). A program

P is positive when all its rules are positive, i.e. it contains no default negation. It is

uniquely labelled when each rule has a different label or no label at all. In this paper,

we will assume that programs are uniquely labelled. Furthermore, for the sake of

clarity, we also assume that, for every atom A ∈ At, there is an homonymous label

A ∈ Lb, and that each fact A in the program actually stands for the labelled rule

(A : A←). For instance, following these conventions, a possible labelled version for

the James Bond’s program could be program P1 below:

r1 : p← d, not a d

r2 : a← not h h

1 This behaviour coincides indeed with the properties for default negation obtained in Equilibrium
Logic (Pearce 1996) or the equivalent General Theory of Stable Models (Ferraris et al. 2007).

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

54 P. Cabalar and J. Fandinno

where facts d and h stand for rules (d : d←) and (h : h←), respectively.

An ECJ-interpretation is a mapping I : At −→ VLb assigning a value to each atom.

For interpretations I and J , we say that I � J , when I(A) � J(A) for each atom

A ∈ At. Hence, there is a �-bottom interpretation 0 (resp. a �-top interpretation 1)

that stands for the interpretation mapping each atom A to 0 (resp. 1). The value

assigned to a negative literal not A by an interpretation I , denoted as I(not A), is

defined as I(not A) def= ∼I(A), as expected. Similarly, for a term t, I(t) def= [t] is the

equivalence class of t.

Definition 4 (Model)

An interpretation I satisfies a rule like (4) iff
(
I(B1) ∗ . . . ∗ I(Bm) ∗ I(not C1) ∗ . . . ∗ I(not Cn)

)
· ri � I(H) (5)

and I is a (causal) model of P , written I |= P , iff I satisfies all rules in P . �

As usual in LP, for positive programs, we may define a direct consequence

operator TP s.t.

TP (I)(H) def=
∑
{

(
I(B1) ∗ . . . ∗ I(Bn)

)
· ri | (ri : H ← B1, . . . , Bn) ∈ P }

for any interpretation I and atom H ∈ At. We also define TP ↑α (0) def= TP (TP ↑α−1 (0))

for any successor ordinal α and

TP ↑α (0) def=
∑
β<α

TP ↑β (0)

for any limit ordinal α. As usual, ω denotes the smallest infinite limit ordinal. Note

that 0 is considered a limit ordinal and, thus, TP ↑0 (0) =
∑

β<0 TP ↑β (0) = 0.

Theorem 1

Let P be a (possibly infinite) positive logic program. Then, (i) the least fixpoint

of the TP operator, denoted by lfp(TP), satisfies lfp(TP) = TP ↑ω (0) and it is

the least model of P , (ii) furthermore, if P is finite and has n rules, then

lfp(TP) = TP ↑ω (0) = TP ↑n (0). �

Theorem 1 asserts that, as usual, positive programs have a �-least causal model.

As we will see later, this least model coincides with the traditional least model (of the

program without labels) when one just focuses on the set of true atoms, disregarding

the justifications explaining why they are true. For programs with negation, we

define the following reduct.

Definition 5 (Reduct)

Given a program P and an interpretation I , we denote by P I the positive program

containing a rule of the form

ri : H ← B1, . . . , Bm, I(not C1), . . . , I(not Cn) (6)

for each rule of the form (4) in P . �

Program P I is positive and, from Theorem 1, it has a least causal model. By ΓP (I),

we denote the least model of program P I . The operator ΓP is anti-monotonic and,

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

Enablers and inhibitors in causal justifications of logic programs 55

consequently, Γ2
P is monotonic (Proposition 4 in the appendix) so that, by Knaster–

Tarski’s theorem, it has a least fixpoint �P and a greatest fixpoint �P
def= ΓP (�P).

These two fixpoints respectively correspond to the justifications for true and for

non-false atoms in the (standard) well-founded model (WFM), we denote as WP .

For instance, in our running example, �P1
(d) = Γ2

P1
↑α (0)(d) = d for 1 � α points

out that atom d is true because of fact d. Similarly, �P1
(h) = h and �P1

(a) = ∼h·r2
reveals that atom h is true because of fact h, and that atom a is not true because

fact h has inhibited rule r2.

Furthermore,

�P1
(p) = Γ2

P1
↑α (0)(p) = (∼(∼h·r2) ∗ d)·r1 = (∼∼h ∗ d)·r1 + (∼r2 ∗ d)·r1

for 2 � α. That is, Bond has been paralysed because fact h has enabled drug d

to cause the paralysis by means of rule r1. This corresponds to the justification

(∼∼h ∗ d)·r1. Notice how the real cause d is a positive label (not in the scope

of negation), whereas the enabler h is in the scope of a double negation ∼∼h.
Justification (∼r2 ∗ d)·r1 means that d·r1 would have been sufficient to cause p,

had not been present r2. This example is also useful for illustrating the im-

portance of axiom appl. negation. By directly evaluating the body of rule r1, we

have seen that Γ2
P1
↑2 (0)(p)=(∼(∼h · r2) ∗ d) · r1. Then, axiom appl. negation allows

us to break the dependence between ∼h and r2 into enablers and inhibitors:

∼(∼h · r2) = ∼(∼h ∗ r2) = ∼∼h +∼r2 and, applying distributivity, we obtain one

enabled justification, (∼∼h ∗ d)·r1, and one disabled one, (∼r2 ∗ d)·r1.
In our previous example, the least and greatest fixpoint coincided �P1

= �P1
=

Γ2
P1
↑2 (0). To illustrate the case where this does not hold consider, for instance, the

program P2 formed by the following negative cycle:

r1 : a← not b r2 : b← not a

In this case, the least fixpoint of Γ2
P assigns �P2

(a) = ∼r2·r1 and �P2
(b) = ∼r1·r2,

while, in its turn, the greatest fixpoint of Γ2
P corresponds to �P2

(a) = r1 and

�P2
(b) = r2. If we focus on atom a, we can observe that it is not concluded to be

true, since the least fixpoint �P has only provided one disabled justification ∼r2·r1
meaning that r2 is acting as a disabler for a. But, on the other hand, a cannot be

false either since the greatest fixpoint provides an enabled justification r1 for being

non-false (remember that �P provides justifications for non-false atoms). As a result,

we get that a is left undefined because r2 prevents it to become true while r1 can

still be used to conclude that it is not false.

To capture these intuitions, we provide some definitions. A query literal (q-literal)

L is either an atom A, its default negation ‘not A’ or the expression ‘undef A’ meaning

that A is undefined.

Definition 6 (Causal well-founded model)

Given a program P , its causal WFM �P is a mapping from q-literals to values s.t.

�P (A) def= �P (A) �P (not A) def= ∼�P (A) �P (undef A) def= ∼�P (A)∗∼�P (not A) �

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

56 P. Cabalar and J. Fandinno

Let l be a label occurrence in a term t in the scope of n � 0 negations. We say

that l is an odd or an even occurrence if n is odd or even, respectively. We further

say that l is a strictly even occurrence if it is even and n > 0.

Definition 7 (Justification)

Given a program P and a q-literal L, we say that a term E with no sums is a

(sufficient causal) justification for L iff E � �P (L). Odd (resp. strictly even)

labels2 in E are called inhibitors (resp. enablers) of E. A justification is said to be

inhibited if it contains some inhibitor and it is said to be enabled otherwise. �

True atoms will have at least one enabled justification, whereas false atoms only

contain disabled justifications. As an example of a query for a plain atom A, take the

already seen explanation for p in Bond’s example program P1: �P1
(p) = �P1

(p) =

(∼∼h ∗ d)·r1 + (∼r2 ∗ d)·r1. We have here two justifications for atom p, let us call

them E1 =(∼∼h∗d)·r1 and E2 = (∼r2 ∗ d)·r1. Justification E1 is enabled because it

contains no inhibitors (in fact, E1 is the unique real support for p). Moreover, h is

an enabler in E1 because it is strictly even (it is in the scope of double negation),

whereas d is a productive cause, since it is not in the scope of any negation. On the

contrary, E2 is disabled because it contains the inhibitor r2 (it occurs in the scope of

one negation). Intuitively, r2 has prevented d·r1 to become a justification of p. On

the other hand, for atom a, we had �P1
(a)=∼h · r2 that only contains an inhibited

justification (being h the inhibitor), and so, atom a is not true. Now, if we query

about the negative q-literal not a, we obtain �P1
(not a)=∼�P1

(a) which in this case

happens to be ∼�P1
(a)=∼(∼h · r2) = ∼∼h+∼r2. That is, q-literal not a holds, being

enabled by h. Moreover, ∼r2 points out that removing r2 would suffice to cause not a

too. It is easy to see that the explanations we can get for q-literals not A or undef A

will have all their labels in the scope of negation (either as inhibitors or as enablers).

To illustrate a query for undef A, let us return to program P2 whose standard WFM

left both a and b undefined. Given the values, we obtained in the least and greatest

fixpoints, the causal WFM will assign �P2
(a) = ∼r2·r1 and �P2

(b) = ∼r1·r2, that

is, r2 prevents r1 to cause a and r1 prevents r2 to cause b. Furthermore, the values

assigned to their respective negations, �P2
(not a) = ∼r1 and �P2

(not b) = ∼r2,
point out that atoms a and b are not false because rules r1 and r2 have respectively

prevented them to be so. Finally, we obtain that undef a is true because

�P (undef a) = ∼�P2
(a) ∗ ∼�P2

(not a) = (∼∼r2 +∼r1) ∗ ∼∼r1 = ∼∼r2 ∗ ∼∼r1

that is, rules r1 and r2 together have made a undefined. Similarly, b is also undefined

because of rules r1 and r2, �P (undef b) = ∼∼r1 ∗ ∼∼r2.
The next theorem shows that the literals satisfied by the standard WFM are

precisely those ones containing at least one enabled justification in the causal WFM.

2 We just mention labels, and not their occurrences because terms are in negation normal form and E
contains no sums. Thus, having odd and even occurrences of a same label at a same time would mean
that E = 0.

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

Enablers and inhibitors in causal justifications of logic programs 57

Theorem 2

Let P be a labelled logic program over a signature 〈At, Lb〉, where Lb is a finite set

of labels and let WP its (standard) WFM. A q-literal L holds with respect to WP

if and only if there is some enabled justification E of L, that is, E � �P (L) and E

does not contain odd negative labels. �

Back to our example program P1, as we had seen, atom p had a unique enabled

justification E1 = (∼∼h∗d)·r1. The same happens for atoms d and h whose respective

justifications are just their own atom labels. Therefore, these three atoms hold in the

standard WFM, WP1
. On the contrary, as we discussed before, the only justification

for a, �P1
(a) = ∼h·r2, is inhibited by h, and thus, a does not hold in WP1

. The

interest of an inhibited justification for a literal is to point out “potential” causes

that have been prevented by some abnormal situation. In our case, the presence of

∼h in �P1
(a) = ∼h·r2 points out that an exception h has prevented r2 to cause

a. When the exception is removed, the inhibited justification (after removing the

inhibitors) becomes an enabled justification.

In our running example, if we consider a program P3 obtained by removing the

fact h from P1, then �P3
(a) = r2 points out that a has been caused by rule r2 in this

new scenario. This intuition about inhibited justifications is formalised as follows.

Definition 8

Given a term t in DNF, by �x : VCG
Lb −→ VCG

Lb , we denote the function that removes

the elementary term x from t as follows:

�x(t)
def=

⎧⎪⎪⎨
⎪⎪⎩

�x(u)⊗ �x(w) if t = u⊗ v with ⊗ ∈ {+, ∗, ·}
1 if ∼∼t is equivalent to ∼∼x
0 if t is equivalent to ∼x

Note that we have assumed that t is in DNF. Otherwise, �x(t)
def= �x(u), where u is

an equivalent term in DNF. �

Theorem 3

Let P be a program over a signature 〈At, Lb〉, where Lb is a finite set of labels. Let

Q be the result of removing from P all rules labelled by some ri ∈ Lb. Then, the

result of removing ri from the justifications of some atom A with respect to program

P are justifications of A with respect to Q, that is, �∼ri(�P (A)) � �Q(A).

3 Relation to causal graph justifications

We discuss now the relation between ECJ and CG approaches. Intuitively, ECJ

extends CG causal terms by the introduction of the new negation operator ‘∼’.
Semantically, however, there are more differences than a simple syntactic extension.

A first minor difference is that ECJ is defined in terms of a WFM, whereas CG

defines (possibly) several causal stable models. In the case of stratified programs, this

difference is irrelevant, since the WFM is complete and coincides with the unique

stable model. A second, more important difference is that CG exclusively considers

productive causes in the justifications, disregarding additional information like the

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

58 P. Cabalar and J. Fandinno

inhibitors or enablers from ECJ. As a result, a false atom in CG has no justification

– its causal value is 0 because there was no way to derive the atom. For instance,

in program P1, the only CG stable model I just makes I(a) = 0 and we lose the

inhibited justification ∼h · r2 (default r2 could not be applied). True atoms like p also

lose any information about enablers: I(p) = d·r1 and nothing is said about ∼∼h.
Another consequence of the CG orientation is that negative literals not A are never

assigned a cause (different from 0 or 1), since they cannot be “derived” or produced

by rules. In the example, we simply get I(not a) = 1 and I(not p) = 0.

To further illustrate the similarities and differences between ECJ and CG, consider

the following program P4 capturing a variation of the Yale Shooting Scenario (Hanks

and McDermott 1987).

dt+1 : deadt+1 ← shoott, loadedt, not abt

lt+1 : loadedt+1 ← loadt

at+1 : abt+1 ← watert

loaded0

dead0

ab0

load1

water3

shoot8

plus the following rules corresponding inertia axioms

Ft+1 ← Ft, not Ft+1 Ft+1 ← Ft, not Ft+1

for F ∈ {loaded, ab, dead}. Atoms of the form A represent the strong negation of

A and we disregard models satisfying both A and A. Atom dead9 does not hold in

the standard WFM of P4, and so there is no CG-justification for it. Note here the

importance of default reasoning. On the one hand, the default flow of events is that

the turkey, Fred, continues to be alive when nothing threats him. Hence, we do not

need a cause to explain why Fred is alive. On the other hand, shooting a loaded

gun would normally kill Fred, being this a cause of its death. But, in this example,

another exceptional situation – water spilled out – has inhibited this existing threat

and allowed the world to flow as if nothing had happened (that is, following its

default behaviour).

In the CG-approach, dead9 is simply false by default and no justification is

provided. However, a gun shooter could be “disappointed” since another conflicting

default (shooting a loaded gun normally kills) has not worked. Thus, an expected

answer for the shooter’s question “why not dead9?” is that water3 broke the default,

disabling d9. In fact, ECJ yields the following inhibited justification for dead9:

(∼water3 ∗ shoot8 ∗ load1·l2) · d9 (7)

meaning that dead9 could not be derived because inhibitor water3 prevented the

application of rule d9 to cause the death of Fred. Note that inertia rules are not

labelled, which, as mentioned before, is syntactic sugar for rules with label 1. Since

1 is the identity of product and application, this has the effect of not being traced in

the justifications. Note also that, according to Theorem 3, if we remove fact water3
(the inhibitor) from P4 leading to a new program P5, then we get:

�P5
(dead9) = (shoot8 ∗ load1·l2) · d9 (8)

which is nothing else but the result of removing ∼water3 from (7). In fact, the only

CG stable model of P5 makes this same assignment (8) which also corresponds

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

Enablers and inhibitors in causal justifications of logic programs 59

shoot8 load1 shoot8 load1

l2 l2

d9 d9

G2 G∗
2

Fig. 3. G2 is the cause of dead9 in program P4 while G∗2 is its associated causal graphs, that

is, its reflexive and transitive closure.

to the causal graph depicted in Figure 3. In the general case, CG-justifications

intuitively correspond to enabled justifications after forgetting all the enablers.

Formally, however, there is one more difference in the definition of causal values:

CG causal values are defined as ideals for the poset of a type of graphs formed by

rule labels.

Definition 9 (Causal graph)

Given some set Lb of (rule) labels, a causal graph (c-graph) G ⊆ Lb × Lb is a

reflexively and transitively closed set of edges. By GLb, we denote the set of CG.

Given two c-graphs G and G′, we write G � G′ when G ⊇ G′. �

Intuitively, CG, like G2 in Figure 3, are directed graphs representing the causal

structure that has produced some event. Furthermore, G � G′ means that G contains

enough information to yield the same effect as G′, but perhaps more than needed

(this explains G ⊇ G′). For this reason, we sometimes read G � G′ as “G′ is stronger

than G”. Causes will be �-maximal (or ⊆-minimal) CG. Formally, including reflexive

and transitive edges allows to capture this intuitive relation simply by the subgraph

relation. Note that, since CG are reflexively closed, every vertex has at least one

edge (the reflexive one) and, thus, we can omit the set of vertices. Besides, for the

sake of clarity, we only depict the minimum set of edges necessary for defining a

causal graph (transitive and reflexive reduction). For instance, graph G2 in Figure 3

is the transitive and reflexive reduction of the causal graph G∗2.

Definition 10 (CG Values in Cabalar et al. 2014a)

Given a set of labels Lb, a CG causal value is any ideal (or lower-set) for the poset

〈GLb,�〉. By ICG
Lb , we denote the set of CG causal values. Product ‘∗’, sums ‘+’ and

the �-order relation are defined as the set intersection, union and the subset relation,

respectively. Application is given by U·U ′ def= { G′′ � G ·G′ | G ∈ U and G′ ∈ U ′ }. �

It has been shown in Fandinno (2015a) that CG values can be alternatively

characterised as a free algebra generated by rule labels under the axioms of a

complete distributive lattice plus the axioms of Figure 1.

Definition 11 (CG Values in Fandinno 2015a)

Given a set of labels Lb, a CG term is a term without negation ‘∼’. CG causal values

are the equivalence classes of CG terms for a completely distributive (complete)

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

60 P. Cabalar and J. Fandinno

lattice with meet ‘∗’ and join ‘+’ plus the axioms of Figure 1. By VCG
Lb , we denote

the set of CG causal values. �

Theorem 4 (Causal values isomorphism from Fandinno 2015a)

The function term : ICG
Lb −→ VCG

Lb given by

term(U) �→
∑
G∈U

∏
(v1 ,v2)∈G

v1·v2

is an isomorphism between algebras 〈ICG
Lb ,+, ∗, ·,GLb, ∅〉 and 〈VCG

Lb ,+, ∗, ·, 1, 0〉. �

Theorem 4 states that CG causal values can be equivalently described either

as ideals of CG or as elements of an algebra of terms. Furthermore, by abuse of

notation, by G, we also denote the ideal whose maximum element is G, corresponding

to term(G) as well. For instance, for the causal graph G2 in Figure 3, it follows

G2 = term(G2) = term(↓G2) with ↓G2 the ideal whose maximum element is G2.

Moreover, from the equivalences in Figure 1, it also follows that

G2 = shoot8·d9 ∗ load1·l2 ∗ l2·d9 ∗ α

= shoot8·d9 ∗ load1·l2 ∗ l2·d9

= shoot8·d9 ∗ load1·l2·d9

= (shoot8 ∗ load1·l2)·d9

where α = load1·d9 ∗ shoot8·shoot8 ∗ d9·d9 ∗ load1·load1 ∗ l2·l2 ∗ d9·d9 is a term that, as

we can see, can be ruled out and corresponds to the transitive and reflexive doted

edges in G∗2. That is, justification (8) associated to atom dead9 by the causal WFM

of program P5 actually corresponds to causal graph G2.

Theorem 4 also formalises the intuition that opens this section: ECJ extends CG

causal terms by the introduction of the new negation operator ‘∼’. We formalise next

the correspondence between CG and ECJ justifications.

Definition 12 (CG mapping)

We define a mapping λc : VLb −→ VCG
Lb from ECJ values into CG values in the

following recursive way:

λc(t) def=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λc(u)⊗ λc(w) if t = u⊗ v with ⊗ ∈ {+, ∗, ·}
1 if t = ∼∼l with l ∈ Lb

0 if t = ∼l with l ∈ Lb

l if t = l with l ∈ Lb

Note that we have assumed that t is in DNF. Otherwise, λc(t) def= λc(u), where u is an

equivalent term in DNF. �

Function λc maps every negated label ∼l to 0 (which is the annihilator of both

product ‘∗’ and application ‘·’ and the identity of addition ‘+’). Hence λc removes all

the inhibited justifications. Furthermore λc maps every doubly negated label ∼∼l to

1 (which is the identity of both product ‘∗’ and application ‘·’). Therefore λc removes

all the enablers (i.e. doubly negated labels ∼∼l) for the remaining (i.e. enabled)

justifications.

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

Enablers and inhibitors in causal justifications of logic programs 61

A CG interpretation is a mapping Ĩ : At −→ VCG
Lb . The value assigned to a negative

literal not A by a CG interpretation Ĩ , denoted as Ĩ(not A), is defined as: Ĩ(not A) def= 1

if Ĩ(A) = 0; Ĩ(not A) def= 0 otherwise. A CG interpretation Ĩ is a CG model of rule

like (4) iff
(
Ĩ(B1) ∗ . . . ∗ Ĩ(Bm) ∗ Ĩ(not C1) ∗ . . . ∗ Ĩ(not Cn)

)
· ri � Ĩ(H) (9)

Notice that the value assigned to a negative literal by CG and ECJ interpretations is

different. According to Cabalar et al. (2014a), a CG interpretation Ĩ is a CG stable

model of a program P iff Ĩ is the least model of the program P Ĩ . In the following,

we provide an ECJ-based characterisation of the CG stable models that will allow

us to relate both approaches. By λc(I), we will denote a CG interpretation Ĩ s.t.

Ĩ(A) = λc(I(A)) for every atom A.

Definition 13 (CG stable models)

Given a program P , a CG interpretation Ĩ is a CG stable model of P iff there exists a

fixpoint I of the operator Γ2
P , i.e. ΓP (ΓP (I)) = I , such that Ĩ = λc(I) = λc(ΓP (I)). �

Theorem 5

Let P be a program over a signature 〈At, Lb〉, where Lb is a finite set of labels.

Then, the CG stable models (Definition 13) are exactly the causal values and causal

stable models defined in Cabalar et al. (2014a). �

Theorem 5 shows that Definition 13 is an alternative definition of CG causal stable

models. Furthermore, it settles that every causal model corresponds to some fixpoint

of the operator Γ2
P . Therefore, for every enabled justification there is a corresponding

CG-justification common to all stable models. In order to formalise this idea, we

just take the definition of causal explanation from Cabalar et al. (2014b).

Definition 14 (CG-justification)

Given an interpretation I , we say that a c-graph G is a (sufficient) CG-justification

for an atom A iff term(G) � Ĩ(A). �

Since term(·) is a one-to-one correspondence, we can define its inverse graph(v) def=

term−1(v) for all v ∈ VCG
Lb .

Theorem 6

Let P be a program over a signature 〈At, Lb〉, where Lb is a finite set of labels. For

any enabled justification E of some atom A w.r.t. �P , i.e. E � �P (A), there is a

CG-justification G def= graph(λc(E)) of A with respect to any stable model Ĩ of P . �

As happens between the (standard) well-founded and stable model semantics, the

converse of Theorem 6 does not hold in general. That is, we may get a justification

that is common to all CG-stable models but does not occur in the ECJ WFM. For

instance, let P6 be the program consisting on the following rules:

r1 : a← not b r2 : b← not a, not c c r3 : c← a r4 : d← b, not d

The (standard) WFM of program P6 is two-valued and corresponds to the unique

(standard) stable model {a, c}. Furthermore, there are two causal explanations of

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

62 P. Cabalar and J. Fandinno

c with respect to this unique stable model: the fact c and the pair of rules r1·r3.
Note that when c is removed, {a, c} is still the unique stable model, but all atoms

are undefined in the WFM. Hence, r1·r3 is a justification with respect to the unique

stable model of the program, but not with respect to its WFM.

4 Relation to why-not provenance

An evident similarity between ECJ and WnP approaches is the use of an alternating

fixpoint operator (Van Gelder 1989) which has been actually borrowed from WnP.

However, there are some slight differences. A first one is that we have incorporated

from CG the non-commutative operator ‘·’ which allows capturing not only which

rules justify a given atom, but also the dependencies among these rules. The second

is the use of a non-classical negation ‘∼’ that is crucial to distinguish between

productive causes and enablers. This distinction cannot be represented with the

classical negation ‘¬’ in WnP since double negation can always be removed.

Apart from the interpretation of negation in both formalisms, there are other

differences too. As an example, let us compare the justifications we obtain for dead9

in program P5. While for ECJ, we obtained (8) (or graph G2 in Figure 3), the

corresponding WnP justification has the form:

l2 ∧ d9 ∧ load1 ∧ shoot8

∧ not(ab1) ∧ not(ab2) ∧ . . . ∧ not(ab7) ∧ not(water0) ∧ . . . ∧ not(water6)
(10)

A first observation is that the subexpression l2 ∧ d9 ∧ load1 ∧ shoot8 constitutes,

informally speaking, a “flattening” of (8) (or graph G2), where the ordering among

rules has been lost. We get, however, new labels of the form not(A) meaning

that atom A is required not to be a program fact, something that is not present

in CG-justifications. For instance, (10) points out that water can not be spilt

on the gun along situations 0, . . . , 7. Although this information can be useful for

debugging (the original purpose of WnP), its inclusion in a causal explanation

is obviously inconvenient from a knowledge representation perspective, since it

explicitly enumerates all the defaults that were applied (no water was spilt at any

situation) something that may easily blow up the (causally) irrelevant information

in a justification.

An analogous effect happens with the enumeration of exceptions to defaults,

like inertia. Take program P7 obtained from P4 by removing all the performed

actions, i.e. facts load1, water3 and shoot7. As expected, Fred will be alive, deadt,

at any situation t by inertia. ECJ will assign no cause for deadt, not even any

inhibited one, i.e. �P (deadt) = 1 and �P (deadt) = 0 for any t. The absence of

labels in �P (deadt) = 1 is, of course, due to the fact that inertia axioms are not

labelled, as they naturally represent a default and not a causal law. Still, even if

inertia were labelled, say, with ink per each situation k, we would obtain a unique

cause for �P (deadt) = in1 · . . . · int for any t > 0 while maintaining no cause

for �P (deadt) = 0. However, the number of minimal WnP justifications of deadt
grows quadratically, as it collects all the plans for killing Fred in t steps loading and

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

Enablers and inhibitors in causal justifications of logic programs 63

shooting once. For instance, among others, all the following:

d9 ∧ ¬not(load0) ∧ r2 ∧ ¬not(shoot1) ∧ not(water0) ∧ not(ab1)

d9 ∧ ¬not(load0) ∧ r2 ∧ ¬not(shoot2) ∧ not(water0) ∧ not(water1) ∧ not(ab1) ∧ not(ab2)

d9 ∧ ¬not(load1) ∧ r2 ∧ ¬not(shoot3) ∧ not(water0) ∧
∧ not(water1) ∧ not(water2) ∧ not(ab1) ∧ not(ab2) ∧ not(ab3)

. . .

are WnP-justifications for dead9. The intuitive meaning of expressions of the form

¬not(A) is that dead9 can be justified by adding A as a fact to the program. For

instance, the first conjunction means that it is possible to justify dead9 by adding the

facts load0 and shoot1 and not adding the fact water0. We will call these justifications,

which contain a subterm of the form ¬not(A), hypothetical in the sense that they

involve some hypothetical program modification.

Definition 15 (Provenance values)

Given a set of labels Lb, a provenance term t is recursively defined as one of the

following expressions t ::= l |
∏

S |
∑

S | ¬t1, where l ∈ Lb, t1 is in its turn a

provenance term and S is a (possibly empty and possible infinite) set of provenance

terms. Provenance values are the equivalence classes of provenance terms under the

equivalences of the Boolean algebra. We denote by BLb the set of provenance values

over Lb. �

Informally speaking, with respect to ECJ, we have removed the application ‘·’
operator, whereas product ‘∗’ and addition ‘+’ hold the same equivalences as in

Definition 2 and negation ‘∼’ has been replaced by ‘¬’ from Boolean algebra. Thus,

‘¬’ is classical and satisfies all the axioms of ‘∼’ plus ¬¬t = t. Note also that, in

the examples, we have followed the convention from Damásio et al. (2013) of using

the symbols ‘∧’ and ‘∨’ to respectively represent meet and join. However, in formal

definitions, we will keep respectively using ‘∗’ and ‘+’ for that purpose. We define a

mapping λp : VLb −→ BLb in the following recursive way:

λp(t) def=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λp(u)⊗ λp(w) if t = u⊗ v with ⊗ ∈ {+, ∗}
λp(u) ∗ λp(w) if t = u · v
¬λp(u) if t = ∼u
l if t = l with l ∈ Lb

Definition 16 (Provenance)

Given a program P , the WnP program P(P) def= P ∪P ′, where P ′ contains a labelled

fact of the form (∼not(A) : A) for each atom A ∈ At not occurring in P as a fact.

We will write P instead of P(P) when the program P is clear by the context. We

denote by WhyP (L) def= λp(�P(L)) the WnP of a q-literal L. We also say that a

justification is hypothetical when not(A) occurs oddly negated in it, non-hypothetical

otherwise. �

Theorem 7

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

64 P. Cabalar and J. Fandinno

Let P be program over a finite signature 〈At, Lb〉. Then, the provenance of a literal

according to Definition 16 is equivalent to the provenance defined by Damásio et al.

(2013). �

Theorem 8

Let P be program over a finite signature 〈At, Lb〉. �P is the result of removing all

non-hypothetical justification from �P and each occurrence of the form ∼∼not(A)

for the remaining ones, that is, �P = �(�P), where � is the result of removing every

label of the form not(A), that is � is the composition of �not(A1) ◦ �not(A2) ◦ . . . ◦ �not(An)

with At = {A1, A2, . . . , An}. �

On the one hand, Theorem 7 shows that the provenance of a literal can be

obtained by replacing the negation ‘∼’ by ‘¬’ and ‘·’ by ‘∗’ in the causal WFM of the

augmented program P. On the other hand, Theorem 8 asserts that non-hypothetical

justifications of a program and its augmented one coincide when subterms of the

form ∼∼not(A) are removed from justifications of the latter. Consequently, we

can establish the following correspondence between the ECJ justifications and the

non-hypothetical WnP justifications.

Theorem 9

Let P be program over a finite signature 〈At, Lb〉. Then, the ECJ justifications of

some atom A (after replacing ‘·’ by ‘∗’ and ‘∼’ by ‘¬’) correspond to the WnP

justifications of A (after removing every label of the form not(B) with B ∈ At), that

is, λp(�P)(A) = �(WhyP)(A), where � is the result of removing every label of the

form not(A) as in Theorem 8. �

Theorem 9 establishes a correspondence between non-hypothetical WnP-justifications

and (flattened) ECJ justifications. In our running example, (7) is the unique

causal justification of dead9, while (11) (below) is its unique non-hypothetical WnP

justification.

¬water3 ∧ shoot8 ∧ load1 ∧ l2 ∧ d9 ∧
∧ not(dead1) ∧ . . . ∧ not(dead9) ∧ not(ab1) ∧ . . . ∧ not(ab8)

(11)

It is easy to see that, by applying λp to (7), we obtain

λp
(
(∼water3 ∗ shoot8 ∗ load1·l2) · d9

)
= ¬water3 ∧ shoot8 ∧ load1 ∧ l2 ∧ d9 (12)

which is just the result of removing all labels of the form ‘not(A)’ from (11). The

correspondence between the ECJ justification (8) and the WnP justification (10) for

program P5 can be easily checked in a similar way.

Hypothetical justifications are not directly captured by ECJ, but can be obtained

using the augmented program P as stated by Theorem 7. As a byproduct, we

establish a formal relation between WnP and CG.

Theorem 10

Let P be a program over a finite signature 〈At, Lb〉. Then, every non-hypothetical

and enabled WnP-justification D of some atom A (after removing every label of

the form not(B) with B ∈ At) is a justification with respect to every CG stable

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

Enablers and inhibitors in causal justifications of logic programs 65

model Ĩ (after replacing ‘·’ by ‘∗’ and ‘∼’ by ‘¬’), that is D � WhyP (A) implies

�(D) � λp(Ĩ)(A), where � is the result of removing every label of the form not(B) as

in Theorem 8. �

Note that, as happened between the ECJ and CG justifications, the converse

of Theorem 10 does not hold in general due to the well-founded versus stable

model difference in their definitions. As an example, the explanation for atom c at

program P6 has a unique WnP justification c as opposed to the two CG justifications,

c and r1·r3.

5 Contributory causes

Intuitively, a contributory cause is an event that has helped to produce some effect.

For instance, in program P5, it is easy to identify both actions, load1 and shoot8,

as events that have helped to produce dead9 and, thus, they are both contributory

causes of Fred’s death. We may define the above informal concept of contributory

cause as: any non-negated label l that occurs in a maximal enabled justification of

some atom A. Similarly, a contributory enabler can be defined as a doubly negated

label ∼∼l that occurs in a maximal enabled justification of some atom A. These

definitions correctly identify load1 and shoot8 as contributory causes of dead9 in

program P5 and d as a contributory cause of p in program P1. Fact h is considered

a contributory enabler of p. These definitions will also suffice for dealing with what

Hall (2007) calls trouble cases: non-existent threats, short-circuits, late-preemption

and switching examples.

It is worth to mention that, in the philosophic and Artificial Intelligence literature,

the concept of contributory cause is usually discussed in the broader sense of actual

causation which tries to provide an unique everyday-concept of causation. Pearl (2000)

studied actual and contributory causes relying on causal networks. In this approach,

it is possible to conclude cause–effect relations like “A has been an actual (resp.

contributory) cause of B” from the behaviour of structural equations by applying,

under some contingency (an alternative model in which some values are fixed), the

counterfactual dependence interpretation from Hume (1748): “had A not happened,

B would not have happened”. Consider the following example which illustrates the

difference between contributory and actual causes under this approach.

Example 1 (Firing squad)

Suzy and Billy form a two-man firing squad that responds to the order of the

captain. The shot of any of the two riflemen would kill the prisoner. Indeed, the

captain gives the order, both riflemen shoot together and the prisoner dies. �

On the one hand, the captain is an actual cause of the prisoner’s death: “had

the captain not given the order, the riflemen would not have shot and the prisoner

would not have died”. On the other hand, each rifleman alone is not an actual

cause: “had one rifleman not shot, the prisoner would have died anyway because of

the other rifleman”. However, each rifleman’s shot is a contributory cause because,

under the contingency where the other rifleman does not shoot, the prisoner’s death

manifests counterfactual dependence on the first rifleman’s shot. Later approaches

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

66 P. Cabalar and J. Fandinno

like Halpem and Pearl (2001; 2005), Hall (2004) and Hall (2007) have not made this

distinction and consider the captain and the two riflemen as actual causes of the

prisoner’s death, while Halpern (2015) considers the captain and the conjunction of

both riflemen’s shoots, but not each of them alone, as actual causes. We will focus

here on representing the above concept of contributory cause and leave to the reader

whether this agrees with the concept of cause in the every-day discourse or not.

As has been slightly discussed in the introduction, Hall (2004; 2007), has em-

phasised the difference between two types of causal relations: dependence and

production. The former relies on the idea that “counterfactual dependence between

wholly distinct events is sufficient for causation”. The latter is characterised by being

transitive, intrinsic (two processes following the same laws must be both or neither

causal) and local (causes must be connected to their effects via sequences of causal

intermediates).

These two concepts can be illustrated in Bond’s example by observing the differ-

ence between pouring the drug (atom d), which is a cause under both understandings,

and being a holiday (atom h), which is not considered a cause under the production

viewpoint, although it is considered a cause under the dependence one.

In this sense, all the above approaches to actual causation, but Hall (2004), can be

classified in the dependence category. ECJ and CG do not consider h a productive

cause of d because the default (or normal) behaviour of rule (1) is that “d causes

p”. This default criterion is also shared by Hall (2007), Halpern (2008), Hitchcock

and Knobe (2009) and Halpern and Hitchcock (2011). Note that, ECJ (but not CG)

captures the fact that d counterfactually depends on h, as it considers it an enabler.

In Hall (2004), the author relies on intrinsicness for rejecting h as a productive

cause of d: any causal structure (justification) including h and p would have to

include the absence of the antidote (atom a), and it would be enough that Bond

had taken the antidote by another reason to break the counterfactual dependence

between h and p. By applying the above contributory cause definition to the WnP

justification h ∧ d ∧ r1 of Bond’s paralysis (atom p) in program P1, we can easily

identify that h is being considered a cause in WnP, thus, a causal interpretation of

WnP clearly follows the dependence-based viewpoint. On the other hand, the unique

CG justification d·r1 only considers d as a cause, which illustrates the fact that CG

is mostly related to the concept of production. ECJ combines both understandings,

and what is a cause under the dependence viewpoint is either an enabler or a cause

under the production viewpoint.

In order to illustrate how ECJ can be used for representing the so-called non-

existent threat scenarios, consider a variation of Bond’s example where today is not

a holiday and, thus, Bond takes the antidote. The poured drug d is a threat to

Bond’s safety, represented as s, but that threat is prevented by the antidote. We may

represent this scenario by program P8 below:

r1 : p← d, not a

r2 : a← not h

r3 : s ← not p

d

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

Enablers and inhibitors in causal justifications of logic programs 67

The causal WFM of program P8 assigns

�P8
(s) = ∼∼r2·r3 + ∼d·r3 + ∼r1·r3

which recognises rule r2 (taking the antidote) as a contributory enabler of Bond’s

safety. The difficulty in this kind of scenarios consists in avoiding the wrong

recognition of r2 as an enabler when the threat d does not exist. If we remove

fact d from P8 to get the new program P9, then we obtain that �P9
(d) = 0 and,

consequently, �P9
(s) = r3. Intuitively, in the absence of any threat, Bond is just safe

because that is his default behaviour as stated by rule r3.

Short-circuit examples consist in avoiding the wrong recognition of an event as a

contributory enabler that provokes a threat that eventually prevents itself. Consider

the program P10 below:

r1 : p ← a, not f

r2 : f ← c, not b

r3 : b ← c

a

c

Here, c is a threat to p, since it may cause f through rule r2. However, c eventually

prevents r2, since it also causes b through rule r3. The causal WFM of program P10

assigns

�P10
(p) = (a ∗ ∼∼r3)·r1 + (a ∗ ∼r2)·r1 + (a ∗ ∼c)·r1

which correctly avoids considering c as a contributory enabler of p and recognises r3
as the enabler of p. Note that c is actually considered an inhibitor due to justification

(a ∗ ∼c)·r1 pointing out that, had c not happened, then a·r1 would have been an

enabled justification. But then, (a ∗ ∼∼r3)·r1 would stop being a justification since

(a ∗ ∼∼r3)·r1 + a·r1 = a·r1.
To illustrate late-preemention, consider the following example from Lewis (2000).

Example 2 (Rock throwers)

Billy and Suzy throw rocks at a bottle. Suzy throws first and her rock arrives first.

The bottle shattered. When Billy’s rock gets to where the bottle used to be, there is

nothing there but flying shards of glass. Who has caused the bottle to shatter? �

The key of this example is to recognise that Suzy, and not Billy, has caused

the shattering. The usual way of representing this scenario in the actual causation

literature is by introducing two new fluents hit suzy and hit billy in the following

way (Hall 2007; Halpern and Hitchcock 2011; Halpern 2014; Halpern 2015):

hit suzy ← throw suzy (13)

hit billy ← throw billy, ¬hit suzy (14)

shattered ← hit suzy (15)

shattered ← hit billy (16)

It is easy to see that such a representation mixes, in law (14), both the description

of the world and the narrative fact asserting that Suzy threw first. This may easily

lead to a problem of elaboration tolerance. For instance, if we have N shooters

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

68 P. Cabalar and J. Fandinno

and they shoot sequentially, we would have to modify the equations for all of them

in an adequate way, so that the last shooter’s equation would have the negation

of the preceding N−1 and so on. Moreover, all these equations would have to be

reformulated if we simply change the shooting order. On the other hand, we may

represent this scenario by a program P11 consisting of the following rules

st+1 : shatteredt+1 ← throw(A)t, not shatteredt

shattered0

throw(suzy)0

throw(billy)1

with A ∈ {suzy, billy}, plus the following rules corresponding to the inertia axioms

shatteredt+1 ← shatteredt, not shatteredt+1

shatteredt+1 ← shatteredt, not shatteredt+1

Atom shattered2 holds in the standard WFM of P11 and its justification corresponds

to

throw(suzy)0·s1 + (∼throw(suzy) ∗ throw(billy)1)·s2 + (∼s1 ∗ throw(billy)1)·s2

On the one hand, the first addend points out that fact throw(suzy)0 has caused

shattered2 by means of rule s1. On the other hand, the second addend indicates that

throw(billy)1 has not caused it because Suzy’s throw has prevented it. Finally, the

third addend means that throw(billy)1 would have caused the shattering if it were

not for rule s1. This example shows how our semantics is able to recognise that

it was Suzy, and not Billy, who caused the bottle shattering. Furthermore, it also

explains that Billy did not cause it because Suzy did it first.

Finally, consider the following example from Hall (2000).

Example 3 (The engineer)

An engineer is standing by a switch in the railroad tracks. A train approaches in the

distance. She flips the switch, so that the train travels down the right-hand track,

instead of the left. Since the tracks reconverge up ahead, the train arrives at its

destination all the same; let us further suppose that the time and manner of its

arrival are exactly as they would have been, had she not flipped the switch. �

This has been a controversial example. In Hall (2000), the author has argued

that the switch should be considered a cause of the arrival because switch has

contributed to the fact that the train has travelled down the right-hand track. In a

similar manner, it seems clear that the train travelling down the right-hand track

has contributed to the train arrival. If causality is considered to be a transitive

relation, as Hall (2000) does, the immediate consequence of the above reasoning is

that flipping the switch has contributed to the train arrival. In Hall (2007), he argues

otherwise and points out that commonsense tells that the switch is not a cause

of the arrival. Halpern and Pearl (2005) had considered switch a cause of arrival

depending on whether the train travelling down the tracks is represented by one or

two variables in the model. Although our understanding of causality is closer to the

one expressed in Hall (2007), it is not the aim of this work to go more in depth in

this discussion, but to show instead how both understandings can be represented in

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

Enablers and inhibitors in causal justifications of logic programs 69

ECJ. Consider the following program P12

r1 : arrival ← right

r2 : arrival ← left

r3 : right ← train, not switch

r4 : left ← train, not switch

switch ← not switch

switch

train

where switch represents the strong negation of switch. The unlabelled rule capture

the idea that the switch behaves classically, that is, it must be activated or not. The

literal not switch in the body of rule r3 points out that the switch position is an

enabler and not a cause of the track taken by the train. This representation can be

arguable, but the way in which the rule has been written would be expressing that

if a train is coming, then a train will cross the right track by default unless switch

prevents it. In that sense, the only productive cause for right (a train in the right

track) is train (a train is coming), whereas the switch position just enables the causal

rule to be applied. A similar default r4 is built for the left track, flipping the roles of

switch and switch.

The causal WFM of program P12 corresponds to

�P12
(arrival) = (train ∗ ∼∼switch)·r3·r1 + (train ∗ ∼switch)·r4·r2

It is easy to see that switch is a doubly negated label occurring in the maximal

enabled justification E1 = (train ∗ ∼∼switch)·r3·r1 and, thus, we may identify it as

a contributory enabler of arrival, but not its productive cause. On the other hand,

by looking at the inhibited justification E2 = (train ∗ ∼switch)·r4·r2, we observe that

switch is also preventing rules r4 and r2 to produce the same effect, arrival, that is

helping to produce in E1.

If we want to ignore the way in which the train arrives, one natural possibility is

using the same label for all the rules for atom arrival, reflecting in this way that we

do not want to trace whether r1 or r2 has been actually used. Suppose we label r2
with r1 instead, leading to the new program P13

r1 : arrival ← right

r1 : arrival ← left

r3 : right ← train, not switch

r3 : left ← train, not switch

switch ← not switch

switch

train

whose causal WFM corresponds to

�P12
(arrival) = (train ∗ ∼∼switch)·r3·r1 + (train ∗ ∼switch)·r3·r1 = train·r3·r1

As we can see, this justification does not consider switch at all as a cause of the arrival

(nor even a contributory enabler, as before). In other words, switch is irrelevant for

the train arrival, which probably coincides with the most common intuition.

However, we do not find this solution fully convincing yet, because the explanation

we obtain for right, �P13
(right) = (train ∗∼∼switch)·r3 is showing that switch is just

acting as an enabler, as we commented before. If we wanted to represent switch as a

contributory cause of right, we would have more difficulties to simultaneously keep

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

70 P. Cabalar and J. Fandinno

switch irrelevant in the explanation of arrival. One possibility we plan to explore in

the future is allowing the declaration of a given atom or fluent, like our switch, as

classical so that we include both, the rule:

switch← not not switch

in the logic program3 and the axiom ∼∼switch = switch in the algebra. The latter

immediately implies switch+∼switch = 1 (due to the weak excluded middle axiom).

Then, P13 could be simply expressed as

r1 : arrival ← right

r1 : arrival ← left

r3 : right ← train, switch

r3 : left ← train, not switch

train

switch

and the justification of right and left would become

�P (right) = (train ∗ switch)·r3 �P (left) = (train ∗ ∼switch)·r3

pointing out that switch is a cause (resp. an inhibitor) of the train travelling down

the right (resp. left) track. Then, the justification of arrival would be

�P (arrival) = (train ∗ switch)·r3·r1 + (train ∗ ∼switch)·r3·r1 = train·r3·r1

We leave the study of this possibility for a future deeper analysis.

6 Conclusions and other related work

In this paper, we have introduced a unifying approach that combines causal

production with enablers and inhibitors. We formally capture inhibited justifications

by introducing a “non-classical” negation ‘∼’ in the algebra of CG. An inhibited

justification is nothing else but an expression containing some negated label. We

have also distinguished productive causes from enabling conditions (counterfactual

dependences that are not productive causes) by using a double negation ‘∼∼’ for the

latter. The existence of enabled justifications is a sufficient and necessary condition

for the truth of a literal. Furthermore, our justifications capture, under the well-

founded semantics, both Causal Graph and WnP justifications. As a byproduct we

established a formal relation between these two approaches.

We have also shown how several standard examples from the literature on actual

causation can be represented in our formalism and illustrated how this representation

is suitable for domains which include dynamic defaults – those whose behaviour are

not predetermined, but rely on some program condition – as for instance the inertia

axioms. As pointed out by Maudlin (2004), causal knowledge can be structured by

a combination of inertial laws – how the world would evolve if nothing intervened

– and deviations from these inertial laws.

3 This implication actually corresponds to a choice rule 0{switch}1, commonly used in Answer Set
Programming.

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

Enablers and inhibitors in causal justifications of logic programs 71

In addition to the literature on actual causes cited in Section 5, our work also

relates to papers on reasoning about actions and change (Lin 1995; McCain and

Turner 1997; Thielscher 1997). These works have been traditionally focused on using

causal inference to solve representational problems (such as, the frame, ramification

and qualification problems) without paying much attention to the derivation of

cause–effect relations. Focusing on LP, our work obviously relates to explanations

obtained from Answer Set Programming debugging approaches (Denecker and

Schreye 1993; Specht 1993; Pemmasani et al. 2004; Gebser et al. 2008; Pontelli et al.

2009; Oetsch et al. 2010; Schulz and Toni 2016). The most important difference

of these works with respect to ECJ, and also WnP and CG, is that the last three

provide fully algebraic semantics in which justifications are embedded into program

models. A formal relation between Pontelli et al. (2009) and WnP was established in

Damásio et al. (2013) and so, using Theorems 7 and 9, it can be directly extended to

ECJ, but at the cost of flattening the graph information (i.e. losing the order among

rules).

Interesting issues for future study are incorporating enabled and inhibited justifi-

cations to the stable model semantics and replacing the syntactic definition in favour

of a logical treatment of default negation, as done for instance with the Equilibrium

Logic (Pearce 1996) characterisation of stable models. Other natural steps would

be the consideration of syntactic operators, for capturing more specific knowledge

about causal information as done in (Fandinno 2015b) capturing sufficient causes

in the CG approach, and also the representation of non-deterministic causal laws,

by means of disjunctive programs or the incorporation of probabilistic knowledge.

A prototype that allows to compute extended justifications for logic programs can

be tried on-line at http://kr.irlab.org/cgraphs-solver/solver.

Acknowledgements

We are thankful to Carlos Damásio for his suggestions and comments on earlier

versions of this work. We also thank the anonymous reviewers for their help

to improve the paper. This research was partially supported by Spanish Project

TIN2013-42149-P.

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/

10.1017/S1471068416000107

References

Cabalar, P., Fandinno, J. and Fink, M. 2014a. Causal graph justifications of logic programs.

Theory and Practice of Logic Programming TPLP 14, 4–5, 603–618. Cambridge University

Press, Cambridge, United Kingdom.

Cabalar, P., Fandinno, J. and Fink, M. 2014b. A complexity assessment for queries involving

sufficient and necessary causes. In Proc. Logics in Artificial Intelligence - 14th European

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

72 P. Cabalar and J. Fandinno

Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24–26, 2014, E. Fermé and

J. Leite, Eds. Lecture Notes in Computer Science, vol. 8761. Springer, Berlin, Germany,

297–310.

Damásio, C. V., Analyti, A. and Antoniou, G. 2013. Justifications for logic programming.

In Proc. Logic Programming and Nonmonotonic Reasoning, 12th International Conference,

LPNMR 2013, Corunna, Spain, September 15–19, 2013, P. Cabalar and T. C. Son,

Eds. Lecture Notes in Computer Science, vol. 8148. Springer, Berlin, Germany,

530–542.

Denecker, M. and Schreye, D. D. 1993. Justification semantics: A unifiying framework for

the semantics of logic programs. In Proc. Logic Programming and Non-monotonic Reasoning,

2nd International Workshop, LPNMR 1993, Lisbon, Portugal, June 1993. The MIT Press,

Cambridge, Massachusetts, United States, 365–379.

Fandinno, J. 2015a. A causal semantics for logic programming. Ph.D. thesis, University of

Corunna, A Corunna, Spain.

Fandinno, J. 2015b. Towards deriving conclusions from cause-effect relations. In Proc. of the

8th International Workshop on Answer Set Programming and Other Computing Paradigms,

ASPOCP 2015, Cork, Ireland, August 31, 2015.

Ferraris, P., Lee, J. and Lifschitz, V. 2007. A new perspective on stable models. In Proc.

of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, Hyderabad,

India, January 6–12, 2007, M. M. Veloso, Ed. AAAI Press, Menlo Park, California, United

States, 372–379.

Gebser, M., Pührer, J., Schaub, T. and Tompits, H. 2008. A meta-programming technique

for debugging answer-set programs. In Proc. of the 23rd AAAI Conference on Artificial

Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13–17, 2008, D. Fox and C. P. Gomes,

Eds. AAAI Press, Menlo Park, California, United States, 448–453.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In

Logic Programming, Proceedings of the 5th International Conference and Symposium, Seattle,

Washington, August 15–19, R. A. Kowalski and K. A. Bowen, Eds. MIT Press, Cambridge,

Massachusetts, United States, 1070–1080.

Hall, N. 2000. Causation and the price of transitivity. The Journal of Philosophy 97, 4,

198–222. The Journal of Philosophy, Inc, New York, New York, United States.

Hall, N. 2004. Two concepts of causation. In Causation and Counterfactuals, J. Collins,

N. Hall, and L. A. Paul, Eds. Cambridge, MA: MIT Press, Cambridge, Massachusetts,

United States, 225–276.

Hall, N. 2007. Structural equations and causation. Philosophical Studies 132, 1,

109–136.

Halpern, J. Y. 2008. Defaults and normality in causal structures. In Principles of Knowledge

Representation and Reasoning: Proceedings of the 11th International Conference, KR 2008,

Sydney, Australia, September 16–19, 2008, G. Brewka and J. Lang, Eds. AAAI Press, Menlo

Park, California, United States, 198–208.

Halpern, J. Y. 2014. Appropriate causal models and stability of causation. In Principles of

Knowledge Representation and Reasoning: Proceedings of the 14th International Conference,

KR 2014, Vienna, Austria, July 20–24, 2014, C. Baral, G. D. Giacomo, and T. Eiter, Eds.

AAAI Press, Menlo Park, California, United States.

Halpern, J. Y. 2015. A modification of the halpern-pearl definition of causality. In Proc. of

the 24th International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,

Argentina, July 25–31, 2015, Q. Yang and M. Wooldridge, Eds. AAAI Press, Menlo Park,

California, United States, 3022–3033.

Halpern, J. Y. and Hitchcock, C. 2011. Actual causation and the art of modeling.

CoRR abs/1106.2652, 2015.

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

Enablers and inhibitors in causal justifications of logic programs 73

Halpern, J. Y. and Pearl, J. 2001. Causes and explanations: A structural-model approach.

Part I: Causes. In Proc. of the 17th Conference in Uncertainty in Artificial Intelligence, UAI

2001, University of Washington, Seattle, Washington, USA, August 2–5 , Morgan Kaufmann,

San Francisco, CA, 194–202.

Halpern, J. Y. and Pearl, J. 2005. Causes and explanations: A structural-model approach.

Part I: Causes. British Journal for Philosophy of Science 56, 4, 843–887. Oxford University

Press, Oxford, United Kingdom.

Hanks, S. and McDermott, D. V. 1987. Nonmonotonic logic and temporal projection.

Artificial Intelligence 33, 3, 379–412. Philadelphia, Pennsylvania, United States.

Hitchcock, C. and Knobe, J. 2009. Cause and norm. Journal of Philosophy 11, 587–612. The

Journal of Philosophy, Inc, New York, New York, United States.

Hume, D. 1748. An enquiry concerning human understanding. Reprinted by Open Court

Press, LaSalle, IL, 1958.

Lewis, D. K. 2000. Causation as influence. The Journal of Philosophy 97, 4, 182–197. The

Journal of Philosophy, Inc, New York, New York, United States.

Lin, F. 1995. Embracing causality in specifying the indirect effects of actions. In Proc. of the

14th International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec,

Canada, August 20–25 1995, 2 Volumes. Morgan Kaufmann, San Francisco, CA, 1985–

1993.

Marek, V. W. and Truszczyński, M. 1999. Stable models and an alternative logic

programming paradigm. In The Logic Programming Paradigm, K. R. Apt, V. W. Marek,

M. Truszczyński, and D. Warren, Eds. Artificial Intelligence. Springer, Berlin, Germany,

375–398.

Maudlin, T. 2004. Causation, counterfactuals, and the third factor. In Causation and

Counterfactuals, J. Collins, E. J. Hall, and L. A. Paul, Eds. MIT Press, Cambridge,

Massachusetts, United States, 419–443

McCain, N. and Turner, H. 1997. Causal theories of action and change. In Proc. of

the 14th National Conference on Artificial Intelligence and Ninth Innovative Applications of

Artificial Intelligence Conference, AAAI 97, IAAI 97, July 27–31, 1997, Providence, Rhode

Island, B. Kuipers and B. L. Webber, Eds. AAAI Press/MIT Press, Menlo Park/Cambridge,

California/Massachusetts, United States, 460–465.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming

paradigm. Annals of Mathematics and Artificial Intelligence 25, 3–4, 241–273. Springer,

Berlin, Germany.

Oetsch, J., Pührer, J. and Tompits, H. 2010. Catching the ouroboros: On debugging non-

ground answer-set programs. In Proc. CoRR abs/1007.4986, 2010.

Pearce, D. 1996. A new logical characterisation of stable models and answer sets. In

Non-Monotonic Extensions of Logic Programming, NMELP 1996, Bad Honnef, Germany,

September 5–6, 1996, Selected Papers, J. Dix, L. M. Pereira, and T. C. Przymusinski, Eds.

Lecture Notes in Computer Science, vol. 1216. Springer, Berlin, Germany, 57–70.

Pearl, J. 2000. Causality: models, reasoning, and inference. Cambridge University Press, New

York, NY, USA.

Pemmasani, G., Guo, H., Dong, Y., Ramakrishnan, C. R. and Ramakrishnan, I. V. 2004.

Online justification for tabled logic programs. In Proc. Functional and Logic Programming,

7th International Symposium, FLOPS 2004, Nara, Japan, April 7–9, 2004, Y. Kameyama and

P. J. Stuckey, Eds. Lecture Notes in Computer Science, vol. 2998. Springer, Berlin, Germany,

24–38.

Pontelli, E., Son, T. C. and El-Khatib, O. 2009. Justifications for logic programs under

answer set semantics. Theory and Practice of Logic Programming TPLP 9, 1, 1–56.

Cambridge University Press, Cambridge, United Kingdom.

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

74 P. Cabalar and J. Fandinno

Schulz, C. and Toni, F. 2016. Justifying answer sets using argumentation. In Theory

and Practice of Logic Programming TPLP 16, 1, 59–110. Cambridge University Press,

Cambridge, United Kingdom.

Specht, G. 1993. Generating explanation trees even for negations in deductive database

systems. In Proc. of the 15th Workshop on Logic Programming Environments (LPE 1993),

October 29-30, 1993, In conjunction with ILPS 1993, Vancouver, British Columbia, Canada,

M. Ducassé, B. L. Charlier, Y. Lin, and L. Ü. Yalçinalp, Eds. IRISA, Campus de Beaulieu,

France, 8–13.

Thielscher, M. 1997. Ramification and causality. Artificial Intelligence 89, 1–2, 317–364.

Morgan Kaufmann, San Francisco, CA.

Van Gelder, A. 1989. The alternating fixpoint of logic programs with negation. In Proc. of

the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,

March 29–31, 1989, Philadelphia, Pennsylvania, USA, A. Silberschatz, Ed. ACM Press, Inc,

New York, New York, United States, 1–10.

Van Gelder, A., Ross, K. A. and Schlipf, J. S. 1991. The well-founded semantics for general

logic programs. Journal of the ACM (JACM) 38, 3, 620–650. ACM Press, Inc, New York,

New York, United States.

https://doi.org/10.1017/S1471068416000107 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068416000107

