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SUMMARY
Fault diagnosis plays an important role in the operation of
modern robotic systems. A number of researchers have
proposed fault diagnosis architectures for robotic manip-
ulators using the model-based analytical redundancy
approach. One of the key issues in the design of such fault
diagnosis schemes is the effect of modeling uncertainties on
their performance. This paper investigates the problem of
fault diagnosis in rigid-link robotic manipulators with
modeling uncertainties. A learning architecture with sigmoi-
dal neural networks is used to monitor the robotic system
for off-nominal behavior due to faults. The robustness,
sensitivity, missed detection and stability properties of the
fault diagnosis scheme are rigorously established. Simula-
tion examples are presented to illustrate the ability of the
neural network based robust fault diagnosis scheme to
detect and accommodate faults in a two-link robotic
manipulator.

KEYWORDS: Fault diagnosis; Neural networks; Robotic sys-
tems.

1. INTRODUCTION
Signal processing in robotic manipulators typically involves
the analysis of robotic sensor signals to infer the current
state of the robotic manipulator so that appropriate control
action can be generated. With the advent of microprocessors
and with recent advances in their computational power and
memory, signal processing algorithms are increasingly
being implemented in software instead of being imple-
mented in hardware. One of the powerful applications of
such digital signal processing techniques is the monitoring
and diagnosis of robotic system faults.

Robotic systems are integral components of many
complex engineering systems including manufacturing
processes,1 underwater autonomous vehicles and space-
based systems.2 Stricter operational and productivity
requirements in such systems are resulting in robotic
manipulators working near their design limits for much of
the time. This may often lead to robotic system failures
which are typically characterized by critical changes in the
robotic system parameters or even by nonlinear changes in
the inherent dynamics of the manipulator. Robotic system
failures can potentially result not only in the loss of

productivity but also in the unsafe operation of the
manipulator. In general, modern control systems which are
designed to handle small perturbations that may arise under
“normal” operating conditions (in the “linear” regime)
cannot accommodate abnormal behavior due to faults.
Hence automated health monitoring of robotic systems and
effective identification and/or accommodation of any faults
play a crucial role in the operation of modern robotic
systems and especially autonomous and intelligent robotic
manipulators.

The design and analysis of Fault Diagnosis (FD)
architectures for robot systems using the model-based
analytical redundancy approach has received considerable
attention.2–4 In this approach, quantitative nominal models
of the robotic system together with sensory measurements
are used to provide estimates of measured and/or unmea-
sured variables. The deviations between estimated and
measured signals provide a residual vector which can be
utilized to detect and isolate system failures. In general, a
fault is declared if a measure of the residual vector exceeds
a certain threshold value. Note that this approach is in
contrast to hardware redundancy-based approach5 wherein
additional physical instrumentation is used to provide the
necessary redundancy.6

The appeal of model-based FD schemes lies in the fact
that the redundancy required for detecting faults is created
using powerful information processing techniques without
the need of additional physical instrumentation in the
system. However, the model-based FD approach relies on
the key assumption that the mathematical characterization
of the manipulator is known. In practice, this assumption is
usually not valid since it is difficult to obtain the necessary
modeling accuracy required for the construction of reliable
analytical redundancy-based FD architectures. Unavoidable
modeling uncertainties, which arise due to modeling errors,
time variations, measurement noise, and external distur-
bances, deteriorate the performance of FD schemes by
causing false alarms. This necessitates the development of
FD algorithms which have the ability to detect manipulator
failures in the presence of modeling uncertainties. Such
algorithms are referred to as robust fault diagnosis
schemes.

The construction of robust FD architectures for robotic
manipulators has been investigated by a number of research-
ers. In reference [7], the authors use threshold adaptation
based on fuzzy logic to improve robustness of state-space
model-based FD architecture for robotic systems. Time
varying, robotic system state-dependent thresholds are used
in reference [8] to achieve robustness in parity relations-
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based FD schemes for remote robots. The characteristics of
the robotic joint accelerations under faulty conditions have
been exploited in reference [9] to detect robotic faults. Terra
and Mendes develop robotic fault detection technique based
on the Luenberger observer in reference [10]. The authors in
reference [11] use statistical techniques to implement fault
detection schemes for robot manipulators. In reference [12],
the authors develop a technique to detect robotic failures
based on torque prediction error estimates. The reference
paper [13] compares three neural network schemes for
isolating robotic system faults-based on residuals that are
generated using a neural network based model of the robotic
system. Some researchers have also investigated methods to
detect and identify robotic system sensor failures,14,15 and
actuator failures.16

Most of the robotic system FD schemes that have been
proposed in the literature rely on one or more of the
following three key assumptions: (i) the nominal model of
the system is linear; (ii) the failures are modeled as external
additive inputs (functions of time); (iii) the joint accelera-
tions measurements are available. Although it is convenient
from an analytical viewpoint to study the FD problem in a
linear system framework, the dynamics of robotic systems
are inherently nonlinear. Furthermore, most practical fail-
ures are nonlinear functions of the robotic system state and
the input torque.

This paper presents a systematic learning methodology
for robust fault diagnosis in rigid link robotic manipulators,
which is based on a nonlinear nominal model of the
manipulator and nonlinear deviation faults. The modeling
uncertainties are assumed to be bounded by a priori known
non-uniform bound while the faults are modeled as
nonlinear functions of the measured variables. The principal
idea behind this approach is to monitor the plant for any off-
nominal system behavior (which could be either due to
faults or uncertainties) utilizing a sigmoidal neural network.
By using the knowledge of the bound on the uncertainty we
develop a systematic procedure, based on adaptive and
neural network techniques, for identifying the effects of
system failures in the presence of modeling uncertainties.
The neural network not only detects the occurrence of the
fault but also provides a post-fault model of the robotic
manipulator. This post-fault model can be effectively used
to isolate and identify the fault and, if possible, for
accommodation of the failure. It is noted that the approach
presented in this paper does not require the measurements of
joint accelerations; the method simply relies on the
measurements of joint positions and velocities which are
usually available for generating the control torques for the
robotic manipulator.

The fault diagnosis scheme is rigorously analyzed for
robustness, sensitivity, and stability. Specifically, the robust-
ness analysis investigates the behavior of the neural network
in the presence of modeling uncertainties prior to the
occurrence of a fault. The sensitivity analysis examines the
behavior of the neural network after the occurrence of a
fault and characterizes the class of faults that can be
detected by the robust nonlinear FD scheme. The sensitivity
result is used to derive an example class of faults that will
not be detected by the proposed technique and to character-

ize an upper bound for the failure detection time. Finally,
the stability analysis examines the behavior of the neural
network after the occurrence of a fault.

The application of the above concept to the detection and
diagnosis of robotic system faults was first shown by the
authors of this paper in reference [17], where we demon-
strated the application of the on-line approximation-based
technique to detect and diagnose abrupt robotic system
failures under the assumption that the robotic system model
is accurately known. The authors then demonstrated18 the
application of the non-linear learning technique to detect
abrupt failures in robotic systems with modeling uncertain-
ties. In this paper we extend the results developed in
reference [18] to the case where the robotic fault is incipient
or slowly-developing in contrast to being abrupt. Fur-
thermore, this paper characterizes the sensitivity properties
in addition to the robustness and stability properties that
were characterized in reference [l8]. This paper also derives
an upper bound for failure detection time of the fault
diagnosis architecture.

It is emphasized that the fault diagnosis scheme devel-
oped in this paper uses neural networks to obtain an
approximation of the fault model. This is in contrast to the
use of neural networks for robotic fault classification.19

These fault classification techniques mainly concentrate on
the use of neural networks to identify the robotic system
failure, based on residuals that are generated using linear
modeling techniques. The neural network-based technique
presented in this paper instead generates a mathematical
model of the fault dynamics which can be used to classify
and accommodate the failure.

The organization of the paper is as follows: In Section 2,
the robot dynamics and its control law are described, and
the fault diagnosis problem is formulated. In Section 3, the
neural network-based robust fault diagnosis scheme is
described. The analytical properties of the robust FD
algorithm are established in Section 4. Simulation examples
illustrating the performance of the FD algorithm on a two-
link robotic manipulator with modeling uncertainties are
presented in Section 5. Section 6 has some concluding
remarks.

2. PROBLEM FORMULATION
Consider an n degree of freedom rigid link robotic
manipulator whose motion is described by the differential
equation

q̈=M�1(q)[��Vm(q,q̇)q̇�G(q)�F(q̇)��d(t)]

+�(t�T )�(q,q̇,�), (1)

where q, q̇, q̈ � �n are vectors of joint positions, velocities
and accelerations respectively, � � �n is the input torque
vector, M(q) � �n� n is the inertia matrix (whose inverse
exists),20,21 Vm(q,q̇) � �n� n is a matrix containing the
centripetal and Coriolis terms, G(q) � �n is the gravity
vector, F(q̇) � �n is a vector containing the unknown static
and dynamic friction terms and various sources of uncer-
tainties and the quantity �d(t) � �n is a vector representing
unknown additive bounded disturbances and noise. The
terms F(.) and �d(.) in (1) together represent the modeling
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uncertainties in the system. The map �: �n
� �n

� �n ��n is
a vector that represents the fault in the robot manipulator,
�(t�T ) � � represents the time profile of the fault, and T
is the unknown time of occurrence of the fault.

A fault in the robotic system changes the dynamics of the
manipulator in an unpredictable way. An accurate descrip-
tion of fault conditions, most often, requires nonlinear
modeling of faults, which is what is described by � in (1).
The nonlinear modeling capability is reflected in allowing
the deviation � due to faults to be a nonlinear function of the
joint positions and velocities, and the input torque. This
nonlinear modeling of the fault in the dynamic system
allows the representation of not only additive faults (drifts in
the robotic system) but also multiplicative faults (manip-
ulator parameter changes) and faults which result in
additional states (i.e. link breakage). For example, if the
gravity vector G changes to Ḡ due to a fault at time T, then
this change in the gravity term can be represented by
letting

�(q,q̇,�)=M�1(q)[Ḡ(q)�G(q)].

In other words, the formulation (1) models a fault in the
robotic system as an unknown change in the dynamics of
the manipulator, where the change is represented as a
function of not time, but as a function of the system state
and the system inputs. Note that this is in contrast to most
traditional fault modeling approaches where the fault is
represented as an additive or a multiplicative time-depend-
ent quantity. We refer to FD schemes that are based on such
nonlinearly modeled faults as nonlinear fault diagnosis
schemes.

The price that one has to pay (in the design of fault
diagnosis systems in the framework  of (1)) for the potential
to model a much larger class of faults, is the need to
approximate unknown nonlinear functions. In other words,
the detection and diagnosis of such nonlinearly modeled
robotic faults requires the use of on-line nonlinear function
approximation techniques to estimate the fault function �(.).
However, recent advances in both hardware implementation
and software simulation tools have allowed the use of on-
line approximators such as sigmoidal neural networks and
wavelet networks for constructing and analyzing nonlinear
models.22,23 Powerful on-line estimation techniques, with
rigorous theoretical basis and practical implementation
techniques, have been developed to allow the construction
of approximations of unknown functions. Hence, despite the
complexity of the resultant fault diagnosis architecture,
when compared to traditional fault detection systems,
nonlinear fault diagnosis architectures are receiving more
attention in the literature.

3. ROBUST NONLINEAR FAULT DIAGNOSIS
ARCHITECTURE
In this section, we describe the robust nonlinear fault
diagnosis architecture for detecting system faults in robotic
manipulators described by (1). We begin by observing that
in the absence of modeling uncertainties, any off-nominal
behavior observed from input-output measurements (i.e.,
deviation of certain measured signals from expected values)
can be attributed to a fault in the robotic system. Thus, the

process of fault detection in the absence of modeling
uncertainties can be achieved by approximating, on-line, the
unknown function �(q,q̇,�).18,24,25 However, in the presence
of modeling uncertainties, the difference in the dynamics
could be either due to faults or due to modeling uncertain-
ties. Hence, the problem of detecting faults in the
framework of (1) not only involves the estimation of the
nonlinear function �(.) but also involves the problem of
distinguishing the effects of a fault from the effects of
modeling uncertainties on the nominal behavior of the
system. Therefore, the key question is: how does one
identify the effects of a fault in the presence of modeling
uncertainties?

The importance of robustness in FD architectures was
recognized early on and a variety of robust fault detection
schemes have been proposed in the literature during the last
twenty years. In most practical manipulators, both faults and
modeling uncertainties are unknown a priori. However, in
most practical situations the modeling uncertainties often
exhibit certain known characteristics that distinguish them
from faults. These known characteristics of the modeling
uncertainties are exploited to construct appropriate robust
fault diagnosis architectures.

Frank26 describes a robust fault detection algorithm
which, while providing an on-line estimate of the uncer-
tainty level, deals exclusively with the detection of faults. In
the context of fault diagnosis, in addition to detecting the
occurrence of a fault, it would be useful to obtain an
approximation of the fault function in the presence of
modeling uncertainties, in order to identify, and possibly
accommodate, the fault.

Robust fault diagnosis schemes are typically classified
according to the description of the modeling uncertainty,
which is either structured or unstructured. The uncertainty
is said to be structured when the distribution matrix of the
uncertainty is known; otherwise it is said to be unstructured.
The decoupling of the effects of faults and modeling
uncertainties in the case of structured uncertainties is
achieved by appropriately assigning the eigenvalues and
eigenvectors of the unknown input observers used for
detecting faults.

Usually, in practical applications the structure of the
uncertainty is not known or varies with time so that the
uncertainty is unstructured. One of the popular approaches
to deal with unstructured uncertainty is to assume an
appproximately known structure for the uncertainty. The
principle of disturbance decoupling27 is then used to design
robust residual generators28,29 The problem of determining
approximations to the structure of the uncertainty has been
addressed by Patton and co-workers.27,30

Another approach for improving robustness of FD
schemes in the presence of unstructured uncertainty is based
on assuming that certain knowledge on the size of the
unstructured uncertainty is given. The techniques which use
this knowledge for designing robust FD schemes include the
threshold selector based on robust control theory,31 Markov
theory,32 adaptive threshold methodologies,33,34 likelihood
ratio techniques,26,35 time-varying, state-dependent thresh-
olds,8 fuzzy logic based decision-making methods,36 and a
combination of signal processing and pattern recognition
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techniques.37 Other approaches for robust fault detection in
the presence of unstructured uncertainty include an
improved residual generation based on the knowledge of the
frequency characteristics of the unstructured uncertainty,38

the design of a robust fault detection filter39 and an improved
residual evaluation process40 for interval-type parametric
uncertainty. Dixon et. al.12 describe the design of a robust
fault diagnosis technique for robotic system actuator
failures. This technique assumes that the modeling uncer-
tainties can be expressed as a nonlinear function with a
linearly-parameterized structure and unknown linear param-
eters whose bounds are constant and known. For more
thorough and detailed discussions on the design of robust
fault detection and diagnosis scheme for dynamic systems,
we refer the reader to the books by Gertler,41 and Chen and
Patton.42

In this paper, we develop a robust fault diagnosis
algorithm for detecting faults in the presence of unstruc-
tured modeling uncertainties that satisfy the bounding
assumption described below.

Assumption 3.1. The modeling uncertainty is unstructured
and is bounded by a known function; i.e.,

� M�1(q)[F(q̇)+�d]� < �̄(q,q̇,�), �(q,q̇,�)�D,

where D��n
� �n

� �n is some compact domain of interest
and �̄(q,q̇,�,t) is a known, integrable, positive, and bounded
function in D.

This assumption implies that this paper assumes that the
“size” of the modeling uncertainties is known. It is noted
that, in this paper, for a vector 	��n, n>1, the notation � 	 �
is equivalent to � 	 �2. The above assumption further implies
that the state, input and time dependence of the modeling
uncertainty size is also assumed to be known. By allowing
the bound to be a function of the robotic system state, input
and time, the formulation provides a framework for non-
uniform bounds, thus enhancing fault sensitivity (i.e. the
ability of the fault diagnosis architecture to detect robotic
system faults). For example, in many practical applications
the nominal model is obtained by small-signal linearization
techniques around a nominal operating point or trajectory.
In this case, the modeling uncertainty may represent the
residual nonlinear  terms, which are typically small close to
the operating point, but can be large elsewhere. If non-
uniform bounds on �̄(q,q̇,�,t ) are not known, then the more
conservative assumption of uniform constant bound can be
used in the development of robust fault diagnosis archi-
tecture.43 Note that under this conservative assumption, an
estimate of the fault function is obtained provided that the
ratio between the fault function magnitude and the modeling
uncertainty level is sufficiently large.

The formulation (1) involves the time profile � of the
fault. This profile represents the “speed” of occurrence of
the robotic failure; i.e, the time-profile describes how fast
the robotic fault is developing. If the fault occurs instanta-
neously at the unknown time T, the fault is said to be an
abrupt fault. If, however, the fault in the robotic manipulator
develops slowly in time, starting at time T, the fault is said
to be an incipient fault. In this paper, we assume that the
fault time profile is modeled as described in the following
assumption.44

Assumption 3.2. The robotic fault occurs at some unknown
time T vith the time profile of the failure given by

�(t�T )=� 0

1�exp(�
(t�T ))
if t<T
if t≥T

where p>0 denotes the unknown fault evolution rate.

The time profile described in Assumption 3.2 can be used to
represent both abrupt and incipient faults. A small value of

 represents an incipient fault,44 while a very large value of

 characterizes abrupt failure.45 This paper does not assume
a specific speed of occurrence of the fault; i.e. the analysis
of the nonlinear fault diagnosis architecture described in this
paper assumes the generic time profile described by
Assumption 3.2 without any assumption on the value of 
.
The simulations presented in this paper, however, illustrate
the incipient fault cases only. The reader is referred to
reference [18] for the simulation of abrupt failures.

The final assumption this paper makes in the develop-
ment of the robust robot fault diagnosis architecture is
regarding the stability of the robotic manipulator in the
presence of faults. This assumption is described below.

Assumption 3.3. The robotic system states and the torque
command remain bounded in the compact domain of
interest D after the occurrence of a fault; i.e., (q,q̇,�)�D.

Note that the above assumption does not deal with the
stability of the overall fault diagnosis architecture. Rather,
the assumption simply assumes that only the robotic link
(i.e. the plant) remains stable after the occurrence of the
fault. In some sense, this assumption implies that the robotic
manipulator remains “functional”. This is a reasonable
assumption since this paper does not analytically address
the robot controller reconfiguration problem (although
simulations are used to illustrate the use of the fault
approximation in control reconfiguration). It is noted that
Assumption 3.3 will be used to establish, later in this paper,
the stability properties of the overall system; i.e., the robotic
manipulator plus the fault diagnosis architecture.

3.1. Nonlinear estimation model
The goal of this paper is to design a fault diagnosis
architecture for the robotic manipulator described by (1)
under Assumptions 3.1–3.3 using the approximation proper-
ties of sigmoidal neural networks. The fault diagnosis
architecture is developed in the remaining part of this
section in the following way. First, a neural network-based
nonlinear estimation model is described. This nonlinear
estimation model, which uses the neural network in its
structure, primarily provides an estimate of the robotic link
velocities. Next, a learning algorithm, based on the
nonlinear estimation model, for updating the parameters of
the neural network is developed. The learning algorithm is
designed so that the neural network approximates any off-
nominal behavior due to faults in the presence of modeling
uncertainties that satisfy Assumption 3.1.
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We now consider the nonlinear estimation model. Based
on the system representation (1) and Assumption 3.2, we
choose the following nonlinear estimated model:

�(t)=W�(s)[�q̇+M�1(q)[�(q,q̇)�Vm(q, q̇)q̇�G(q)]

+ �̂(q,q̇,�;
̂)], (2)

where �(0)= q̇(0) and W� is a first-order stable lag filter
whose transfer function is given by

W�:=
1

s+�
, (3)

where �>0 is the filter time constant, a design parameter,*†

The term �̂ in (2) represents a three-layered sigmoidal
neural network while 
̂��p represents the adjustable
weights of the network in vector form.

The input-output characteristics of a three-layered sig-
moidal neural network are described by:

y=Ŵ2�(Ŵ1z), (4)

where z=[1 qT q̇T �T ]T is the input to the network, y is the
output of the network, Ŵ1 is the weight matrix from the
input layer to the hidden layer and Ŵ2 is the weight matrix
from the hidden layer to the output layer. If the number of
neurons in the hidden layer is L, then the dimensions of Ŵ1

and Ŵ2 are L� (3n+1) and n� L, respectively. The nonlinear
operator � : �L ��L is the standard sigmoidal function
such that the ith component (i=1, 2, . . . , L) of � is given
by

(� (x))i =
1�exp(xi)
1+exp(xi)

.

For the convenience of analysis, we represent the input-
output characteristics of the neural network described by (4)
as

y= �̂(q,q̇,�; 
̂ ),

where �̂(.) is a vector-valued function such that the kth
output (k=1, 2, . . . , n) has the form

�̂k(q,q̇,�;
̂)=�L

j=1
�
̂(k+3n)L+j �� �(3n+1)

i=1


̂(i�1)L+j zi�	. (5)

The weight vector is given by


̂=�vec(WT
1 )

vec(W2)
	,

where vec(A) operator stacks the columns of a matrix A to
form a vector. From the above representation, it can be
inferred that 
̂��p, where p=(4n+1)L. The structure of the
above neural network is shown in Figure 1.

Note that in this formulation, the estimation model (2) is
a nonlinear observer-type scheme that is implemented in the

form of stable filter. The filter output ���n is the estimate
of the velocity vector of the manipulator joints. The
construction of an appropriate estimation model, able to
follow changes in the input/output behavior of the physical
system, is a crucial component in the development of the
overall fault detection scheme. The output of the above
nonlinear estimation model is used to update the weights of
the neural network. The nonlinear estimation model (2) is
not only easy to implement but, more importantly, has some
desirable analytical properties, which are presented in the
Analytical Properties Section.

3.2. Learning algorithm
We now discuss the learning algorithm used to update the
weights of the sigmoidal neural network so that the neural
network provides an estimate of the unknown fault function
in the presence of the modeling uncertainties described by
Assumption 3.1.

The initial weight vector, 
̂(0)= 
̂ 0, of the neural network
is chosen such that

�̂(q,q̇,�;
̂ 0)=0, �(q,q̇,�)�D, (6)

corresponding to the no-failure situation. Note that this can
be achieved by simply setting the weights of the output
layer to zero. Starting from these initial conditions, the main
objective is to adjust (using input/output information) the
weight vector 
̂(t) at each time t so that �̂(q,q̇,�;
̂ ) provides
an approximation of the unknown function �(t�T )�(q,q̇,�).
Once this is achieved, the output of the neural network �̂
can be used to diagnose and accommodate any system
failures.

Based on system description (1) and the estimation model
(2), we propose the following adaptive law for updating the
weights of the neural network:

˙̂
 =P{�ZT D[e]}, 
̂(0)= 
̂ 0, (7)

* A “ : ” followed by the “=” sign implies that the quantity on the
LHS of the “:=” sign is being defined as the quantity on the
RHS.
† The use of both time domain and transfer function notation is
common in the adaptive control literature. For example, see
Ioannou and Sun.46

Fig. 1. Structure of the neural network used to learn the fault.
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where e:= q̇�� is the error between the measured velocity
vector and its estimate, �=�T��p� p is a positive definite
learning rate matrix, Z��n� p is the gradient of the neural
network with respect to its adjustable weights; i.e.

Z:=
��̂(q,q̇,�;
̂)

�
̂
,

and D[.] is the dead-zone operator, defined as

D[e(t)]:=�0n

e
{if � e(t ) � <�(t )}
{otherwise},

where 0n is an n-dimensional vector of zeros and �(t ) is the
output of the stable filter W� when subject to the input signal
�̄(q,q̇,�,t ); i.e.

�(t)=W�(s)[�̄(q(t ), q̇(t ), �(t ), t)], �(0)=0n. (8)

The projection operator P (which restricts the parameter
estimate vector 
̂ to the compact, convex region M
̂) is used
to avoid parameter drift, a phenomenon that may occur with
standard adaptive laws in the presence of modeling
uncertainties.46 If M
̂ is chosen to be a hypersphere of
radius M, then the above adaptive law can be expressed as

˙̂
=�Z T D[e]��*�

̂
̂ T


̂ T �
̂
�Z T D[e], 
̂(0)= 
̂ 0, (9)

where �* denotes the indicator function given by:

�*:=�0
1

if {� 
̂ �<M} or {� 
̂ �=M} and 
̂ T �Z T e≤0}
if {� 
̂ �=M } and 
̂ T �Z T e>0}.

In summary, the nonlinear estimation model (2) and the
weight update algorithm (7) together describe the robust

nonlinear fault diagnosis architecture for the robotic manip-
ulator described by (1). The nonlinear approximator �̂ is
used not only for detecting a fault in the robotic manipulator
but also for identifying the fault function. Note that a fault
in the robotic manipulator is declared when the output of the
neural network becomes non-zero, or equivalently, when the
error e(t ) exceeds the threshold �(t ). A block diagram
representation of the nonlinear fault diagnosis architecture
described in this paper is shown in Figure 2.

Intuitively, the above architecture achieves robustness
against modeling uncertainties by using a non-uniform
threshold for the velocity estimation error; i.e. if the velocity
estimation error is below a designed threshold, the robotic
system is deemed to have no fault. On the contrary, if the
velocity estimation error is greater than the designed
threshold, the neural network weights begin to update, thus
driving the neural network outputs to non-zero values. This
indicates a fault in the robotic manipulator.

We make a key observation regarding the fault diagnosis
architecture described by (2) and (7). The above architecture
used two operators: (i) the dead-zone operator, and (ii) the
projection operator. The dead-zone term in the above
architecture prevents the adaptation of the neural network
weights when the estimation error is within a (small) bound,
thus enhancing robustness in the fault detection scheme.
The projection operator, on the other hand, is required in
order to guarantee stability of the overall fault detection
scheme in the presence of network approximation errors. It
is noted that although a bound � on the modeling
uncertainty is required to be known for selecting the size of
the dead-zone, the learning algorithm requires no knowl-
edge of a bound on the network approximation error
(defined as the “inability” of the neural network to provide
an accurate approximation of the fault function �). As
expected, however, the actual value of the network approx-
imation error does affect the performance of the fault
diagnosis scheme after the occurrence of the fault (as shown
in the Analytical Properties Section).

Fig. 2. Block diagram representation of the fault diagnosis architecture.
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Remark 3.4. Because of the dead-zone, the adaptive law for
for 
̂(t) is a discontinuous function of time. This may cause
problems of existence and uniqueness of solutions as well as
computational problems at the switching surface.47 One way
to avoid these problems is to use a so-called “continuous
dead-zone”, which has similar stability properties as the
discontinuous dead-zone.46

4. ANALYTICAL PROPERTIES
In this section we examine the robustness, sensitivity and
stability properties of the robust nonlinear FD scheme. The
robustness analysis investigates the behavior of the neural
network in the presence of modeling uncertainties prior to
the occurrence of a fault; i.e. t<T. The sensitivity analysis
examines the behavior of the neural network after the
occurrence of a fault and characterizes the class of faults
that can be detected by the robust nonlinear FD scheme. The
missed detection result characterizes a class of fault that
cannot be detected by the fault diagnosis scheme. Finally,
the stability analysis examines the behavior of the neural
network after the neural network adaptation begins, i.e. after
the detection of the fault. Figure 3 shows the relevant
analytical properties that are of interest as the robotic
system evolves in time. In the figure, T represents the time
at which the fault occurs, while td represents the time at
which the robotic system fault is detected (i.e, the time at
which the sigmoidal neural network output first becomes
non-zero). The detection td is characterized later in this
section.

4.1. Robustness property
The robustness property of the fault diagnosis architecture
presented in this paper is given by the following result:

Theorem 4.1 (Robustness). The nonlinear fault detection
scheme described by (2), (7) guarantees

�̂(q(t ), q̇(t ), �(t ); 
̂(t ))=0,

for t<T prior to the occurrence of a fault.

Proof: The error dynamics in the time period t<T prior to
the occurrence of the fault are described by

e(t)= q̇(t )��(t )

=W�(s)[�M�1(q)[F(q̇)+�d]��̂(q,q̇,�;
̂)] (10)

Recalling from (6) that the initial parameter vector 
̂ 0 is
chosen such that �̂(q, q̇, �;
̂ 0)=0, the question we need to
examine is whether the parameter estimates would start
adapting, or equivalently, whether � e(t ) �≥�(t ), prior to the
occurrence of a fault.

Suppose (for the sake of contradiction) that there exists a
time te (where 0<te <T) such that

� e(te) �=�(te), (11)

where te denotes the first time instant that e(t ) reaches the
dead-zone bound.

Using (9) and the continuity of e(t ), the parameter vector

̂(t ) has not been adapted in the interval [0, te). Furthermore,
by the continuity of 
̂(t ) we have 
̂(te)= 
̂ 0; in other words,
�̂(q,q̇,�,
̂(te))=0. Hence, from (10), the velocity estimation
error for t�[0, te] is given by

e(t )=�
t

0

exp(��(t�s))M�1(q(s))[F(q̇(s))+�d(s)] ds.

Therefore, the magnitude of the error vector satisfies

� e(t ) �<
t

0
exp(��(t�s))�̄(q(s),q̇(s),�(s),s) ds

=�(t).

Now, since � e(te) �<�(te), this is clearly a contradiction of
(11), which implies that for t�[0, T ) the estimation error
e(t ) remains within the dead-zone and the output of the
neural network remains zero. �

The above theorem states that if there are no faults in the
robotic system (i.e., ��0), then the output of the neural
network will remain zero (i.e., �̂=0) even in the presence of
modeling uncertainties. Equivalently, if the neural network
output is non-zero then it is guaranteed that a fault has
occurred. (We note that a failure can also be declared
whenever � e �≥�). Therefore, the neural network is robust
with respect to modeling uncertainties that satisfy Assump-
tion 3.1.

4.2. Sensitivity property
The robustness (or “insensitivity”) of the fault diagnosis
scheme to modeling uncertainties is directly related to its
sensitivity to robotic system faults. The following theorem
characterizes the class of faults that can be detected by the
nonlinear fault diagnosis scheme.

Theorem 4.2 (Sensitivity). Let �(t ), t≥T, be defined as the
output of the first order lag filter (3) when the filter is
subject to the fault function �� as the input; i.e., �(t ) is a
low-pass filtered version of the fault function and is given
by

�(t )=W�(s)[(1�exp(�
(t�T )))�(q(t ),q̇(t ),�(t))], �(T )

=0n. (12)

If

� �(td) �>2�(td), (13)

for some td >T, then e(td)≥�(td).

Proof: The error dynamics after the occurrence of the fault
and prior to the adaptation of the network parameters is
given by

e(t )= q̇(t )��(t )

=W�(s)[�M�1(q)[F(q̇)

+�d]+(1�exp(�
(t�T )))�(q,q̇,�)].

Fig. 3. Analytical properties of interest during different time-
zones.
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Therefore, the velocity estimation error during the time
interval T≤t<td is given by

e(t )=exp(��(t�T ))e(T )

�
t

T
exp(��(t�s))M�1(q(s))[F(q̇(s))+�d(s)] ds

+
t

T
exp(��(t�s))(1�exp(�
(s�T )))�(q(s),

q̇(s),�(s)) ds.

Bringing the first two terms of the right hand side to the left
and using the triangle inequality, we obtain

� e(t ) �≥� � exp(��(t�T ))e(T ) �

��
t

T
exp(��(t�s))M�1(q(s))[F(q̇(s))

+�d(s)] ds�
+�
t

T
exp(��(t�s))(1�exp(�
(s�T )))

�(q(s),q̇(s),�(s)) ds�
≥�exp(��(t�T ))�(T )

�
t

T
exp(��(t�s))�̄(q(s),q̇(s),�(s),s) ds

+�
t

T
exp(��(t�s))(1�exp(�
(s�T )))

�(q(s),q̇(s),�(s)) ds�
=��(t )+ � �(t ) �.

Therefore, if there exists td >T, such that (13) is satisfied,
then � e(td) �≥�(td), which implies that adaptation of the
network will begin and the failure will be detected. �

Figure 4 illustrates the sensitivity result. The figure shows
example time evolutions of �,� � �, and the velocity error e
for a single-link robotic manipulator under the worst-case
detectability conditions. The figure shows that at the time of
occurrence of the fault, the sign of the estimation error e is
negative while its magnitude is close to ��. Furthermore,
the fault is such that the velocity estimation error tends
towards a positive value. Hence, for the fault to be detected
by the architecture proposed in this paper, the error vector
has to “travel” from almost �� in value to �; in other
words, the fault magnitude should be such that the
magnitude of the fault is twice the size of the modeling
uncertainties which is what is stated by the sensitivity result.
Furthermore, the detection time under these worst-case

detectability conditions is equal to the time at which the
condition � �(t ) �>2�(t ) is satisfied.

The class of detectable faults characterized by the above
sensitivity analysis is obtained under the worst-case detect-
ability conditions. In other words, the inequality (13) is a
sufficient condition for activating adaptation of the neural
network for any modeling uncertainty satisfying Assump-
tion 3.1. Under “best-case” detectability conditions, the
class of faults that can be detected by the fault diagnosis
scheme is significantly larger. For example, let the robotic
system modeling uncertainties be such that –
(M�1(q)[F(q̇)+�d])=(1��)�̄(q,q̇,�,t ),�t>0, where ���+

is a “sufficiently small” positive number. Then it can be
easily shown that

e(T )=(1��)�(T ).

That is, the network weights will not adapt indicating that
the fault has not occurred.

Now, if the failure occurs at T and if the failure is such
that �(t ) given by equation (12) satisfies

�(t )=��(t ).

Then the robotic manipulator velocity estimation error for
t>T satisfies

e(t )= q̇(t )��(t )

=W�(s)[�M�1(q)[F(q̇)+�d]

+(1�exp(�
(t�T )))�(q,q̇,�)]

=W�(s)[(1��)�̄(q,q̇,�,t )]+��(t )

=�(t )

Thus a larger class of faults (than those described by 13) is
detectable by the robust fault diagnosis scheme presented in
this paper. In other words, the sensitivity result given by
Theorem 4.2 is only a sufficient condition, and is not a
necessary condition.

Remark 4.3. The class of detectable faults is characterized
by the “size” of the filtered version of the fault function.
This is a direct consequence of the assumed knowledge of
the modeling uncertainties and the chosen structure of the
network learning algorithm. In other words, since this
paper assumes that the size of the modeling uncertainties is
known, the sensitivity result characterizes the types of
robotic faults detectable by the proposed architecture in

Fig. 4. Illustration of the sensitivity of the fault diagnosis
architecture under the worst-case detectability conditions.
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terms of the size of the robotic system fault. Furthermore,
since the learning algorithm (7) uses the filtered version of
the bound on the modeling uncertainties, the sensitivity
result also characterizes the class of detectable faults in
terms of the size of the filtered version of the fault. This
comparison and the role of design filter W�(s) in the fault
diagnosis scheme is illustrated in Figure 5. Note that the
figure illustrates the sensitivity result under the worst-case
detectability conditions; i.e. if the fault function satisfies the
inequality (13), then the fault is guaranteed to be detected
and the neural network weights are guaranteed to begin
adaptation. It is noted, however, that the the fault will be
detected as soon as the condition e(t)≥�(t), which may
occur even before the inequality (13) is satisfied.

The sensitivity result, Theorem 4.2 characterizes the faults
that are guaranteed to be detected by the architecture
presented in this paper. At the same time, it is important to
understand there are some faults that will not be detected by
the architecture proposed in the paper. An example class of
faults that are guaranteed not to be detected is now
discussed below.

Before beginning the discussion, we introduce the
following definitions for the purpose of brevity. Let

�̂1(t )
·

�̂n(t )
:=(1�e�
(t�T ))�(q(t ),q̇(t ),�(t )),

�̂1(t )
·

�̂n(t )
:=�M�1(q(t ))[F(q̇(t ))+�d(t)].

(14)

Now consider the robotic system modeling uncertainties
and the robotic fault function such that the following
conditions are satisfied:

(a) The fault function is such that:

(i) sgn{�̂i(t )}=�sgn{�̂i(t )}, i=1, . , . , n;

�t>T;

(ii) (1��)� �̂i(t ) �< � �̂i(t ) �< � �̂i(t ) �, i=1, . , . , n;

�t>T;

where � x � is the absolute value of x�� and ���+ with
0<�<1.

(b) The modeling uncertainties are such that:
(iii) ei(T )=0, i=1, . , . , n;

i.e. the state estimation vector at the time of occurrence
of the fault is 0.

Under the above conditions, the fault will not be detected;
i.e.

e(t )<�(t ), �t>T. (15)

The above conclusion can be inferred in the following
manner. The error dynamics ei(t ) where i=1, . , . , n after
the occurrence of the fault and prior to the adaptation of the
network parameters is given by

ei(t )= q̇i(t )��i(t )

=W�(s)[�̂i(t )+ �̂i(t )].

Fig. 5. Illustration of the sensitivity property under the worst-case detectability conditions. The sensitivity property of the fault
diagnosis architecture is characterized by the design filter W�(s)=1/(s+�). The figure also shows the role of W� in the overall fault
diagnosis architecture.
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Using the conditions (i)–(iii), the velocity estimation error
ei(t ), where i=1, . , . , n, during the time interval t>T is
given by

ei(t)=
t

T
e��(t�s)�̂i(s) ds+
t

T
e��(t�s)�̂i(s) ds

=
t

T
e��(t�s)sgn{�̂i(s)}(� �̂i(s) �� � �̂i(s) �) ds

=
t

T
e��(t�s)sgn{�̂i(s)}(� �̂i(s) �� � �̂i(s) �) ds

Because of condition (ii) stated in the theorem, the quantity
� �̂i(s) �� � �̂i(s) � satisfies

0< � �̂i(s) �� � �̂i(s) �< � �̂i(s) �� (1��)�̂i(s) �<���̂i(s) �.

Using the above inequality and the triangle law, the absolute
value of each of the robotic link joint velocities satisfies

� ei(t) �=�
t

T
e��(t�s)sgn{�̂i(s)}(� �̂i(s) �� � �̂i(s) �) ds�

<
t

T
e��(t�s)��̂i(s) ds. (16)

Recalling that ei(T ) is given by

ei(T )=
T

0

e��(t�s)�̂i(s) ds,

and since ei(T )=0, therefore the inequality (16) for
i=1, . , . , n can be written as

� ei(t) �<
T

0

e��(t�s)��̂i(s) ds+
t

T

e��(t�s)��̂i(s) ds

�
t

0
e��(t�s)�̂i(s) ds.

Therefore the state estimation error vector norm satisfies the
inequality

� e(t ) �<��(t ).

In other words, the fault will not be detected.
In summary, the above result characterizes an example

class of faults that will not be detected by the fault diagnosis
architecture under certain modeling uncertainties condi-
tions. Note once again, that the class of faults not detectable
by the fault diagnosis scheme is characterized by the size of
the fault. Figure 6 illustrates an example fault (in the case of
a single link manipulator) that will not be detected by the
fault diagnosis architecture.

An important performance parameter in fault detection is
the length of the time interval between the occurrence of a

fault and the detection of the fault, which is usually referred
to as the detection time. The fault sensitivity Theorem 4.2
not only characterizes the class of detectable faults but it
also provides a measure of the detection time. Specifically,
the smallest td for which the inequality (13) holds is equal to
the detection time under the worst-case detectability
conditions as shown in Figure 4. Hence, td represents the
maximum detection time over all allowable scenarios of
modeling uncertainties. The following result shows that
under additional conditions on the fault function and the
modeling uncertainties, we can obtain an upper bound for
the detection time.

Corollary 4.4 (Detection Time). If

(i) the modeling uncertainties are such that its non-
uniform bound, �̄, satisfies �̄(q(t ), q̇(t ), �(t))<K for
some K��+ ; i.e. the size of the modeling uncertainties
is less than K everywhere in D;

(ii) the fault is such that � �(q(t ),q̇(t ),�(t )) �>2K; i.e. the
size of the fault is at least twice the maximum size of
the modeling uncertainties;

(iii) the sign of each component of � does not change for all
t�[T, td]; i.e. the fault functions remain either positive
or negative until the fault is detected;

(iv) �>
; i.e., the filter time constant is faster than the fault
evolution rate;

then the detection time td satisfies the following inequality:

td <
1

��

ln�
e�T +(��
)

�e
T 
. (17)

Proof: Based on the Theorem 4.2, the fault is guaranteed to
be detected if the sensitivity condition (13) is satisfied for a
given pair of modeling uncertainties and fault functions.
This condition is rewritten as:

�
t

T
e��(t�s)(1�e�
(s�T )�(q(s),q̇(s),�(s)) ds�

>2
t

0
e��(t�s)�̄(q(s),q̇(s),�(s),s) ds. (18)

The corollary can be proved if we can show that the above
inequality is satisfied under the conditions (i)–(iv) stated in
the corollary and the detection time (17). We begin the proof
of the result by simplifying, under conditions (i)–(iv), the
left hand side and the right hand side of the above inequality

Fig. 6. Example illustration of a fault that will not be detected by
the fault diagnosis architecture proposed in this paper.
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separately and by substituting the detection in the simplified
equations.

Consider the left hand side of the inequality (18). Using
conditions (ii), (iii) and (iv) stated in the corollary, this can
be written as

LHS=
t

T
e��(t�s)(1�e�
(s�T ))� �(q(s),q̇(s),�(s)) � ds

>2K�
t

T

e��(t�s) ds�
t

T
e��t+
T+(��
)s ds	

=2K�1�e��(t�T )

�
�

e�
(t�T ) �e��(t�T )

��
 	
=

2K
� �1+


e��(t�T ) ��e�
(t�T )

(��
) 	.

Consider the right hand side of the inequality (18). Using
condition (i) stated in the corollary, this can be written as

RHS=2
t

0
e��(t�s)�̄(q(s),q̇(s),�(s),s) ds

<2K�
t

0
e��(t�s) ds	

=2K�1�e��t

� 	
=

2K
�

[1�e��t ].

Based on the above simplifications of the left hand side and
the right hand side of the inequality, the proof of this
corollary will conclude if we show that the following
inequality is true:

�e�
(t�T ) �
e��(t�T )

(��
)
<e��t.

Or equivalently, using the condition (iii) stated in the
corollary, the proof will conclude if we show that

�e�
(t�T ) �
e��(t�T ) <(��
)e��t.

After using simple algebraic equations, proving the above
inequality is the same as proving that

e(��
)t <

e�T +(��
)

�e
T .

Now consider the left hand side of the above inequality.
Using the detection time bound given by (17) and the

condition (iv) stated in the corollary, the left hand side of the
above inequality at the time instant td (i.e. when the fault is
detected) satisfies

e(��
)td <e (��
)
1

��

ln


e�T +(��
)

�e
T =

e�T +(��
)

�e
T .

Therefore, if td satisfies the inequality (17), then the
inequality (18) is satisfied and hence using the sensitivity
result, the fault would be detected by the time t= td. �

It is noted that the sensitivity and the detection time
properties of the fault diagnosis architecture presented in
this paper depend on the time constant of the low pass filter.
The influence of this filter time constant on these properties
of the fault diagnosis architecture has been analyzed in
reference [8] for a generic dynamic system in the presence
of incipient faults.

4.3. Stability property
We now examine the stability properties of the robust FD
algorithm. The stability analysis of the robust FD algorithm
deals with the boundedness of all the signals in the fault
detection system and characterizes L2 bounds of the velocity
estimation error.

Theorem 4.5 (Stability) In presence of faults, the robust
nonlinear FD scheme described by (2) and (9) has the
following properties:

(a) e(t ) and 
̃(t ) are uniformly bounded;
(b) there exists a non-negative constant � that such for any

finite tf,


tf

0
� e(t ) �2 dt≤�+

4

�2

tf

0
(�2 + � 	(t ) �2) dt. (19)

Proof: The stability properties of the error dynamics (24)
and the adaptive law (9) are analyzed using Lyapunov’s
Direct Method [46]. Using (1) and (2) we obtain the
following error dynamics:

e(t )= q̇(t )��(t )

=W�(s)[�M�1(q)[F(q̇)+�d]

+(1�exp(�
(t�T )))�(q,q̇,�)��̂(q,q̇,� ;
̂)].

The above dynamics can be written as

ė=��e�M�1(q)[F(q̇)+�d] (20)

+(1�exp(�
(t�T )))�̂(q,q̇,� ;
̂*)��̂(q,q̇,� ;
̂)+ 	̄(t ),

(21)

where 	̄ denotes the network approximation error49,50 and is
defined as

	̄(t ):=(1�exp(�
(t�T )))[�(q(t ),q̇(t ),�(t ))

��̂(q(t ),q̇(t ),�(t );
̂*)].

The network approximation error 	̄ is a critical quantity,
representing the minimum possible deviation between the
unknown function � and the neural network �̂. Ideally we
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would like to have 	̄ (t )=0; in other words, we wish to be
able to approximate the off-nominal behavior of the system
due to faults exactly. Unfortunately, this is not always
possible, and hence the network approximation error, 	̄ (t ),
needs to be considered. Since � is unknown, the approxima-
tion error 	̄ (t ) cannot be calculated a priori. Several factors
including the number of hidden layers in the neural network
and the number of weights (denoted by p) influence the
value of 	̄ (t ). Universal approximator results for sigmoidal
neural networks indicate that if p is sufficiently large then
	̄ (t ) can be made arbitrarily small on a compact region
(assuming � is continuous).51

The vector 
̂* (an “artificial” quantity required only for
analytical purposes) is the value of 
̂ that minimizes the
L�-norm between the fault function, �(q,q̇,�), and the neural
network, �̂(q,q̇,� ;
̂ ), over all (q,q̇,�) in the compact learning
domain D, subject to the restriction that 
̂* belongs to a
compact, convex region M
̂ ��p; i.e.


̂*:=argmin

̂�M


� sup
(q,q̇,�)�D

��(q,q̇,�)��̂(q,q̇,� ;
̂)�
.

In addition to the factors described above, the choice of M
̂

influences the approximation error 	̄ (t ) and the weight
vector 
̂*.25

By considering the Taylor series expansion of �̂(q,q̇,� ;
̂)
with respect to 
̂ around (q,q̇,�,
̂*), the error dynamics (21)
can be written as

e=��e�M�1(q )[F(q̇)+�d]

�exp(�
(t�T ))�̂(q,q̇,� ;
̂*)�Z
̃

��̂0(q,q̇,� ;
̂)+ 	̄(t ), (22)

where 
̃:= 
̂�
̂* is the weight estimation error, and
�̂0(q,q̇,� ;
̂ ) represents the higher-order terms (with respect
to 
̂) of the Taylor series expansion. The higher-order term
encapsulates the nonlinear parameterization structure of the
sigmoidal neural network. It can be shown that �̂0

satisfies52

� �̂0(q,q̇,� ;
̂ )�≤�(q,q̇,� ;
̂ )� 
̃ �, �(q,q̇,�)�D, 
̂�M


with

�(q,q̇,� ;
̂ ):=sup

�S


����̂(q,q̇,� ;
)
�
̂

�
��̂(q,q̇,� ;
̂ )

�
̂ �
,

where S
̂:={
��p:�
̂+(1��)
̂*, 0≤�≤1}. Note that for
each (q,q̇)�D we have lim
̂→ 
̂* �̂0(q,q̇,� ;
̂ )=0; i.e. as the
weight estimates of the neural network, 
̂(t ) converges to
the optimal weight, 
̂*, the effect of the higher-order terms
decreases.52

Now if we define 	:= 	̄��̂0, then the error equation (22)
can be written as

ė=��e�M�1(q)[F(q̇)+�d]

�exp(�
(t�T ))�̂(q,q̇,� ;
̂*)�Z
̃+	(t ) (23)

�̇=�
�, (24)

with �(T )=�1.

Consider the Lyapunov function candidate

V(e,
̃ )=
1

2
eTe+

1
2


̃ T ��1
̃+
c2

2
�
�2,

where c:=supt≥T �̂(q(t ),q̇(t ),�(t );
̂*) is a constant which
exists because of the smoothness assumption on f. This
quantity is required for analytical purposes and is not
required for the implementation of the proposed fault
diagnosis algorithm.

The time derivative of V along the solution of (24) and (9)
is given by

V̇=�� � e �2 � (M�1(q)[F(q̇)+�d])
Te+�(�̂(q,q̇,�;
̂*))T e

��*
̃ T
̂

̂ T �Z Te

̂ T �
̂

+	 Te�c2�2. (25)

We next show that

�*
̃ T
̂

̂ T �Z Te

̂ T �
̂

≥0. (26)

Suppose that � 
̂ �=M and 
̂ T �Z Te>0; if these conditions are
not satisfied then �*=0 and the inequality holds trivially. By
completing the squares, the term 
̃ T
̂ is expressed as


̃ T 
̂= 
̃ T (
̃+ 
̂*)

=
1
2

(
̃ T 
̃+(
̃ T 
̃+2
̃ T 
̂*+ 
̂* T 
̂*)�
̂* T 
̂*)

≥
1
2

(M2 � � 
̂* �2).

Since by definition � 
̃* �<M, we obtain that 
̃ T
̂≥0 which
proves the inequality (26).

Using this inequality, equation (25) can be rewritten as

V̇ ≤��� e �2 � (M�1(q)[F(q̇)+�d])
Te+c�� e �+	Te�

c2�2

�

=�
�

4
� e �2

���� e �2

4
+(M�1(q)[F(q̇)+�d])

T e+
� M�1(q)[F(q̇)+�d]�2

� �
+

� M�1(q)[F(q̇)+�d]�2

�
���� e �2

4
�	Te+

� 	 �2

� �+
� 	 �2

�

���� e �2

4
�c�� e �+

1
�

c2�2�
≤�

�� e �2

4
+

1
�

�̄(q,q̇,�,t )2 +
1
�

� 	 �2. (27)
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By combining the above inequality which guarantees that
V̇ ≤0 for

� e �≥
2��̄2 + � 	 �2)

�
,

and the fact that � 
̂ �≤M, we establish that e, 
̃�L�.
Furthermore, by integrating (27) from t=0 to t= tf , we
obtain


t

0
� e(t ) �2 dt ≤

4
�

[V(0)�V(tf )]

+
4
�2 
tf

0
�̄2 dt+

4

�2

tf

0
	(t ) �2 dt

≤�+
4
�2 
tf

0
(�̄2 + � 	(t ) �2) dt,

where

�=
4
� �sup

tf ≥0
[V(0)�V(tf)]
. �

The above theorem guarantees the uniform boundedness of
the error signal and weights in the neural network based FD
scheme. Furthermore, (19) implies that the extended L2-
norm of the estimation error vector is, at most, of the same
order as the extended L2-norm of the modeling uncertainties
(represented by �̄) and the network approximation error
(described by 	). Thus this theorem quantifies the overall
performance of the learning scheme and the effect of the
design parameter � on the performance.

Remark 4.6. The learning algorithm only uses the knowl-
edge of the size of the modeling uncertainties and does not
require an a priori known bound on the network reconstruc-
tion error that results due to inaccurate modeling of the
fault function �. Note that the projection operator in the
weight update law deals with the network approximation
error while the dead-zone operator is used to achieve
robustness in the fault diagnosis architecture.

5. SIMULATION EXAMPLES
This section illustrates the robust nonlinear fault diagnosis
scheme for robotic manipulators, presented in this paper, via
simulations. The robot system used for simulation purposes
is a two rigid link robotic manipulator. The lengths of the
two links are assumed to be l1 and l2 with point masses m1

and m2 at the distal ends of the two links respectively. The
robotic link, with its parameters, used for simulations
purposes is shown in Figure 7.

The dynamic equations of the robot manipulator are
given in [20] while link parameters of the manipulator are
given in Table 1.53

We assume that the robotic system has the following
modeling uncertainties:53

F=�0.5 sgn(q̇1)+2q̇1

0.5 sin(q̇2)+2q̇2
	,

The control objective of the robotic system used in the
simulations is to follow a desired trajectory. A number of
techniques are available in the literature for deriving
position control laws for robotic manipulators in the
presence of modeling uncertainties and in the absence of
faults (i.e. ��0).20,54,55, Without any loss of generality, in
this paper we use the computed-torque method to obtain a
trajectory-tracking controller for the robotic manipulator
described by (1). The controller derived using this method
relies on the position and velocity measurements of each
link, and the nominal model given by

�=M(q)q̈+Vm(q,q̇)q̇+G(q) (28)

The structure of the computed torque controller is described
by

�=M(q)(q̈d +Kd�̇+Kp�)+Vm(q,q̇)q̇+G(q), (29)

where qd is the desired trajectory, �:=qd �q is the tracking
error, Kd is an n� n diagonal matrix of damping gains, Kp is
an n� n diagonal matrix of position gains. If the robot
dynamics are known exactly, then these matrices can be
chosen so that the control law leads to an exponentially
convergent tracking error.20,21

The controller gains in the control law (29) are chosen as
follows: Kp =100I2� 2, Kd =20I2� 2, where In� n represents an
identity matrix of dimension n� n. The position and velocity
of each joint is assumed to be available for measurement in
order to be able to implement this controller.

The domain of interest is:

D={[q1 q2 q̇1 q̇2]
T:� q1 �≤0.19, � q2 �≤0.23, � q̇1 �≤0.36,

� q̇2 �≤0.63}.

Fig. 7. Two link robotic manipulator.

Table I. Manipulator parameters.

j=1, 2 Link 1 Link 2

lj(m) 1.0 1.0
mj(Kg) 0.5 2.0
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The units of q and q̇ are radians and radians/sec respectively.
The L2-norm of the modeling uncertainty in D, using the
modeling uncertainties structure described above and the
robotic manipulator parameters, is given by

1
� 4 cos2 (q2)�5 �

{((1+cos(q2))(sin(q̇2)+4q̇2 +sin(30t ))

� (q̇1�� q̇1 �+4q̇1 +sin(30t )))2

+((1+cos(q2))(q̇1�� q̇1 �+4q̇1 +sin(30t ))

� (4.5+4 cos(q2))(0.5 sin(q̇2)+2q̇2 +0.5 sin(30t )))2}1/2.

The above expression shows that the size of the assumed
modeling uncertainties depends on the system state. Since
the modeling uncertainties are unknown (and hence the
exact size of the uncertainties is unknown), this paper
assumes that the size of the uncertainties has been
determined empirically. Furthermore, this empirically deter-
mined non-uniform bound on modeling uncertainties in D,
for the purpose of simulations, is assumed to be

�̄=4.4( � 2q̇1 �6q̇2 �+1.0).

We use a three-layer sigmoidal neural network with 35
neurons in the hidden layer and two neurons in the output
layer (corresponding to the velocity estimate of each of the
two joints) for detecting system failures. The inputs to the
neural network are the link position and velocity measure-
ments, and the input torques �. The initial parameter vector
of the network is chosen such that the output of the neural
network is zero in D (corresponding to the no-failure
situation). This is achieved by setting the output weights of
the neural network to zero. We set the learning rate as
�=2.50I2� 2 and the constant �=10. The size of the
hypersphere for the projection algorithm is selected as
M=10 in this experiment.

The above manipulator is subject to two types of faults.
The fault models and the behavior of the robotic manip-

ulator with respect to these faults, and the performance of
the fault diagnosis architecture are now discussed.

5.1. Fault 1: Change in mass of link 1
In the first simulation, we consider a fault which starts at
t=10s. The fault is assumed to result in the change of mass
of link 1 exponentially (in other words, the mass of link 1 is
slowly falling). The mathematical form of this change in
mass is assumed to be

m1(t )=0.125�0.375e�0.5(t�10), t>10.

Observe that this change in mass causes nonlinear changes
in the terms M(q), Vm(q,q̇) and G(q) of the robotic system
(1) which results in a nonlinear change in the dynamics
describing the robotic manipulator. Moreover, this nonlinear
change depends on the current positions and velocities of
the links.

Figure 8 shows the joint angle of each link, when the
there is above fault. It can be seen that the the robotic
system tracks the desired trajectories before the occurrence
of the fault with a small tracking error, which results due to
the presence of modeling uncertainties. The figure also
shows that the fault causes considerable tracking error in the
system for t>10s.

Based on the Figure 8, it can be inferred that both the
modeling uncertainties and the fault in the system cause the
robotic manipulator to deviate from the desired trajectory.
The key however is that deviations caused by modeling
uncertainties are “tolerable” (with the controller offering
necessary robustness) while the deviations caused by faults
are not “acceptable” from both the systems perspective
(deviation into not-desired domain) and the controller
perspective (due to the inability of the controller to maintain
robustness). Hence, even though the modeling uncertainties
and the fault cause deviations in the robotic system
trajectory, it is desirable to distinguish the effects of faults

Fig. 8. Joint angles of the manipulator with fault that results in gradual change in mass of link 1.
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and the effects of modeling uncertainties; i.e. it is important
to identify the deviations caused by the fault for t>10s in
the above figure.

Figure 9 shows the performance of the fault diagnosis
architecture in the presence of this fault. Specifically, the
figure shows the time histories of the fault functions and the
neural network outputs (i.e., the estimates of the fault
functions). It can be seen from the figure that the outputs of
the neural networks remain zero prior to the fault (i.e. for
t<10s), demonstrating the robustness properties of the
robust fault diagnosis scheme presented in this paper.
Furthermore, the neural network outputs jump to non-zero
values soon after the occurrence of the fault. Thus the neural
network outputs can be effectively used for the detection of
system faults in this simulation example.

The learning capability of the fault diagnosis architecture
is also illustrated in Figure 9. This figure shows that the
neural network outputs provide a good approximation of the
fault functions in each link. The presence of modeling
uncertainties and the network approximation error causes
the observed mismatch between the fault function and the
neural network outputs.

Figure 10 shows the low-pass filtered signals of the size
of the modeling uncertainty and the fault function. The low-
pass filter used to obtain these signals is the same as the one
used in obtaining the estimates of the robotic manipulator
joint velocities. From the figure, it can be inferred that the
size of the fault function becomes non-zero at t=10s. The
size of the fault function exceeds the size of the modeling
uncertainties at about t=10.6s. Comparing Figure 10 with
Figure 9, it can be seen that the neural network output
becomes non-zero approximately at t=10.6s which is time
at which the size of the filtered function exceeds the filtered
modeling uncertainty size.

In summary, the fault diagnosis scheme proposed in this
paper is able not only to detect the occurrence of a fault in

the presence of modeling uncertainties, but also provides a
model of the fault (described by �̂(q,q̇,� ;
̂)) in the robotic
manipulator.

In the above simulation study we have considered a fault
that causes a 75% gradual change in the mass of link 1 in
order to illustrate the ability of the accommodation scheme
to handle such large faults. Although such large faults are
relatively easily to detect, the proposed fault diagnosis
scheme can detect smaller faults as long as the ratio between
the fault function magnitude and the size of the modeling
uncertainties is sufficiently large. Further simulation study
indicated that for the uncertainty level considered here, the
fault diagnosis scheme is able to detect change of mass
greater than or equal to 10%. As the analysis in Section 4
shows, the performance of the fault diagnosis scheme can be
enhanced by improving the accuracy of the nominal model.

5.2. Fault 2: Complex nonlinear function
In the second simulation, we consider a fault that occurs due
to a tangle of complex factors; this fault is assumed to
manifest itself as a nonlinear change (in the robotic system
dynamics) described by

�(q,q̇,�)=

(1�exp(�0.5(t�10)))�7.5q2
1 +10q2

1q̇
2
2 +7q2 +17]

50q1q2 +12.5 	. (30)

This fault is also assumed to occur at t=10s.
Figure 11 shows the joint angle of each link, when a fault

described by (30) occurs. It can be once again seen that the
tracking of the robotic system deteriorates considerably
after the occurrence of the fault (i.e. for t >10s).

Figure 12 shows the plot of the neural network output and
the fault function. This figure also shows that the neural

Fig. 9. Time histories of the fault functions and the neural network output when the fault results in gradual change in mass of link 1.
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network output remains prior to t=10s and become non-
zero shortly after the fault occurs. From this figure, it can
also be inferred that the neural network provides a good
approximation of the fault function.

Figure 13 shows the low-pass filtered signals of the size
of the modeling uncertainty and the fault function. From the
figure, it can be inferred that the size of the fault function
becomes non-zero at t=10s and the size exceeds the size of
the modeling uncertainties at about t=11.4s. Comparing
Figure 13 with Figure 12, it can be seen that the neural

network output becomes non-zero approximately at
t=11.0s.

5.3. Example application of the the Neural Network
Model: Fault accommodation
The fault model provided by the neural network can be used
for identifying the failure mode by comparing it with any
known failure modes. Signatures of such known failure
modes of the relevant robotic manipulator can be stored in
a post-failure model bank. Pattern recognition techniques

Fig. 10. Time histories of the filtered signals of the size of the modeling uncertainties and the size of the fault function when the fault
results in gradual change in mass of link 1.

Fig. 11. Joint angles of the manipulator when the fault occurs due to a tangle of complex factors.
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and associative memories provide effective means for
comparison purposes. It is important that the post-failure
model bank include (and be updated periodically) the
signatures of recurring and well-understood failures. In
many cases, however, unexpected failure situations are
encountered. This may occur as a result of minimal
knowledge of possible manipulator faults, unexpected
breakdowns, or even as a result of errors in assembling the
post-failure model bank. The construction of a post-failure
model bank and its effective use for fault identification and
fault isolation based on the post-fault models provided by

the proposed fault diagnosis methodology needs further
investigation.

The post-fault model provided by the sigmoidal neural
network can also be used for failure accommodation
purposes.56 One of the nonlinear control tools available for
controller reconfiguration purpose is feedback lineariza-
tion.57 The main idea behind feedback linearization is to
transform the nonlinear system into a system with linear
dynamics through a change of coordinates and nonlinear
feedback. If feedback linearization is achievable (see
reference [57] for conditions under which a system is

Fig. 12. Time histories of the fault functions and the neural network output when the fault occurs due to a complex tangle of factors.

Fig. 13. Time histories of the filtered signals of the size of the modeling uncertainties and the size of the fault function when the fault
occurs due to a complex tangle of factors.
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feedback linearizable), then it is possible to obtain, first,
cancellation of the nonlinear functions and, second, desired
closed-loop performance through the application of power-
ful linear control design methodologies. We employ this
technique in this paper to reconfigure the control law (29).

Based on the post-fault robotic system model given by

�=M(q)q̈+Vm(q,q̇)q̇+G(q)�M(q)�̂(q,q̇,� ;
̂),

and using the feedback linearization technique, the control
law (29) can be reconfigured to

�� =��M(q)�̂(q,q̇,� ;
̂)), (31)

where �r is the reconfigured control law.
Figure 14 shows the trajectories of the robotic system

when the reconfigured control law is used. By comparing
this figure with Figure 8 it can be concluded that the
trajectory tracking error is considerably reduced by using
the reconfigured control law (31). The accommodation of
the fault (30) is illustrated in Figure 15. By once again
comparing this figure with Figure 11 it can seen that
tracking of the desired trajectories is considerably
improved. Thus the proposed fault diagnosis scheme helps
in providing a post-failure model that can be used for
accommodating system failures via control reconfiguration.

Fig. 14. Joint angles plots illustrating accommodation when the fault results in a gradual change in the mass of link 1.

Fig. 15. Joint angles plots illustrating accommodation when the fault occurs due to a tangle of complex factors.
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6. CONCLUSIONS
A neural network-based learning methodology with guaran-
teed robustness, sensitivity, stability properties is described
for the detection of faults in robotic systems with modeling
uncertainties. The nonlinear modeling approach is one of
the key features of the algorithm proposed in this paper.
This feature enables the development of a post-fault robotic
system model which can be used to isolate as well as
accommodate robotic system faults. Simulation examples
are used to illustrate the algorithm in the detection of faults
in a two-link robotic manipulator.
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