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Channel and shoal development in a short tidal
embayment: an idealized model study
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In many tidal embayments, complex patterns of channels and shoals are observed. To
gain a better understanding of these features, an idealized model, that describes the
interaction of water motion, sediment transport and bed evolution in a semi-enclosed,
rectangular basin, is developed and analysed. To explain the initial formation of
channels and shoals, two-dimensional perturbations superposed on a laterally uniform
equilibrium bottom are studied. These perturbations evolve due to convergences of
various residual suspended sediment fluxes: a diffusive flux, a flux related to the
bed topography, an advective flux resulting from internally generated overtides and
an advective flux due to externally prescribed overtides. For most combinations of
these fluxes, perturbations start to grow if the bottom friction is strong enough.
Their growth is mainly a result of convergences of diffusive and topographically
induced sediment fluxes. Advective contributions due to internally generated overtides
enhance this growth. If only diffusive sediment fluxes are considered, the underlying
equilibrium is always unstable. This can be traced back to the depth dependence of
the deposition parameter. Contrary to the results of previous idealized models, the
channels and shoals always initiate in the shallow, landward areas. This is explained by
the enhanced generation (compared to that in previous models) of frictional torques
in shallow regions. The resulting initial channel–shoal formation compares well with
results found in complex numerical model studies. The instability mechanism and
the location of the initial formation of bottom patterns do not change qualitatively
when varying parameters. Changes are mainly related to differences in the underlying
equilibrium profile due to parameter variations.

Key words: coastal engineering, morphological instability, pattern formation

1. Introduction
Tide-dominated embayments are important features of many coastal systems.

Examples of such systems are found along the Dutch, German and Danish Wadden
coast (Ehlers 1988; Davis 1996). Their morphology is often complex, exhibiting
patterns of deep channels separated by shallow, sandy shoals. Usually, the depth
of the channels decreases and the number of channels increases in the landward
direction.

An example of such an embayment in the Dutch Wadden Sea is the Ameland Inlet
system, located between the Dutch barrier islands Terschelling and Ameland (see
figure 1). The width of this inlet is ∼2 km, its length is ∼19 km and the averaged
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Figure 1. Tidal inlet systems in the Dutch Wadden Sea (after Sha 1989). The Amelander
Inlet system is located between the barrier islands Terschelling and Ameland.

depth at the entrance is ∼12 m. The water motion in this area is dominated by a
semidiurnal tide with a mean tidal amplitude of ∼1 m. The channels form a large-scale
fractal pattern (Cleveringa & Oost 1999).

Recently, complex process-based morphodynamic models were able to simulate
the development of channel–shoal systems in tidal basins (Marani et al. 2003;
Marciano et al. 2005; Roelvink 2006; D’Alpaos et al. 2007) and tidal inlets (Hibma,
de Vriend & Stive 2003; Hibma, Schuttelaars & de Vriend 2004; van der Wegen &
Roelvink 2008; Dissanayake, Roelvink & van der Wegen 2009). For example, van
der Wegen & Roelvink (2008) simulated bed evolution in a short tidal embayment,
starting from a constantly sloping, laterally uniform bed profile. Initially channels
and shoals developed in the relatively shallow landward end of the embayment.
The number of channels and shoals in the embayment increased with increasing
embayment width. Obviously, these numerical models include the main physical
mechanisms for the formation of channel–shoal systems. However, they are too
complex to determine which mechanism is essential for the behaviour of the simulated
phenomena.

To elucidate the physical mechanisms resulting in the observed development of
channels and shoals, idealized models were devised. As a first step, Schuttelaars &
de Swart (1996) and van Leeuwen, Schuttelaars & de Swart (2000) developed cross-
sectionally averaged models for short embayments (for an extensive overview, see de
Swart & Zimmerman 2009). Considering only a prescribed M2 tidal elevation at
the entrance of the embayment, a unique morphodynamic equilibrium was found,
characterized by a constantly sloping bed. If both the M2 and the M4 tidal constituents
were considered, van Leeuwen et al. (2000) obtained equilibrium profiles that were
strongly convex and much shorter than those found in observations. This motivated ter
Brake & Schuttelaars (2010) to investigate the influence of the vertical distribution of
suspended sediment on width-averaged equilibrium profiles. They found that when
the vertical distribution was included, morphodynamic equilibria could be found with
embayment lengths similar to those observed in the Dutch Wadden Sea.

To address channel–shoal formation, the linear stability of these cross-sectionally
averaged morphodynamic equilibria has to be investigated. This was first done
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by Schuttelaars & de Swart (1999), who studied the linear stability of laterally
uniform morphodynamic equilibria by perturbing them with small, two-dimensional
disturbances. Sediment was transported by diffusive processes and local bed slope
terms. It was found that the basic state was unstable if the friction parameter exceeded
a critical value. The maximum amplitude of the bed perturbation was found in the
middle of the tidal embayment. van Leeuwen & de Swart (2001, 2004) extended
this model by retaining internally generated advective contributions. They found
that bars were formed near the seaward boundary if the sediment transport was
dominated by advective processes. Diffusively dominated transport resulted in bed
forms located more towards the centre of the embayment. Compared to the results
found in complex numerical model simulations (van der Wegen & Roelvink 2008),
the location where the initial bed forms are observed is very different: in the idealized
models the initial bed forms are located in the seaward section, while in the numerical
modelling studies they are found near the landward boundary. Apart from this
difference, the idealized model studies do not consider a prescribed external overtide
or the effects of the vertical suspended sediment distribution on the stability of bed
perturbations, even though they strongly influence existence and characteristics of
the underlying laterally uniform morphodynamic equilibria (ter Brake & Schuttelaars
2010).

In view of these observations, the present paper aims to answer the following
questions. First, what is the influence of the various sediment fluxes on the linear
stability properties of two-dimensional perturbations on the cross-sectionally averaged
morphodynamic equilibria presented in ter Brake & Schuttelaars (2010)? There will be
a particular focus on the topographically induced sediment flux (i.e. the flux related to
the vertical distribution of suspended sediment) and the flux that is driven by external
overtides. Second, what controls the location where the most unstable perturbations
in the embayment are found? And finally, how sensitive are these results to variations
in parameter values, such as the grain size, the external overtide and the bottom
friction parameterization?

These questions will be answered by performing a linear stability analysis. First the
physical model is described in § 2, followed by a short description of the basic state
and a derivation of the eigenvalue problem (§ 3). The results of the default experiment
and the influence of different flux contributions are presented in § 4. These results are
extensively discussed in § 5, where the instability mechanism is described. The location
of the initial formation of the bed patterns is explained and model sensitivities are
discussed. In § 6, conclusions are drawn.

2. Model formulation
2.1. Geometry

The geometry considered is that of a semi-enclosed rectangular basin with constant
width B , tidally averaged length L and prescribed water depth H at the entrance. At
the landward side of the embayment the local water depth H − h + ζ vanishes. Here
ζ is the sea surface elevation above z =H and h is the bed level above a horizontal
datum at z = 0. The sidewalls at y = 0, B are assumed to be fixed and the bed is
erodible, see figure 2. It is assumed that the bottom of the embayment consists of
uniform fine sand with a typical grain size d ∼ 130 µm, that can be transported as
suspended load or bedload.
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Figure 2. (a) Top view and (b) cross-sectional view of the embayment. For an explanation
of the symbols, see the text.

2.2. Hydrodynamics

The water motion is described by the two-dimensional depth-averaged shallow water
equations (Vreugdenhil 1994)

ζt + [(ζ + H − h)u]x + [(ζ + H − h)v]y = 0, (2.1)

ut + uux + vuy = −gζx − τb1

ρs (ζ + H − h + h0)
, (2.2)

vt + uvx + vvy = −gζy − τb2

ρs (ζ + H − h + h0)
. (2.3)

As narrow and relatively shallow estuaries are considered, Coriolis effects are
neglected. No freshwater inflow is considered, which allows for the neglect of density
effects. From scaling arguments it follows that Reynolds stresses, related to turbulent
mixing of momentum in the horizontal direction, are negligible. As a first step, no
wind effects are taken into account. The variables u and v represent depth-averaged
velocities in the longitudinal and lateral directions, respectively. Furthermore, t is time,
g is the acceleration due to gravity and ρs is the density of sediments (2650 kg m3).
The last contributions on the right-hand side of (2.2) and (2.3) are the bed shear
stresses, divided by the local water depth. A constant h0 is introduced to keep the
bottom friction finite even if the water depth goes to zero. Following Zimmerman
(1982), a linearized formulation of the bed shear stress (τb1,τb2) is used:

τb1 = ρsr
∗u, τb2 = ρsr

∗v, (2.4)

where r∗ is a friction coefficient with dimensions m s−1. The parameter r∗ is chosen
such that the net dissipation of energy (averaged over a tidal cycle and over the
embayment) due to the linearized stress equals that of the bed shear stress based
on the quadratic friction law. It is shown by Schramkowski, Schuttelaars & de
Swart (2002) that this linearization of the bottom stress only marginally affects the
morphodynamics of tidal embayments.

At the entrance, the sea surface elevation is prescribed and consists of an M2 and
an M4 tidal constituent. At the landward side the kinematic boundary condition
is used and at the sidewalls (i.e. y = 0 and y = B) the water flux vanishes. Explicit
expressions for these boundary conditions will be discussed in more detail in § 2.4.

2.3. Sediment transport and bed evolution

The concentration of suspended sediment and the evolution of the bottom are
described by the two-dimensional equivalents of the equations, used in ter Brake &
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Schuttelaars (2010). For details, we refer to this article. The resulting equations read

Ct +

[
uC − κ̃Cx − κ̃

ωs

κv

βhxC

]
x

+

[
vC − κ̃Cy − κ̃

ωs

κv

βhyC

]
y

= α(u2 + v2) − ω2
s

κv

βC,

(2.5a)

ρs(1 − p)

[
ht + µ∇2(h − heq )

]
= −

〈
α(u2 + v2) − ω2

s

κv

βC

〉
. (2.5b)

Here C is the depth-integrated sediment concentration, κ̃ is the horizontal diffusivity
(∼102 m2 s−1), κv is the vertical diffusivity (∼0.1 m2 s−1), ωs is the settling velocity
(∼0.015 m s−1), α is an erosion constant (∼10−4 kgm−2 s−1) which depends on the
sediment characteristics and β is the deposition parameter:

β =

[
1 − exp

(
−ωs

κv

(ζ + H − h)

)]−1

. (2.6)

Furthermore, ∇ = (∂/∂x, ∂/∂y), heq is a width-averaged equilibrium bottom profile
(specified in § 3), p ∼ 0.4 is the porosity of sediment and µ (∼10−6–10−4 m2 s−1)
determines the magnitude of the bedload contribution proportional to the local
bedslope.

As boundary conditions at the entrance, the bed level h is fixed (h = 0) and there
is a tidally averaged balance between erosion and deposition,〈

α(u2 + v2) − ω2
s

κv

βC

〉
= 0 at x = 0, (2.7)

The boundary conditions at the sidewalls require a vanishing suspended load and
bedload sediment flux:

vC − κ̃Cy − κ̃
ωs

κv

βhyC = 0 and hy = 0 at y = 0, B. (2.8)

At the landward side, we require the water depth to vanish at x̂(x, y). Here, x̂(x, y)
is the position of the moving water front (with the tidally averaged longitudinal
coordinate of 〈x̂〉 =L). Apart from this condition, the tidally averaged sediment flux
has to vanish at the moving boundary:

ρs(1 − p)µ∇(h − heq ) · n +

〈
−κ̃∇C − κ̃

ωs

κv

β∇hC

〉
· n = 0 at x = x̂(x, y), (2.9)

where n is the normal vector.

2.4. Scaling and derivation of the short-embayment model

The governing equations are made dimensionless by introducing characteristic scales
for the physical variables. Dimensionless parameters, shown below, are denoted with
an asterisk ∗:

u = Uu∗, v = Uv∗, C =
αU 2κv

ω2
s

C∗, ζ = AM2
ζ ∗, h = Hh∗, t = σ −1t∗,

x = Lx∗, y = Ly∗, β = β∗, r =
H

σ
r∗, µ = σL2µ∗,

⎫⎪⎪⎬
⎪⎪⎭
(2.10)

The characteristic scales include the tidally averaged length L of the basin, the
reference depth H at the entrance of the embayment and the free surface amplitude
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AM2
. The velocity scale follows from the continuity equation and reads U = σAM2

L/H .
The typical scale for the concentration is obtained by requiring an approximate
balance between erosion and deposition.

After suppressing the asterisk of the dimensionless variables, the dimensionless
equations for the water motion become

ζt + [(εζ + 1 − h)u]x + [(εζ + 1 − h)v]y = 0, (2.11)

λ2
L

[
ut + ε(uux + vuy) +

r

(εζ + 1 − h + h0)
u

]
= −ζx, (2.12)

λ2
L

[
vt + ε(uvx + vvy) +

r

(εζ + 1 − h + h0)
v

]
= −ζy. (2.13)

Here ε is the ratio of the tidal excursion length U/σ and the embayment length L,
and λL = σL/

√
gH is, apart from a factor of 2π, the ratio of the embayment length

and the frictionless tidal wavelength Lg = T
√

gH .
Assuming that bottom friction is only moderate (i.e. frictional terms in the

momentum equation are of the same order as the local acceleration terms) and
considering only short embayments (i.e. the length L is assumed to be small compared
to the frictionless tidal wavelength Lg , resulting in λL � 1), the momentum equations
reduce in lowest order to

ζx = 0 and ζy = 0. (2.14)

Hence, the free surface elevation is spatially uniform. This condition and the width-
averaged equivalent of condition (2.11) were used by ter Brake & Schuttelaars (2010)
to solve for the cross-sectionally averaged velocity u and ζ . However, in case the
equations are only averaged over the depth, (2.11) and (2.14) are not sufficient to
solve for both the velocities u and v. To close the system of equations, we eliminate
the pressure terms from (2.12) and (2.13) by taking cross-derivatives of the full
momentum equations (i.e. get the y-derivative of (2.12) and the x-derivative of
(2.13)), and subtracting the results. This results in the vorticity equation

Ωt + ε[(uΩ)x + (vΩ)y] =

[
ru

(εζ + 1 − h + h0)

]
y

−
[

rv

(εζ + 1 − h + h0)

]
x

, (2.15)

with Ω = vx − uy the relative vorticity. The terms on the left-hand side of (2.15)
represent the local change of relative vorticity and the divergence of the vorticity flux.
The terms on the right-hand side model the dissipation of vorticity by bottom friction,
as well as vorticity production by bottom frictional torques. In previous studies by
Schuttelaars & de Swart (1996) and van Leeuwen et al. (2000), the contribution
on the right-hand side (with h0 = 0) was linearized with respect to the local water
depth, assuming that h − εζ � 1 everywhere in the tidal inlet. Only the first two
terms in the Taylor expansion were retained as this already resulted in the generation
of vorticity. In this work we do not linearize these contributions but introduce a
parameter h0 > 0 to ensure that the bottom friction remains bounded if the water
depth goes to zero. A similar approach to regularize the bottom friction has already
been applied by Schuttelaars & de Swart (2000) and Schuttelaars, Schramkowski &
de Swart (2001).

The dimensionless concentration equation (2.5a) becomes

a{Ct + (εuC − κ[Cx + λβhxC])x + (εvC − κ[Cy + λβhyC])y} = u2 + v2 − βC,

(2.16)
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Channel Tide Sediment Dimensionless

L= 19 × 103 m AM2
= 0.84 m ωs = 0.015 m s−1 ε =

U

σL
=

AM2

H
∼ 0.07

H = 12 m AM4
= 0.08 m κv = 0.1 m2 s−1 κ =

κ̃

σL2
∼ 1.79 × 10−3

B = 2 × 103 m σ = 1.4 × 10−4 s−1 α = 10−2 kg s m−4 a =
σκv

ω2
s

∼ 0.0622

φ = 195◦ κ̃ = 102 m2 s−1 λ=
ωs

κv

H ∼ 1.8

p = 0.4 γ = 2
AM4

AM2

∼ 0.19

ρs = 2650 kg m3 δ =
αU 2

σHρs(1 − p)
∼ 1.3 × 10−5

h0 = 0.4 r = r∗/σH ∼ 10−3/1.68 × 10−3

µ= σL2µ∗ ∼ 3.4 × 10−6

Table 1. Characteristic values for the Ameland Inlet system.

with a the ratio of the deposition time scale over the tidal time scale, κ the non-
dimensional horizontal diffusion parameter and λ the sediment Péclet number, which
is the ratio of the typical time it takes a particle to settle in the water column and
the typical time needed to mix particles through the water column (for a definition of
the dimensionless parameters, see table 1). The dimensionless deposition parameter β

reads {1 − exp[−λ(εζ + 1 − h)}−1
.

Finally, the scaled bottom evolution equation is given by

hτ = −〈∇ · F〉, (2.17)

where τ = δt is the slow morphodynamic time, with δ = αU 2/(σHρs(1−p)). The vector
F = (F 1, F 2) denotes the sediment flux, with components given by

F 1 = a[εuC − κ[Cx + λβhxC]] + µ(hx − heq,x), (2.18)

F 2 = a[εvC − κ[Cy + λβhyC]] + µ(hy − heq,y). (2.19)

The first contribution to both F 1 and F 2 represents the advective sediment flux and
the second one the diffusive flux. The third contribution models the topographically
induced suspended sediment transport and the last term the bedload transport related
to the local bedslope.

At the entrance, the scaled sea surface elevation ζ is prescribed as ζ = cos(t) +
γ cos(2t − φ)/2 with γ the ratio of the tidal amplitudes of the M4 and M2 tidal
constituents. The phase difference φ is defined as the difference between the phases
of these constituents, φM4

− 2φM2
, where φM2

and φM4
are the phases of the M2 and

M4 tidal constituents at the entrance. Using the momentum equation (2.13) and the
reduced momentum equation (2.14), it follows that vt +εuvx +εvvy = −rv/(εζ +1+h0)
at x =0. Concerning the concentration at the entrance, it is required that erosion and
deposition balance over a tidal cycle (〈u2 + v2 − βC〉 =0) and that no diffusive
boundary layer develops for the time-varying part (C̃(x, y, t, κ) = C̃(x, y, t, κ =0)).
Furthermore, the bed is fixed at the entrance (h = 0).

The boundary conditions at the moving landward end (x = x̂) are reformulated as
the conditions at the averaged landward boundary x = 1. Following van Leeuwen &
de Swart (2001) it is found that in leading order h = 1 at x =1. Substituting
this condition into the continuity equations and noting that the derivatives of
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ζ are zero (2.14), it follows that ζt − hxu + εζux − hyv + εζvy = 0. Furthermore,
we require that the tidally averaged flux 〈F 1〉 = 0 and that no diffusive boundary
layer develops for the time-fluctuating part of the suspended sediment concentration,
C̃(x, y, t, κ) = C̃(x, y, t, κ =0).

The scaled boundary condition at the walls requires the water flux (1 − hεζ )v to
vanish. Furthermore, both the suspended load flux εvC − κ(Cy + βhyC) and the
bedload flux µ(h − heq )y have to vanish as well.

3. Basic state and linear stability analysis
ter Brake and Schuttelaars (2010) showed that the system of equations, specified in

§ 2.4, allows for morphodynamic equilibria that are uniform in the lateral direction.
However, it is not clear if these morphodynamic equilibria are stable with respect
to small bottom perturbations that vary over the width. To investigate the linear
stability of these equilibria, small two-dimensional perturbations are superimposed
on the basic state:

Ψ (x, y, t, τ ) = Ψ eq (x, t) + Ψ ′(x, y, t), (3.1)

where Ψ =(u, v, ζ, C, h). The subscript (eq) denotes the one-dimensional basic state
and the prime indicates any small two-dimensional perturbations. To investigate the
linear stability of a morphodynamic equilibrium, Ψ is substituted into the original
system of equations and linearized around the equilibrium solution (i.e. contributions
to the equations that are nonlinear in the small perturbations are neglected). The
resulting system of equations is presented in Appendix A.

The equations and boundary conditions presented in Appendix A allow for solutions
of the form

u′ = Re {ûn(x, t) cos(lny) eωτ }, v′ = Re{v̂n(x, t) sin(lny) eωτ },

C ′ = Re{Ĉn(x, t) cos(lny) eωτ }, h′ = Re{ĥn(x) cos(lny) eωτ }.

}
(3.2)

Here Re denotes the real part of the solution, and ln is the dimensionless lateral
wavenumber of the perturbation, defined as

ln = nπL/B, n = 0, 1, 2, . . . , (3.3)

with n the lateral mode number. The complex number ω follows from an eigenvalue
problem (see (3.11)), with its real part denoting the exponential growth rate of the
perturbation. The migration rate is given by its imaginary part Im(ω). If Re(ω) > 0,
the morphodynamic equilibrium is unstable and the amplitude of the perturbations
grows exponentially in time.

Following the solution method for the basic state (ter Brake & Schuttelaars 2010),
the variables that depend on the tidal time scale are expanded with respect to the
small parameters ε and γ (defined in table 1):

χ̂n(x, t) = χ̂0,0
n (x, t) + εχ̂1,0

n (x, t) + γ χ̂0,1
n (x, t) + · · · , (3.4)

with χ̂n any of the variables ûn, v̂n and Ĉn. The first superscript gives the order in ε

and the second one the order in γ . The subscript n denotes the lateral wavenumber.
These expansions are substituted in the linearized system of equations (presented in
Appendix A) and terms of equal powers of ε and γ are collected.
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From the leading-order system of equations (i.e. independent of ε and γ ) and the
boundary conditions, it follows that the leading-order solutions can be written as

û0,0
n (x, t) = u0,0

n,s(x) sin(t) + u0,0
n,c(x) cos(t), (3.5a)

v̂0,0
n (x, t) = v0,0

n,s (x) sin(t) + v0,0
n,c(x) cos(t), (3.5b)

Ĉ0,0
n (x, t) =

〈
C0,0

n (x)
〉

+ C0,0
n,s2(x) sin(2t) + C0,0

n,c2(x) cos(2t), (3.5c)

where 〈·〉 denotes a tidally averaged contribution. The first subscript of the amplitude
is the lateral wavenumber and the second subscript is the tidal constituent under
consideration: s (c) denotes a sine (cosine) tidal constituent with M2 tidal frequency,
s2 (c2) a sine (cosine) constituent with M4 tidal frequency. The meaning of the
superscripts was previously discussed below (3.4). Substitution of these expressions in
the leading-order system of equations results in ordinary differential equations that
describe the leading-order water motion and suspended sediment concentration (see
Appendix B).

The order ε velocity components û1,0
n and v̂1,0

n result from advective and bottom
friction contributions in the vorticity equation and the nonlinear terms in the
continuity equation. Using the temporal and spatial structure of the zeroth-order
solution, it follows that these components consist of a residual contribution and
contributions that vary with twice the basic tidal frequency. The concentration
Ĉ1,0

n consists of an M2 and an M6 contribution. Since the M6 constituent does
not contribute to the leading-order sediment transport, we will not consider this
contribution in the remainder. The expressions for the solutions of the O(ε) system
of equations read

û1,0
n (x, t) =

〈
u1,0

n (x)
〉

+ u1,0
n,s2(x) sin(2t) + u1,0

n.c2(x) cos(2t), (3.6a)

v̂1,0
n (x, t) =

〈
v1,0

n (x)
〉

+ v1,0
n,s2(x) sin(2t) + v1,0

n,c2(x) cos(2t), (3.6b)

Ĉ1,0
n (x, t) = C1,0

n,s (x) sin(t) + C1,0
n,c (x) cos(t). (3.6c)

Substitution of these expressions results in the equations presented in Appendix B.
The externally prescribed overtide results in order γ contributions û0,1

n , v̂0,1
n and Ĉ0,1

n .
The velocity fields û0,1

n and v̂0,1
n consist of tidal constituents with M4 frequency, and

the concentration Ĉ0,1
n consists of an M2 and an M6 contribution. Again neglecting

the M6 contribution, the solutions of the O(γ ) system of equations can be written as

û0,1
n (x, t) = u0,1

n,s2(x) sin(2t) + u0,1
n,c2(x) cos(2t), (3.7a)

v̂0,1
n (x, t) = v0,1

n,s2(x) sin(2t) + v0,1
n,c2(x) cos(2t), (3.7b)

Ĉ0,1
n (x, t) = C0,1

n,s (x) sin(t) + C0,1
n,c (x) cos(t). (3.7c)

The resulting equations for the new unknowns are given in Appendix B.
Finally the bottom evolution equation has to be considered. Substituting the

expressions for velocity and concentration fields presented above, retaining only
the leading-order contributions in ε and γ (i.e. O(ε2) and O(εγ ) terms) and the
diffusive contributions, the perturbed sediment flux can be written as

F′ = [Re{F 1′
cos(lny) eωτ }, Re{F 2′

sin(lny) eωτ }], (3.8)

with F i ′
, i ∈ {1, 2}, given by

F i ′
= F i ′

diff + F i ′
vd + F i ′

bl + F i ′
int + F i ′

ext . (3.9)
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Experiment F′
diff F′

vd F′
bl F′

int F′
ext β

I X X X X X depth-dependent
II X X constant
III X X depth-dependent
IV X X X depth-dependent
V X X X X depth-dependent

Table 2. Overview of the various experiments.

In this expression, F i ′
diff is the classical diffusive sediment flux, F i ′

vd is the sediment

flux induced by depth variations, F i ′
bl is the bedload flux, F i ′

int is the sediment flux
due to internally generated overtides and F i ′

ext is the flux related to the externally
prescribed tide. For explicit expressions of these flux contributions, see Appendix C.
Using (3.2) and (3.8), it immediately follows that

ωĥn = −(F 1′
x + lnF

2′
). (3.10)

The continuity, vorticity and concentration equations (in leading order, O(ε) and
O(γ ), together with the bottom evolution equation (3.10) and the boundary conditions
(see Appendix B) define an eigenvalue problem that is solved using a pseudo-spectral
method. The elements of the state vector Ψ ′

n = (u0,0
n,s , u

0,0
n,c, v0,0

n,s , u
0,0
n,c, 〈C0,0

n 〉, C0,0
n,s2, C

0,0
n,c2,

〈u1,0
n 〉, u1,0

n,s2, u1,0
n,c2, 〈v1,0

n 〉, v1,0
n,s2, v

1,0
n,c2, C1,0

n,s , C
1,0
n,c , u

0,1
n,s2, u

0,1
n,c2, C

0,1
n,s , C

0,1
n,c , ĥn) are expanded in

Chebyshev polynomials (see Boyd 2001 for details). Defining Ψ = (Ψ ′
n,1, Ψ

′
n,2, . . . , Ψ

′
n,N )

where N is the number of collocation points and Ψ ′
n,i is Ψ ′

n evaluated at the collocation
point i, a set of algebraic equations is found:

ωBΨ = AΨ. (3.11)

The operator A is a 22N × 22N matrix with elements that depend on the lateral
wavenumber ln and the (dimensionless) parameters given in table 1. The 22N × 22N

matrix B has non-zero elements only in the lower-right N × N block, corresponding
to the long-time evolution of the bottom.

The solutions of this eigenvalue problem are obtained using standard numerical
techniques. It was found that 80 Chebychev polynomials sufficed to get accurate
results. The main characteristics of the resulting eigenfunctions Ψ , eigenvalues ω and
their dependence on system parameters and the lateral wavenumber ln is the subject
of the next section.

4. Model results
4.1. Linear stability using default values

For the default experiment (Experiment I in table 2), parameter values characteristic
for the Ameland Inlet system are taken (see the Introduction and table 1). The
morphodynamic equilibrium Ψeq consists of a laterally uniform equilibrium bed
profile, sediment concentrations and velocity profiles. The equilibrium bed profile
is shown as a solid black line in figure 3(a). In calculating this equilibrium, all
components of the sediment flux F

′
were taken into account.

The results concerning the linear stability of this morphodynamic equilibrium are
shown in figure 3(b). Here the dimensionless growth rate Re(ω) (y-axis) is given
for different values of the lateral wavenumber ln (x-axis) and different values of the
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Figure 3. Basic state and pattern growth. (a) Equilibrium bed profiles. Experiment I is the
default case. (b) The first longitudinal growth rate for different values of r for the default case.

friction parameter. A dimensionless growth rate of ω = 1 corresponds to an e-folding
time scale of ∼17.5 years. If bottom perturbations characterized by their wavenumber
n have a positive growth rate, they will grow; otherwise their amplitude will decrease.
For a critical bottom friction rcr ∼ 0.507, the underlying one-dimensional equilibrium
is neutrally stable. This means that there is one mode (in this case the first longitudinal
mode with lateral wavenumber 9) with a vanishing growth rate, i.e. this perturbation
neither grows nor decays in time. The bottom pattern of the corresponding eigenmode
is shown in figure 5(a). The bed perturbations are found at the landward side of the
tidal basin. In figure 3(b) the growth rates for this critical bottom friction are given by
the black solid line, the dashed and dashed-dotted lines show the growth rates for the
values of the bottom friction parameters that are respectively larger and smaller than
the critical value. This information can be shown in a condensed form by plotting the
neutral stability curve: on the x -axis the parameter ln is shown and on the y-axis
the friction parameter. For every ln, there is a value of the friction parameter for
which the first mode in the longitudinal direction, characterized by the wavenumber
n, is neutrally stable. This results in the neutral stability curve, shown in figure 4(a)
as the solid black line. Above the curve the amplitudes of some perturbations grow
in time; below they all decay. In this figure the critical friction parameter and the
critical value of ln (in this case l9) are indicated as r I

cr and lIn,cr , respectively.

4.2. Influence of sediment fluxes

For the default experiment in the previous section, all sediment flux contributions
were taken into account (i.e. F′ = F′

diff + F′
vd + F′

bl + F′
int + F′

ext ). Here the influence of
the various fluxes on the linear stability is shown. The bed perturbations are always
located at the landward side, independent of the combination of sediment fluxes.
Four different flux combinations are considered and explained below.

The simplified diffusive case (II). In this case only diffusive fluxes and bedload fluxes
are considered: F′ = F′

diff + F′
bl . Furthermore, β is taken constant. The underlying

bed profile is given by the thin solid line in figure 3(a). The neutral stability curve
for this case is the thin solid line in figure 4(a). It is found that the critical friction
parameter is much lower than in the default experiment (r II

cr ∼ 0.2). Furthermore, the
most unstable mode has a much lower wavenumber (lIIn,cr ∼ 70) than in the default
case. These results are similar to those found in Schuttelaars & de Swart (1999).
However, the corresponding bottom pattern is very different: in our model the bed
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Figure 4. Neutral stability curves for the various experiments. (a) Experiments I and II.
(b) Experiments IV and V.

forms are found at the landward side, in the other models they occur in the middle
of the tidal basin.

The diffusive case (III). The flux contribution is the same as in the previous case
(F′ = F′

diff + F′
bl), but the deposition parameter depends on the local water depth.

The equilibrium bed profile corresponding to this case is given by the dotted line in
figure 3(a). Now the underlying equilibrium bed profiles are always unstable for the
parameter values used, independent of the bottom friction parameter. Hence there is
no critical friction parameter.

The diffusive case including the topographically induced fluxes (IV). This flux is given
by F′ = F′

diff + F′
vd + F′

bl . The morphodynamic equilibrium corresponding to this case
is given by the dashed line in figure 3(a). The neutral stability curve is given by the
dashed line in figure 4(b). It is clear that the value of the bottom friction parameter
necessary to obtain channels and shoals is much higher than in the default case. Only
for very large values of the friction parameter (r IV

cr ∼ 3), bed perturbations will grow.
The wavenumbers of the modes are centred around lIVn,cr = 100.

The combined advective and diffusive case, with only the internally generated advective
sediment flux (V). The fluxes contributing to this case are F′ = F′

diff + F′
vd + F′

bl +

F′
int . The equilibrium bed profile is presented in figure 3(a) as the dashed-dotted

line. The influence of the internally generated advective sediment fluxes on the
underlying equilibrium and the neutral stability curve (dashed lines in figures 3a
and 4b, respectively) is very small. The underlying profile is slightly more unstable
resulting in a slightly lower critical value for the friction parameter.

5. Discussion
5.1. Instability mechanism

For the default case, using a friction parameter r = 0.51 slightly larger than its
critical value r I

cr , the most unstable perturbation has a lateral mode number n= 9.
The corresponding bed perturbation is shown in figure 5(a). Taking y ∼ 900 m (i.e.
the solid line in figure 5a), the longitudinal structure of the bottom perturbation
(dotted solid line) and the corresponding divergences of the sediment fluxes are
shown in figure 6(a). The divergences of the diffusive and topographically induced
sediment fluxes are represented by the solid line and the dashed line, respectively. The
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Figure 5. Contour plot of (a) the scaled bed perturbation, with dark (light) colours a negative
(positive) amplitude of the bed perturbation. (b) Contour plot of the scaled residual sediment
concentration of the most unstable eigenfunction (with lateral mode number n= 9) for friction
parameter r = 0.51 in the region indicated by the dashed box in (a). The scaled bed perturbation
is shown in greyscales. Other parameter values are given in table 1. A dimensionless sediment
concentration of 1 corresponds to a dimensional concentration of 0.15 kg m−2 .
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Figure 6. Convergence of the sediment fluxes for n= 9 and r = 0.51. Other parameter values
are given in table 1. The dimensionless maximum bottom perturbation is scaled to 1, the fluxes
are calculated using this scaled bed perturbation. (a) Convergences of all sediment fluxes. (b)
Convergences of the different sediment fluxes, with −∇ · Fdiff and −∇ · Fvd combined.

dashed-dotted line shows the sum of the divergence of the bedload flux, the advective
fluxes resulting from internal nonlinear interactions and those due to externally
prescribed overtides. The divergences of F′

diff and F′
vd are much larger than those of

the remaining fluxes, but of opposite sign. The classical diffusive flux F′
diff enhances

the bed perturbation, and the sediment flux F′
vd reduces this bed perturbation.

In figure 6(b) the same divergences are shown again, but now F′
diff and F′

vd are
combined and denoted by the solid line. From now on this sum will be called the
total diffusive contribution. Obviously, the diffusive flux is destabilizing, the bedload
flux is stabilizing, the internally generated advective flux F′

int is mainly destabilizing
and the externally generated advective flux F′

ext does not play an appreciable role
in the growth and decay of the bed forms. In the remainder of this section only the
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diffusive fluxes and the internally generated fluxes will be discussed in detail, as the
bedload flux is always stabilizing and the flux F′

ext is negligible.

5.1.1. Classical and topographically induced diffusive flux

From figure 6(a) it follows that the classical diffusive flux contributes significantly to
the destabilization of the underlying morphodynamic equilibrium. This flux is driven
by gradients of the depth-integrated perturbed residual sediment concentration 〈C0,0

n 〉,
see figure 5(b) for a contour plot. Higher (lower) perturbed residual concentrations are
present where the bottom perturbation is negative (positive). This results in a residual
diffusive sediment flux from locations where the bottom perturbation is negative
to those with a positive bottom perturbation, thus enhancing the instability. The
spatial structure of the residual sediment concentration is mainly a result of a balance
between the two depositional contributions, one proportional to the perturbed residual
concentration and the other to the perturbed deposition parameter β: β0,0

eq 〈C0,0
n 〉 ≈

−β0,0
n C0,0

eq ĥn (see Appendix B for details). Since β0,0
n /β0,0

eq ∼ λβ0,0
eq at the landward side

of the basin (where heq ∼ 1), one finds〈
C0,0

n

〉
≈ −λβ0,0

eq C0,0
eq ĥn. (5.1)

Hence a destabilizing diffusive flux −aκ∇ · < C0,0
n > is found. However, a similar

contribution, but with opposite sign, is found for the topographically induced sediment
flux (see term II in (C 2)). It turns out that the magnitude of this term is slightly larger
than the dominant contribution of the classical diffusive flux obtained from (5.1).
Hence the sum of these contributions is stabilizing.

Therefore, to understand the destabilizing effect of the total diffusive flux, we have
to analyse the remaining contributions to the classical diffusive flux. The only other
significant contribution to the perturbed residual sediment concentration is due to
the erosion of sediment 〈u0,0

eq,su
0,0
n,s〉, resulting in〈
C0,0

n

〉
≈
〈
u0,0

eq,su
0,0
n,s

〉/
β0,0

eq . (5.2)

If the perturbed residual concentration 〈C0,0
n 〉 is positive (negative) above a negative

(positive) bottom perturbation, the associated classical diffusive flux is destabilizing.
Whether this is the case depends on the correlation between u0,0

eq,s and u0,0
n,s . This

correlation follows from a delicate balance between frictional effects and continuity: if
friction is strong enough, there is a destabilizing flux (for details, see Schuttelaars & de
Swart 1999) and this frictional mechanism results in sediment convergence at locations
with positive bottom perturbations. As the dominant contribution of the diffusive
flux together with the topographically induced flux is stabilizing, bed perturbations
will only start to grow if the frictional torques are strong enough to overcome this
stabilizing effect.

5.1.2. Internally generated advective fluxes

From figure 6(b) it follows that the advective sediment flux contributions
Fint , resulting from the internally generated overtides and residual velocities, are
destabilizing at the location of maximum bed perturbation (dashed-dotted line).
This flux can be decomposed into seven different contributions, see (C 4). A careful
analysis of these terms reveals that the residual sediment transport due to settling
lag effects (term II), i.e. the correlation between the equilibrium M2 velocity u0,0

eq,s

and the perturbed M2 concentration C1,0
n,s , is dominant. This is in contrast to the

findings of van Leeuwen (2002) who found that the contribution proportional to the
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Figure 7. Contour plot of the residual vorticity (a) and perturbed M2 concentration C1,0
n,s

(b) for n= 9 and r = 0.51; for other parameters, see table 1. The maximum amplitude of
the bed perturbation is scaled to 1 and shown in greyscales, with dark (light) colours a
negative (positive) amplitude of the bed perturbation. (a) Contour plot of the residual vorticity.
Positive values indicate a counter-clockwise residual circulation and negative values a clockwise
circulation. (b) Contour plot of the perturbed M2 concentration C1,0

n,s during ebb.

residual current was dominant. The perturbed concentration C1,0
n,s mainly results from

a balance between erosion and deposition,

β0,0
eq C1,0

n,s ∼ 2u0,0
eq

〈
u1,0

n

〉
. (5.3)

The structure of the residual velocity < u1,0
n > follows from the residual vorticity

balance (see Appendix D), which shows an approximate balance between the
divergence of the transfer of tidal vorticity by the tidal M2 equilibrium velocity
and the dissipation of residual vorticity:

r

〈
Ω1,0

n

〉
1 − heq + h0

∼ −
〈
u0,0

eq,sΩ
0,0
n,s

〉
x
. (5.4)

Here 〈Ω1,0
n 〉 = 〈v1,0

n,x〉 − 〈u1,0
n,y〉 is the residual vorticity and Ω0,0

n,s = ∂xv
0,0
n,s − ∂yu

0,0
n,s is the

M2 sine component of the leading-order vorticity. The resulting residual vorticity
pattern is shown in figure 7(a), where solid (dashed) lines indicate counter-clockwise
(clockwise) circulation. The generation of the residual circulation cells is a result of
the ‘tidal rectification mechanism’, which is explained in detail by van Leeuwen & de
Swart (2001). Using the perturbed residual longitudinal velocity 〈u1,0

n 〉, which follows
directly from the residual vorticity, and (5.3), the M2 tidal concentration C1,0

n,s can
be constructed (see figure 7b for this concentration during ebb). As the equilibrium
tidal velocity is negative during ebb, it follows that in region II of figure 7(b) the
advective sediment flux u0,0

eq,sC
1,0
n,s is in the positive x-direction seaward of the maximum

of the bed perturbation and in the negative x-direction landward of this position.
Hence there is a deposition of sediment at this location and the amplitude of the
bed perturbation increases. As both the signs of the M2 tidal concentration C1,0

n,s

and the equilibrium tidal flow u0,0
eq,s change during flood conditions, this flux is also

destabilizing during flood, resulting in a tidally averaged convergence of the advective
sediment flux. In a similar way it can be shown that there is a tidally averaged
divergence of sediment in regions I and III.
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Figure 8. Longitudinal location of maximal bed and M2 velocity perturbation for a varying
lateral mode number n and r = 0.51. Other parameter values are given in table 1.

5.1.3. Mode number sensitivity

From figure 3(b), it follows that only for lateral wavenumbers n= 9 and n= 10
the bed perturbations have a positive growth rate. The internally generated advective
fluxes are always destabilizing, the externally forced advective fluxes are always
negligible and the bedload fluxes are always destabilizing (not shown). For small
wavenumbers (n < 5), the perturbations decay as both the diffusive and the bedload
flux are stabilizing. The amplitudes of perturbations with large wavenumbers (n > 10)
decay due to the stabilizing effect of bedload fluxes. For intermediate wavenumbers,
there is a delicate balance between the various fluxes, resulting in either growth or
decay of bed forms.

5.2. Location of maximal bed perturbation

For both destabilizing mechanisms, it is essential that the perturbed along-channel M2

velocity decreases (increases) over shallower (deeper) parts. As the largest perturbed
concentrations and concentration differences in the lateral direction are found at
locations where the perturbed longitudinal M2 velocity is maximal, the largest bottom
perturbations are expected at these locations as well. Hence the position of the largest
bottom perturbation is related to the location of the maximum perturbation of the
longitudinal M2 velocity.

For large wavenumbers in the lateral direction, the perturbed velocity u0,1
n,s can be

written as

u0,1
n,s =

r2

r2 + (1 − x + h0)2
1

(1 − x + h0)
ĥn, (5.5)

which shows that the position of the maximum of u1,0
n,s is independent of the bed

friction parameter (and independent of h0 if the balances described in the previous
section are still the dominant ones), and is always located at the landward boundary.
As the bed perturbation has to vanish at the landward boundary, it is expected
that the maxima of bottom perturbations are found near the landward end. This
is confirmed in figure 8, which shows the locations of the maximum perturbed
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Figure 9. The influence of the sediment settling velocity (Péclet number) on the convergences
of the sediment fluxes (a) and the underlying one-dimensional equilibrium bed profile (b).
Other parameter values are given in table 1.

along-channel M2 velocity and the maximum bed perturbation for different values of
lateral wavenumber n.

5.3. Parameter sensitivity

In this section the sensitivity of the model results will be investigated by varying
the settling velocity ws , the phase φ between the prescribed M2 and M4 sea surface
elevation at the entrance and the parameter h0 that is used to normalize the bottom
friction.

5.3.1. Settling velocity and external phase

By varying the settling velocity ws between 1.5 cm s−1 (fine sand) and 5 cm s−1

(medium sand), the sediment Péclet number λ=wsH/κv is varied between 1.8 and
6, and the parameter a between 0.06 and 0.006. Variations in the parameter a only
have a minor influence on the stability properties of the underlying morphodynamic
equilibrium, whereas changes in the Péclet number strongly influence these properties.
Taking the mode number n= 9, the convergences of the resulting sediment fluxes
are shown in figure 9(a) for the varying Péclet number at the location where the
(normalized) perturbed bed is maximal. For the sediment Péclet number smaller
than approximately 2, the underlying width-averaged morphodynamic equilibrium
is unstable, with increasing growth rates for the decreasing Péclet number. When
increasing the Péclet number, the underlying morphodynamic equilibrium is stable.
As the approximate balances and mechanisms discussed in § 5.1 are still applicable,
the influence of the Péclet number on the stability of the underlying equilibrium can
be understood: the underlying equilibrium bottom becomes deeper at the end of the
basin for the increasing sediment Péclet number, see figure 9(b). Hence the frictional
effects are weaker for larger Péclet numbers, resulting in weaker destabilizing fluxes
and hence the laterally uniform morphodynamic equilibria are stable for a larger
Péclet number.

The externally prescribed phase difference is varied between 165◦ � φ � 198◦: for
φ � 187◦ the morphodynamic equilibrium is stable, and for larger phase differences it
becomes unstable. The dependence of the stability of the underlying morphodynamic
equilibrium on the phase angle can again be attributed to the changes in the underlying
morphodynamic equilibrium: for larger phase angles, the equilibrium bed becomes
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Figure 10. The influence of the parameter h0 on the convergences of the sediment fluxes (a)
and the longitudinal location of the maximal bed perturbation (b). Other parameter values
are given in table 1.

shallower, resulting in stronger destabilizing fluxes. If the equilibrium bed is too deep
at the end of the embayment, the destabilizing fluxes are too small and the laterally
uniform equilibrium is stable.

5.3.2. Bottom friction parametrization

In the formulation for the bottom friction, a parameter h0 was introduced to
regularize the bottom friction contribution. In figure 10(a), the divergences of the
sediment fluxes are shown for h0 varied between 0.1 and 0.85. For small h0, the
underlying equilibrium is linearly unstable. Smaller values of h0 result in larger
growth rates as the frictional effects become stronger. For h0 > 0.45, the equilibrium
bed profile becomes stable: in this case friction is not strong enough anymore to
overcome the damping effects of continuity, and hence the bed perturbations decay.
Note that for h0 > 0.6 the bed perturbations, which are stable, are not found at
the end of the embayment anymore (see figure 10b), but near the entrance. This is
not in contradiction with the discussion in § 5.2 as the main balance for the residual
concentration is completely different: in this case there is mainly a balance between
diffusive and depositional contributions, resulting in a maximum bed perturbation
at the seaward side. As the unstable modes are always found at the landward side
of the embayment (this was tested for different parameter settings), this balance
will not be discussed in detail here. If h0 becomes large, the approach taken in
Schuttelaars & de Swart (1999) and van Leeuwen & de Swart (2004) is satisfactory,
and a detailed discussion of the balances can be found in these articles, see also ter
Brake & Schuttelaars (2009).

5.4. Influence of sediment transport contributions

When considering only diffusive (F′
diff ) and bedload (F′

bl) fluxes, using a constant
deposition parameter β (case II), a small value of the bottom friction parameter
suffices to make the bed perturbations grow. If the deposition parameter β depends
on local depth (case III), no bed friction is needed for the bed perturbations to
grow. This difference follows from a different balance for the residual perturbed
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concentration 〈C0,0
n 〉. Its main balance reads (see (B 9))

β0,0
eq

〈
C0,0

n

〉
= −β1,0

n ĥn

〈
C0,0

eq

〉
+ u0,0

n,su
0,0
s,eq . (5.6)

If the deposition parameter β depends on local depth, the term on the left-hand side
is balanced by the first term on the right-hand side. The perturbed concentration is
proportional to minus the bed perturbation, resulting in a destabilizing contribution,
independent of the value of the bottom friction parameter. If this contribution is
larger than the stabilizing bedload contribution, the morphodynamic equilibrium is
unstable. In the case of a constant deposition parameter, β1,0

n is zero and there is an
approximate balance between the remaining terms. Now frictional effects are essential
for instability; see the discussion of the mechanism in § 5.1.2.

The other cases (IV and V) follow directly from the discussion of the default case.
The main differences can be explained by the fact that the underlying morphodynamic
equilibria change considerably due to the inclusion/exclusion of different suspended
sediment fluxes.

6. Conclusions
In this paper the linear stability of laterally uniform morphodynamic equilibria in

short, rectangular tidal basins is investigated using an idealized model. It is shown
that these equilibria are linearly unstable if a critical value of the bottom friction
parameter is exceeded, resulting in the initial formation of channels and shoals at the
landward side of the basin.

The instability mechanism is clarified by a detailed study of the various
contributions to the sediment flux. The divergence of the diffusive sediment flux
and the topographically induced sediment flux are dominant but of opposite sign.
The difference results in a small destabilizing contribution if the friction parameter
is large enough. In that case, frictional torques cause the tidal velocities to decrease
over shoals and increase in the channels, resulting in a destabilizing diffusive sediment
flux. This mechanism was already discussed by Schuttelaars & de Swart (1999).
Apart from this mechanism, the advective sediment flux, resulting from internally
generated overtides, is destabilizing as well. Externally prescribed overtides do not
contribute significantly to the (de)stabilizing sediment fluxes. The main contribution
of the internally generated advective sediment transport is due to settling lag effects,
i.e. the correlation between the equilibrium M2 velocity and the perturbed M2

concentration.
The initial formation of channels and shoals is always found at the landward

side of the embayment. Schuttelaars & de Swart (1999) found global modes with a
maximum in the middle of the basin, whereas van Leeuwen & de Swart (2001) found
that with increasing influence of advective fluxes (with respect to diffusive fluxes) the
preferred location of the bottom perturbations shifts from the middle of the basin
towards the basin entrance. These differences in model results can be explained by
observing that Schuttelaars & de Swart (1999) and van Leeuwen & de Swart (2001,
2004) use a linear approximation of the bottom friction in the momentum equations,
while the generally accepted formulation of this contribution is retained in this
paper.

Investigation of the sensitivity of the model results to sediment flux formulation
shows that the main differences between the results obtained with different sediment
flux formulations can be attributed to changes in the underlying morphodynamic
equilibria. This observation is also applicable to variations in parameter values: the
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mechanisms resulting in instabilities are robust for a wide range of parameters,
and differences in growth rates can be attributed to changes in the underlying
morphodynamic equilibria.

In formulating the model, various simplifications were made such as the neglect
of Coriolis and wind effects, and the critical velocity for erosion. Furthermore,
drying and flooding at the landward side were not modelled explicitly. However, the
initial formation of channels and shoals at the landward side of tidal embayments
is supported by results obtained with fully nonlinear numerical models (van der
Wegen & Roelvink 2008): initial bed perturbations start to grow at the landward side
and then extend towards the entrance of the embayment. This evolution is clearly
a result of nonlinear interactions which are not accounted for in the present paper,
making a comparison of model results with observational data and equilibrium
solutions of complex numerical models not very useful at this point. However, as
the perturbations resemble the observed initial channel–shoal systems obtained in
complex numerical models, it is expected that a fully nonlinear idealized model will
capture the observed long-term behaviour. Such a nonlinear model is developed and
presently under investigation.

Appendix A. The linearized equations
Considering the momentum equation, substituting ζ and only retaining terms that

are linear in the small perturbation, yields ζ ′
x = ζ ′

y =0. Using the boundary condition
for ζ at the entrance, it follows that ζ ′ =0. Hence, there are no perturbations in the
sea level ζ , i.e. ζ ′ = 0 everywhere.

Substituting (3.1) into equations (2.11), (2.15), (2.16) and (2.17), using ζ ′ = 0 and
only retaining terms that are linear in the perturbation, yields the following system
of equations:

[(εζeq + 1 − heq )u
′ − h′ueq ]x + [(εζeq + 1 − heq )v

′]y = 0, (A 1a)

[v′
x − u′

y]t + ε[ueqv
′
x − uequ

′
y]x = −

[
rv′

1 − heq + εζ + h0

]
x

+
rueq (h

′)y
(1 − heq + εζ + h0)2

+

[
ru′

1 − heq + εζ + h0

]
y

, (A 1b)

aC ′
t + a[εueqC

′ + εu′Ceq − κC ′
x − κλ(βeqheq x

C ′ + βeqh
′
xCeq + β ′heq x

Ceq )]x

+ [εv′Ceq − κC ′
y − κλβeqh

′
yCeq ]y = 2uequ

′ − (βeqC
′ + β ′Ceq ), (A 1c)

h′
τ = −〈∇ · F′〉, (A 1d )

where the perturbed flux contributions are given by

F 1′
= aε 〈ueqC

′ + u′Ceq〉 − aκ 〈C ′〉x − aκλ〈βeqheqx
C ′ + βeqh

′
xCeq + β ′heqx

Ceq〉 − µh′
x,

(A 2)

F 2′
= aε 〈v′Ceq〉 − aκ 〈C ′〉y − aκλ〈βeqheqy

C ′ + βeqh
′
yCeq〉 − µh′

y, (A 3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
1.

97
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2011.97


Channel and shoal development in a short tidal embayment 523

and the equilibrium and perturbed deposition parameter by

βeq = [1 − exp[−λ(εζ + 1 − heq)]]
−1 and β ′ =

λ exp[−λ
(
εζ + 1 − heq

)
](

1 − exp[−λ
(
εζ + 1 − heq

)
]
)2 h′

(A 4)
The linearized boundary conditions at the seaward side x = 0 read

h′ = 0, v′ = 0, βeq 〈C ′〉 + β ′ 〈Ceq〉 = uequ
′, C̃ ′(x, y, t, κ) = C̃ ′(x, y, t, κ = 0),

(A 5)
at the sidewalls y =0, B they are given by

µh′
y = 0, v′ = 0, −κC ′

y − κλβeqh
′
yCeq = 0, (A 6)

and at the landward boundary x = 1 by

h′ = 0, −heq,xu′ − ueqh
′
x + εζequ

′
x + εζeqv

′
y = 0, C̃ ′(x, y, t, κ) = C̃ ′(x, y, t, κ = 0),

aε 〈ueqC
′ + u′Ceq〉 − aκ 〈C ′〉x − aκλ〈βeqheqx

C ′ + βeqh
′
xCeq + β ′heqx

Ceq〉 − µh′
x = 0.

}
(A 7)

Appendix B. The Eigenvalue problem: final equations
The linearized deposition parameter β = βeq + β ′ with βeq and β ′ given in (A 4), is

expanded as follows:

βeq = β0,0
eq + εβ1,0

eq , β ′ = β0,0
n h′ + εβ1,0

n h′, (B 1)

with

β0,0
eq = [1 − exp[−λ(1 − heq)]]

−1, β1,0
eq = −λ exp−λ(1−heq ) β0,0

eq

2
,

β0,0
n = λ exp[−λ(1 − heq)]β

0,0
eq

2
, β1,0

n = λ2 exp[−λ(1 − heq)]

×(1 + exp[−λ(1 − heq)])[−1 + exp[−λ(1 − heq)]]
−3.

⎫⎪⎪⎬
⎪⎪⎭ (B 2)

The O(1) continuity equation reads

∼ cos(t) − d

dx
hequ

0,0
n,c + (1 − heq)

(
d

dx
u0,0

n,c + lnv
0,0
n,c

)
= 0,

∼ sin(t) − d

dx
hequ

0,0
n,s − d

dx
ĥnu

0,0
eq,s + (1 − heq)

(
d

dx
u0,0

n,s + lnv
0,0
n,s

)
− ĥn

d

dx
u0,0

eq,s = 0,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(B 3)

and the vorticity equation is given by

∼ cos(t)
d

dx
v0,0

n,s + lnu
0,0
n,s = −r

d

dx

[
v0,0

n,c

1 + h0 − heq

]
− rln

u0,0
n,c

1 + h0 − heq

,

∼ sin(t) − d

dx
v0,0

n,c − lnu
0,0
n,c = −r

d

dx

[
v0,0

n,s

1 + h0 − heq

]

−rln
u0,0

n,s

1 + h0 − heq

− rln
u0,0

eq,s ĥn

(1 + h0 − heq)2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 4)
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The O(1) time-varying concentration equation reads

∼ cos(2t) 2aC0,0
n,s2 + akC0,0

n,c2l
2
n + β0,0

eq C0,0
n,c2 + β1,0

n ĥnC
0,0
n,c2 + u0,0

eq,su
0,0
n,s = 0,

∼ sin(2t) −2aC0,0
n,c2 + akC0,0

n,s2l
2
n + β0,0

eq C0,0
n,s2 + β1,0

n ĥnC
0,0
eq,s2 − u0,0

eq,su
0,0
n,c = 0.

}
(B 5)

The O(ε) continuity equation becomes

∼ const.
d

dx

[
(1 − heq)

〈
u1,0

n

〉 ]
+ (1 − heq)

〈
v1,0

n

〉
ln = −1

2

d

dx
u0,0

n,c − 1

2
lnv

0,0
n,c ,

∼ cos(2t)
d

dx

[
(1 − heq)u

1,0
n,c2

]
+ (1 − heq)v

1,0
n,c2ln = −1

2

d

dx
u0,0

n,c − 1

2
lnv

0,0
n,c ,

∼ sin(2t)
d

dx

[
(1 − heq)u

1,0
n,s2

]
− d

dx

[
ĥnu

1,0
eq,s2

]
+ (1 − heq)v

1,0
n,s2ln

= −1

2

d

dx
u0,0

n,s − 1

2
lnv

0,0
n,s ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 6)

and O(ε) vorticity equation reads

∼ const.
1

2

d

dx

[
u0,0

eq,s lnu
0,0
n,s

]
+

1

2

d

dx

[
u0,0

eq,s

d

dx
v0,0

n,s

]
= −r

d

dx

[ 〈
v1,0

n

〉
1 + h0 − heq

]

−r

〈
u1,0

n

〉
ln

(1 + h0 − heq)2
+

1

2
rln

u0,0
n,cζeq,c

(1 + h0 − heq)2
+

1

2
r

d

dx
v0,0

n,cζeq,c

(1 + h0 − heq)2
,

∼ cos(2t) 2
d

dx
v1,0

n,s2 + 2u1,0
n,s2ln − 1

2

d

dx

[
u0,0

eq,s lnu
0,0
s

]
− 1

2

d

dx

[
u0,0

eq,s

d

dx
v0,0

n,s

]

= − d

dx

[
rv1,0

n,c2

1 + h0 − heq

]
+

1

2
r

d

dx

[
v0,0

n,cζeq,c

(1 + h0 − heq)2

]

+
1

2
rln

u0,0
n,cζeq,c

(1 + h0 − heq)2
− rln

u1,0
n,c2

1 + h0 − heq

,

∼ sin(2t) −2
d

dx
v1,0

n,c2 − 2u1,0
n,c2ln +

1

2

d

dx

[
u0,0

eq,s lnu
0,0
n,c

]
+

1

2

d

dx

[
u0,0

eq,s

d

dx
v0,0

n,c

]

= − d

dx

[
rv1,0

n,s2

1 + h0 − heq

]
+

1

2
r

d

dx

[
v0,0

n,s ζeq,c

(1 + h0 − heq)2

]

+
1

2
rln

u0,0
n,sζeq,c

(1 + h0 − heq)2
− rln

u1,0
n,s2

1 + h0 − heq

− rln
u1,0

eq,s2ĥn

(1 + h0 − heq)2

+ rln
u0,0

eq,sζ
c
eq ĥn

1 + h0 − heq

.
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The O(ε) concentration equation reads

∼ cos(t) aC1,0
n,s + β0,0

eq C1,0
n,c − u0,0

eq,su
1,0
n,s2 +

1

2
a

d

dx

[
u0,0

eq,sC
0,0
n,s2

]
+ a

d

dx

[
u0,0

n,c

〈
C0,0

eq

〉
+

1

2
u0,0

n,sC
0,0
eq,s2 +

1

2
u0,0

n,cC
0,0
eq,c2

]

+ aln

[
v0,0

n,c

〈
C0,0

eq

〉
+

1

2
v0,0

n,cC
0,0
eq,c2 +

1

2
v0,0

n,sC
0,0
eq,s2

]

+ β1,0
n ĥn

(〈
C0,0

eq

〉
+

1

2
C0,0

eq,c2

)
+ β1,0

eq

(〈
C0,0

n

〉
+

1

2
C0,0

n,c2

)
+ β1,0

n ĥnC
1,0
eq,c − u1,0

eq,s2u
0,0
n,s = 0,

∼ sin(t) − aC1,0
n,c + β0,0

eq C1,0
n,s − 2u0,0

eq,su
1,0 + u0,0

eq,su
1,0
n,c2

+ a
d

dx

[
u0,0

eq,s

(〈
C0,0

n

〉
− 1

2
C0,0

n,c2

)]

+ a

{
d

dx

[
u0,0

s

(〈
C0,0

eq

〉
− 1

2
C0,0

eq,c2

)]
+

1

2

d

dx

[
u0,0

n,cC
0,0
eq,s2

]}

+ aln

[
v0,0

n,s

(〈
C0,0

eq

〉
− 1

2
C0,0

eq,c2

)
+

1

2
v0,0

n,cC
0,0
eq,s2

]

+
1

2
β1,0

n ĥnC
0,0
eq,s2 + β1,0

eq

1

2
C0,0

n,s2 + β1,0
n ĥnC

1,0
eq,s − u1,0

eq,s2u
0,0
n,c = 0,
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(B 8)

and the time mean concentration component follows from

∼ const. − ak
d

dx

[
d

dx
C0,0

n + λβ0,0
eq

(
d

dx
heq

〈
C0,0

n

〉
+

d

dx
ĥn

〈
C0,0

eq

〉)
+ λβ0,0

n ĥn

d

dx
heq

〈
C0,0

eq

〉 ]
− ak

[
−
〈
C0,0

n

〉
l2n − λβ0,0

eq

〈
C0,0

eq

〉
ĥnl

2
n

]
+ β0,0

eq

〈
C0,0

n

〉
+ β0,0

n ĥn

〈
C0,0

eq

〉
− u0,0

eq,su
0,0
n,s +

1

2
aε2u0,0

eq,s

d

dx
C1,0

n,s

+ aε2

[
d

dx

〈
u1,0

n C0,0
eq

〉
+ ln

〈
v1,0

n C0,0
eq

〉 ]
+

1

2
aε2

[
d

dx

(
u1,0

n,c2C
0,0
eq,c2

)
+

d

dx

(
u1,0

n,s2C
0,0
eq,s2

)
+ ln

(
v1,0

n,c2C
0,0
eq,c2 + v1,0

n,s2C
0,0
eq,s2

) ]
= 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 9)

The O(γ ) continuity equation reads

∼ cos(2t)
d

dx

[
(1 − heq)u

0,1
n,c2 − ĥnu

0,1
eq,c2

]
+ ln(1 − heq)v

0,1
n,c2 = 0,

∼ sin(2t)
d

dx

[
(1 − heq)u

0,1
n,s2 − ĥnu

0,1
n,s2

]
+ ln(1 − heq)v

0,1
n,s2 = 0,

⎫⎪⎪⎬
⎪⎪⎭ (B 10)
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and the vorticity equation reads

∼ cos(2t) 2
d

dx
v0,1

n,s2 + 2lnu
0,1
n,s2 = −r

d

dx

[
v0,1

n,c2

1 + h0 − heq

]
− rln

u0,1
n,c2

1 + h0 − heq

−rln
u0,1

eq,c2ĥn

(1 + h0 − heq)2
,

∼ sin(2t) −2
d

dx
v0,1

n,c2 − 2lnu
0,1
n,c2 = −r

d

dx

[
v0,1

n,s2

1 + h0 − heq

]
− rln

u0,1
n,s2

1 + h0 − heq

−rln
u0,1

eq,s2ĥn

(1 + h0 − heq)2
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 11)

The O(γ ) concentration components follow from

∼ cos(t) aC0,1
n,s − u0,0

eq,su
0,1
n,s2 − u0,0

n,su
0,1
eq,s2 − u0,0

n,cu
0,1
eq,c2 + β0,0

eq C0,1
n,c + β1,0

n ĥnC
0,1
eq,c,

∼ sin(t) a
(
−C0,1

n,c

)
+ u0,0

eq,su
0,1
n,c2 + u0,0

n,su
0,1
eq,c2 + u0,0

n,cu
0,1
eq,s2 + β0,0

eq C0,1
n,s + β1,0

n ĥnC
0,1
eq,s .

}

(B 12)

Finally, the bed evolution equation reads

ωĥn = −[F 1
x

′
+ lnF

2′
], (B 13)

with the components of () defined in Appendix C. The boundary conditions at x = 0
are given by

O(1): ĥn = 0, v0,0
n,s = 0, v0,0

n,c = 0,

βeq

〈
C0,0

n

〉
+ β1,0

n ĥn

〈
C0,0

eq

〉
− u0,0

eq,su
0,0
n,s = 0,

O(ε): r
〈
v1,0

n

〉
+

1

2
u0,0

eq,s

d

dx
v0,0

n,s = 0, −2v1,0
n,c2 +

1

2
u0,0

eq,s

d

dx
v0,0

n,c + rv1,0
n,s2 = 0,

2v1,0
n,s2 − 1

2
u0,0

eq,s

d

dx
v0,0

n,s + rv1,0
n,c2 = 0,

O(γ ): v0,1
n,c2 = 0, v0,1

n,s2 = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 14)

The boundary conditions at x =1 are

O(1): ĥn = 0, F 1 = 0, − d

dx
hequ

0,0
n,s − d

dx
ĥnu

0,0
eq,s = 0, u0,0

n,c = 0,

O(ε): − d

dx
heq

〈
u1,0

n

〉
+

1

2

d

dx
u0,0

n,c +
1

2
lnv

0,0
n,c = 0, − d

dx
hequ

1,0
n,c2 +

1

2
u0,0

n,c,x

+
1

2
lnv

0,0
n,c = 0

− d

dx
hequ

1,0
n,s2 +

1

2

d

dx
u0,0

n,s +
1

2
lnv

0,0
n,s − d

dx
ĥnu

1,0
eq,s2 = 0,

O(γ ): − d

dx
hequ

0,1
n,c2 − d

dx
ĥnu

0,1
eq,c2 = 0, − d

dx
hequ

0,1
n,s2 − d

dx
ĥnu

0,1
eq,s2 = 0.
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Appendix C. Sediment flux components
The various flux components in the x- and y-directions are as follows:

Fdiff =

(
−aκ

〈
d

dx
C0,0

n

〉
, aκln

〈
C0,0

n

〉)
, (C 1)

Fvd =

⎛
⎜⎜⎝−aκλ

⎡
⎢⎢⎣β0,0

eq

⎛
⎜⎜⎝〈C0,0

n

〉 d

dx
heq︸ ︷︷ ︸

term I

+
d

dx
ĥn

〈
C0,0

eq

〉
︸ ︷︷ ︸

term II

⎞
⎟⎟⎠

+ β1,0
n

(
ĥn

d

dx
heq

〈
C0,0

eq

〉)
︸ ︷︷ ︸

term III

⎤
⎥⎥⎥⎦, aκλβ0,0

eq ĥn 〈Ceq〉 ln

⎞
⎟⎟⎟⎠, (C 2)

Fbl =

(
−µ

d

dx
ĥn, µlnĥn

)
. (C 3)

The internally generated advective contribution FM2 = (F 1
M2, F

2
M2) has components

given by

F 1
M2 =

1

2
aε2

⎛
⎜⎝C1,0

n,s u
0,0
eq , s︸ ︷︷ ︸

term I

+ 2
〈
u1,0

n C0,0
eq

〉︸ ︷︷ ︸
term II

+ u1,0
n,c2C

0,0
eq,c2︸ ︷︷ ︸

term III

+ u1,0
n,s2C

0,0
eq,s2︸ ︷︷ ︸

term IV

+ u0,0
n,sC

1,0
eq,s︸ ︷︷ ︸

term V

+ u0,0
n,cC

1,0
eq,c︸ ︷︷ ︸

term VI

+ C0,0
n,s2u

1,0
eq,s2︸ ︷︷ ︸

term VII

⎞
⎟⎠ ,

F 2
M2 =

1

2
ε2a

⎛
⎜⎝2
〈
v1,0

n C0,0
eq

〉︸ ︷︷ ︸
term II

+ v1,0
n,c2C

0,0
eq,c2︸ ︷︷ ︸

term III

+ v1,0
n,s2C

0,0
eq,s2︸ ︷︷ ︸

term IV

+ v0,0
n,sC

1,0
eq,s︸ ︷︷ ︸

term V

+ v0,0
n,cC

1,0
eq,c︸ ︷︷ ︸

term VI

⎞
⎟⎠ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C 4)

and the advective contribution due to externally prescribed overtides FM4 = (F 1
M4, F

2
M4)

has components given by

F 1
M4 =

1

2
aεγ

⎛
⎜⎝C0,1

n,s u
0,0
eq,s︸ ︷︷ ︸

term I

+ u0,0
n,sc

0,1
eq,s︸ ︷︷ ︸

term II

+ u0,0
n,cC

0,1
eq,c︸ ︷︷ ︸

term III

+ u0,1
n,s2C

0,0
eq,s2︸ ︷︷ ︸

term IV

+ u0,1
n,c2C

0,0
eq,c2︸ ︷︷ ︸

term V

+ C0,0
n,s2u

0,1
eq,s2︸ ︷︷ ︸

term VI

+ C0,0
n,c2u

0,1
eq,c2︸ ︷︷ ︸

term VII

⎞
⎟⎠ ,

F 2
M4 =

1

2
aεγ

⎛
⎜⎝v0,0

n,sC
0,1
eq,s︸ ︷︷ ︸

term II

+ v0,0
n,cC

0,1
eq,c︸ ︷︷ ︸

term III

+ v0,1
n,s2C

0,0
eq,s2︸ ︷︷ ︸

term IV

+ v0,1
n,c2C

0,0
eq,c2︸ ︷︷ ︸

term V

⎞
⎟⎠ .
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(C 5)
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Appendix D. Vorticity equation
The relative vorticity is given by

Ω = Ωeq + Ω ′, with Ω ′ = v′
x − u′

y. (D 1)

Substituting the solutions for u and v from (3.2) together with the expression for
ûn(x, t) and v̂n(x, t), as stated in § 3, into the expression for Ω ′ gives

Ω ′ =
[
v0,0

n,c cos(t) + v0,0
n,s sin(t) + ε

(〈
v1,0

n

〉
+ v1,0

n,c2 cos(2t) + v1,0
n,s2 sin(2t)

) ]
x

+
[
u0,0

n,c cos(t) + u0,0
n,s sin(t) + ε

(〈
u1,0

n

〉
+ u1,0

n,c2 cos(2t) + u1,0
n,s2 sin(2t)

) ]
y

(D 2a)

=

[
d

dx
v0,0

n,c cos(t) +
d

dx
v0,0

n,s sin(t) − d

dy
u0,0

n,c cos(t) − d

dy
u0,0

n,s sin(t)

]
+ ε

[〈
d

dx
v1,0

n

〉
+

〈
d

dy
u1,0

n

〉]
+ ε[internally generated M4 terms]. (D 2b)

Following the expression of the solutions as stated in (3.2), Ω ′ can be written as

Ω ′ = Re{Ω̂n(x, t) cos(lny) eωτ }, (D 3)

where

Ω̂n(x, t) = Ω0,0
n (x, t) + εΩ1,0

n (x, t) + · · · . (D 4)

Combining the expressions above yields

Ω0,0
n =

(
d

dx
v0,0

n,c − d

dy
u0,0

n,c

)
︸ ︷︷ ︸

Ω0,0
n,c

cos(t) +

(
d

dx
v0,0

n,s − d

dy
u0,0

n,s

)
︸ ︷︷ ︸

Ω0,0
n,s

sin(t), (D 5a)

〈
Ω1,0

n

〉
=

〈
d

dx
v1,0

n

〉
+

〈
d

dy
u1,0

n

〉
. (D 5b)

In order to understand the spatial pattern of 〈u1,0
n 〉, an expression for the M2 vorticity

component 〈Ω1,0
n 〉 needs to be found. Therefore the time-averaged O(ε) equation for

vorticity is considered:

d

dx

〈
u0,0

n,sΩ
0,0
n,s + u0,0

n,cΩ
0,0
n,c

〉
+

d

dy

〈
v0,0

n,sΩ
0,0
n,s + v0,0

n,cΩ
0,0
n,c

〉
=

−r
〈
Ω1,0

n

〉
(1 − h + h0)

− r

〈
v1,0

n

〉 d

dx
heq +

〈
u1,0

n

〉 d

dy
heq

(1 − heq + h0)2
. (D 6)

Eliminating the equilibrium solution and neglecting the nonlinear terms in the
perturbations gives

r

〈
Ω1,0

n

〉
(1 − heq + h0)

= − d

dx

[
u0,0

eq,s

(
d

dx
v0,0

n,s − u0,0
n,s y

)]
− r

〈
v1,0

n

〉 d

dx
heq

(1 − heq + h0)2
. (D 7)

It turns out that the last term on the left-hand side is negligible compared to the
other terms in this expression.
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