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We specify the smallest mode of the ordinary multinomials leading to the expression
of the maximal probability of convolution powers of the discrete uniform distribution.
The generating function for an extension of the maximal probability is given.

1. INTRODUCTION

Since the 18th century, the expression of the convolution power of the discrete uniform
distribution has been very well known (e.g., de Moivre in 1711; see [6,7]). This
probability distribution arises in many practical situations, including, in particular,
games with equal chance, random affectation of tasks for many servers, and random
walks. It is well known (see Dharmadhikari and Joak-Dev [5, pp. 108—109]) that the
convolution of two discrete unimodal distributions might be nonunimodal. However,
if these distributions are symmetric, we obtain a symmetric unimodal distribution.
It is a discrete analog of Wintner’s Theorem [12]. Knowing that the convolution
power of the discrete uniform distribution is symmetric unimodal, the determination
of the maximal probability (mode) of such a distribution and its argument remains a
question for consideration. As a recent work on the problem, one can see the article
by Mattner and Roos [8], in which they establish the upper bound for the maximal
probability c,; < /6/7(¢*> — 1)L (cy, being the maximal probability of the Lth
convolution power of the discrete uniform distribution on {0, 1,.. ., g}). There were
several works aimed at finding such a bound; we refer to Mattner and Roos [8] and
Siegmund-Schultze and von Weizsicker [10] for a historical survey.

Alternatively, our aim is to give an explicit expression of the mode of the Lth
convolution powers of the discrete uniform distribution (Section 3). To do so, we
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use a simple combinatorial approach by means of the unimodality of the ordinary
multinomials (Section 2). We end the article (Section 4) by giving the generating
functions for two sequences of generalized ordinary multinomials.

2. ORDINARY MULTINOMIALS

The ordinary multinomials are a natural extension of binomial coefficients (see [1]
for a recent overview on ordinary multinomials). Letting g,L € N, for an integer

k=0,1,...,qL, the ordinary multinomial (i)q is the coefficient of the kth term of
the multinomial expansion
2 L L\
A4x+x 4 +x)t=)"(7) x €Y
= \K/,

with (}), = (}) (being the usual binomial coefficient) and (i)q = 0fork > gL. Using
the classical binomial coefficient, one has

02006

it g =k

The combinatorial interpretation is as follows. The left-hand side can be interpreted
as the number of ways to distribute k balls into # cells with at most g balls by cell. For
the right-hand side, this can be computed also as the number of ways to first distribute
Jj1 balls into n cells and then take the j; cells containing one ball each and choose j,
from those and add a second ball, and so on. In the last step, we choose from the
Jq—1 cells containing (¢ — 1) balls and choose from those j, balls and add another
ball, which gives the results for all possibilities satisfying j; + j, + - - - + j, = k with
J1Zja=>j, = 0.
Readily established properties are the symmetry relation

(1), (), &

L) zq: (L — 1>
= . (C)]
(k ¢« = k—m p

As an illustration of the latter recurrence relation, we give the triangles of pen-
tanomial (Table 1) and hexanomial (Table 2) coefficients, which are just an extension
well known in the combinatorial literature, of the standard Pascal triangle. (For
example, we have 18 + 15+ 10 4+ 6 + 3 = 52).

Let us investigate the unimodality of the sequence {(}) } . A finite sequence
gk=
of real numbers {ar};", (m > 1) is called unimodal if there exists an integer

and the recurrence relation
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TABLE 1. Triangle of Pentanomial coefficients: (i) 4

IN\k 0 1 2 3 4 5 6 7 8 9 10 11 12 I3

0 1

1 11 1 1 1

2 1 2 3 4 5 4 3 2 1

3 1 3 6 10 15 18 19 184 154+ 104+ 64+ 34+ 1

4 1 4 10 20 35 52 68 80 8 8 68 =52 35 20
5 1 5 15 35 70 121 185 255 320 365 381 365 320 255

TABLE 2. Triangle of hexanomial coefficients: (i) 5

IN\k 01 2 3 4 5 6 7 & 9 10 1I 12 13 14

0 1

1 11 1 1 1 1

2 1 2 3 4 5 6 5 4 3 2 1

3 13 6 10 15 21 25 27 27 25 21 15 10 6 3 1
4 1 4 10 20 35 56 80 104 125 140 146 140 125 104 80 ---
5 1 5 15 35 70 126 205 305 420 540 651 735 780 780 735
1 €{0,...,m} such that the subsequence {ak}i:0 increases and {a;};_, decreases.
If ap<a <---<ay_1<a,=---=a, >a,4+1 > -+ > ay,, then the integers
lo, ..., 1l; are the modes of {ai}]'_,. In the case where [y = [, we talk about a peak;

otherwise the set of the values of the mode is called a plateau. For positive non-
increasing and nondecreasing sequences, unimodality is implied by log-concavity.
A sequence {ax}} is said to be logarithmically concave (log-concave for short) or
strongly unimodal if al2 > a;_1a141, 1 <1 <m — 1. Additionally, if the sequence is
strictly log-concave (SLC for short) (i.e. if the previous inequalities are strict), then the
sequences have at most two consecutive modes (a peak or a plateau). For these notions,
one can see Bertin and Theodorescu [2], Brenti [3], Comtet [4], Dharmadhikari and
Joak-Dev [5], and Stanley [11]. In the following, |a| denotes the greatest integer in a.
The first main result of this article is the following.

THEOREM 1: Letq > 1and L > 0 be integers. Then the sequence {(i)q}gio is unimodal
and its smallest mode is given by

kp:= argm]?x <I];> =l(gL+1)/2].
q

Furthermore, we have the following recurrence relation:
L _ Z L—1
I B kp—1+1i q’

i€l
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where
{—aq/2,....q/2} if q is even
I,=3{-(@+1/2,....,(¢— 1) /2} ifqandL are odd
{(—@—=1/2,....(q+1)/2} otherwise.

ProoF: It suffices for each of the two cases—q odd and g even—to proceed by
induction over L using the recurrence relation (4). [ |

Remark 2: For even gL, we have a plateau of two modes: gL/2 and qL/2 + 1.
Otherwise we have a peak: (gL + 1)/2.

3. DETERMINING THE MAXIMAL PROBABILITY FOR CONVOLUTION
POWERS OF DISCRETE UNIFORM DISTRIBUTION

We are now able to achieve our purpose: The expression of the maximal probability of
the Lth convolution powers of the discrete uniform distribution. Let U, be the random
variable of the discrete uniform distribution over {0, 1, ..., g} and let Uq*L be its Lth
convolution powers:

1
q+1

Uy = (8o + 81+ -+ 3g) (8, 1s the Dirac measure).

In [1], Belbachir, Bouroubi, and Khelladi established a link between the ordinary
multinomials and the density probability of convolution powers of discrete uniform
distribution. With respect to the counting measure, such a density is given by

(),

*L __ _
PO=0= e

k=0,1,...,qL.

Remark 3: From Odlyzko and Richmond [9] we know that for L sufficiently large,
the sequence of probabilities {P(U;L = k)} is strongly unimodal.

From Theorem 1, as a second main result, we give the values of ¢, ;:=
maxy (i)q/(q + DE.

THEOREM 4: The maximal probability of the Lth convolution power of the discrete
uniform distribution over {0, 1, ...,q} is

1 L
L= g+t (L(qL + 1)/2J>q'
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4, SOME GENERATING FUNCTIONS

As a third main result, we give the generating functions for the sequence of general-
ized ordinary multinomials, the sequences {(fl)q}n and {('Lf)q}n, z € C, and the extended
sequence of maximal probabilities for the convolution power of discrete uniform dis-
tribution: {c, 24/} (here 2n/q is not necessarily an integer). The following definition

is motivated by (2).
DERINITION 5: Forz € C, we define the generalized ordinary multinomials, as follows:
F4 2= @@=k +1)
<k> = Z ! ! 1 TN S
p (ki —k)(ky — k3)! - - - (kg1 — kg) ky!

ki+kat--+kg=k
ki >ko>->ky

THEOREM 6: Letz € C; the generating function for generalized ordinary multinomials

is given by
Z<Z> =+ t42 4+ 1),
n/q

n>0
PROOF:

A =1 G@=(+h+--+h)+1 ,
Z(n)qf =22 hithyl - hy_1hy! !

n>0 n>0 hy+2hy~+---+ghy=n

z m! "
=22 2. <m)h1!h2!-~~h 'hq!t

n>0 m>0 hy+2hy+---4-qhy=n q-1
hithy+-+hy=m

z m! hy+2h 4+ +gh
t'+ 2+-+qhy
() X wwrh

m>0 1+ha+-+hy=m q-1

Z(Z)(t+t2+~-~+t")’”
m=>0 m

=141+ 4- 419, u
Remark 7: Problem 19 of Comtet [4, Vol. 1, p. 172] states that

Zx”[],u(l 4+ =1 —2x — 32,

n>0

using the fact that the coefficient of ¢ in the development of (1 + ¢ + 2y G (1 +
t+1%)" = (1), is max; (), we obtain the following combinatorial identity:

12
Gy (1) :== Zcz,nf" = (1 + _> (1 -2,

3
n>0

This last identity can be shown as the generating function of the sequence {c;,},.
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THEOREM 8: Let 7 € C; the generating function of the sequence {('jf)q},, is given by

nz\ u+2u? 4 -+ qui -
Z "=ull—-z s
n/, l+u+u?+ - +u?

n>0

where u is a solution of the equation t = u(1 +u + u> + - + u9) =,
PrOOF: Use Hermite’s Theorem [4] for the function t — t(1 +¢t+---+t9)~*. N

THEOREM 9: For g even, the generating function of the sequence {cy2n/4}n is given by

2 U422+ qut \
G,(1): = "coomg=\1——
q () ; Cq.2n/q ( gldu+ul+- - +ud

g+ YR e )
2 Ykt — )

where u is a solution of the equation

g+1 2/ g+1 e
(et (s |
l4+u4+u?+-- +ud 1+Zk=1(u—k+uk)

ProOF: Use Theorem 9 for z = 2/¢ and the change of variable t — (g + 1)t. |

Remark 10: The sequence {c,2,/4}n contains strictly the subsequence {c,;};.

COROLLARY 11: For q = 4, the generating function of {c4,2}, for t €] — V5.1 s
given by
~1/2

1 1 1
G4 (t): = ZtnC4’n/2 = <1 — _tz — —t4 _ _t(5t2 + 20)3/2)
e 2" 78" T 200

COROLLARY 12: We have the following identities

2
Y (=5 <”Z )4 =2 and 3 (~1'csnp =2/V5.

n>0 n=0

Remark 13: The generating function of the sequence {c4,}, for t €] — 1, 1[ is given

by
Y Fesn = Ga/ltD) + Ga(—/11D) /2.

n>0
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