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This work is focused on the development of an analytical model for the axisymmetric
deformation of droplets with a given velocity lag in an outer flow. This leads either
to oscillations around a deformed equilibrium shape or to strong deformations which
may ultimately lead to their breakup when the equilibrium shape loses its stability. To
obtain an evolution equation for the droplet shape evolution, it is first supposed that the
droplet deforms like a spheroid. Then, a balance between kinetic energy of deformation,
surface energy creation, external pressure work and viscous dissipation within the droplet
is written. This is close to the approach developed in the classical Taylor analogy breakup
or droplet deformation and breakup model. The main originality of the present modelling
is that pressure work can be computed at any time, assuming an outer potential flow.
Pressure is assumed to work on either the whole droplet or only on the forward half of
the droplet due to flow separation. Results of this model are then compared with reported
droplet oscillation frequencies. For suddenly accelerated droplets, oscillations are present
in the liquid–liquid metal case and successfully compared with some new direct numerical
simulation results. Comparison is also successful when compared with previous results
on droplet oscillating at terminal falling velocity, whether in the liquid–liquid case or
for falling raindrop. Lastly, comparisons are made with previously published secondary
fragmentation experiments and direct numerical simulations whether in a shock tube or
for droplets falling in a cross-flow.

Key words: aerosols/atomization, meteorology, gas/liquid flow

1. Introduction

There exist many deformation models for liquid droplet in air flow or in liquid flow.
Most of them are based on simple assumptions, however. The oldest, such as the models of
Lamb (1932) and Miller & Scriven (1968) are based on linear instability theory involving
spherical harmonics. This leads to the droplet’s natural oscillations due to surface tension
force, which is valid for low Weber number, as in Becker, Hiller & Kowalewski (1991),
Stückrad, Hiller & Kowalewski (1993), Becker, Hiller & Kowalewski (1994) and Abi
Chebel et al. (2012).

† Email address for correspondence: nicolas.rimbert@univ-lorraine.fr
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904 A15-2 N. Rimbert and others

Another class of models has been devised, mostly adapted to higher Weber regime
where the droplet, initially at rest, is exposed to an outer flow and can eventually break.
Among them, the Taylor analogy breakup (TAB) model (O’Rourke & Amsden 1987)
circumvents difficulties in modelling by building the oscillator equation from dimensional
analysis and fitting coefficients; for instance using Lamb’s oscillation frequency. However,
simple this modelling may be (cf. appendix A.1), this is, yet, one of the most used models
today in so-called atomisation modelling. In an attempt to deepen our understanding of the
underlying physics, the droplet deformation and breakup (DDB) model (Ibrahim, Yang &
Przekwas 1993) considers large deformations of the droplet and is based on an energy
balance between kinetic energy of deformation, surface energy creation, external pressure
work and viscous dissipation. However, the DDB model leads to very strange conclusions
when considering low Weber number deformation and oscillations (cf. appendix A.2). In
most of these models, the deformation of the droplet is not fully taken into account, either
due to the linearisation process (mostly around spherical shape) or just for the sake of
simplicity. For instance, the DDB model assumes that the aerodynamic pressure acts on the
un-deformed droplet. However, it is well known that it is the pressure difference between
the centre of the drop and its edge that governs its deformation (Moore 1959; Villermaux
& Bossa 2009) and this pressure difference increases precisely when the droplet deforms.
This latter work has been extended to the viscous case and to a system of two equations to
describe the two dimensions of bag breakup by Kulkarni & Sojka (2014). More recently,
Sichani & Emami (2015) have used the virtual work principle to study bag breakup of
a droplet. All these works, however, involve somewhere some empirical modelling and
parameter fitting.

The present work is focused on following the DDB framework, assuming that the droplet
follows a spheroidal path of deformation (with one degree of freedom) and makes an
energy balance between kinetic energy of deformation, surface energy creation, external
pressure work and viscous dissipation inside the droplet. Part of the present procedure
was already attempted in Schmehl (2002) but this work contained some issues that will
be corrected here. The main difference is that every coefficient of the present model is
given in a closed analytic form. As in Schmehl (2002), both oblate and prolate spheroids
will be considered as they are sometimes observed in direct numerical simulation (Han &
Tryggvason 1999). In the present work, empirical modelling will be kept at a minimal level
(mainly by considering different configurations or using some simplifying assumptions).
The most important (and new) physical hypothesis is that the pressure is computed around
the deformed spheroidal droplet using potential flow theory. Moreover, in order to obtain
an analytical model for the different coefficients involved in the oscillator equation, the
work of Benjamin (1987), which allows for the simple computation of an analytical
equilibrium shape of a spheroidal bubble in an outer flow, will be used.

Before delving too deeply into the equations, § 2 of this paper is devoted to a qualitative
presentation of the problem, showing that prolate spheroid should always be unstable but
that oblate spheroid can be stable. It also introduces the proper time scale and shows
how the Weber number is the most important non-dimensional number for the present
case. Section 3 describes present modelling, including potential flow around both oblate
and prolate spheroids and analytical derivations of the kinetic energy of the deformation
terms, of the viscous term, of the surface energy terms and the carrier fluid pressure
work. Section 4 analyses the nonlinear ordinary differential equation obtained for the
droplet deformation and some of its sequels. Section 5 considers a linearised version
of the ordinary differential equation and analyses the stability of the linearised systems
and of the steady states. Limit domain and frequency of the oscillations are given as

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

67
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.675


Droplet deformation, oscillation and breakup 904 A15-3

a function of Weber and Ohnesorge numbers. Comparison is made with previously
published results on the oscillation frequency of falling rain droplets at terminal velocity
or of some liquid–liquid cases and some new direct numerical simulation (DNS) results in
the liquid–liquid metal case. Section 6 describes the liquid–liquid metal DNS simulations
and, more importantly, shows the similarity and the discrepancy between these DNS
and present analytical model, showing the intrinsic limitation of present, and also of all
former, models. Lastly, comparison of the breakup dynamics of a droplet in gas with
either DNS or experiments (shock tube, cross-flow) is presented in § 7. The result is a
single analytical framework giving approximations for the steady deformation, oscillation
frequency, stability limit and breakup time of a droplet set in a uniform exterior flow.

2. Qualitative modelling

Physical principles behind the large deformation of a droplet/globule initially at rest
in a fluid flow are very simple (Moore 1959): due to the Bernoulli effect, pressure
increases on the stagnation point while pressure decreases on the edges of the droplet,
this pressure difference creates a flow inside the droplet, from the stagnation point to the
edge, inflating the droplet into a spheroid or disc shape. This analysis neglects viscosity
effects but is adequate to describe the short-time behaviour of the droplet. Actually,
putting these considerations into an equation can lead to a very simple linear oscillation
equation. Villermaux & Bossa (2009) develop this idea for a disc-shaped deformed droplet
(neglecting the squared edge and assuming the external flow field potential) but it can be
extended to either an oblate or a prolate spheroidal droplet. As far as free fall droplets are
concerned, their equilibrium shapes are known to be far from spheroidal (Beard & Chuang
1987), therefore this can also be considered as an approximation.

Let us assume that a liquid droplet (whose properties will be denoted using the subscript
L) of initial radius R0 deforms, thanks to the action of an external carrier fluid (cf. figure 1)
(whose properties will be subscripted C), homothetically into a spheroid of semi-axes a
and b (a is the length of the two semi-axes of equal length while b is the length of the
third one, if a > b the spheroid is said to be oblate while if b > a it is said to be prolate).
Volume conservation therefore ensures that

4
3πa2b = 4

3πR3
0. (2.1)

With this hypothesis, the droplet has only one deformation parameter which will be the
deformed droplet meridian radius, normalised, and denoted y, as can be seen in figure 1
(note that y = a/R0). Note that the droplet deforms continuously from the prolate (y < 1)
to the oblate (y > 1) state when y increases. Likewise, the normalised droplet half-length
along the flow z-axis will be denoted h = b/R0 and volume conservation now reads

y2h = 1. (2.2)

Here, (r, θ, z) are cylindrical coordinates along the air flow direction. Using the Bernoulli
equation, one gets for the pressure P+ on the stagnation point

P+ = P∞ + 1
2ρCU2

∞, (2.3)

and for the pressure P− on the edge of the droplet

P− + 1
2ρCλ

2U2
∞ = P∞ + 1

2ρCU2
∞, (2.4)

where ρC is the carrier fluid density and λ is a coefficient corresponding to the velocity
increase on the edge of the droplet (e.g. 1.5 for the sphere cf. Batchelor 2000). Introducing
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2a = 2yR
0 2b = 2hR

0

r

z

U∞ U∞

2R0

P+

P–

FIGURE 1. Hypothesis of the deformation of the droplet into an oblate spheroid in a
surrounding uniform flow field.

the droplet surface tension σ and using the Laplace equation, the pressure inside the
droplet P(i) reads, for an oblate spheroid using the mean curvature of an ellipsoid (cf.
Darboux 1915, p. 392)

P(i)+ = P+ + σ
b
a2
, (2.5)

P(i)− = P− + σ
a
2

(
1
b2

+ 1
a2

)
. (2.6)

The droplet is in equilibrium when

P(i)+ = P(i)− . (2.7)

Introducing the Weber number for the carrier fluid,

We = WeC = ρCU2
∞2R0

σ
, (2.8)

we must therefore find solutions (for both oblate and prolate cases) to

λ(y)2

4
We = ((y6 + 1)y3 − 2)

y4
, (2.9)

where λ(y) is still unknown (but likely to be monotonically increasing with y). It can be
seen that prolate shapes (y < 1) lead to a negative right term in (2.9) while the left term
should be positive; they should therefore never be observed as steady states. To determine
the equilibrium shape of an oblate droplet, knowledge of the function λ is needed. This
can be achieved by assuming a potential flow around the droplet. However, we will not
follow this ‘two-point’ route as a more complete and developed model will be devised in
the next section.

Note that when writing (2.3) or (2.4), the unsteady term has been neglected in the
Bernoulli equation; however, the problem of oscillation of a droplet is time dependent.
When the droplet deforms and oscillates, time variation of the velocity potential ϕ can be
assumed to be of the order of

∂ϕ

∂t
∼= U∞2R0

τ
, (2.10)

where the oscillation characteristic time can be approximated by τ , the characteristic
Ranger & Nicholls (1969) time (which governs the fragmentation time of a droplet in
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an air stream)

τ =
√
ρL

ρC

2R0

U∞
. (2.11)

Origin of this characteristic time can be found using the present simplified analysis. For
the oblate case, it is possible to estimate the magnitude V of the velocity inside the droplet
by

1
2
ρLV2 = P(i)+ − P(i)− = 1

2
ρCλ

2U2
∞ + σ

(
b
a2

− a
2

(
1
a2

+ 1
b2

))
. (2.12)

So that, for large Weber number, neglecting the surface tension effects,

V ≈
√
ρC

ρL
U∞, (2.13)

is the deformation velocity of the droplet and τ = 2R0/V is the characteristic time. Note
that Rayleigh’s characteristic oscillation time tR can also be recovered from (2.12) by
setting U∞ = 0, a = b = R0, leading to

tR =
√
ρLR3

0

σ
. (2.14)

As both time scales behave like τ/tR ∝ 1.27We−1/2 (Gelfand 1996), τ increasingly
becomes the shorter time when the Weber number increases.

Therefore, using the correct characteristic time τ , it is possible to consider that

ρC
∂ϕ

∂t
� 1

2
ρCU2

∞, (2.15)

when
ρL/ρC � 4, (2.16)

which is usually the case in gas–liquid experiments but is infrequent in liquid–liquid
experiments and needs usually a very dense droplet (note that liquid metal droplets in
water may fall into this category). Note that other possibilities exist when balancing or
neglecting the unsteady terms (cf. appendix B). Nevertheless, with this hypothesis, it is
possible to model the droplet deformation as a sequence of steady states where the flow
field around the droplet adjusts almost instantaneously to the new droplet shape.

3. New droplet deformation and oscillation model

The following section focuses, as implied in the introduction, on a more detailed
modelling of the droplet deformation based on the energy approach. Hypotheses of § 2
will be kept, among which, that the droplet does deform into a spheroid. Along this fixed
path of deformation, it is possible to make an energy balance in the droplet’s centre of
mass reference frame (and assuming a constant velocity lag between the droplet and the
surrounding fluid)

dTL

dt
+ dES

dt
= ẆP − D, (3.1)

where TL is the kinetic energy of the drop deformation, ES its surface energy, ẆP the
pressure power on the droplet and D is the viscous dissipation due to internal flow inside
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904 A15-6 N. Rimbert and others

the droplet. In this work, viscous dissipation of the outer potential flow will not be
considered, as it mainly contributes to deceleratation of the droplet (cf. appendix C) and
we will make either a short- or a long-time assumption by neglecting the induced variation
of the velocity. Assuming that the droplet deforms homothetically into a spheroid of equal
volume yields the following inner velocity field

V = ẏ

y
rer − 2

ẏ

y
zez, (3.2)

for both an oblate and a prolate spheroid (the factor 2 in (3.2) stems from the fact that ‘two’
radii or semi-axes are feeding ‘one’ when the spheroid deforms). As the flow is assumed
to be bi-dimensional and axisymmetric, the θ coordinate is not taken into account in the
remaining. Lastly, this model does not include the famous Hill’s vortex (Hill 1894) in
the inner flow field. This mainly concerns droplets falling at terminal velocity, however.
Note that these hypotheses (neglecting the boundary layer at the interface, Hill’s vortices,
assuming potential flows) are mainly made to keep the model simple enough to be solved
analytically and should be validated by confrontation with experiments and DNS. Having
set the flow field inside the droplet allows for computing both terms TL and D.

3.1. Kinetic energy term
By definition, the kinetic energy of deformation of the droplet is

TL = 1
2ρL

∫∫∫
V(t)

V 2 d3x, (3.3)

where V(t) is the volume occupied by the droplet. This integral can be computed once the
velocity field is known. Using (3.2), one gets, for the oblate case,

TL = 1
2
ρL

(
ẏ

y

)2 ∫∫
Ellipse( yR0,R0/y2)

(r2 + 4z2)2πr dr dz = 2
3
πρLR5

0KC(y)

(
ẏ

y

)2

, (3.4)

where the non-dimensional term KC should be of order unity. This leads to

KO
C (y) = 4

5
2 + y6

y4
, (3.5)

where the superscript letter O indicates oblate deformation. However, in order to later
develop a simplified model, it will be more convenient to develop KC around the spherical
shape using the new deformation parameter ε = y − 1 � 1,

K̃O
C (ε) = KO

C (1 + ε) = 12
5 − 24

5 ε + 84
5 ε

2 + O(ε3), (3.6)

where the notation K̃(ε) = K( y) has been used. Relevance of this linearisation (when
restricted to first order) will be discussed throughout the text. In the case of deformation
into a prolate spheroid (ε < 0), one gets

KP
C(y) = 4

5
1 + 2y12

y4
, (3.7)

where the superscript P indicates prolate deformation and

K̃P
C(ε) = KP

C(1 + ε) = 12
5 + 48

5 ε + 264
5 ε

2 + O(ε3). (3.8)
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Droplet deformation, oscillation and breakup 904 A15-7

Note that KC(1) = K̃C(0) = 2.4 in both cases and is of order unity. Note also that, while
KC is continuous in 1, its derivatives are not. Lastly, note that these values may be slightly
underestimated for a droplet falling at terminal velocity since the inner vortices are not
included.

3.2. Viscous dissipation term
Likewise, the viscous dissipation due to internal flow can be estimated through

D = μL

∫
V

∂Vi

∂xj

∂Vi

∂xj
d3x . (3.9)

In the case of a purely extensional flow, as given by (3.2), the computation leads to

D = μL

∫∫∫
S(y)

12
(

ẏ

y

)2

d3x = 16πR3
0μL

(
ẏ

y

)2

. (3.10)

This is exactly the result given by Schmehl (2002) and, similarly, only the value of the
constant coefficient in (3.10) differs from the original DDB model.

3.3. Surface energy term
Surface of an oblate ellipsoid is given by the exact formula

S = 2πa2 + π
b2

e
log

(
1 + e
1 − e

)
, (3.11)

where eccentricity e is given by

e =
√

1 − b2

a2
. (3.12)

Note that e relates to the other deformation parameters as e = √
1 − 1/y6 ≈ √

6ε. Time
variation of surface energy can now be expressed as

dES

dt
= σ

dS
dy

dy

dt
= σ4πR2

0KS(y)
ẏ

y
. (3.13)

When 1 < y, the non-dimensional surface energy function KS is equal to

KO
S (y) =

2y5

√
−1 + y6

y4
(1 + 2y6)+ (1 − 4y6) log

[
−1 + 2y5

(
y +

√
−1 + y6

y4

)]

4y7

(−1 + y6

y4

)3/2 ,

(3.14)
and can be approximated by

K̃O
S (ε) = KO

S (1 + ε) = 0 + 16
5 ε + 24

35ε
2 + O(ε3). (3.15)
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904 A15-8 N. Rimbert and others

Likewise, considering that the formula for the surface of a prolate spheroid is

S = 2πa2

(
1 + b

ae
arcsin e

)
, (3.16)

this leads to the exact formula

KP
S (y) = − y3

√
1 − y6(1 + 2y6)+ (1 − 4y6) arccos[y3]

2y(1 − y6)
3/2 . (3.17)

One gets as an approximation, when ε < 0,

K̃P
S (ε) = KP

S (1 + ε) = 0 + 16
5 ε + 24

35ε
2 + O(ε3). (3.18)

Note that KS is negative in the prolate case (ε < 0), as when y decreases i.e. ẏ < 0,
the surface energy should still increase over time (i.e. the product KS ẏ > 0), as the
sphere is the volume of minimal surface. Note also that the identity of developments
(3.15) and (3.18) shows that the coefficient KS is at least C2 smooth around the spherical
shape.

3.4. Carrier fluid pressure term
Carrier fluid pressure term is actually the gist of the present droplet oscillator model.
When a droplet oscillates, deforms and eventually breaks up in an exterior flow field, the
Reynolds number is usually not small and it is therefore possible to make the assumption
that the carrier fluid flow around the drop is a potential flow. Classical analytical results
for potential flow around a spheroid can therefore be used (Lamb 1932; Milne-Thomson
1968). This is not a new idea, as the possibility for the flow to be potential on the
upwind side of a falling droplet has been emphasised for some time (cf. Fuchs (1964) for
instance). However, on the downwind side, flow separation is to be expected; therefore,
two hypotheses will be developed hereafter: one will assume that the pressure works
symmetrically on the two sides of the droplet (CP = 1) whereas the second will assume
that the pressure only works on the forward half of the droplet (CP = 1/2).

Using Stokes’ axisymmetric streamfunction ψ , the velocity field can be computed with

Uz = −1
r
∂ψ

∂r
and Ur = 1

r
∂ψ

∂z
, (3.19a,b)

and the streamfunction ψ is given, in the droplet frame of reference, by

ψ = − 1
2 U∞(a2 − b2)

e
√

1 − e2 − Sin−1(e)
(Sinh(ξ)− Cosh2(ξ)Cot−1(Sinh(ξ)))Sin2(η)

− 1
2

U∞r(ξ, η)2, (3.20)

where spheroidal coordinates (ξ, η) are obtained from the cylindrical coordinates (r, z)
through the conformal mapping

z + ir =
√

a2 − b2Sinh(ξ + iη). (3.21)
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0
z

FIGURE 2. Axisymmetric potential flow around an oblate spheroid. Inner deformation field
corresponding to (3.2) is also illustrated. Velocity is computed using the formulas (3.19a,b),
(3.20) and (3.21). Note that norm of the velocity vectors inside the droplet is arbitrary as it
should be the result of the final oscillator equation.

Note that (3.21) must be inverted (analytically) before using (3.19a,b) and (3.20). Figure 2
shows the resulting potential flow. Pressure power is then computed using (cf. appendix D
for details of the approximation)

ẆP = −
∫∫
©
∂V

P(V ·n) dS ≈ 2ρC

∫ a

0

1
2 U2(V ·n)2πr dl(r), (3.22)

where n is the outer normal to the spheroid and dl(r) a small length increase along the
ellipse generating the ellipsoid. Note that introducing Hill’s vortex should not change this
value as V Hill · n = 0. Note also that ẆP should be positive for the droplet to deform,
(note also that this is one of the main differences from Schmehl (2002)). When the droplet
deforms into a spheroid, this integral can be given the form

ẆP = ρCU2
∞πR3

0CPKP(y)
ẏ

y
, (3.23)

where non-dimensional function KP is also expected to be of order unity; CP is a coefficient
whose value equals either 1 or 1/2, respectively, if the pressure work is computed on the
whole droplet or only on the forward half of the droplet. Deriving a closed form for KP in
(3.23) is a little tricky; therefore, as a first approach, a polynomial interpolation of the value
of KP in the range 1 < y < 3 has been computed with Mathematica (Wolfram Research,
Inc 2014)

KO
P (y) ≈ 0.171103 − 0.924041y + 1.21925y2 + 0.473157y3 + 0.263002y4. (3.24)

Although a way of computing the exact expression will be presented now, this polynomial
approximation is naturally smooth when y → 1, paradoxically this may not be the case
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904 A15-10 N. Rimbert and others

(numerically) when using the exact expression, as there is a singularity in the conformal
transformation (3.21) when a → b. Therefore, the polynomial interpolation will be mainly
used in the numerical solution of the oscillator equation.

As stated, it is possible to derive an analytical solution (cf. appendix E). The final result
is

KO
P (y) =

6 − 6y6 + 2
√

1 − 1
y6

y3(2 + y6)Arcsec[y3](√
1 − 1

y6
− y3Arcsec[y3]

)2 , (3.25)

which can be approximated by

K̃O
P (ε) = KO

P (1 + ε) = 6
5 + 684

175 ε + 3366
875 ε

2 + O(ε3). (3.26)

For the prolate case (y < 1), (cf. appendix F) this equation reads

KP
P(y) = −

4y6
√

1 − y6

(
6
√

1 − y6 + (2 + y6) log

[
−−2 + y6 + 2

√
1 − y6

y6

])
(

2
√

1 − y6 + y6 log

[
−−2 + y6 + 2

√
1 − y6

y6

])2 ,

(3.27)
which can be linearised into

K̃P
P(ε) = KP

P(1 + ε) = 6
5 + 684

175 ε + 3366
875 ε

2 + O(ε3). (3.28)

Note that, again, the identity of developments (3.26) and (3.28) shows that the coefficient
KP is at least C2 smooth around the spherical shape.

4. Nonlinear oscillator

4.1. Nonlinear ordinary differential equation
The final equation is obtained by combining (3.1), (3.4), (3.10), (3.13) with (3.23). Using
the Weber and Ohnesorge numbers as dimensional numbers, one gets the following
oscillator equation:

d
dt∗

((
ẏ

y

)2

KC(y)

)
+ 96Oh√

We

(
ẏ

y

)2

+ 48
We

KS(y)

(
ẏ

y

)
= 6KP(y)

(
ẏ

y

)
, (4.1)

where the non-dimensional time t∗ and the Ohnesorge number read

t∗ = t
τ
, (4.2)

Oh = μL√
σρL2R0

, (4.3)

and We is the parameter that has been introduced in (2.8). In the following, this equation
will be solved using Mathematica (Wolfram Research, Inc 2014) and the stability of the
steady state or of the initial spherical state will be studied.
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1.0

1

2

3

4

5

6

7

We

1.2 1.4 1.6 1.8 2.0

TAB (1987)

Moore (1965)

Analytical Cp = 1

Analytical Cp = 1/2

Hsiang & Faeth (1995) liquid/liquid (drop tower)

Hsiang & Faeth (1995) gas/liquid (drop tower)

Hsiang & Faeth (1995) gas/liquid (shock tube)

Linearized Cp = 1 (bottom), Cp = 1/2 (top)

y

FIGURE 3. Steady deformation for a liquid droplet in an exterior flow field. Continuous line is
the solution of the analytical model given by (4.4) while the dotted line is the solution of the
linearised (5.8).

4.2. Steady state computation
Steady state of the oscillator is given by the implicit relation

We = 8KS(y)

KP(y)
. (4.4)

This leads to a formula identical to El Sawi’s (1974) result for bubbles (note that this can
be applied to the present case even when condition (2.16) is not met since El Sawi’s work
on ellipsoidal bubble deformation is about the steady state) and given by

WeEl Sawi(y)

=
2(
√

−1 + y6 − y6Arcsec[y3])
2
(

y3
√

−1 + y6(1 + 2y6)+ (1 − 4y6)Arctanh

[√
−1 + y6

y3

])
y7(−1 + y6)

2
(−3

√
−1 + y6 + (2 + y6)Arcsec[y3])

.

(4.5)

Figure 3 shows the graph of (4.4) for the oblate case (as in § 2 the prolate case has no
steady solution as KS is negative while KP is positive). As pointed out by El Sawi (1974),
there is no longer an oblate steady state for a Weber number greater than 3.27 (there also
seems to be a branch for very large y but it does not seem very likely to have any physical
reality). For the sake of completeness, this result is compared to Moore’s (1965) formula
resulting from a two-point analysis based on potential flow around a spheroid

WeMoore(y) = 4(y9 + y3 − 2)

y4(y6 − 1)3
(y6Arcsec( y3)−

√
y6 − 1)2. (4.6)

Note that combining (2.9) and (4.6) allows for the computation of function λ. Moore’s
result is still widely used in the analysis of bubble shape (Legendre, Zenit & Velez-Cordero
2012). The reader can see in this latter work that, while it is dedicated to developing new
correlations, the shapes of bubbles are still well described by Moore’s formula up to a
Weber number approximately equal to 3.
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ẏ

y

FIGURE 4. Comparison between oscillation time series and phase plot.
(a) Oscillations, We = 2,Oh = 0.001; and (b) phase plot, We = 2,Oh = 0.001.

There are, however, fewer comparisons in the liquid–liquid or the liquid–droplet/gas
case and it will be shown here that the present result compares rather well with the data
given in Hsiang & Faeth (1995). Agreement between (4.4) and droplet/gas experiments in
shock tubes (labelled by stars in figure 3) is rather good when We < 3. For liquid/liquid
experiments agreement is also rather good for the lower Weber number (We < 1) but
there seems to be a tendency for intermediate Weber numbers (1 < We < 4) to follow an
equilibrium shape given by twice the result of (4.4) and corresponding to the computation
of the pressure work on the forward half of the droplet (i.e. CP = 1/2 corresponding
to the dotted line in figure 3). Note that in the liquid–liquid case, it is likely that
measurements have been made close to the limit falling velocity (this is not detailed,
however, by Hsiang & Faeth 1995). Note also that the Taylor Analogy Breakup (TAB)
model gives good values for the steady deformation when compared with gas-liquid cases
(cf. appendix A.1).

4.3. Phase space analysis
Figure 4(a) shows the oscillatory behaviour for both initially oblate and prolate spheroids
for We = 2 and Oh = 0.001. Note that, in most works, the initial shape is assumed to be
spherical but it may actually depend on the experimental protocol devised (for instance
a levitated droplet impinged by a horizontal shock or air blow might be slightly oblate
but hit on the greater semi-axis; or a pendant drop detaching and hitting a liquid pool
might still begin slightly prolate when it hits the surface). Figure 4(b) shows the phase
plot for the previous oscillations. The fixed point is clearly visible as the centre of the
circling motion (and is an attractor). Note that when the droplet begins in the prolate
shape, this is equivalent to (i.e. it follows part of the same trajectory as) the oscillation
of a spherical droplet with a non-zero initial deformation velocity, as there is some
stored surface energy in the deformed droplet. This explains why the amplitudes of the
oscillations are larger when the droplet begins in the prolate shape. Most experimental
interpretations begin with a perfectly round droplet and a zero initial deformation velocity,
however.
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5. Stability limits and linearised oscillator

5.1. Stability of the steady states
From a mathematical point of view, studying the stability of a fixed point should be done
by linearising around said fixed points, i.e. those obtained by (4.4) (this is also known
as Lyapunov’s first method). Setting yeq as the implicit solution of (4.4) and writing ε =
y − yeq, one gets

KC(yeq(We))ε̈ + 48Oh√
We

ε̇ +
(

24
We
σ1(yeq(We))− 3π1(yeq(We))

)
ε = 0, (5.1)

where

KS(ε) ≈ σ0 + σ1ε + σ2ε
2, (5.2)

KP(ε) ≈ π0 + π1ε + π2ε
2. (5.3)

In this new analysis, only values of the coefficients K̃C, σ1,π1 vary and they are now
functions of the steady deformation yeq and henceforth of the Weber number (these
relations are given by polynomial approximations in appendix G).

5.2. Stability of the initial spherical state
Although not very rigorous mathematically speaking, it is possible, however, to linearise
equation (4.1) around y = 1, using the previous definition ε = y − 1; this leads to

KC(1)ε̈ + 48Oh√
We

ε̇ +
(

24
We

K̃S(ε)− 3K̃P(ε)

)
= 0. (5.4)

Therefore, keeping the same notation as in (5.2) and (5.3), one gets

ε̈ + 48Oh

KC(1)
√

We
ε̇ + 1

KC(1)

(
24
We
σ1 − 3π1

)
ε = 1

KC(1)

(
− 24

We
σ0 + 3π0

)
, (5.5)

and, using exact values of the coefficients found in (3.15), (3.18), (3.26) and (3.28) this
leads to

ε̈ + 20Oh√
We

ε̇ +
(

32
We

− 342
35

)
ε = 3

2
. (5.6)

It can be noticed that the final results is very close to Kulkarni & Sojka’s (2014) model
given by

ÿ + 16Oh√
We

1
y2

ẏ +
(

24
We

− α2

4

)
y = 0. (5.7)

Note that in (5.7), the value of the damping coefficient has been set to 16 instead of 8, as
in the original work, as there seems to be a mistake in their derivation. The coefficient
α is a fitting coefficient that is based, according to the authors, on the stretching rate of
the air around the droplet and considering § 2, it corresponds to α = 2λ. Therefore, it
should be greater than 3 (twice the spherical droplet case). However, Kulkarni and Sojka
decided to set it equal to 2

√
2 in order to recover the classical value of the critical Weber

number, usually set to 12 (q.v.). Note that there is no right-hand term in their model, so
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that, rigorously, the equilibrium shape should be given by y = 0 (i.e. a zero width) which
is somewhat non-physical. The right-hand term in (5.5) does, however, lead to steady
deformations ε̄. They can be easily computed and this leads to

ε̄ = (π0/π1)We
Wecr − We

� 0.3We
Wecr − We

. (5.8)

Here, Wecr is a critical Weber number which reads

Wecr = 8σ1

π1
. (5.9)

In the case of linearisation around the sphere with CP = 1, in (5.9) we get Wecr =
(1120/171) � 6.54 (and CP = 1/2 leads to Wecr = 13.08). Figure 3 compares the steady
deformation obtained by (4.4) (full nonlinear model) and (5.8) (linearised) and the two
seem to be in agreement up to a Weber number of 2.4.

5.2.1. Linear stability
Stability of either (5.1), (5.5) or (5.7) can be obtained using the discriminant which reads

Δ = α2

((
Wecr

We

)((
Oh

Ohcr

)2

− 1

)
+ 1

)
, (5.10)

after introducing

α =
√

12π1

KC(1)
, (5.11)

(α = 4.42 when CP = 1 and α = 3.12 when CP = 1/2) and the critical Ohnesorge number
Ohcr defined by

Ohcr =
√

KC(1)σ1

24
. (5.12)

In the case of linearisation around the sphere with CP = 1, Ohcr � 0.54, the condition for
oscillation, Δ < 0, sums up to

Oh2 < (Ohcr)
2

(
1 − We

Wecr

)
. (5.13)

This limits the oblate oscillation zone (cf. figure 5). For the model given by (5.1), Ohcr is a
function of We: this is referred as the ‘Analytical’ model in figure 5. Note that Kulkarni &
Sojka’s (2014) model corresponds to α2 = 8,Wecr = 12 and Ohcr = 1.63. They, however,
did not compute Ohcr or its equivalent as they wrongly computed the oscillation domain.
Note also, and more importantly, that the real parts of the roots of the characteristic
equation are positive when We > Wecr leading to a possible droplet blow-up. There is
also an area of critical damping of oscillation when We < Wecr and Ohnesorge number is
large enough.
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0 0.5 1.0 1.5

Oh

5

10

15

We

Unstable (exp. growth)

Stable oscillations Critical damping

Linearized Cp = 1

Linearized Cp = 1/2

Analytical Cp = 1

Analytical Cp = 1/2

FIGURE 5. Stability of the droplet in the We–Oh chart. Horizontal lines separate the stable and
unstable domains. The domain of oscillations are computed using (5.13), (5.9), (5.12) and in the
nonlinear cases, (G 3), (G 4) or (G 6), (G 7).

5.3. Oscillation frequency
The non-dimensional oscillation frequency is given by

f = α

4π

((
Wecr

We

)(
1 −

(
Oh

Ohcr

)2
)

− 1

)1/2

. (5.14)

Which in the linearised case around a sphere with CP = 1, leads to

f �
(

0.81
We

− 0.12
)1/2

, (5.15)

where influence of the Ohnesorge number has been neglected in the last equation (when
CP = 1/2 this equation becomes f = √

.81/We − 0.06). Note that the Weber number
dependency of the frequency is mainly coupled to the ratio between surface and kinetic
energy of deformation (through (5.11), (5.9) and (5.14)). Therefore, discrepancies between
these models and experiments can be somewhat related to the different hypotheses that are
validated. For instance, increase of surface area (e.g. by non-spheroidal deformation) will
increase the frequency while increase of the kinetic energy (by introducing, for instance,
Hill’s vortices) would decrease it. Next section will therefore test the different oscillation
models against DNS and experiments.
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2 4 6 8 10 12

We

0

0.2

0.4

0.6

0.8

1.0

1.2

f

Lamb (1932) and TAB O’Rourke & Amsden (1987)
Analytical Cp = 1

Analytical Cp = 1/2

Linearized Cp = 1

Linearized Cp = 1/2

Kulkarni & Sojka (2014)

Villermaux & Bossa (2009)

Present Gerris DNS

Lalanne et al. (2013)

Winnikow & Chao (1966)

Goodall Horizontal (1976)

Appleyard (2013)

FIGURE 6. Non-dimensional oscillation frequency f of the droplet as a function of Weber
number We in the Oh = 0 limit. For the present analytical models, the frequencies of oscillations
are computed using (5.14), (5.9), (5.12) and in the nonlinear cases, (G 2), (G 3), (G 4) or (G 6),
(G 7), (G 8).

5.3.1. Comparison with data
In figure 6 we show a comparison of the frequency predicted by the present model and

previous ones. Lamb’s result given by (5.16) gives much higher frequencies

fLamb = 1, 27√
1 + 2

3
ρC

ρL

1√
We
, (5.16)

while Villermaux & Bossa’s (2009) model gives much lower frequencies. The TAB model
gives the same frequency as Lamb’s model since this was a reference used to fix some
constants of the model. Lastly, owing to its similarity with the present model, the model
of Kulkarni & Sojka (2014) gives comparable (albeit slightly smaller) frequencies.

Figure 6 also shows a comparison of the present model with some available
experimental and numerical results. There are no available data for the oscillation of
a droplet set suddenly in an exterior flow field as is usual in atomisation experiments.
Therefore, Castrillon-Escobar (2016) developed a direct numerical simulation of the
oscillations of a gallium droplet into water (therefore satisfying (2.16)). His results (which
will be discussed in § 6) can be found in figure 6. Agreement is very good between the
analytical model and the DNS results up to a Weber number of 2, and a Weber number of
5 when considering the CP = 1/2 (pressure on the half-drop) case. The linearised models
seem to perform initially in a similar way but are still valid for high Weber numbers when
the analytical model predicts instability.

Comparatively, more data can be found for the oscillations of a droplet at terminal
velocity. For instance, when comparing with the liquid/liquid experimental results of
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Winnikow & Chao (1966) (ρL/ρC = 1.2, 686 ≤ ReC ≤ 876), agreement is also good.
The same can be concluded when comparing with the numerical liquid–liquid results
of Lalanne, Tanguy & Risso (2013) (ρL/ρC = 0.99, 50 ≤ ReC ≤ 287). While these
measurements were made under gravity at the droplet terminal velocity, this good
agreement may be explained by the fact that the hypothesis of a constant velocity of the
droplet is an underlying hypothesis of the present analysis. Although condition (2.16) is
not valid in these cases, the model gives good results. Appendix B gives an explanation
for this fact by extending the range of applicability of (2.16).

Lastly, in meteorology, while rain droplet oscillation frequencies have been studied, it is
mostly as a function of their size (in mm) and not of their terminal Weber number (Beard,
Bringi & Thurai 2010). Using the droplet terminal velocity (which is, most of the time,
given as a function of their size) allows us, however, to find the relationship between the
size and terminal Weber number. Falling rain droplets’ terminal velocity has been studied
experimentally by Gunn & Kinzer (1949) and their data have then been processed in a
correlation by Best (1950), cf. (Foote & Du Toit 1969)

Vlim = 9.43(1 − exp(−(D/1.77)1.147)), (5.17)

where the limit velocity Vlim is given in (m/s) as a function of the droplet diameter D
(in mm). Note that, in Gunn & Kinzer (1949), uncertainties on the velocity are close to
10 % and that this should translate in large error bars in figure 6 (on both axes due to the
use of non-dimensional variables) but they have not been shown for the sake of clarity.
While the smaller droplets are known to be very close to Lamb’s oscillation frequency,
there are some discrepancies for the higher droplet diameter (Goodall 1976). In this latter
work (Goodall 1976), the oscillation frequency is measured indirectly by considering
the backscattering of 11 GHz radar microwaves. The data reported in figure 6 are those
given for horizontal polarisation of the microwave which departs the most from Lamb’s
frequency (reported uncertainty can be estimated to be approximately 5 %, leading to an
estimated uncertainty in figure 6 of 20 % on the We axis and 15 % on the f axis). More
recently, in his DNS of raindrop oscillations at terminal falling velocity, Appleyard (2013)
observed that the oscillations frequencies were quite inferior to Lamb’s but attributed
this discrepancy to some numerical errors (also note that, in this work, the frequency is
computed by Fourier transform and is therefore dependent on the time series size sample).
These data are also shown in figure 6 and are in agreement with present model (the most
efficient model being the linearised model with CP = 1/2).

To conclude with this section, note that, while (5.14) is very similar to a Strouhal
number, the real Strouhal number should be computed according to

St = fD
τU

�
√
ρC

ρL

(
0.81
We

− 0.12
)1/2

, (5.18)

so that the density ratio plays an important part in its determination. In the liquid–liquid
case, this ratio is close to unity and non-dimensional frequency f and Strouhal number St
are similar, so oscillations can be observed; but in the gas–liquid case the density ratio
is very low, therefore the Strouhal number is much smaller than the non-dimensional
frequency. This may explain why the oscillations of the droplet have not been reported
in gas–liquid atomisation experiments for a Weber number close to unity: the droplets
were carried outside the measurement zone before the oscillation could be detected.
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Gallium–water configuration Liquid metal density (ρL) Water density (ρC) Density ratio (ρR)
6070 kg m−3 998.2 kg m−3 6.08

Liquid metal viscosity (μL) Water viscosity (μC) Viscosity ratio (μR)
1.6 × 10−3 Pa s−1 1.0 × 10−3 Pa s−1 1.6
Surface tension (σ ) Droplet Ohnesorge number (Oh)
0.7 N m−1 4.47 × 10−4

TABLE 1. Fluid physical properties.

–0.49314

–0.24216

0.0088191

–7.441 × 10–1

2.598 × 10–1

Pressure

FIGURE 7. Pressure field t∗ = 1.22,ReC = 2499,We = 2.96.

6. Comparison with direct numerical simulations using Gerris

6.1. Direct numerical simulation in the liquid–liquid metal case
In Castrillon-Escobar (2016), a spherical, 3 mm diameter, liquid gallium droplet is placed
in a uniform water flow (cf. appendix H). Different water flow velocities are considered
in order to explore the limit breakup regimes. The Weber and Reynolds numbers studied
in this work are 0.59 < We < 11.86 corresponding to 1117.69 < ReC < 4998.48. An inlet
velocity is considered on the inlet boundary and a pressure outlet is considered at the
outlet boundary. Other boundaries are set with a slip boundary condition. The size of the
domain is 7.5D0 × 7.5D0 × 22.5D0 to ensure no effects of the boundaries during either
oscillations or breakup. Fluid physical properties are listed in table 1.

6.2. Flow field and differences with the potential model
Figures 7 and 8 illustrate some similarities and differences between the results of DNS
computations and the potential flow modelling of § 3.

First, figure 7 shows the pressure field around the drop. It can be seen that there exists,
as expected, a high pressure area on the stagnation point and a low pressure area on the
edge of the drop, generating deformation; also, however, due to flow separation, there is
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(b)(a)

(c) (d )

FIGURE 8. Velocity field t∗ = 0.16, 0.32, 0.48, 0.64, ReC = 2499, We = 2.96. Velocity inside
the droplet has been increased fivefold for the sake of clarity.

an asymmetry between the forward and the backward parts of the drop (which is actually
generating pressure drag). This contrasts quite strongly with flow of figure 2 which is
perfectly symmetric and was the incentive for developing a model where pressure work is
computed only on the forward half-droplet.

Secondly, figure 8 shows the velocity field inside and around the drop for a droplet in
the case of a Weber number equal to 2.96 (i.e. when the nonlinear oscillator equation
where CP = 1 starts to depart from the DNS). Two vortex rings are actually present in
the simulation. The first one (which can be seen at t∗ = 0.48) is a ‘classical’ vortex ring
appearing in the wake of the droplet for high enough Reynolds number. The second one
(which can be seen birthing at t∗ = 0.32) is a vortex ring slowly building up inside the
droplet. The presence of both vortices will greatly influence the subsequent behaviour of
the droplet and makes it depart from the analytical model. The velocity field inside the
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FIGURE 9. Non-dimensional deformation parameter y (Ferret half-diameter in the axial
direction) as a function of non-dimensional time t∗ for different Weber numbers. Results of
the DNS with Gerris.

droplet will therefore be quite different from the simple stretching given by (3.2). This is
not the case, however, during the first period of oscillation of the droplet (t∗ = 0.64 in
figure 8 where it is still not dominant.

Figure 9 shows the evolution of the deformation parameter y over time for different
Weber numbers. This can be post-processed to extract the frequency of the oscillation
of the droplet. However, it can be seen that both amplitudes and frequencies are actually
decreasing (it is easier to see that periods are increasing) from one oscillation cycle to the
other. This is likely to be related to the slow decrease of relative velocity between fluids and
to the build-up of the vortex rings both inside and outside the drop: it both draws energy
from the main flow and qualitatively limits the instability. It can be also seen quantitatively
as, when the pressure work coefficient π1 decreases, due to (5.14), (5.10) and (5.11), the
frequency also decreases. Therefore, figure 6 shows only the frequency of the first period
of oscillation. This also allows us to compute an ‘oscillation frequency’ when the droplet
begins its oscillating behaviour but has it interrupted by a fragmentation event.

6.3. Switching from axisymmetric two dimensions to three dimensions
Table 2 presents the different cases that have been computed in this work. For
the lower value of the Weber number, computations have been performed using a
two-dimensional axisymmetric formulation. Some comparisons have been performed with
three-dimensional computations and it has been decided to completely switch to three
dimensions after a Weber number of 5.93 where oscillation ends due to fragmentation by
stretching along its main axis (cf. figure 10 for such an instance).

This was done empirically, as can be seen in table 2; but it is interesting to see that
this choice is rather in agreement with the numerical works of Blanco & Magnaudet
(1995) and Magnaudet & Mougin (2007). In these studies, the authors showed that for
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Type We ReC τ(ms) U0(m/s)

Two-dimensional axisym. 0.59 1117.69 19.8 0.373
Two-dimensional axisym. 1.19 1580.66 14.0 0.528
Two-dimensional axisym. 1.78 1935.90 11.4 0.646
Two-dimensional axisym. 2.37 2235.39 9.91 0.746
Two-dimensional axisym.-three-dimensional 2.96 2499.24 8.87 0.835
Two-dimensional axisym. 3.56 2737.78 8.09 0.914
Two-dimensional axisym. 4.15 2957.14 7.49 0.987
Three-dimensional 4.45 3060.93 7.24 1.02
Two-dimensional axisym. 4.74 3161.32 7.01 1.06
Two-dimensional axisym. 5.34 3353.08 6.61 1.12
Two-dimensional axisym.-three-dimensional 5.93 3534.46 6.27 1.18
Three-dimensional 7.41 3951.65 5.61 1.32
Three-dimensional 8.89 4328.81 5.12 1.45
Three-dimensional 10.38 4675.65 4.74 1.56
Three-dimensional 11.86 4998.48 4.43 1.67

TABLE 2. DNS set-up. Note that Weber number is computed after one time step using the
velocity difference between the centre of mass of the droplet and the surrounding fluid.

t∗ = 5.07 t∗ = 5.28 t∗ = 5.48 t∗ = 5.58t t∗ = 5.68

FIGURE 10. Elongational fragmentation of the drop. We = 10.38.

values of y ≤ 1.18, there was no standing eddy behind a fixed spheroidal bubble, while
for y ≤ 1.30, there was an axisymmetric standing eddy. For greater deformations, there are
losses of symmetry but there is actually a Reynolds number dependency of the limiting
deformation values and the values reported here are minima concerning this dependency.
Using figure 3 and (4.4), it is, however, possible to see that y = 1.18 corresponds to
We ≈ 2.2 on the CP = 1 analytical model equilibrium curve (i.e. without wake vortex)
and y = 1.30 corresponds to We ≈ 5.8 on the CP = 1/2 analytical equilibrium curve
(i.e. with wake vortex) almost in agreement with our empirical choices (2.96 for a first
three-dimensional test and then 5.93 for a full three-dimensional switch).

Figure 11 illustrates the oscillatory behaviour of the droplet in very nonlinear
configurations (3 ≤ We ≤ 12). It can be seen that, for these values, the shape of the droplet
begins to deviate more and more from the proposed ellipsoidal shape (cf. figure 7 for
instance). Comparison with the fixed ellipsoidal shape of Magnaudet & Mougin (2007)
can therefore be qualitative at best and, for We = 2.96, there is a 16.6 % difference between
the frequency computed using the three-dimensional set-up and the two-dimensional
axisymmetric set-up (the three-dimensional case generating lower frequencies) which can
be related to a symmetry breakup happening earlier than expected for a fixed shape. It can
be seen on figure 6 that agreement between present oscillatory modelling is very good
when the simulation stays two-dimensional axisymmetric and stays good when it becomes
three-dimensional.
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t∗ = 2.43

t∗ = 2.02

t∗ = 2.43

t∗ = 2.02 t∗ = 2.02 t∗ = 2.02

t∗ = 1.62 t∗ = 1.62 t∗ = 1.62 t∗ = 1.62

t∗ = 1.21 t∗ = 1.21 t∗ = 1.21 t∗ = 1.21

t∗ = 0.81 t∗ = 0.81 t∗ = 0.81 t∗ = 0.81

t∗ = 0.40t∗ = 0.40t∗ = 0.40t∗ = 0.40

t∗ = 0t∗ = 0t∗ = 0t∗ = 0

t∗ = 2.43 t∗ = 2.43

FIGURE 11. Three-dimensional DNS nonlinear oscillations. From left to right the Weber
numbers are 2.96, 5.93, 8.89, 11.96.

7. Droplet blowup

While it was devised to characterise droplet breakup, the TAB model is actually unable
to describe a complete droplet blow-up as it always predicts stable oscillations (as these
oscillations can have large amplitudes, the breakup is introduced when the deformations
reach a given ratio y = 1.5). This was one of the main motivations behind the DDB model
which, however, predicts too high frequency oscillations and also a non-zero deformation
when the Weber number equals zero. Kulkarni & Sojka’s (2014) two-point model is,
however, much more successful in determining the critical Weber number (albeit by tuning
its parameters), and, more importantly, the kinetics of the drop deformation. In this section,
the present model will be compared with some available experimental and numerical
results. However, to be successful, it will be necessary to separate the experimental results
into two categories: the ‘shock tube’ experiments and the ‘drop-flow’ experiments (where
a droplet is actually dropped into a cross-flow). The main reason behind this classification
is that, as pointed out in Jain et al. (2015), DNS and drop-flow experiments do not compare
well.

7.1. Comparison with correlations
Figure 12 shows a comparison of the present analytical model with CP = 1 and the
correlations of Chou & Faeth (1998), (cf. (7.1)), of Cao et al. (2007), (cf. (7.2)) and
of Zhao et al. (2013), (cf. (7.3)). Up to a non-dimensional time of 1.0, agreement with
most correlations (except Cao’s) is acceptable. This leads to a deformation y = 1.5 large
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Cao et al. (2007)

Zhao et al. (2013)
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t∗

FIGURE 12. Comparison of present analytical model (CP = 1) with the correlation of Chou &
Faeth (1998), Cao et al. (2007) and Zhao et al. (2013).

enough to let other mechanisms, such as non-spheroidal deformation, flow separation,
Rayleigh–Taylor instability. . . , etc. (remember that y = 1.5 is the breakup condition for
TAB model), dominate over the present model to govern the subsequent behaviour of the
droplet. Note that the droplet deformation is independent of the Weber number in all these
empirical correlations while there is clearly an asymptotic behaviour for the analytical
model when the Weber number goes to infinity:

D/D0 = 1.0 + 0.5t∗, 0 ≤ t∗ ≤ 2, (7.1)

D/D0 = 1.0 if t∗ ≤ 0.3 and 0.59 + 0.5t∗ if 0.3 ≤ t∗ ≤ 0.99, (7.2)

D/D0 = 1.0 + 0.55(t∗)5/3, 0 ≤ t∗ ≤ 1.5. (7.3)

Among all these correlation, agreement with the most recent formula ((7.3)) given by
Zhao et al. (2013) is the best. As correlations are only indirect images of a chosen set of
experimental or numerical results, direct comparison with these data is to be preferred and
is the topic of next subsections.

7.2. Comparison with shock tube experiments and DNS
Shock tube experiments and DNS are located in the same subsection as they behave in the
same way when compared to the present model.

7.2.1. Shock tube
Figure 13 shows a comparison between the present analytical and linearised model (with

CP = 1) and the shock tube experiments of Dai & Faeth (2001). Agreement is very good
but, unexpectedly, the linearised model around the spherical shape behaves slightly better
than the nonlinear model. A possible explanation would be that the whole flow field is
still somehow similar to the flow around a sphere. This may be possible if the system
to be considered is the compound system {droplet} ∪ {its closed wake}, which may then
take a spherical shape although the droplet does not. In the two-point analysis, for high
Weber number, the pressure difference between the stagnation point and the edge of this
new compound droplet does not change much while for the present full analytical model,
the curvature of streamline has an impact on the evolution as the pressure is computed at
every point on the surface of the droplet. From the analysis of these experiments its seems
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FIGURE 13. Comparison of droplet breakup kinetics with experimental shock tube results of
Dai & Faeth (2001).
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Yang et al. (2017), We = 20

Analytical Cp = 1, from right to left: We = 10, 20, 40, 80

Linearized Cp = 1, from right to left: We = 20, 40, 80

t∗

FIGURE 14. Comparison of droplet breakup kinetics with numerical results of Jain et al.
(2015) and Yang et al. (2017).

that the curvature of the flow field could be similar to the flow around a growing (and
compound) sphere. This also allows for interpreting the good performance of linearised
models on oscillation frequencies (cf. figure 6).

7.2.2. DNS
Figures 14 and 15 show a comparison between present analytical and linearised model

(with CP = 1) and DNS data of Jain et al. (2015), Strotos et al. (2016) and Yang et al.
(2017). The same conclusions as for the comparison with shock tube experiments seems
to be valid. Note that, for Strotos et al.’s (2016) work, the discrepancies seem to be more
related to the numerical scheme used and its implementation as the droplet behaviour
clearly departs from known results.

7.3. Drop tube experiments or droplets in crossing flow
As shock tube experiments are difficult to conduct, most recent experimental results resort
to a simpler set-up where a droplet is dropped into a cross-flow.

Guildenbecher, López-Rivera & Sojka (2009) gives some necessary conditions for a
proper comparison between shock tube and drop-flow experiments and they are usually
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FIGURE 15. Comparison of droplet breakup kinetics with numerical results of Strotos et al.
(2016).
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FIGURE 16. Comparison of droplet breakup kinetics with experimental drop-flow (droplet in a
cross-flow) results of Krzeczkowski (1980).

thought to be sufficient for the two set-ups to be judged equivalent. However, it has
been chosen here to compare them in a different section as the analytical model with
CP = 1/2 (rather than CP = 1) seems to be better at describing the behaviour of drop-flow
experiments. Figures 16–19 show a comparison between the present analytical and
linearised models (with CP = 1/2) and a selected (but large) set of experimental data.

The oldest data that are compared with are results from Krzeczkowski (1980) (cf.
figure 16). As it is rather difficult to know exactly when the droplet does exactly penetrate
into the cross-flow, the zero time has been shifted in order to obtain the best fit. As our
model also allows for a non-initially spherical droplet (and most importantly, for a prolate
initial droplet), the initial shape has been slightly altered for We = 18.4 allowing for a
perfect match. Comparison with the linear model of Kulkarni & Sojka (2014) is also shown
and its performance is comparable.

Next comparison (cf. figure 17) is with the limited range of Weber number that allowed
Kulkarni & Sojka (2014) to fit the coefficient of their model. Performances of the model of
Kulkarni & Sojka (2014) are obviously better than present models in these special cases.

However, when comparing with the data of Opfer et al. (2014) (cf. figure 18), as the
Weber number considered (11.3) is just below their critical Weber number (set purposely
to 12.0), the model of Kulkarni & Sojka (2014) predicts an oscillating droplet (around a
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FIGURE 17. Comparison of droplet breakup kinetic with experimental drop-flow (droplet in a
cross-flow) results of Kulkarni & Sojka (2014).
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FIGURE 18. Comparison of droplet breakup kinetic with experimental drop-flow (droplet in a
cross-flow) results of Opfer et al. (2014).

‘y = 0 equilibrium’ shape) and therefore strongly underperforms. This should also be the
case of present linearised model with CP = 1/2 (since Wecr = 13.08) except that it predicts
a very large equilibrium deformation given by (5.8) and therefore oscillates around this
large value, reversing the concavity of the curve. Agreement is therefore better. As a side
note, this may constitute an explanation for the widespread use of the TAB model, which
always predicts a stable deformation (yeq = 1 + We/48 cf. appendix A.1) and oscillates
around this value. But in the present case, this would lead, for the TAB model, to a steady
value of 1.24 and therefore to very small oscillations around this value. Likewise, it can
be noticed that agreement would be impossible to get for any models without imposing an
initial deformation of y(0) = 1.2.

Lastly, when comparing with the experimental results of Jain et al. (2015) (cf. figure 19),
agreement is almost perfect when CP = 1/2. It is precisely the disagreement between
their experimental results and their DNS results that suggested considering differently the
shock tube (CP = 1) and drop-flow (CP = 1/2) experiments. The main explanation for this
discrepancy may be that, in the drop-flow case, the droplet slowly enters a velocity gradient
which creates a strong wake vortex (which moreover should actually be asymmetrical cf.
Flock et al. 2012) than in the shock tube case (or DNS) where the full potential flow
approximation seems to be appropriate for a longer time.
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FIGURE 19. Comparison of droplet breakup kinetic with experimental drop-flow (droplet in a
cross-flow) results of Jain et al. (2015).

8. Conclusion

The present work has been dedicated to the derivation of analytical models for the
axisymmetric deformation, oscillation and breakup of a droplet initially at rest and
suddenly set into an outer flow. This is a prototypical experiment of what is known
as ‘secondary atomisation’ (thought droplets are seldom exposed in that way to a
sudden flow: supersonic rain erosion (Ranger & Nicholls 1969), nuclear vapour explosion
(Berthoud 2000; Theofanous 2011) and some special flow configuration like rocket
boosters (Doisneau et al. 2014) may be the only direct applications).

The main hypothesis is that the droplet remains spheroidal during its deformation, that
the surrounding flow is potential and that viscosity inside the droplet only prevents its
elongation. Moreover, it is also assumed that the droplet velocity does not change (or
changes slowly compared to its oscillation frequency) and that it is possible to neglect the
unsteady term in the pressure.

This allows us to write a nonlinear oscillator equation for the droplet evolution in
a closed form. The energy approach that has been chosen differs from the two-point
approach of Kulkarni & Sojka (2014) since it is more rigorously obtained (therefore some
caveats are avoided) and does not need fitting parameters. In spirit, this improvement over
the model of Kulkarni & Sojka (2014) is similar to the improvement of the two-point
model of Moore (1965), for the equilibrium shape a bubble rising in a liquid, by El Sawi
(1974) (using virial theorem) and Benjamin (1987) (using a Hamiltonian formulation).

Moreover, by considering the two limiting cases of either computing the pressure work
on the whole droplet or only on the forward half, this takes into account the flow separation
behind the drop and the wake effect in a simple manner allowing us to either compute more
precisely the equilibrium shape of the droplet, its oscillation frequencies or its unstable
behaviour.

Interestingly, the present study also gives a physical interpretation for the critical Weber
number as it is shown to be proportional to the ratio of some surface energy term to
pressure work term (cf. (5.9)). Therefore uncertainties and variations of the critical Weber
number in experiments can be related to variations or uncertainties on the pressure field
or to the droplet shape (i.e. non-spheroidal droplets).

It also allows for the computation of the droplet deformation rate when the droplet
breaches the critical Weber number and bifurcates toward an infinite deformation. To
conclude, this new model generalises the TAB (deformation and oscillation), the DDB
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(steady deformation and kinetic of the breakup) and Kulkarni & Sojka’s models in one
framework without resorting to fitting parameters.

Lastly, it will be difficult to really conclude this paper without mentioning the good
overall performance of the linearised model around the spherical shape (with pressure
computation on the forward half of the droplet) and almost equivalently (if we neglect the
mathematical inconsistencies of the model) of the two-point model of Kulkarni & Sojka
(2014). The main interpretation that can be given is that streamlines around a sphere are
good candidates to describe the pressure work around the deformed droplet, or to be more
exact, around the droplet and the entrained mass of surrounding fluid that is captured in
its wake vortex. This can also be correlated to the critical Weber number of the linearised
system with CP = 1/2 whose value of 13.08 is very close to the usual value of 12 (although
this value may vary from one study to another). Note that in the droplet case, due to the
density difference, the inertia of this wake can be neglected. This could be corrected in the
model but it will be difficult to do it analytically as, considering rising bubbles for instance,
most wake models (Parlange 1969; Kendoush 2003; Simcik, Puncochar & Ruzicka 2014)
are still qualitative and semi-empirical. This is therefore left for future work.
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Appendix A. Classical linear oscillators for intermediate Weber number
droplet deformation

A.1. Taylor analogy breakup
The original TAB model reads

d2 ỹ

dt2
+ 5

μL

ρLR2

dỹ

dt
+ 8σ
ρLR3

ỹ = 2
3
ρC

ρL

U2
∞

R2
, (A 1)

where ỹ = 2(y − 1) so that, using the same non-dimensional number as defined in the
present paper, one gets

d2 y

dt∗2
+ 20

R
dy

dt∗
+ 64

We
( y − 1) = 4

3
, (A 2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

67
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.675


Droplet deformation, oscillation and breakup 904 A15-29

so that the equilibrium equation is

yeq = 1 + We
48
. (A 3)

A.2. Droplet deformation and breakup
The original DDB model was written

ρR
d2 ỹ

dt̃2
+ 4

μR

R̃e
1
ỹ2

dỹ

dt̃
+ 27π2

16W̃e
ỹ(1 − 2(cỹ)−6

) = 3
8
, (A 4)

where ỹ = (4/3π)y = y/c, R̃e = ReC/2 and W̃e = We/2. Again introducing the present
non-dimensional parameter leads to

d2 y

dt∗2
+ 9π2

Re
1
y2

dy

dt∗
+ 27π2

2We
y(1 − 2y−6) = 9π

8
. (A 5)

Please note that, steady deformation does exist when We = 0 and equals 21/6 ≈ 1.12! It
then slowly and continuously grows till it reaches its asymptote y = We/12π above eighty.
Moreover, the frequency of the implied oscillations is so high that it could not be printed
in figure 6.

A.3. Model of Villermaux and Bossa
The model obtained by Villermaux & Bossa (2009) is written using the same
non-dimensional parameters as in the present work and reads

d2 y

dt∗2
+
(

6
We

− 1
)

y = 0. (A 6)

Appendix B. Condition for density ratio close to one

The reason why liquid–liquid experiments give good results for the droplet oscillation
frequency while not verifying (2.16) lies in the hypothesis underlying the derivation of
(2.16). From the start, the Bernoulli relation at the interface should read

ρC
∂ψC

∂t
+ 1

2
ρCU2

C + PC = ρL
∂ψL

∂t
+ 1

2
ρLU2

L + PL + [[P]], (B 1)

where [[P]] is the pressure jump at the interface. It is, however, possible to see that
there exists a special case where the two terms ρC(∂ψC/∂t) and ρL(∂ψL/∂t) cancel
each other out. Actually, using the Ranger and Nicholls characteristic time, they can be
approximated by

ρC
∂ψC

∂t
≈ ρC

√
ρC

ρL
U2

C (B 2)

and

ρL
∂ψL

∂t
≈ ρL

√
ρC

ρL
UCUL. (B 3)

Using (2.13), both terms can be shown to be of the same magnitude when ρC ≈ ρL.
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Appendix C. Indirect influence of dissipation in the surrounding flow

The goal of this section is to show that, although taking into account the dissipation
in the surrounding flow field is possible in the present framework, it does not influence
directly the frequency and the amplitude of the oscillations. It does, however, influence
them indirectly as the main contribution of the viscous dissipation in the surrounding
fluid is to slow down the droplet therefore changing its velocity and, finally, its oscillation
frequency and amplitude. However, to show this more quantitatively, we need to switch to
two degrees of freedom: the deformation parameter y previously defined and the position
z of the droplet centre of mass. For the sake of simplicity when introducing dissipative
terms, the Lagrangian formalism will be used to derive the corresponding equations of
motion. Let us now demonstrate this assertion.

Proof. First, the kinetic energy can be decomposed into two terms:

TL(y, ẏ) = 2
3
πρLR5

0KC(y)

(
ẏ

y

)2

, (C 1)

the kinetic energy of deformation, and

TT(ż) = 4
3πρLR3

0(U∞ − ż)2, (C 2)

the kinetic energy of translation. Total kinetic energy therefore reads

T = TD(ż)+ TL(y, ẏ). (C 3)

Viscous dissipation of the potential flow inside the droplet is given by (3.10). Using
Moore’s previous work, viscous dissipation of the potential flow outside the droplet can
be written

DC(y, ż) = 12πμC(U∞ − ż)2KD(y)R0, (C 4)

where
KD(y) = G(χ(y)), (C 5)

where G is the function computed by Moore (1965) and χ the ratio between the greater
and the lesser semi-axes. The total dissipation is therefore given by

D = DL(y, ẏ)+ DC(y, ż). (C 6)

The potential energy is the sum of the surface energy and the pressure work when it does
exist. Note that the pressure power should be written now

ẆP(y, ẏ, ż) = πρCR3
0Kp(y)(U∞ − ż)2

ẏ

y
≈ πρCR3

0Kp(y)U2
∞

ẏ

y
. (C 7)

And it can be integrated when the velocity difference vary slowly. This therefore leads to
a potential written

WP(y) =
∫ t

t0

ẆP(y, ẏ) dt = πρCR3
0U2

∞

∫ y

y0

Kp(y
′)

dy′

y′ , (C 8)

and total potential energy is given by

V = ES(y)+ WP(y). (C 9)
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The Lagrangian of the system is classically written as

L = T − V. (C 10)

and the equations of motion are given by

d
dt
∂L
∂ ẏ

= ∂L
∂y

+ ∂D
∂ ẏ
, (C 11)

for deformation and
d
dt
∂L
∂ ż

= ∂L
∂z

+ ∂D
∂ ż
, (C 12)

for translation. Let us note that
∂DC

∂ ẏ
= 0, (C 13)

and therefore, with these approximations, there is no contribution from the viscosity of the
surrounding fluid in (C 11). This can be understood intuitively as boundary layers do not
influence the exterior pressure field which creates the deformation. �

Appendix D. Pressure work approximation

There is a small discrepancy in the present model: there should be a stagnation point in
front of the droplet, cf. (3.20), and in the meantime, the inner flow is described by (3.2).
There is therefore a velocity jump at the interface. Note also that (3.2) corresponds to a
flow with axisymmetric streamfunction

ψ = ẏ

y
r2z. (D 1)

Therefore, a possible way to model the flow without velocity jump in the neighbourhood
of the droplet would be to sum the two potential flows U and V so that (3.22) should
exactly read

ẆP = 2ρC

∫ a

0

1
2(U + V )2(V ·n)2πr dl(r). (D 2)

However, it can be seen that the velocity inside the drop is smaller than the velocity in the
outside flow, at least for a not very large deformation and as far integral (D 2) is concerned.
Using the results of § 2, one can see that (2.13) actually implies that

V ≤
√
ρC

ρL
λU∞. (D 3)

Moreover, when developing

(U + V )2 = U2 + 2V · U + V 2 ≈ U2, (D 4)

the scalar product V · U appears and it can be seen that it should be small on the interface
as the directions of U and V differ. However, the value of parameter λ is greater than 1.5
and can greatly increase when the drop deforms, so the present approximation should do
well in the gas–liquid case but less in the liquid–liquid case once large deformations are
obtained. It could be possible to keep all the terms in the final oscillation equation but
term V 2V · n will lead to a third-order ordinary differential equation.
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Appendix E. Oblate analytical solution

To find the analytical expression, it is necessary to get inspiration from the way
Benjamin (1987) simplified El Sawi’s (1974) work on the equilibrium shape of bubbles.
First there is some similarity between (3.22) and the way added mass around an ellipsoid
is usually computed (Lamb 1932). A simple way to figure this is to change the system that
will be used for energy balance and to consider now {droplet, carrier fluid} as our new
system. There is therefore no more pressure work and one gets

dTL

dt
+ dTC

dt
+ dES

dt
= −D, (E 1)

where TC is the kinetic energy of the carrier fluid. It is therefore easy to see that

ẆP = −dTC

dt
. (E 2)

Moreover, kinetic energy of the carrier fluid can be written

TC = 1
2
ρC

4π

3
R3

0U2
∞μ, (E 3)

where μ is the added mass coefficient (and is equal to 1/2 for a sphere). Let us recall that
ẆP > 0 and that μ increases as the sphere deforms, so a strict application of (E 2) would
lead to negative pressure work. Benjamin (1987) showed, to describe the steady shape
of a bubble, that, using a Hamiltonian equivalent to (E 1), the derivation must be made
assuming that the impulse remains constant. As the carrier fluid impulse reads

PC = ρC
4π

3
R3

0U∞μ, (E 4)

the kinetic energy can now be written

TC = P2
C

2ρC
4π

3 R3
0μ
, (E 5)

and the pressure power is now defined by

ẆP = −
(

dTC

dt

)
PC

= 1
2
ρC

4π

3
R3

0U2
∞

dμ
dt

= 1
2
ρC

4π

3
R3

0U2
∞y

dμ
dy

1
y

dy

dt
; (E 6)

so that

KP(y) = 2
3

y
dμ
dy
. (E 7)

An analytical expression for the added mass of an oblate spheroid can be obtained (cf.
Lamb (1932) but the exact formula is actually given in Benjamin (1987)) and reads

μ(y) = tan η(y)− η(y)

η(y)− sin η(y) cos η(y)
, (E 8)

where
η(y) = Arcsec(a/b) = Arcsec(y3). (E 9)
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Appendix F. Prolate analytical solution

For the prolate case (y < 1), ellipsoidal coordinates are a bit different and
streamfunction ψ now reads

ψ =
1
2 U∞b2(a2 − b2)

a
√

a2 − b2 + b2Log

(
a − √

a2 − b2

b

) (Cosh(ξ)+ Sinh2(ξ)Log
(

Tanh
(

1
2
ξ

)))
Sin2(η)

− 1
2

U∞r(ξ, η)2; (F 1)

and the conformal coordinate change is

z + ir =
√

a2 − b2Cosh(ξ + iη). (F 2)

Polynomial interpolation of KP in the 0.5 < y < 1 range is

KP
P(y) ≈ 0.0551404 − 0.128603y − 0.768269y2 + 2.61128y3 − 0.570044y4; (F 3)

while the exact formula can be obtained using the added mass coefficient of a prolate
spheroid (cf. Lamb 1932, p. 153)

μ(y) = α0

2 − α0
, (F 4)

where

α0 = 2(1 − e2)

e3

(
1
2

Log
1 + e
1 − e

− e
)
. (F 5)

This leads to (3.27), (3.28).

Appendix G. Weber number influence

G.1. Coefficients

As mentioned, coefficients K̃C, σ,π are functions of steady state deformation yeq which
is itself a function of Weber number, up the maximum Weber number where a steady
state still exists (cf. (4.4)). This can be summarised by the following polynomial
approximations:

yeq(We) = 1.00275 + 0.00482We + 0.08892We2−0.05011We3 + 0.01066We4, (G 1)

Kc(We) = 2.41514 − 0.30638We + 0.13908We2 − 0.08083We3 + 0.01690We4, (G 2)

π1(We) = 3.94524 − 0.11689We + 0.97820We2 − 0.56125We3 + 0.11820We4, (G 3)

σ1(We) = 3.2018 + 0.02646We + 0.08247We2 − 0.04583We3 + 0.00952We4, (G 4)

and when computing the pressure work on the forward half of the droplet (CP = 1/2)

yeq(We) = 1.01012 − 0.01947We + 0.11506We2 − 0.06180We3 + 0.01243We4, (G 5)

π1(We) = 4.0216 − 0.37939We + 1.26543We2 − 0.68875We3 + 0.13722We4, (G 6)

σ1(We) = 3.2106 − 0.00518We + 0.03264We2 − 0.00877We3 + 0.00085We4, (G 7)

Kc(We) = 2.41829 − 0.17690We + 0.05446We2 − 0.01512We3 + 0.00147We4. (G 8)
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Analytical Cp = 1/2

FIGURE 20. Graphical determination of critical Weber number (obtained using (5.9) and
(G 3), (G 4) or (G 6), (G 7)) for both analytical and semi-analytical models.

G.2. Nonlinear oscillation domain and frequencies
Determining the oscillation domain can be done graphically thanks to figure 20; for a
given value of Weber number the critical value of the Weber number is computed from
the coefficients given by (G 2)–(G 4) thanks to (5.9). If the critical value is greater than
the current value, the Weber number is still in the oscillatory domain. Conversely, if the
current critical Weber number is less than the current Weber number, the current Weber
number is outside the oscillation domain. It can be seen in figure 20 that this happens
when the We(We) curve meets the first bisectrix, i.e. when We ≈ 3.27, in agreement with
the steady state computation. The whole stability domain can be recovered using (5.13)
and substituting (G 2)–(G 4) in (5.12) and (5.9), as Ohcr and Wecr are now functions of the
Weber number. The result is shown in figure 5 as the ‘Analytical’ black curve. One can
also note an increase in the critical Ohnesorge number limit over the linearised case. As for
the oscillation frequencies, they are still given by (5.15) but substituting now (G 2)–(G 4).
The result is shown in figure 6 again as the ‘Analytical’ black curve. Again, up to a Weber
number of approximately two, both the linear and the nonlinear models give close results.
The same is true, up to a Weber number of five, for the computations on the half-drop
(CP = 1/2).

Appendix H. Direct numerical simulation with Gerris

Gerris is an open-source code developed by Popinet (2003) and Fuster et al. (2009) and
supported by NIWA (National Institute of Water and Atmospheric research) and Institut
Jean le Rond d’Alembert (France). Gerris provides a range of finite-volume discretisation
techniques, combining quad/octree discretisation, a projection method and a multilevel
Poisson solver. The use of quad/octree structured grids, which enable the use of an
advanced adaptive mesh refinement technique, allows us to better resolve the different
fluid scales at those places where required, with a significant reduction in computational
effort in comparison with uniform meshing. The dimensionless system of equations solved
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by Gerris is listed below:

∇̄ · ũ = 0, (H 1)

∂ũ
∂ t̃

= 1
ρ̃

[
−∇̄p̃ + μ̃

ReC
∇̄ · (∇̄ũ + ∇̄ũT

)+ σ̃

We
k̃(δSñ)

]
, (H 2)

∂T
∂ t̃

+ ∇̄ · Tũ = 0, (H 3)

ρ̃ = ρR · T + (1 − T), (H 4)

μ̃ = μR · T + (1 − T), (H 5)

where T is a ‘colour’ field ranging from 0 to 1 and indicating the presence of the liquid
metal (T = 1) or of the carrier phase (T = 0), t̃ = U0t/D0 (so we need to correct t̃ to
get t∗), ρR = ρL/ρC, μR = μL/μC, k̃ is the Gaussian curvature of surface S, ñ the outer
normal to the liquid metal phase and δS a Dirac delta function located on the interface S.
The space domain is discretised using a quadtree (octree in three dimensions) partitioning.
The root cell (Level 0) is the base of the cell tree, by increasing the level the adaptation
continues up to the leaf cells, namely the maximum level. Three different refinement
criteria have been tested, based on the studies performed by Chen & Yang (2014). Several
combinations between different types of refinement criteria are explored and finally, the
best cost-efficiency refinement criterion has been chosen. The refinement criteria tested
are as follows.

(i) Gradient-based: in this case, we use a refinement using the local gradient of a given
variable. We perform a refinement based on the gradient of the variable T that
represents the volume fraction of liquid metal (droplet) which is not zero only at
the interface S when the function T changes from 0 (in the surrounding fluid) to 1
(in the droplet). A refinement based on the gradient of vorticity is also used in order
to solve the vortex structures inside and outside the droplet.

(ii) Curvature-based: when the interface is highly deformed and has sharp edges, this
means that its curvature is important. These sections are then highly refined because
it is where breakup happens.

(iii) Thickness-based: when the fluid tightens and the two interfaces get closer, in order
to avoid numerical breakup, the fluid between the interfaces need to be solved by
more than three or four grid points. This refinement allows us to solve accurately
pinch-off and stripping of fluid ligaments.

Further information about these refinement criteria and their validation can be
found in Popinet (2009), Chen & Yang (2014) and Castrillon-Escobar (2016). In the
two-dimensional simulation, the three kinds of refinement criteria are used (gradient,
curvature and thickness) but in the three-dimensional simulations, only gradient-based
and curvature-based types of refinement criteria are used. After comparison with classical
test cases, eight levels of refinement are used for the gradient-based algorithm while twelve
are used for both the curvature and the thickness based algorithms.
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