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A sequence of two- and three-dimensional simulations are conducted for the
double-diffusive convection (DDC) flows in the diffusive regime subjected to an imposed
shear. For a wide range of control parameters, and for sufficiently strong perturbation
of the conductive initial state, staircase-like structures spontaneously develop, with
relatively well-mixed layers separated by sharp interfaces of enhanced scalar gradient.
Such staircases appear to be robust even in the presence of strong shear over very
long times, with early-time coarsening of the observed layers. For the same set of
control parameters, different asymptotic layered states, with markedly different vertical
scalar fluxes, can arise for different initial perturbation structures. The imposed shear
significantly spatio-temporally modifies the vertical transport of the various scalars. The
flux ratio γ ∗ (i.e. the ratio between the density fluxes due to the total salt flux and the total
heat flux) is found, at steady state, to be essentially equal to the square root of the ratio of
the salt diffusivity to the thermal diffusivity, consistent with the physical model proposed
by Linden & Shirtcliffe (J. Fluid Mech., vol. 87, 1978, pp. 417–432) and the variational
arguments presented by Stern (J. Fluid Mech., vol. 114, 1982, pp. 105–121) for unsheared
double-diffusive convection.
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1. Introduction

Multicomponent fluids, where the density changes due to variations in the concentrations
of two scalars with differing diffusivities, are prone in many circumstances to rich
dynamical behaviour, commonly referred to as ‘double-diffusive convection’ (DDC).
DDC, as originally described by Stern (1960), occurs in a wide range of geophysical,
industrial and astrophysical contexts, as reviewed, for example, by Turner (1985), Schmitt
(1994), Turner (2013) and Garaud (2018). A particular application of profound interest
arises in certain parts of the world’s oceans, where both heat and salt concentration
(i.e. salinity) lead to variations in fluid density. As the diffusivity of heat is O(100)

times the diffusivity of salt, seawater can be prone to DDC, which is usually divided
into two broad classes: ‘fingering’ DDC occurs when relatively salty and warm fluid
overlies relatively fresh and cold fluid, while conversely ‘diffusive’ DDC occurs when
relatively fresh and cold fluid overlies relatively salty and warm fluid. Interestingly, both
classes can lead to the formation of double-diffusive ‘staircases’, where relatively deep and
homogeneous ‘layers’ are separated by relatively thin ‘interfaces’, exhibiting strong scalar
gradients.

Both classes of DDC, and the associated ‘staircases’, play a key role in vertical
mixing-induced transport in the ocean. Such vertical transport is both a key driver of
the global climate system (Ferrari & Wunsch 2009) and also an outstanding area of
uncertainty in the modelling of our changing climate. Clearly, staircase structures in scalar
fields will significantly affect vertical convective and diffusive scalar transport compared
to flows with uniform gradient. Therefore, understanding how such staircases are ‘born’
and ‘survive’ in the presence of larger-scale flows is of great practical interest. Broadly
speaking, each class of DDC can be associated with different regions of the world,
where differing physical processes lead to the required opposing gradients of heat and
salinity. Specifically, fingering DDC typically arises in the tropics, where thermally driven
evaporation leads to the required relatively salty and warm fluid overlying fresher and
cooler water. Schmitt et al. (2005) demonstrated through observational measurement that
fingering-induced staircases are associated with vigorous turbulent mixing and hence are
crucially significant for vertical scalar transport in the Caribbean, with apparently a larger
net contribution than the contribution due to internal wave breaking.

Conversely, diffusive DDC is common at high latitudes, where the inevitable interaction
with ice and meltwater leads to the required conditions for diffusive DDC, which has a
major influence on both the climate of polar regions and larger-scale oceanic circulations,
as discussed by Turner (2010), Shaw & Stanton (2014), Bebieva & Timmermans (2017,
2019) and Bebieva & Speer (2019). The climate, particularly in the Arctic, is rapidly
changing (as reviewed by Timmermans & Marshall 2020) while diffusive staircases are
known, at least at present, to play a dominant role in vertical mixing, and thus act as a
critical chokepoint for heat transport upwards of relatively warm Atlantic waters.

Therefore, understanding the dynamical properties of how such diffusive DDC
staircases can form, and (at least equally importantly) remain robust is a topic of not
only fluid dynamical interest but also great climatological importance, and so we focus
on such staircases here. Diffusive staircases have been observed to develop spontaneously,
even in numerical simulations restricted to two dimensions both with and without shear
(Noguchi & Niino 2010; Zaussinger & Kupka 2018), but their actual formation mechanism
has up to now remained somewhat mysterious, as discussed by Kelley et al. (2003)
and Turner (2013). More recently, highly plausible candidate mechanisms for both the
formation and apparent survival of such staircases have been proposed, exploiting a
flow characteristic that could reasonably be assumed to be generically present, namely
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Sheared double-diffusive convection in the diffusive regime

shear (Radko 2016, 2019). Indeed, Radko (2016, 2019) beautifully demonstrated that an
appropriate combination of vertical shear and multicomponent diffusion, individually
linearly stable, is prone to a linear ‘thermohaline-shear’ instability, which leads, at finite
amplitude, to a staircase-like structure of relatively well-mixed and deep layers separated
by relatively thin interfaces with strong scalar gradients.

Furthermore, Brown & Radko (2019) have shown that such an instability leading to
layering can continue to arise when the shear is time-dependent, as might be expected
in the presence of sufficiently weak internal waves. This study was followed up by direct
numerical simulation of a single interface with an imposed linear shear by Brown & Radko
(2021) within a vertically periodic domain, demonstrating rich and complex dynamics in
the vicinity of the energised interface. Such interface was observed to ‘survive’ in the
range of parameters that they considered. Using a reduced modelling approach, Shibley
& Timmermans (2019) demonstrated that diffusive staircases also appeared to survive
in the presence of sufficiently weak ambient turbulence, plausibly again associated with
some combination of shear-driven instabilities and breaking internal waves. An alternative
formation mechanism relying on horizontal interleaving in the presence of non-trivial
eddy diffusivities and viscosities has been proposed by Bebieva & Timmermans (2017),
once again pointing to the important physical roles played by shear and turbulence in the
staircase dynamics.

However, it is still unclear how such layers evolve in the presence of both sufficiently
vigorous turbulence and significant shear, as might be expected to occur frequently in the
world’s oceans. The absence of widespread consideration of flows with significant shear is
particularly concerning, as there is generically at least some velocity shear below sea ice,
where the presence of double-diffusive staircases has been observed to suppress vertical
heat fluxes significantly, compared to an assumed purely (and in some sense homogeneous)
turbulent transport (see, for example, Bebieva & Speer 2019).

Of course, modelling can be challenging when the flow is inherently, and profoundly,
nonlinear. Even if the class of flow considered is highly idealised, especially compared to
actual oceanographic situations, there are still major technical obstacles that need to be
overcome for the analysis of the flow dynamics. Analytical progress is likely to be very
challenging when the flow is highly spatio-temporally variable, to put it mildly. Numerical
simulation of sheared diffusive DDC prone to layering is also exceptionally difficult for
two, interrelated, reasons. First, simulation of turbulent flows with a ‘staircase’ structure in
a scalar field must accurately represent both ‘overturning’ of relatively ‘weak’ interfaces
and ‘scouring’ of relatively ‘strong’ interfaces by impinging turbulent eddies, using the
classification originally proposed by Woods et al. (2010), building upon the classical
insights of Kato & Phillips (1969). Indeed, Brown & Radko (2021) clearly observed
‘scouring’ dynamics in the vicinity of the sheared interface, which they interpreted as
evidence of the so-called ‘Holmboe wave instability’ (HWI) (Holmboe 1962). Such a
HWI generically occurs in inflectional shear flows across ‘sharp’ density interfaces, and, at
sufficiently high flow Reynolds number, can lead to significant turbulent transport across
such interfaces, which still survive for significant periods of time without being fully
eroded (Salehipour, Caulfield & Peltier 2016).

Crucially, as demonstrated by Taylor & Zhou (2017), a particular structure of the
effective diffusivity near the interface must be maintained so that it is not eroded, and
so it is critical that numerical simulation captures the interfacial dynamics accurately,
specifically not introducing significant spurious diffusivity which might erroneously
‘smooth out’ interfacial structure. Essentially, this may be thought of as a requirement
to capture the inherent ‘multiscale’ nature of such flows, where sharp interfaces need to be
captured accurately, while relatively deep and horizontally extended layers must also be
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simulated. Evidence is building that such layer–interface staircase structures arise in many
density-stratified situations (see, for example, Caulfield (2021) for a review), and various
insights have been gained into the necessity for sufficiently large dynamic range to exist
between vertical scales significantly affected by stratification and viscosity (Portwood, de
Bruyn Kops & Caulfield 2019), even when there is a single diffusive scalar with scalar
diffusivity of the same order as kinematic viscosity.

However, the second reason that DDC is so challenging to simulate (as discussed for
example by Brown & Radko (2021)) is that there is inevitably a further hierarchy of scales
that must be captured, due to the inherent requirement of differing diffusivities for the two
scalar fields, i.e. heat and salinity in the oceans. Capturing the dynamics of the scalar field
with smaller diffusivity (e.g. ‘salt’) requires an even wider range of scales to be captured
in a layered and sheared flow, which is exceptionally expensive computationally. Here, we
address this challenge by using a bespoke code (Ostilla-Mónico et al. 2015; Yang, Verzicco
& Lohse 2016) with ‘nested’ grids, so that the velocity and ‘temperature’ fields are solved
on a base mesh within which a much refined mesh is nested for the low-diffusivity salinity
field. Using this code, we are now in the position to consider the long-time dynamics
of diffusive DDC flows with three key characteristics: turbulent convection, or at least
vigorous disorder; susceptibility, at least in principle, to staircase structure in temperature,
salinity and overall density; and large-scale imposed, and hence ‘forcing’, shear.

As noted above, understanding vertical transport of scalars in oceanic situations prone
to diffusive DDC is vital to larger-scale climate modelling, and the presence (or absence)
of staircase structure is known to modulate this transport significantly. Therefore, the study
presented here has the following two interlocking aims.

First, we wish to understand the circumstances under which staircases can arise, and
crucially survive, in diffusive DDC, subject to an imposed shear in an idealised flow
geometry. As we shall see, rich dynamics of layer appearance, merger and coarsening
are possible. Moreover, we demonstrate the coexistence of multiple, at least metastable,
layered states for different initial conditions in flows with the same global control
parameters. We are focused on inherently nonlinear and turbulent flows. Therefore, we
are focused not on constructing a description in terms of linear instability or potentially
a hierarchy of instabilities, but rather in terms of the robustness of basins of attraction of
nonlinear system states.

Second, we wish to understand and quantify various key properties of the vertical scalar
fluxes, of heat, of salt and of mass, and the extent to which classical diffusive DDC
behaviour is modified (or not) by the presence of mean shear. Since we have access
to the entire numerical data, we are able to consider such properties in unprecedented
spatio-temporal detail. Naturally, we can consider not only typical averaged values of
appropriately defined Nusselt numbers (i.e. the enhancement of flux due to convection
over purely diffusive values), but crucially their variation in space and time as the staircase
structure also evolves. We also are able to investigate how ‘efficient’ the mixing is, in the
sense of the properties of the turbulent flux coefficient Γ , the ratio between the vertical
density flux and the kinetic energy dissipation rate. This quantity was originally defined by
Osborn (1980) in single-scalar stratified flows. Of course, since we are considering sheared
diffusive DDC, we expect the vertical density flux actually to be negative, as, generically,
diffusive DDC naturally tends on average to reduce the potential energy of the system,
through the vertical upward flux of heat outweighing the vertical downward flux of salt
(Turner 2013). Nevertheless, it is clearly of interest to investigate how this phenomenon
is affected by shear, the extent to which spatio-temporal variability is significant, and
also whether it is possible to parametrise the various scaled fluxes in terms of different
non-dimensional parameters of the flow.
933 A30-4
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Sheared double-diffusive convection in the diffusive regime

To achieve these two aims, the rest of the paper is organised as follows. In § 2, we
describe the flow geometry, the governing equations and the numerical details. In §§ 3
and 4 we then present our results about the physical properties of the observed layered
states and the associated vertical transport. In § 5 we discuss the interesting observation
that different layered states can be stable over long times within flows with the same global
control parameters and the impact of multiple states on the global fluxes. Finally, in § 6,
we draw some brief conclusions.

2. Governing equations and numerical methods

We consider a fluid layer bounded by two parallel plates, which are perpendicular to
gravity and separated by a height H. We employ a linear equation of state, namely the fluid
density depends linearly on both temperature and salinity as ρ(θ, s) = ρ0[1 − βθθ + βss].
Here ρ0 is a reference value for density, and βζ (with ζ = θ and s) are the positive
expansion coefficients of the two scalar components. As in the motivating oceanographic
application described in the introduction, these two scalar components can be thought
of as heat and salt. The associated temperature θ = T − T0 and salinity s = S − S0 are
also relative to their respective reference values. We use the conventional geophysical
coordinate system, so that gravity is directed in the (negative) z-direction, and x and y
are the two horizontal directions parallel to the plates. For the diffusive regime of DDC,
the lower plate is maintained at both higher temperature and higher salinity relative to
the upper plate, and so the conductive temperature gradient is destabilising, while the
conductive salinity gradient is stabilising. Fixed differences are sustained across the fluid
layer in temperature Δθ = θ(0) − θ(H) and in salinity Δs = s(0) − s(H), respectively.
Therefore, a fixed density difference is also maintained across the layer Δρ = ρ(0) −
ρ(H) = ρ0[βsΔs − βθΔθ ].

To introduce the external shearing, we decompose velocity into u∗ = u + US = u +
(Ub/H)(z − H/2)ey, where ey is the unit vector in the (streamwise) y-direction, Ub/H is
the constant overall shear rate of the background (constant and linear) velocity US, while
u is the perturbation velocity. The streamwise velocity at the top and bottom plates is fixed
at the values of the background velocity ±Ub/2, respectively. The governing equations
are, under the Oberbeck–Boussinesq approximation,

∂tui + uj∂jui + USj∂jui + uj∂jUSi = −∂ip + ν∂2
j ui + gδi3(βθθ − βss), (2.1a)

∂tθ + uj∂jθ + USj∂jθ = κθ∂
2
j θ, (2.1b)

∂ts + uj∂js + USj∂js = κs∂
2
j s, (2.1c)

in which ui (with i = x, y, z) are the three components of the perturbation velocity, p is
pressure, ν is kinematic viscosity, g is the gravitational acceleration and κζ (with ζ = θ

and s) are the molecular diffusivities of the two scalars. The background velocity therefore
exerts an inertial body force on the flow. The perturbation velocity field also satisfies the
continuity equation ∇ · u = 0.

Next to the strength of the shear force (expressed through the (inverse) Richardson
number below in (2.4)), the control parameters are the two Prandtl and the two Rayleigh
numbers,

Prζ = ν

κζ

, Raζ = gβζΔζ H3

κζ ν
. (2.2a,b)
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It must always be remembered that the background salinity jump induces a stabilising
buoyancy force. The relative strength of this stabilising buoyancy force induced by the
salinity difference to the driving force of temperature difference can be expressed by the
density ratio

Λ = βsΔs

βθΔθ

= PrθRas

PrsRaθ

. (2.3)

The relative magnitude of the external buoyancy to the external shearing is represented by
an appropriate (bulk) Richardson number, defined as

Rib = gΔρH

ρ0U2
b

= gβθΔθH

U2
b

(Λ − 1), (2.4)

demonstrating that overall static stability with Rib ≥ 0 requires Λ ≥ 1.
We numerically solve the governing equations (4.1a–c) for u, θ and s by using our

efficient code (Ostilla-Mónico et al. 2015; Yang et al. 2016). A special feature of the code is
that the momentum and temperature are solved on a base mesh, while a significantly more
refined mesh is used for the salinity field due to its significantly smaller diffusivity. The
physical quantities are non-dimensionalised by H, the free-fall velocity associated with
the statically unstable background temperature difference

√
gβθΔθH, and the two scalar

differences Δζ . Henceforth, all variables are non-dimensional, unless noted otherwise.
Periodic boundary conditions are applied in the horizontal directions. At the two plates,

both the temperature and salinity are kept constant at their boundary values, and the
perturbation velocity u obeys free-slip conditions in the horizontal, with no penetration
uz(0) = uz(1) = 0 in the vertical direction. In this study we set the two Prandtl numbers as
Prθ = 10 and Prs = 1000, which are largely consistent with those appropriate for seawater
(Radko 2016). This means that the diffusivity ratio τ is

τ = κs/κθ = 0.01. (2.5)

To limit the control parameter space, we fix the density ratio at Λ = 2, which is relevant
to the high-latitude oceans (Timmermans et al. 2008; Turner 2010; Shibley et al. 2017).
Meanwhile, we fix the bulk Richardson number at Rib = 1, which exceeds the threshold
value 1/4 for dynamical instability. To quantitatively describe the influences of shear
strength, it is highly desired to simulate a series of different Rib. Nevertheless, in the
present study we focus on the rich dynamics of the layering and its impact on the vertical
transport. Systematic study investigating Rib dependence is left for future work.

Details of the simulations are summarised in table 1. The mesh size is chosen to be
smaller than the Kolmogorov scale for the velocity field and the Batchelor scale for the
scalar field; thus all the relevant physical scales are adequately resolved. In total seven
cases were conducted with various Raθ . For the two smallest values of Raθ , simulations
were run in three dimensions. While for the higher values of Raθ , the simulations
were restricted to two dimensions since the three-dimensional (3D) simulations require
too much computing resource. Moreover, for Raθ = 106 we have run both three- and
two-dimensional (2D) simulations, and for different streamwise extent Ly, listed as cases
2–4 in table 1. The three cases exhibit similar flow evolution, including in terms of the
various fluxes, and so we believe that 2D simulations can capture the essential dynamics
of the system, at least within this flow geometry (cf. Brown & Radko 2021).

To investigate the relevance of the simulated parameters to the ocean environment, we
calculate the corresponding dimensional quantities for cases 5 and 6 listed in table 1.
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Sheared double-diffusive convection in the diffusive regime

3D cases Raθ Ras (Lx, Ly) Nx, Ny, Nz mx(my), mz k δ

1 105 2 × 107 (2, 4) 240, 360, 240 4, 3 4 0.1
2 106 2 × 108 (1, 2) 240, 360, 360 4, 3 6 0.05

2D cases Raθ Ras Ly Ny, Nz my, mz k δ

3 106 2 × 108 2 384, 384 4, 3 6 0.05
4 106 2 × 108 4 768, 384 4, 3 6 0.05
5 107 2 × 109 4 1440, 720 4, 3 8 0.025
6 108 2 × 1010 2 1536, 1152 4, 3 16 0.01
7 107 2 × 109 4 1440, 720 4, 3 8 0.025

Table 1. Parameters and numerical details of simulated cases. Columns from left to right: case number;
Rayleigh numbers of temperature and salinity; aspect ratios in horizontal directions; the grid size of the base
mesh; the refinement factors for the refined mesh; and the parameters k and δ for the initial perturbations used in
(2.7a,b) for cases 1–6. Case 7 (with the same bulk parameters as case 5) has initial condition given by (2.8a,b).
For all cases, the density ratio is fixed at Λ = 2 and the Richardson number at Rib = 1.

We choose βθ = 6.3 × 10−5 K−1, βs = 7.8 × 10−4 psu−1, κθ = 1.4 × 10−7 m2 s−1,
g = 9.8 m s−2 (where psu denotes the practical salinity unit) and a total temperature
difference of Δθ = 0.1K, respectively. Then for case 5 with Raθ = 107, the height of
the fluid layer is H ≈ 0.3m and the total simulation time is about five days. For case 6
with Raθ = 108, the total height is about H ≈ 0.7m, and the simulation time is about two
weeks.

Before proceeding to discuss the results, we first comment on the choice of the boundary
condition and the initial conditions that appear to be required to trigger layering in
our system. Unlike fully periodic domains, for the current vertically bounded model it
is straightforward to impose a background shear with uniform strength. Owing to the
no-penetration condition, the scalar transport within a thin layer adjacent to the two
boundaries is dominated by the conductive part, and the global fluxes are inevitably
affected by the boundaries. However, since it is the total scalar difference that is fixed
across the whole domain, the final global fluxes are the combined results of both the bulk
dynamics and the conductive regions close to the boundary. In the following, we will focus
on the bulk region and investigate the behaviours of horizontally averaged local quantities
relatively far from the boundaries. The global fluxes will mainly be used as quantitative
indicators of the evolution and transition of the global flow morphology.

For a fully periodic domain, the so-called gamma-instability can explain the emergence
of a staircase and layering for fingering DDC (Stellmach et al. 2011; Traxler et al. 2011).
While for the diffusive regime, Radko (2016) elegantly proved that linear instability occurs
when the fluid layer experiences linear background scalar gradients and a vertical shearing
with a sinusoidal velocity profile, even in a situation when the flow is stable to both
shear-driven and convection driven instabilities. In our configuration, initially both scalars
have vertically linear distributions, and the shearing strength is uniform within the fluid
layer. Owing to the presence of the top and bottom boundaries, the linear instability
mechanisms associated with the fully periodic domain are unlikely to be applicable to
the current model. Indeed, linear instability analysis is conducted for Λ = 2 and Rib = 1
by using the standard normal-mode method. The results indicate that the current system
is linearly stable, i.e. is stable to infinitesimal perturbations. However, as described in
the following sections, numerical simulations reveal that, if the initial perturbation is
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sufficiently large in amplitude, nonlinear processes lead to escape from the basin of
attraction of the linear ‘conductive’ base flow state, with non-trivial motion and indeed
layering being triggered in the flow.

Specifically, the initial scalar distributions are given as

θini = (1 − z) − θpert, sini = (1 − z) − spert. (2.6a,b)

For cases 1–6, the perturbation parts are

θpert = δ sin(2πkz), spert = δ sin(2πkz), for 0 ≤ z ≤ 1. (2.7a,b)

The values of δ and k for each case are given in table 1. Numerical tests suggest that,
to start non-trivial flow and in particular layering, δ has to be sufficiently large so that a
locally statically unstable stratification arises.

As noted in the introduction, it is not appropriate to view the response of the system
to such a strong perturbation as the growth of a linear instability, but rather as an
identification of basin(s) of attraction of robust nonlinear states of the entire system. Taking
this viewpoint further, we test whether there is a unique non-trivial attractor for each set of
global flow control parameters. For case 7 we choose exactly the same bulk parameters as
case 5 but with a different initial condition. In this new case, only a local density inversion
is prescribed in the middle of the domain, namely, similar to (2.7a,b), but now with only
one wave pattern centred around z = 1/2, i.e.

θpert = δ sin(2πkz), spert = δ sin(2πkz), for |z − 1/2| ≤ 1/(2k), (2.8a,b)

where δ and k are given in table 1, and, importantly, are the same as for case5.
We will present our results in three different ways. We first consider the flow

morphology and its evolution (§ 3). We then focus on vertical transport in the layered state
which develops in case 5, at the temperature Rayleigh number Raθ = 107 (§ 4). Finally, in
§ 5 we demonstrate that multiple asymptotic states exist for the same global flow control
parameters, by considering in detail the behaviour of case 7. As said above, case 7 has the
same parameters as case 5, but different initial conditions, with the perturbation localised
at the horizontal midplane of the flow. The qualitatively different asymptotic behaviour of
these two cases shows by construction that the flow evolution can be very sensitive to the
particular characteristics of the initial conditions.

3. Flow morphology of different cases

In figure 1 we show vertical cross-sections of density distributions for two cases. With
the non-dimensionalisation described in the previous section, the density varies from one
at the lower boundary z = 0 to zero at the upper boundary z = 1. The initially locally
unstable stratification generates convective flows, which in turn develop into spanwise
vortices due to the vertical shearing, somewhat reminiscent of Kelvin–Helmholtz (KH)
billows. These vortices in turn evolve in a way that leads to layering in the scalar field. For
the 3D case 1, with the smallest considered Raθ , these KH vortices occupy the whole
channel. For the cases with higher Raθ , the vertical extent of the vortices decreases.
Multiple layers emerge, separated by relatively sharp interfaces, as shown, for example,
in figure 1(d). The sharp interfaces refer to the relatively thin regions of substantially
enhanced scalar gradients. Clearly, two sharp interfaces exist for the 2D case 5 with
Raθ = 107. They oscillate strongly in space and interact with the convection flow in
the relatively well-mixed layers, but the interfaces remain robust. This behaviour can be
clearly seen in the supplementary movies (available at https://doi.org/10.1017/jfm.2021.
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0
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(b)(a)

(c) (d )

Figure 1. Density fields at different stages of (a,c) case 1 with Raθ = 105 and (b,d) case 5 with Raθ = 107.
Panels (a) and (b) show the flow fields at the early stage when the initial perturbations grow into layers of
vortices. Panels (c) and (d) show those at the final stage with distinct layers separated by sharp interfaces with
high density gradient. The 3D data are from the y–z plane at the x midpoint of the computational domain. In
both cases, the emergence of the layers and subsequently their coarsening with time is clearly seen. All panels
share the same colour map as shown at the left.

1091), showing for all cases the time evolution of the two scalars independently and in
combination as the density. There are some structures that are reminiscent of the classical
finite-amplitude ‘cusped waves’, the finite-amplitude manifestation of the HWI (see, for
example, Salehipour et al. 2016). Similar phenomena are also noted by Brown & Radko
(2021) in sheared diffusive DDC. However, it is challenging to identify these structures
categorically as HWI, as any impinging vortical structures are likely to induce such
scouring motions in the vicinity of a sharp interface.

Moreover, figure 1 illustrates why very fine grids are needed for the current study. The
interfaces with relatively high density gradient have very small vertical extent, while the
convective plumes emerging from these interfaces are also very narrow, requiring a very
high resolution.

To verify that 2D simulations exhibit similar dynamics to 3D simulations, we compare
the 2D case 3 to the 3D case 2. Both cases have the same control parameters. Flow fields
are compared in figure 2 at two stages: the relatively early shear-induced KH vortices
stage at t = 100; and the later layering stage at t = 2500. The flow morphology is largely
similar in two and three dimensions. For both simulations, a single sharp interface remains
during the late layering stage, though the oscillation of the interfaces is stronger in the 2D
case than in the 3D case. This is perhaps unsurprising since in the 2D case the flow has
fewer degrees of freedom to develop and evolve, resulting in violent fluctuations about the
equilibrium state.

In figure 3 we plot the time evolution of the horizontally averaged mean profiles of
non-dimensional temperature 〈θ〉h, salinity 〈s〉h and density. Here 〈·〉h stands for the spatial
average over horizontal planes. With the non-dimensionalisation described in the previous
section, temperature and salinity also both vary from one at the lower boundary z = 0 to
zero at the upper boundary z = 1. Clearly, a robust staircase appears and survives for all
five cases, but the time evolution varies significantly. Furthermore, the strong oscillation of
interfaces is apparent. For case 1 with the smallest Ra, once the instability triggers the flow,
a single layer quickly develops and extends over the entire interior of the flow. For cases
with higher Ra, the layering process is more complex. For case 2, starting from t ≈ 1000,
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Figure 2. Density fields from the 3D simulation of case 2 (a,c) and the 2D simulation of case 3 (b,d). The
two cases have the same Ra = 106. Panels (a) and (b) are for time t = 100 and panels (c) and (d) for t = 2500.
The 3D data are from the y–z plane at the x midpoint of the computational domain. All panels share the same
colour map as shown at the left.

two relatively weak interfaces appear in the centre of the channel. The two interfaces
rapidly merge into a single one at around t ≈ 2100.

By comparing rows (b) and (c) in figure 3, it is again apparent that 2D and 3D
simulations have essentially similar layering processes. As Raθ increases, more layers
appear in the interior, as seen from figure 3(d, e) for Raθ = 107 and 108. For case 6, the
simulation with the highest Raθ in our study, more layer merging occurs at later times. We
continued the simulation until t = 12 000 and only four interfaces remained. It is important
to note that the depth of the final layers is much larger than the characteristic depth of the
initial perturbation 1/k. Thus, we believe it is unlikely that the depth of the final layers is
set by the vertical wavenumber of the initial perturbation. Rather, the depth of the final
layers is due to the competition between different layers, as well as the confinement of the
two boundaries.

4. Vertical transport in layering state

Having considered qualitative aspects of the formation and survival of layered states,
we now focus on the dynamics of case 5. This case clearly had a robust ‘staircase’ at
later times, and we are interested in the consequences of this staircase for the global
transport and flow velocities. Throughout the simulation we record the appropriately
scaled global heat and salt transfer rates as well as the flow velocity. These are quantified
by appropriately defined Nusselt numbers and Reynolds numbers,

Nus = 〈uzs〉a

κsΔsH−1 , Nuθ = 〈uzθ〉a

κθΔθH−1 , Rei = urms
i H
ν

. (4.1a–c)

Hereafter 〈·〉a denotes the volume average over the whole flow domain. These volume
averages in general depend on time. The three urms

i are the root-mean-square values of
the different components of the total velocity, including in particular the mean imposed
shear. The density ρ′ and its associated volume-averaged convective flux 〈uzρ

′〉a are also
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Figure 3. Time evolution of horizontally averaged scalar profiles. Panels (a)–(e) are for cases 1–3, 5 and
6, with parameters given in table 1. Columns from left to right show mean profiles of non-dimensional
temperature, salinity and density, respectively. Different cases share the same colour map for each scalar field.

calculated. Figure 4 plots the time history of the global fluxes and Reynolds numbers for
case 5 with Raθ = 107.

In figure 4, two qualitatively different stages can be identified after the rapid initial
spin-up of the flow, which ends around t = 100. The first stage occurs for t � 2000. During
this initial stage, the flow interior is dominated by KH-like shear-driven vortices. This
stage ends when the flow relatively quickly reorganises into the layering state for 2000 �
t � 2500. During this transition period the KH-like vortices lose their spatially organised
pattern and quickly break into turbulent convection layers. Such a process can also be
observed in supplementary movies 5 and 6. Subsequently, global fluxes, as quantified by
the Nusselt numbers, are both typically much larger in magnitude, and also fluctuate with
a much larger magnitude. These fluctuations in the global quantities are caused by the
strong oscillations of the interfaces, which can also be observed in the time history of
the scalar mean profiles, as shown in figure 3. The strong oscillation of the interfaces is
induced by the violent convection motions in the adjacent layers. During the final stage,
the equilibrium layering state can survive these strong oscillations for a very long time
period. Also, for our choice of control parameters, the streamwise Reynolds number Rey is
always significantly larger than the vertical Reynolds number Rez, due to the contribution
from the mean shear.
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Figure 4. Time history of (a) the scaled global salt transfer rate Nus, (b)the scaled global heat transfer rate
Nuθ , (c)the convective density flux −〈uzρ

′〉a, and (d,e)the Reynolds numbers Rey and Rez, respectively, for
case 5.

To reveal the effects of different structures on the transport properties, we calculated
the time history of horizontally averaged vertical profiles of scalar gradient 〈∂zζ 〉h, scalar
convective flux 〈uzζ 〉h and turbulent diffusivity κT

ζ = 〈uzζ 〉h/〈∂zζ 〉h, for the three scalars
of interest with ζ = θ , s and ρ′. Figure 5 displays these time histories, once again for
case 5. The staircase structure of thin interfaces and relatively deep layers is clearly
apparent in figure 5(a–c). The dark blue stripes mark the interfaces which have relatively
high gradients of temperature, salinity and density. The negative vertical gradient arises
since both temperature and salinity decrease as the height increases, with salt stabilising
and heat destabilising the flow statically. The relatively vertically extended white regions
between interfaces with relatively weak gradients are the well-mixed layers with almost
homogeneous mean temperature and salinity. Figure 5(c) indicates that, inside the layers,
the density often exhibits a slightly positive net mean gradient, and it is this convectively
unstable stratification that drives the large roll convection inside these layers, even though,
overall, the density gradient is stable across the flow.

As expected, the convective fluxes 〈uzζ 〉h for the three different scalars show very
different behaviours in the interface and layer regions. The interface regions consist
of strong oscillations between extreme positive and negative convective fluxes of heat,
salinity and density. This is essentially a geometric effect, caused by the vertical spatial
oscillations of the interfaces, in turn associated with the coupled effects of impinging
vortices and ejecting plumes, as can be seen in the supplementary movie. Nevertheless, the
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Figure 5. Time evolutions of the horizontally averaged profiles for case 5. Rows from top to bottom show mean
profiles of scalar gradients 〈∂zζ 〉h, scalar convective fluxes 〈uzζ 〉h and turbulent diffusivity κT

ζ = 〈uzζ 〉h/〈∂zζ 〉h.
Columns from left to right are for ζ = θ , s and ρ′, respectively. Black arrows mark the time-averaged heights
of identifiable interfaces.

interfaces with strong scalar gradients survive these spatial oscillations in our simulations.
In the interior of layers, oscillations are also observed in the convective fluxes, but overall
〈uzθ〉h and 〈uzs〉h are positive, implying that both heat and salinity are transferred upwards.

Meanwhile, the convective flux of ρ′ is negative inside layers, indicating that the net
density flux is actually downwards in the layers as expected. This is consistent with the
regular occurrence of static instability in the layers, and also with the density flux being
dominated by the thermal convective component. This confirms that the shear has not
qualitatively affected the distinguishing characteristic of diffusive DDC of downward
density flux. In figure 5(g–i) we plot the mean profiles of turbulent diffusivities κT

ζ =
〈uzζ 〉h/〈∂zζ 〉h. The most intense turbulent diffusivity actually occurs inside the layers,
where the magnitude of κT

ρ′ can be larger than 0.01. It can also be noted that, at the interface
regions, the turbulent diffusivities computed from horizontally averaged profiles have
comparable values for temperature and salinity. However, within the layers, the magnitude
of κT

θ is much larger than κT
s . This implies that, within the layers, the flow is not in a fully

developed turbulent state in our simulations, since for fully developed turbulent flow the
convective fluxes should be similar for the two components.

In figure 6, we plot time averages over the time period 3000 < t < 6000 of the
horizontally averaged mean profiles shown in figure 5, as well as the flux ratio γ ∗, defined
as the ratio of the total salt flux to the total heat flux,

γ ∗(z) = βs(〈wdimsdim〉h + κs∂z〈s〉h)

βθ (〈wdimθdim〉h + κθ∂z〈θdim〉h)
, (4.2)
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Figure 6. Time-averaged profiles for (a–c) the three scalar fields, (d–f ) their convective fluxes and (g)the total
flux ratio γ ∗, as defined in (4.2). Time averaging is calculated from the data presented in figure 5 over the time
interval 3000 ≤ t ≤ 6000.

where the subscripts dim make explicit that the definition contains dimensional quantities
and the total flux contains both convective and diffusive parts. Although in principle γ ∗(z)
can vary with z, at a statistically stationary state both denominator and numerator should
be constant with height.

Owing to the vigorous and relatively high-amplitude vertical oscillations of the
interfaces, the time-averaged scalar profiles do not exhibit sharp interfaces but rather
regions with relatively high gradient, near z 
 0.3 and z 
 0.65, as shown in figure 6(a–c).
Interestingly, although such spatial oscillations generate large, and yet crucially temporally
varying, local vertical fluxes, as shown in figure 5, after time averaging the interface
regions exhibit smaller net convective heat flux. Upon time averaging, the positive and
negative fluxes with large magnitude visible in figure 5 associated with the significant
convective deformations of the interfaces exhibit significant cancellation. Therefore, the
net convective transport across the interfaces is substantially reduced. Conversely, the
transport through the relatively well-mixed layers does not exhibit such variability, and
in particular is typically single-signed, and so the net convective transport through the
layers is significantly larger. Of course, this variability is counterbalanced by the stronger
diffusive flux through the high-gradient interfaces. It is also important to appreciate that,
instantaneously, the transport across an interface can be very much larger in magnitude
and opposite in sign to the net transport over a sufficiently long time interval, strongly
suggestive of the physical mechanisms that lead to staircase structures having reduced net
vertical transport.

Furthermore, the convective density flux is dominated by the heat flux. The net salinity
flux is both significantly smaller in magnitude and also much closer to uniform across
the entire flow, with no noticeable remnant remaining of the staircase structure in the
time-averaged convective flux. Since the salinity is higher at the bottom boundary and
lower at the top, it is reasonable to expect the convective part of the salinity flux to
be positive, i.e. in the opposite direction to the total salinity gradient across the whole
fluid layer. Indeed, this is observed, albeit with very small magnitude. Nevertheless, it
is important to appreciate that the overall net convective density flux is negative, and
hence downwards, even though the flow is statically stable, and so the flux here might be
appropriately described as counter-gradient, in the sense that the net background density
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gradient is also negative, as is of course to be expected for DDC in the diffusive regime
considered here. Interestingly, the middle layer is, upon this long-time averaging, statically
stable, while the upper and lower layers are statically unstable. This qualitative difference
is not reflected in the density flux within the layers, which is dominated by the vertical flux
of heat, and largely takes similar values in each of the three layers. Clearly, from the time
evolution data shown in figure 5, each of the layers is frequently statically unstable, and
thus associated with vigorous convective overturning, and so it is not appropriate to draw
any inferences from the long-time-averaged static stability of the middle layer.

Finally, the total flux ratio γ ∗(z) shown in figure 6(g) hardly varies with z over the
flow domain, giving further confidence to the assertion that the flow is essentially in a
statistically steady state. More interestingly, γ ∗ 
 0.1 = √

τ , remembering the definition
of the diffusivity ratio (2.5). This is entirely consistent with the physical arguments
presented by Linden & Shirtcliffe (1978) considering idealised two-layer systems (see
also Worster 2004). The key insight presented by Linden & Shirtcliffe (1978) is that,
within the interfacial ‘boundary layers’, salt diffuses in the thermally convective elements,
which then break away and are mixed into the ‘bulk’ layers. This fundamental picture
does not appear to be disrupted in any significant way by the presence of mean shear,
augmenting the vortical scouring of the interfaces. Indeed, our results appear to give
strong support to the variational arguments of Stern (1982) that γ ∗ should be bounded
below by

√
τ . Furthermore, our choice of density ratio Λ = 2 is both in the range

Λ < τ−1/2 where the original model of Linden & Shirtcliffe (1978) admits steady-state
solutions, and also at the start of the constant regime with uniform flux ratio γ ∗ 
 0.13
observed experimentally by Turner (1965). As discussed in detail by Worster (2004), there
are several complicating issues in experimental realisations of diffusive DDC, whereas
numerically it is straightforward to maintain constant boundary conditions for the salinity
and temperature.

Although the flux ratio does not appear to show any effect of the shear-driven forcing,
i.e. not varying significantly in the vertical direction, it is still natural to be interested in the
spatio-temporal properties of the scalar transport, particularly in such a controlled sheared
and overall statically stable flow. In single-scalar stratified shear flows, it is commonplace
to consider the ‘efficiency’ of the shear-driven transport, which is traditionally quantified
by an appropriately defined turbulent flux coefficient, Γ . As introduced by Osborn (1980),
Γ is the ratio of the vertical density flux to the turbulent kinetic energy dissipation rate.
In a statistically stationary flow where transport terms into and out of the domain can
be ignored, and the turbulent kinetic energy is essentially constant, this ratio may be
expected to quantify the relative strength of the density flux and viscous dissipation. For
statically stable single-component flows, the density flux may be related to irreversible
changes in the potential energy. As here we are particularly interested in the dynamics
of staircases, which exhibit spatial variation in the vertical direction, and specifically the
transport properties of layers and interfaces, it is natural to define a flux coefficient as a
function of z and t as

Γ (z, t) = g〈uzρ
′〉h

〈ε〉h
, (4.3)

where ε is the local, pointwise dissipation rate of the total kinetic energy.
It is important to appreciate that, defined in this way, Γ (z, t) is sign-indefinite due to

sign-indefinite horizontally averaged density flux in its numerator. Thus, Γ will only be
positive when, on average, dense parcels of fluid are being lifted up, as might be expected
in statically stable turbulent shear flows with a single component in a statistically steady
state, but of course does not happen typically in diffusive DDC, even when sheared, as
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Figure 7. Time evolutions for profiles of (a) Rig (b) Reb, and (c) Γ , respectively, for case 5 with Raθ = 107.
Black arrows mark the heights of interfaces.

we have observed above. Indeed, in single-component statically stable stratified flows,
there has been much research devoted to attempts to go beyond the classical empirical
observation of Osborn (1980) that Γ � 0.2 to identify generic parametrisations of Γ in
terms of other parameters describing properties of the fluid, larger-scale flow properties
and/or turbulence (see, for example, Caulfield (2021) for a review). Two particular
parameters of interest are appropriately defined gradient Richardson numbers Rig(z, t) and
buoyancy Reynolds number Reb(z, t):

Rig(z, t) = N2

S2 , Reb(z, t) = 〈ε〉h

νN2 , N2 = ∂z〈gρ′〉h. (4.4a–c)

Here, for consistency with the chosen definition of Γ , the buoyancy frequency N2 and
the background shear S = ∂z〈uy〉h are defined in terms of horizontally averaged quantities.
Therefore, both Rig and Reb may in general vary with vertical location and time, and, as
N2 is only positive when the horizontally averaged flow is statically stable, it is important
to remember that both Rig and Reb can in principle be negative, quite possibly within
the layers, though the interfaces should still exhibit positive values. It should also be
mentioned that Reb has been used to identify different regimes of mixing, namely a
molecular regime, a transition regime and a fully energetic regime (Ivey, Winters & Koseff
2008).

Indeed, in figure 7 we show the time history for the profiles of the three quantities
defined in (4.3) and (4.4a–c). As expected, after the initial transient to the asymptotic
three-layer state, Rig and Reb display opposite behaviours in the interface and layer
regions. Specifically, near interfaces, Rig is large and Reb is small, attributable to the
high density gradients. Conversely, within layers, Reb with large magnitude is associated
with small-in-magnitude Rig, with evidence of both positive and negative values for both
parameters, corresponding to the convection motions. In figure 7(c), it is evident that
the ratio Γ fluctuates very strongly near interfaces, attaining both positive and negative
values with large magnitude. This suggests that the local dissipation rate being small near
interfaces is dominating the observed numerical values, with the strong fluctuation of Γ

being clearly induced by the spatial oscillation of interfaces.
A useful way to understand the relationship between the various quantities is to calculate

the joint probability of pairs of quantities associated with specific values of z and t.
We present joint probability density functions (p.d.f.s) for these data for four pairs of
quantities in figure 8. Figure 8(a) shows the joint probability of 〈−∂zρ

′〉h and 〈uzρ
′〉h.

Indicating that most of the flow domain is in relatively well-mixed layers, most of the data
are associated with values of the mean density gradient being close to zero, though both
positive and negative small gradients occur frequently. Conversely, there is a strong signal
of predominantly negative density flux, associated with the expected strong convective flux
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Figure 8. Joint relative probability for four pairs of flow quantities, including the vertical gradient of mean
density 〈−∂zρ

′〉h, the mean convective flux of density 〈uzρ
′〉h, Γ = g〈uzρ

′〉h/ρ0〈ε〉h, Rig = N2/S2 and Reb =
〈ε〉h/νN2. Statistics are calculated from the data of figure 5 for t > 3000 and 0.1 < z/H < 0.9. The colour is
shown on logarithmic scale.

of heat through the system, and particularly in the layers. Inside the layers the fluid is well
mixed with nearly homogeneous mean scalars and so large-scale convection rolls generate
high convective flux. Unsurprisingly, there is asymmetry in the data associated with the
existence of interfaces with high horizontally averaged negative density gradient. The
associated values of convective flux are spread over a wide range, which can be interpreted
as being due to the significant spatial oscillation of interfaces.

In figures 8(b) and 8(c) we show the joint p.d.f.s of Γ with Rig and Reb, respectively.
The Rig data in figure 8(b) are once again dominated by values with relatively small
magnitude, associated with most of the flow domain being in layers. Both negative and
positive values are apparent, showing that the layers oscillated close to being well mixed,
while Γ is clearly predominantly negative, since there is typically downward convective
density flux. Once again, there is asymmetry in the Rig data, with a wide range of positive
values associated with the interfaces, associated also with a very wide range of different
Γ values.

Large-magnitude values of Γ are of course associated with significant density flux with
relatively weak turbulence, precisely the behaviour that we would expect in the vicinity of a
highly convoluted yet ‘sharp’ interface dominated by scouring dynamics. Such apparently
weak turbulence leading to significant convective transport is also apparent in the Γ (Reb)
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Figure 9. Time average (over the interval 3000 < t < 6000) of the mean convection flux 〈uzρ

′〉h conditioned
on the mean density gradient 〈−∂zρ

′〉h.

data shown in figure 8(c). The data associated with the interfaces, with small positive Re
due to the combined effect of small ε and large N2 and a wide range of large-magnitude
Γ , are clearly apparent. Conversely, the layer data exhibit a wide range of both positive
and negative Reb with predominantly smaller yet negative Γ .

Indeed, figures 8(b) and 8(c) strongly suggest that Rig and Reb are anticorrelated, as
can also be seen in figure 8(d). The expected asymmetry in data is clearly visible, where
large positive Rig associated with interfaces is much more common than large negative
values. The large positive Rig data correspond to small positive values of Reb. Conversely,
layers are associated with large-in-magnitude Reb data and small-in-magnitude Rig, with
both signs commonly occurring. We plot the heuristic relationship Rig ∝ Re−1

b with a
red dashed line, which appears to be a reasonable approximation. This suggests that
the dominant relationship is associated with the density distribution via the respective
dependence on N2 in the parameter definitions, and variations in the mean shear and
dissipation rate only play a role at higher order.

As a final demonstration of the properties of the convective fluxes of different flow
regions, in figure 9 we plot the time average over the interval 3000 < t < 6000 of the
negative of the density flux 〈−uzρ

′〉h conditioned on 〈−∂zρ
′〉h. A single peak appears,

with 〈−∂zρ
′〉h slightly smaller than zero, corresponding to regions of the flow with weak

statically unstable density gradients. Such regions correspond naturally to the relatively
well-mixed ‘layers’. As 〈−∂zρ

′〉h increases through positive values, the magnitude of the
conditioned average broadly decreases. Higher values of the density gradient are naturally
found in the interface regions, where the convective flux becomes relatively weak. As is
apparent in figure 5, the particular location of such interfaces generically oscillates very
strongly and it is therefore entirely reasonable that the convective flux exhibits significant
fluctuations. Nevertheless, the conditioned average shown in figure 9 suggests that the
net overall convective density flux in the interface regions is still negative, although the
interfaces drive a downward density convective flux that is much weaker than that which
is driven through the layers. This is yet more evidence that the strong shear present in such
flows does not modify the overall downward density flux characteristic of diffusive DDC
flows, due to the dominance of the upward convective heat flux.
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Figure 10. Time evolutions of the horizontally averaged scalar profiles for case 7, starting from a single
localised density inversion, with control parameters the same as case 5, as listed in table 1: (a) temperature, (b)
salinity and (c) density.
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Figure 11. Snapshots of density at four different time steps for case 7: (a) t = 10 000, (b) t = 12 000, (c)
t = 16 500 and (d) t = 20 000.

5. Development of local density inversion and multiple states of layering

Another interesting property of the sheared diffusive DDC flows considered here is that
the final configuration of layering actually depends on the particular structure of the
initial perturbation, in a non-trivial fashion. The coexistence of various layered states has
been hypothesised by Stern & Turner (1969) as metastable equilibria of the system. To
demonstrate this, we consider the properties of case 7. As discussed in § 2, case 7 has the
same flow control parameters as case 5 but a different, and more localised, initial condition,
given by (2.8a,b) rather than (2.6a,b). Analogously to figure 3, we show the time evolution
of the scalar profiles for case 7 in figure 10. Also in figure 11 we show the contours of
density at four different times.

Initially, the single density inversion expands vertically over a sustained time period
of more than 10 000 non-dimensional time units. As is typical, KH-like vortices grow
within this expanding layer and then in turn break down into a well-mixed convection
layer. Around t = 12 000, two new, essentially well-mixed, layers emerge above and below
the primary layer. However, these two relatively new layers are continually eroded, as is
apparent in figure 11(c). Indeed, they do not survive and the main layer in the middle
eventually occupies the whole channel, leading to a statistically steady state with a
single convection layer, in qualitative contrast to the flow field shown in figure 1 for the
corresponding case 5. Therefore, for the same control parameters, different statistically
steady states can be achieved starting from different initial density conditions. Without
the presence of other layers, a single layer can grow continuously until the confinement of
the boundaries sets in. Crucially, the various fluxes are also different for different states.
The existence of multiple turbulent states with different transport properties has also been
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Figure 12. Time history of (a) the scaled global salt transfer rate Nus, (b) the scaled global heat transfer rates
Nuθ and (c) the convective density flux −〈uzρ

′〉a for case 7, as listed in table 1.

observed in other turbulent systems such as in Taylor–Couette flow (Huisman et al. 2014)
and fingering DDC staircases (Yang et al. 2020).

In figure 12 we plot the time history of the two Nusselt numbers and the vertical flux of
the density. During the multilayer stage between t = 16 000 and 18 000, the fluxes fluctuate
significantly. When the flow enters the single-layer final stage after t > 18 000, both the
heat and density fluxes increase and fluctuate more strongly. The fluctuation of salinity
flux, however, reduces significantly.

For cases 5 and 7 with Ra = 107 and different initial perturbations, we measure the
time-averaged fluxes at the final statistically steady stage for both the three-layer state
of case 5 and the single-layer state of case 7. We average between t = 4000 and 6000
in figure 4 for the three-layer state, and between t = 19 000 and 20 000 in figure 12 for
the single-layer state. The two Nusselt numbers are Nuθ = 3.73 and Nus = 20.9 for the
three-layer state, and Nuθ = 9.03 and Nus = 37.1 for the single-layer state, respectively.
Therefore, under the same global control parameters, more layers and interfaces really
significantly reduce the heat and salinity transport in the vertical direction, showing
how important layering can be for ‘throttling’ vertical fluxes, and so how crucial it is
to understand whether a particular staircase arrangement is robust and long-lived when
subject to velocity shear, and hence further vigorous forcing.

6. Conclusions and outlook

In conclusion, we have conducted a series of simulations of sheared double-diffusive
convection (DDC) in the diffusive regime in a plane Couette flow geometry, using the
Oberbeck–Boussinesq approximation and the assumption that the density depends linearly
on both salinity and temperature. The two bounding horizontal plates are maintained
at constant temperature and salinity, with the lower plate having higher temperature
and salinity. Therefore, the conductive salinity gradient is stabilising and the convective
temperature gradient is destabilising, while the two plates have different velocities, thus
setting up a shear across the flow. We choose the relative size of the temperature and
salinity differences so that the flow is statically stable with density ratio Λ = 2 and bulk
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Richardson number Rib = 1 as defined in (2.3) and (2.4), respectively. We choose the
Prandtl numbers to be Prθ = 10 and Prs = 1000 for temperature and salinity, respectively,
so that the diffusivity ratio is τ = 100, similar to oceanographic values.

For a variety of salinity and temperature Rayleigh numbers, and for both 2D and
3D simulations, we find that staircase structures spontaneously form, with relatively
sharp interfaces of high scalar gradient separating relatively well-mixed and vigorously
convecting layers. Generically, the formation of these layers appears to require a significant
initial perturbation, in particular incurring static instability somewhere within the flow, and
so, at least for this flow, it does not seem appropriate to consider the formation of these
layers to arise from an infinitesimal linear instability of the flow system. Also, coarsening
of the staircase structure after a significant period of highly disordered flow evolution is
observed, further suggesting that the mechanisms by which the staircase structure loses
(or alternatively retains) ‘stability’ is highly nonlinear. Indeed, further evidence of the
nonlinear complexity of the structure of the solution space for this system arises from our
demonstration that different initial (finite amplitude) perturbations can lead to different
robust, attractive final staircase states.

Crucially, however, we find that the injection of energy through shear does not modify
certain key aspects of DDC flow in the diffusive regime. Staircase structures appear robust
over very long time intervals. For the currently considered parameters, the enhanced
mechanical forcing of the turbulence in the well-mixed layers due to the shear does
not generically disrupt the staircase structure. This observation has implications for the
robustness of double-diffusive staircases in the presence of larger-scale shear, although the
idealised nature of our flow geometry makes quantitative predictions of staircase survival
challenging. Also, the power injection by the shear does not modify the domination of the
density flux by the upward heat flux, so that the sheared diffusive DDC flows we have
simulated exhibit downward vertical density flux on average.

On the other hand, our numerical simulations allow for the precise control of boundary
conditions, a distinct advantage compared to laboratory experiments. With such control,
we are able to obtain strong evidence in support of the mechanistic transport model
proposed by Linden & Shirtcliffe (1978), in that we show that the total flux ratio is
γ ∗ 
 √

τ , as defined in (4.2). The physical picture of salt slowly diffusing into hot ‘blobs’
of fluid that are then convected out of the boundary-layer-like interfaces is robust to the
introduction of large-scale shear, which, although it energises the turbulent flow, does not
seem to modify qualitatively or quantitatively the vertical scalar fluxes. The robustness of
this balanced physical picture in particular suggests that, for the control parameters chosen
in this paper, the dominant process for detachment of those hot ‘blobs’ into the interior of
the layers is dominated by convection, rather than by shear-dominated vortical scouring.

A further attraction of numerical simulation is naturally the fact that the simulation
data are in principle available at every point in space and time. We demonstrate the
usefulness of this availability by considering horizontally averaged data for various
properties of the convective density flux, and in particular its relationship to two natural
non-dimensional parameters to describe sheared stratified turbulence, namely the gradient
Richardson number Rig(z, t) and the buoyancy Reynolds number Reb as defined in
(4.4a–c). Although the horizontal averaging inevitably smooths the properties of the
interfaces, which are significantly vertically perturbed, it is still possible to identify
distinguishing characteristics of interfacial and layer regions. Specifically, the interfacial
regions are distinguished by high positive local values of Richardson number, and low
values of buoyancy Reynolds number, yet still non-trivial net downward convective
density flux. The net downward density flux is perhaps because of the smearing effect of
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horizontal averaging. Layer regions typically have larger downward convective flux, and
larger-magnitude Reb with smaller-magnitude Rig. However, since they are close to being
well mixed, substantial oscillations in sign of Rig are observed, without any particular
correlation with the net downward density flux. There is, however, clear anticorrelation
between Rig and Reb, such that Rig ∝ Re−1

b , suggesting that the mean velocity shear and
the turbulent dissipation rate are not strongly affected by the prevailing stratification. This
anticorrelation is especially interesting when both quantities are positive, i.e. associated
with regions of static stability.

Of course, these observations suggest several future avenues of investigation. Perhaps
most pressing is to understand better the robustness of the various observed staircase flow
states, and the evolution dynamics of the staircase layers. We have demonstrated that,
depending on the initial structure of the perturbation, a flow with one set of global flow
parameters can exhibit qualitatively different statistically stationary staircase states. The
vertical flux properties of these different staircase states can be markedly different (with,
as is well known, the more layered state having substantially reduced convective transport).
It is clearly of great practical interest to predict which possible staircase states are most
likely to arise in any given situation, which is crucial for understanding the fate of diffusive
staircases in the changing Arctic environments.

It is perhaps surprising that we have also shown that imposed mean shear with unity bulk
Richardson number, which is quite ‘strong’ relative to the stable background stratification,
still allows exceptionally long-lived staircase structures to survive. Therefore, it is a very
interesting open question to identify criteria under which layered DDC flows in the
diffusive regime can survive in the presence of externally imposed large-scale flows,
such as the mean shear flow considered here. Such criteria may be analogous to those
of Taylor & Zhou (2017) for single-component stratification, and can be directly applied
to oceanic situations. A first step in this direction would be to extend the present study to
other Richardson numbers, which will the subject of a future work.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.1091.
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