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SUMMARY
This paper concerns the issue of mechanism design of a
simplified 6-DOF 6-RUS parallel manipulator. The design
of robotic mechanisms, especially for 6-DOF parallel
manipulators, is an important and challenging problem in
the field of robotics. This paper presents a design method
for robotic mechanisms, which is based on the physical
model of the solution space. The physical model of the
solution space, which can transfer a multi-dimensional
problem to a two or three-dimensional one, is a useful tool
to obtain all kinds of performance atlases. In this paper, the
physical model of the solution space for spatial 6-RUS (R
stands for revolute joint, U universal joint and S spherical
joint) parallel manipulators is established. The atlases of
performances, such as workspace and global conditioning
index, are plotted in the physical model of the solution
space. The atlases are useful for the mechanism design of
the 6-RUS parallel manipulators. The technique used in this
paper can be applied to the design of other robots.

KEYWORDS: Parallel manipulators; Mechanism design; Physical
model of solution space; Workspace; Global conditioning index.

1. INTRODUCTION
The design of robotic mechanisms is an important and
challenging problem in the field of robotics. Two issues are
involved in the optimal design of robot: performance
evaluation and synthesis. Having designed a robot, it is
necessary to evaluate its main characteristics. A second
problem is to determine the dimensions (link lengths) of the
robot, which are the most suitable for the task at hand. The
latter one is one of the most difficult issues in the field of
robotics.

As is well known, the performances of parallel robots
heavily depend upon their dimensions. Therefore, the
process of mechanism design for a manipulator is based
largely on the use of some criteria, such as workspace,1,2

dexterity,3,4 payload,5 conditioning index,6,7 and stiffness.8

The classical methods of design, such as the cost-function
approach, experience difficulties in dealing with this

problem.9 The first difficulty is due to the large number of
parameters that are involved. For example, a generic 6-DOF
serial manipulator can have as many as 18 geometric
parameters, 60 mass parameters, and 42 stiffness parameters
along with 12 or more actuator parameters.10 The second
one is that the cost function may have numerous local
minima and, consequently, the minimization procedure may
have difficulties in locating the global minima. Another
drawback of the method is that it cannot obtain the most
optimal design parameters, for example, the link lengths of
the robots.

The link lengths of robotic mechanisms can be measured
by various units and can be changed between zero and
infinity. So that, it is of primary importance to develop a
useful design tool that can express the relationships between
criteria and link lengths of robots. From papers,5,7,11 we can
see that the physical model of the solution space of robotic
mechanisms is a useful one. The design tool is a tool that all
non-dimensional link lengths of robots are embodied in a
finite space. The relationships between criteria and link
lengths of all robots can be plotted in the physical model of
the solution space, and then the atlases are obtained. Based
on the performance atlases, we can select most optimal
group of link lengths for manipulators.

In this paper, the method mentioned above is applied to
the design of simplified 6-DOF 6-RUS parallel manip-
ulators. A physical model of the solution space for the
robotic mechanisms is established. The atlases of criteria,
such as workspace, global conditioning index, global
velocity index and global payload index, are plotted in the
physical model of the solution space. The atlases are useful
for design of the simplified 6-DOF 6-RUS parallel manip-
ulators. The technique used in this paper can be applied to
the design of other manipulators.

2. THE DESIGN METHOD
The performances of parallel robots are heavily dependent
on the dimensions of manipulators. Therefore, it is impor-
tant to design link lengths of manipulators with respect to
performances, which will be the most suitable for the task at
hand. Theoretically, since link lengths of robotic mecha-
nisms may vary between zero and infinity, which means that
the links can be very long or short and can be measured by
different units, it is very difficult to investigate the
relationships between performance criteria and link lengths
of all robotic mechanisms. Therefore, it is convenient to
eliminate the physical sizes of mechanisms.
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In 1985, a novel design space, called physical model of
the solution space, for planar 4-bar mechanisms was
proposed by Yang and Gao.11 The coordinates of the design
space are characterized by the non-dimensional link lengths
of the generalized planar 4-bar mechanisms, each of which
is the link length divided by the sum of four link lengths.
Because there are one-to-one corresponding relationships
between the points in the physical model of the solution
space and the planar 4-bar mechanisms, the solution space
can be used to establish the relationships between the
performance criteria and all the mechanisms.

In the fieid of design for robotic mechanisms, one
common method is to establish objective functions subject
to specified conditions. Generally, the objective functions
are multielement, so that the method cannot solve the
general problems. Mostly, robots have not been designed to
perform specific tasks but to meet general performance
criteria. As mentioned earlier, the physical model of the
solution space is a design space that can contain all the non-
dimensional mechanisms. And the relationships between the
performance criteria and the link lengths of mechanisms can
be illustrated in this space. Using the physical model of the
solution space, some important results are obtained for the
design of the manipulators.5,7,11

In fact, the physical model of the solution space is a
global non-dimensional link lengths space for mechanisms.
It is a tool to transfer the problems from the multi-
dimensional design space to a two- or three-dimensional
one. In this way, we can solve the problem of decreasing the
design parameters of parallel manipulators in the field of
design for manipulators. When we characterize the perform-
ance by contours in the physical model of the solution space
of manipulators, atlases are generated. The atlases are the
guidelines to optimize the structural parameters from all
groups of link lengths of the manipulators.

In the following sections, the design method is applied to
the design of simplified 6-DOF 6-RUS parallel manip-
ulators. The atlases of workspace and global conditioning
index are plotted in the physical model of the solution
space. The atlases are useful for the mechanism design of

the parallel manipulators. The design results of the manip-
ulators are obtained.

3. PHYSICAL MODEL OF THE SOLUTION SPACE
FOR SIMPLIFIED 6-DOF 6-RUS PARALLEL
MANIPULATORS
Parallel robots are characterized by higher stiffness, pay-
load, accuracy, etc., than serial robots, to which many
researchers have paid attention. In the family of parallel
manipulators, the 6-UPS Stewart platform is a famous one.
The platform mechanisms have been introduced by Gough
and were later on used by Stewart12 as early models of flight
simulators. The first design of a manipulator system was
done by MacCallion and Pham13 for an assembly work-
station. Now this type of kinematic structure seems to be
widely accepted for the design of commercially used flight
simulators. Most of the research on this platform mecha-
nism was devoted to the kinematic and dynamic analysis as
well as the development of control strategies.14–17

The spatial in-parallel actuated 6-RUS (or 6-RSS)
manipulators have attracted many researchers’ attention in
the past decade.18–24 The manipulator can be applied to the
fields of machine tools,20 6-Axis positioners,18 and motion
simulators.23 The simplified 6-DOF 6-RUS parallel manip-
ulator considered in this paper, is shown in Figure l(a),
which consists of two rigid bodies connected by six legs
OBiPi ( i=1, 2, . . . , 6). The stationary rigid body is referred
to as the base and the moving rigid body is referred to as the
mobile platform. The center of the universal joint connect-
ing the ith leg to the link linking to the base will be denoted
as Bi whereas the center of the spherical joint connecting the
same leg to the platform will be denoted as Pi. Each leg of
the manipulator connects to the base through a revolute
joint, whose center is denoted as O. Vectors pi ( i=1, . . . , 6)
will be defined as the position vectors of the platform joints,
vectors bi (i=l, . . . , 6) will be defined as the position
vectors of the universal joints. The  geometric parameters of
the manipulator are O�Pi =R3, PiBi =R2, OBi =R1 and the
angle � as shown in Figure 1(b). Let,

Fig. 1. The geometric architecture of 6-DOF 6-RUS Parallel Manipulators.
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ri =Ri�L , i=1, 2, 3 (1)

where

L=
R1 +R2 +R3

3
(2)

Then

r1 +r2 +r3 =3 (3)

which means that anyone of r1, r2 and r3 can reach the
maximum value 3. But, if r1 > 1.5 or  r3 > 1.5, there is
r2 + r3 < 1.5 or r2 +r1 < 1.5, which means that the manip-
ulator cannot be assembled. Therefore, there must be

r1, r3 < 1.5, r2 < 3 (4)

The physical model of the solution space of the manip-
ulators can be obtained as illustrated in the parallelogram
ABCD in Figure 2. The planar closed-configuration of the
solution space is shown in Figure 3. All non-dimensional
simplified 6-DOF 6-RUS parallel manipulators are within
the physical model of the solution space.

4. THE INVERSE KINEMATIC PROBLEM
Let us consider a fixed coordinate frame R : O�xyz
attached to the base of the manipulator and a mobile
coordinate frame R� : O��x� y� z� attached to the platform,
where O� is the point to be  positioned by the manipulator,
and the position of point O� with respect to the fixed frame
R is denoted as vector

rR =[x, y, z]T (5)

where x, y and z are non-dimensional variables, respectively.
Furthermore, let Q be the rotation matrix describing the
orientation of R� with respect to R. The matrix can be
expressed by three angles noted as �1, �2 and �3,
respectively, as follows

Q=

q11

q21

q31

q12

q22

q32

q13

q23

q33

(6)

where

q11 =�sin �1 sin �3 +cos �1 cos �3 cos �2

q12 =�sin �1 cos �3 �cos �1 sin �3 cos �2

q13 =cos �1 sin �2

q21 =cos �1 sin �3 +sin �1 cos �3 cos �2

q22 =cos �1 cos �3 �sin �1 sin �3 cos �2 (7)
q23 =sin �1 sin �2

q31 =�cos �3 sin �2

q32 =sin �3 sin �2

q33 =cos �2

The vectors Pi in the fixed frame R can be written as

piR =rR +QpiR� i=1, . . . , 6 (8)

where

piR� =
r3 cos�i

r3 sin�i

0
i=1, . . . , 6 (9)

and

�=

�1

�2

�3

�4

�5

�6

=

0
�

2�/3
2�/3+�

�2�/3
��2�/3

(10)

As shown in Figure 1, the axes of the six revolute joints are
aligned with the y-axis. Therefore, the vectors bi in the fixed
frame R can be written as

biR =
r1 cos �i

r1 sin �i

0
i=1, . . . , 6 (11)

Fig. 2. The physical model of the solution space of 6-RUS
Parallel Manipulators.

Fig. 3. The planar-closed configuration.
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where �i is the actuated angle of the ith leg. Then the inverse
kinematics problem of the manipulators can be solved by
writing the following constraint equation

� piR �biR � =r2 i=1, . . . , 6 (12)

that is

� rR +QpiR� �biR �=r2 i=1, . . . , 6 (13)

from which we can obtain

�i =2 tan�1(ti ) (14)

where

ti =
��i ±��2

i �4uiwi

2ui

(15)

and

ui =r2
1 +a2

i +b2
i +c2

i �r2
2 +2r1ai

�i =�4r1bi

wi =r2
1 +a2

i +b2
i +c2

i �r2
2 �2r1ai

ai =q11r3 cos �i +q12r3 sin �i +x
bi =q21r3 cos �i +q22r3 sin �i +y
ci =q31r3 cos �i +q32r3 sin �i +z

Hence, for a given manipulator and for prescribed values of
the position and orientation of the platform, the required
actuated angles �i can be directly computed from Eq. (14).
From Eq. (15), we can see that there are 26 branch sets for
the manipulator under study. In this paper, the branch set as
shown in Figure 1(a) is considered.

5. WORKSPACE AND ITS ATLASES

5.1. Geometric description of the constant-orientation
workspace
Since the workspace of a 6-DOF parallel manipulator is
embedded in a six-dimensional space, it is very difficult to
represent. The constant-orientation workspace is the region
of the three-dimensional Cartesian space that can be
attained by a point from the platform of the manipulator for
a given orientation of the platform. This is, in fact, a three-
dimensional section of the six-dimensional complete
workspace. The constant-orientation workspace of a 6-RUS
parallel manipulator can be easily obtained geometrically24

based on the inverse kinematic problem of the manipulator.
From Eq. (13), one can obtain

(x�xi )
2 +(y�yi )

2 +(z�zi )
2 =r2

2 i=1, . . . , 6 (16)

where

xi =ri cos �i �q11r3 cos �i �q12r3 sin �i (17)

yi =r1 sin �i �q21r3 cos �i �q22r3 sin �i (18)

zi =�q31r3 cos �i �q32r3 sin �i (19)

from which we can see that Eq. (16) represents six spheres
centered at the points Oi (xi, yi, zi ) and the radius r2. Let us
consider Eqs. (17) and (18), which can be rewritten as

r1 cos �i =xi +xoi (20)

r1 sin �i =yi +yoi (21)

that is

(xi +xoi )
2 +(yi +yoi)

2 =r2
1 (22)

where

xoi =q11r3 cos �i +q12r3 sin �i (23)

yoi =q21r3 cos �i +q22r3 sin �i (24)

xoi and yoi are related to the value of �i. When �i is specified,
the circle of Eq. (22) can be determined. The circle is
centered at point OOi (�xoi , �yoi ) and is with radius r1.
Therefore, the center of the sphere centered at point
Oi (xi, yi, zi ) is on the circle centered at OOi (�xoi, �yoi ).

From the above analysis, we can see that the workspace
of each of the six legs of a simplified 6-RUS manipulator is
the enveloping solid of a sphere whose center is moved
along a circle centered at point of OOi (�xoi , �yoi ). The
enveloping solid is a torus solid whose center is
Oti (�xoi , �yoi, zi ). The constant-orientation workspace of
a 6-RUS parallel manipulator is the intersection of six
identical tori.24 From Eqs. (16)–(18) and (23)–(24),
one sees that the position vector of the center point
Oti (�xoi , �yoi, zi ) is related to matrix Q and the position
vectors piR� and biR. For a given manipulator, the position
vectors piR� and biR are constant. Hence, points
Oti (�xoi , �yoi, zi ) are only related to the rotation matrix Q.
Therefore, if the orientation of the manipulator is specified,
the constant-orientation workspace and its volume can be
obtained geometrically by using Eqs. (16) and (22) using
the commercial CAD system AutoCAD, for example.

As an example of application of the method described
above, the workspace of a 6-RUS parallel manipulator,
whose geometric parameters are r1 =0.8, r2 =1.2, r3 = l.0 and
�=0.0, will now be studied. The constant-orientation
workspace of the simplified 6-RUS parallel manipulator
will be obtained, when Q=1, where 1 is the identity matrix.
As mentioned previously, for the first leg, i=1, the
workspace is a torus generated by the arc of abcd revolving
with respect to the axis Z 	, as shown in Figure 4(a). One-
half of the torus is shown in Figure 4(b). The
constant-orientation workspace of the manipulator is the
intersection of six such tori, as shown in Figure 5. The
volume of the workspace is V=4.65, as obtained by
AutoCAD.

In this paper, in the detennination of the constant-
orientation workspace and reachable workspace, only the
kinematic constraints are taken into account. Neither joint
limits nor leg interference constraints are verified.

5.2. The reachable workspace and the atlases of volume
The constant-orientation workspace of a simplified 6-RUS
parallel manipulator is determined geometrically. Although
the reachable workspace is the union of all constant-
orientation workspaces, its determination cannot be solved
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geometrically. Therefore, the reachable workspace can only
be obtained numerically.

Using a numerical method, the volumes of the simplified
6-RUS parallel manipulators in the physical model of the
solution space, as shown in Figure 3, can be obtained for a
specified angular parameter �. The corresponding atlases
can be plotted as shown in Figure 6, from which we can see
that:

• The volume in each of the atlases is inversely proportional
to r3, if r1 is specified;

• If r1 is specified, the volume is proportional to r2;
• From Figure 6(a), (b) and (c), we can conclude that the

volume of the reachable workspace for a simplified
6-RUS parallel manipulator, r1, r2 and r3 being specified,
changes little for various value of �.

5.3. The characteristics of workspace shape for simplified
6-RUS parallel manipulators
From the analysis of Section 5.1, we can see that if the non-
dimensional parameters of a simplified 6-RUS parallel
manipulator are subject to

r2 > r1 +r3 (25)

there is a void in the constant-orientation workspace of the
manipulator, when Q=1. The planar-closed configuration of
the physical model of the solution space is divided into two
regions I and II with respect to the line

r2 =r1 +r3 (26)

Additionally, two lines

r1 =r2 (27)

r3 +1.5=r2 (28)

Fig. 4. The workspace of each of legs is the torus generated by the closed arc abcd with respect to axis of Z	.

Fig. 5. The constant-orientation workspace of 6-RUS Parallel
Manipulator.

Fig. 6. Atlases of reachable workspace for 6-RUS Parallel Manipulators.
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are used, which divide the configuration into four sub-
regions of Ia, Ib, IIa and IIb, as shown in Figure 7. Then the
workspace for the manipulators (�=30°) is classified into
four types, and the distribution of the workspaces in the
physical model of the solution space is illustrated in Figure
7. The workspaces are represented by several sections. From
Figure 7, we can see that

• The workspaces of the simplified 6-RUS parallel manip-
ulators in region I do not contain voids. If r1 is specified,
the workspace volume is inversely proportional to r3;

• In region II, the workspaces of the manipulators contain
voids. If r1 is specified, the workspace volume is inversely
pioportional to r3.

6. ATLASES OF GLOBAL CONDITIONING
INDICES

6.1. Jacobian matrix of simplified 6-RUS parallel
manipulators
Differentiating Eq. (13) with respect to time and then
rearranging terms leads to

di�̇i =ei ẋ+ fi ẏ+gi ż+ li �̇1 +mi�̇2 +ni �̇3 i=1, · · · , 6 (29)

Fig. 7. Distribution of workspace shape in the physical model of
the solution space for 6-RUS Manipulators.

Fig. 8. Atlases of Global Linear Velocity Conditioning Index for 6-RUS Parallel Manipulators.

Fig. 9. Atlases of Global Angular Velocity Conditioning Index for 6-RUS Parallel Manipulators.
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where

di =r1bi cos �i �r1ai sin �i

ei =ai �r1 cos �i

fi =bi �r1 sin �i

gi =ci

li = (ai �r1 cos �i )(r3 cos �i q11a +r3 sin �i q12a )+
(bi �r1 sin �i )(r3 cos �i q21a +r3 sin �i q22a )

mi =(ai �r1 cos �i )(r3 cos �i q11b +r3 sin �i q12b )+
(bi �r1 sin �i )(r3 cos �i q21b +r3 sin �i q22b )+
ci(r3 cos �i q31b +r3 sin �i q32b )

ni =(ai �r1 cos �i )(r3 cos �i q11c +r3 sin �i q12c )+
(bi �r1 sin �i )(r3 cos �i q21c +r3 sin �i q22c )+
ci(r3 cos �i q31c +r3 sin �i q32c )

and

q11a =q22c =�cos �1 sin �3 �sin �1 cos �3 cos �2

q11b =�cos �1 cos �3 sin �2

q11c =q22a =�sin �1 cos �3 �cos �1 sin �3 cos �2

q12a =sin �1 sin �3 cos �2 �cos �1 cos �3

q12b =cos �1 sin �3 sin �2

q12c =sin �1 sin �3 � cos �1 cos �3 cos �2

q21a =�q12c

q21b =�sin �1 cos �3 sin �2

q21c =�q12a

q22b =sin �1 sin �3 sin �2

q31b =�cos �3 cos �2

q31c =sin �3 sin �2

q32b =sin �3 cos �2

q32c =cos �3 sin �2

The kinematic equation of the manipulators can be written
as

[�̇1 �̇2 �̇3 �̇4 �̇5 �̇6]
T =K [ẋ ẏ ż �̇1 �̇2 �̇3]

T (30)

where

K=

e1�d1

�
e6�d6

f1�d1

�
f6�d6

g1�d1

�
g6�d6

l1�d1

�
l6�d6

m1�d1

�
m6�d6

n1�d1

�
n6�d6 6
6

(31)

If the matrix of K is nonsingular, that is � K � ≠0, Eq. (30)
can be rewritten as

[ẋ ẏ ż �̇1 �̇2 �̇3]
T =J[�̇1 �̇2 �̇3 �̇4 �̇5 �̇6]

T (32)

or

Ẋ=J�̇ (33)

where

J=K�1 (34)

is the Jacobian matrix of the simplified 6-RUS parallel
manipulators.

Fig. 10. Atlases of Global Force Conditioning Index for 6-RUS Parallel Manipulators.

Fig. 11. Atlases of Global Torque Conditioning Index for 6-RUS Parallel Manipulator.
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6.2. Global conditioning indices
The accuracy of the control of the manipulator is dependent
on the condition number of the Jacobian matrix.25 This
number is to be kept as small as possible. If the number can
be unity, the matrix is an isotropic one, and the manipulator
is in an isotropic configuration. The condition number is
defined as25

�J = � J � � J�1 � (35)

where � · � denotes any norm, e.g., Euclidean norm, of its
matrix argument. Other definitions for the norm could be
adopted. For instance, the square root of the largest
eigenvalue of J T J is often used. This definition has the
advantage of being applicable to non-square matrices.

From the standpoint of mathematics, the condition
number of a matrix is used in numerical analysis to estimate
the error generated in the solution of a linear system of
equations by the error on the data.26 From Eq. (33), one
obtains,

� ��̇ �
� �̇ �

≤ �J

� �̇Ẋ �
� Ẋ �

(36)

When applied to manipulators, the elements of vector Ẋ
may have different dimensions. In this case, we cannot
define the relative errors of � �

˙
X � � � ˙

X �. The definition of
�J has indeterminate physical significance. From this
context, we define the following isotropy indices.

6.2.1. Global Velocity Conditioning Indices (GVCI). For
the reason of non-identical dimension, Eq. (32) can be
rewritten as

ẋ
ẏ
ż

= [JV][�̇1 �̇2 �̇3 �̇4 �̇5 �̇6 ]T (37)

�̇1

�̇2

�̇3

=[J][�̇1 �̇2 �̇3 �̇4 �̇5 �̇6 ]T (38)

where

[J]=�JV

J
	 (39)

Therefore, we define the indices as follows

�V = � JV � � JV
+ � , � = � J � � J

+ � (40)

and

1 ≤ �V < � , 1 ≤ � < � (41)

where JV
+ , J

+ are the generalized inverse matrix of JV and
J respectively, since the matrices JV and J are not square
matrix mostly. �V and � are used to evaluate for linear and
angular velocity isotropy of manipulators.

As for the definition of the condition number, if the value
of �V or � is large, the matrix JV or J is an ill-conditioned
one, and the Eq. (37) or Eq. (38) is an ill-conditioned
equation; if the value is small, the corresponding matrix and
equation are well-conditioned ones. When �V attains its
minimum value of 1 (�V =1), the corresponding configura-
tion is called as linear velocity isotropy. And if � reaches
its minimum value of 1 (� =1), the corresponding config-
uration is called an angular velocity isotropy.

�V and � are configuration-dependent, they are local
performance indices which are called local velocity isotropy
indices (LVII). In order to evaluate the global behavior of a

Fig. 12. The optimum regions of performance criteria in
the physical model of the solution space for 6-RUS Parallel
Manipulators.

Table I. One example of the design for spatial 6-RUS parallel manipulators.

Dimensions of 6-RUS Parallel Manipulator Workspace GLVCI GAVCI GFCI GTCI
Volume

r1 =1.24, r2 =1.61, r3 =0.15, �=40° 13.2 0.23 0.034 0.46 0.31
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manipulator we define global velocity conditioning indices
(GYCI) as follows:

�V =



W

1
�V

dW



W

dW
, � =



W

1
�

dW



W

dW
(42)

where W is the reachable workspace of the manipulator. �V

and � are global linear velocity conditioning index
(GAVCI) and global angular velocity conditioning index
(GAVCI), respectively. From Eq. (42), we can see that the
values �V and � are the average values of 1��V and 1�� in
the reachable workspace. In particular, a large value of the
index ensures that the manipulator can be precisely
controlled.

6.2.2. Global Force/Torque Conditioning Indices
(GF/TCI). By virtue of what is called the duality of
kinematic and static,27 the forces and moments applied at
the gripper under static conditions are related to the forces
or moments required at the actuators to maintain the
equilibrium by the transpose of the Jacobian matrix J. This
is also true for parallel manipulators,8 and we can write

�=J T �F
M� (43)

where � is the vector of actuator generalized force, and F
and M are the external force and torque at the end effector,

respectively. If J T is a non-singular matrix, Eq. (43) can be
rewritten as

�F
M�=(J T )�1 � (44)

where, matrix (J T )�1 is called force Jacobian matrix which
is noted as

G=(J T )�1 (45)

in another form

G=�GF

GM
�=(J T )�1 (44)

Then Eq. (44) can be rewritten as

�F
M�=�GF

GM
�� (47)

or

(F )=(GF ) � (48)

(M )=(GM ) � (49)

We define the force and torque isotropy indices as follows:

�F = � GF � � GF
+ � , �M = � GM � � GM

+ � (50)

Fig. 13. One example of the design for spatial 6-RUS Parallel Manipulators (r1 =r3 =0.75, r2 =1.5, �=40°).

Fig. 14. Sections of the reachable workspace for the non-dimensional 6-RUS Parallel Manipulator r1 =r3 =0.75, r2 =1.5, �=40°.
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and

1 ≤ �F < � , 1 ≤ �M < � (51)

where GF
+ , GM

+ are the generalized inverse matrix of GF

and GM, respectively, since the matrices GF and GM are not
square matrix. �F and �M are used to evaluate force and
torque isotropy of manipulators.

Similarly, if the value of �F or �M is large, the matrix GF

or GM is an ill-conditioned one, and the Eq. (48) or Eq. (49)
is an ill-conditioned equation; if the value is small, the
corresponding matrix and equation are well-conditioned
ones. When �F attains its minimum value of 1 (�F =1), the
corresponding configuration is called as force isotropy. And
if �M reaches its minimum value of 1(�M =1), the corre-
sponding configuration is called as torque isotropy.

�F and �M are also configuration-dependent, they are local
performance indices which are called local force/torque
isotropy indices (LF/TII). In order to evaluate the global
behavior of a manipulator we define global force/torque
conditioning indices (GF/TCI) as follows:

�F



W

1
�F

dW



W

dW
, �M =



W

1
�M

dW



W

dW
(50)

where W is the reachable workspace of the manipulator. �F

and �M are global force conditioning index (GFCI) and
global torque conditioning index (GTCI), respectively.

6.3. Atlases for global conditioning indices
Given the definition of the global conditioning indices, we
can calculate the values of the indices for all spatial 6-RUS
parallel manipulators in the physical model of the solution
space as shown in Figure 3 when � is specified. And the
atlases for the global conditioning indices can be obtained
as shown in Figures 8–11.

Figure 8 shows the atlases for the global linear velocity
conditioning index, from which we can see that:

• The index value is basically proportional to r3;
• Generally, the index value is inversely proportional to r2;
• The value of global linear velocity conditioning index for

a 6-RUS parallel manipulator, r1, r2 and r3 being specified,
changes little for various values of �.

Figure 9 shows the atlases for the global angular velocity
conditioning index, from which we can see that:

• The index value is basically proportional to r2;
• For the manipulators in the region of

r1 ≤ 0.75 � r3 ≥ 1.5, the index values are larger than
others;

• The value of global angular velocity conditioning index
for a 6-RUS parallel manipulator, r1, r2 and r3, being
specified, changes little for various value of �.

Figure 10 shows the atlases for the global force conditioning
index. The distributing characteristics of the index in the
physical model of the solution space are:

• The index value is basically proportional to r3;

• The values of the global force conditioning index for
6-RUS parallel manipulators in the region of r3 is large
and r1 0.75 are larger than the manipulators’ in other
regions;

• The value of the index for a 6-RUS parallel manipulator,
r1, r2 and r3 being specified, changes little for various
value of �.

Figure 11 shows the atlases for the global torque condition-
ing index. The distributing characteristics of the index in the
physical model of the solution space are identical with that
of the global force conditioning index.

7. RESULTS OF THE DESIGN FOR THE 6-RUS
PARALLEL MANIPULATORS
From Figures 6 and 7, we can see that the manipulators,
with large volumes of reachable workspaces, are located in
region IIb, in which workspaces of the manipulators are
characterized by presence of voids.

From the atlases of global conditioning indices, we can
conclude that the influence to values of the indices from the
angular parameter � is little. And in region of
0.75 ≤ r2 ≤ 1.5 �r3 ≥ 0.75, the global  conditioning indi-
ces of the manipulators are better, except for the global
angular velocity conditioning index. Therefore, it is difficult
for us to select a 6-RUS parallel manipulator whose global
conditioning indices are all best.

It is also difficult for us to design a spatial 6-RUS parallel
manipulator whose workspace and global conditioning
indices are all best. As shown in Figure 6, the region where
the volume is greater than 10.0, noted as �W, is shown as the
shaded region in Figure 12(a). The shaded region in Figure
12(b) is the region of the GLVCI being greater than 0.2,
noted as �GLVCI. Other regions of GAVCI > 0.03,
GFCI > 0.3 and GTCI > 0.2 can also be obtained as shown
the shaded regions in Figure 12(c), (d) and (e), which are
denoted as �GAVCI, �GFCI and �GTCI, respectively. Therefore,
the designed manipulators considering all the criteria, such
as workspace volume and the global conditioning indices,
are within the region noted as �, as shown in Figure 12(f),
which is the intersection of the regions mentioned above.
For example, link lengths and values of the criteria of the
manipulator r1 =1.24, r2 =1.61, r3 =0.15, �=40°, are shown
in Table I. The architecture and the workspace of the
manipulator are shown in Figures 13 and 14, respectively.

8. CONCLUSIONS
In this paper, a design method is proposed for the design of
spatial 6-RUS parallel manipulators. The design method is
based on the physical model of the solution space and
performance atlases. The workspace, volume and shape, for
the manipulators is studied systematically. Some global
conditioning indices are defined to design the manipulators.
The atlases for the workspace and the global conditioning
indices are obtained and interpreted in the physical model of
the solution space. The design results are presented. The
technique of the optimal design used in this paper can be
applied to the design of other manipulators.
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