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Given an automaton, its behaviour can be modelled as the sets of strings over an alphabet A

that can be accepted from any of its states. When considering concurrent systems, we can

see a concurrent agent as an automaton, where non-determinism derives from the fact that

its states can offer a different behaviour at different moments in time. Non-deterministic

computations between a pair of states can then no longer be described as a ‘set’ of strings in

a free monoid. Consequently, between two states we will have a labelled structured set of

computations, where the structure describes the possibility of two computations parting from

each other while maintaining the same observable steps. In this paper, we shall consider

different kinds of observation domains and related structured sets of computations.

Structured sets of computations will be organised as a category of generalised trees built

over a meet-semilattice monoid formalizing the observation domain. Theorems allowing us

to introduce the usual concurrency operators in the models and relating different models

will then be obtained by first considering ordinary functors (on and between the observation

domains), and then lifting them to the categories of structured sets of computations.

1. Introduction

Parallel processes and distributed computations can be described and scrutinized from

different viewpoints. Indeed, several approaches, based on different intuitions about the

relevant aspects of concurrent systems, have been recommended to describe their be-

haviour. Often one of the distinguishing features of concurrency models is the stress they

put on causality, co-occurrency and non-determinism. They range from synchronization

trees (see, for example, Milner (1983) and Milner (1989)), where the stress is on the

concepts of non-determinism and communication while causality is ignored and concur-

rency is rendered as non-deterministic interleaving, to Petri Nets (Reisig 1985), where

concurrency, causality and independence are the basic building blocks. In between these

two extremes, many other non-interleaving models have been introduced, among these

we would like to mention Trace Theory (Mazurkiewicz 1987), Event Structures (Winskel

1987), Labelled Event Structures (Castellani et al. 1983), Concurrent Histories (Degano

and Montanari 1987) and Pomsets (Pratt 1986). As the number of different models has

increased, there have been correspndingly many attempts at comparing them. We refer

the interested reader to Winskel et al. (1995), for a comprehensive exposition.

Non-determinism is a key notion in all the models mentioned above, and it is frequently
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obtained by structuring the set of computations as trees and labelling them using a suitable

alphabet of visible actions. The aim of this paper is to provide a general categorical

account of tree-like labelled sets of computations, in order to capture many of the

proposed concurrency models and give a uniform account of concurrency, both in the

case of (possibly timed) interleaving and of true concurrency.

The basic idea stems from language and automata theory. Given an automaton, its

behaviour can be modelled as the sets of strings over an alphabet A that can be accepted

from any of its states. Thus, successful experiments relative to a pair of states (z, z′), are the

set of observed (labelled) computations between z and z′; this set of successful experiments

is usually referred as ‘the language from z to z′’. A language is a subset of A∗, and the

study of automata can be transferred to the calculus of (regular) languages. This approach

– which leads us to obtain computations, not as the result of a complete transition ‘from

an initial to a terminal state’, but as the concatenations of the computations obtained

from the transitions from any state to any other state (Betti and Kasangian 1985) – will

be referred to here as ‘local’, in accordance with classical categorical terminology.

When we consider concurrent systems, we can see a concurrent agent as an automaton,

where non-determinism derives from the fact that its states can offer a different behaviour

at different moments in time. Non-deterministic computations between a pair of states

can then no longer be described as a ‘set’ of strings in a free monoid, because apparently

equal steps can lead to different computations. Consequently, between two states we will

not have a set of strings but a labelled structured set of computations, where the structure

describes the possibility of two computations parting from each other while maintaining

the same observable steps. We shall assume that the behaviour of an agent can be explored

by proposing a set of experiments belonging to a given observation domain, that is, we will

consider the impact of each element of the observation domain on the considered agent.

Given an agent X, the result of a single successful experiment on X will be considered as

a computation performed by X to become another agent U. Computations are labelled by

elements of the observation domain corresponding to successful experiments. The labelling

provides ‘observational’ information, called the extent of a computation. But, we also have

‘relational’ information, called the agreement, relative to pairs of computations. For any

two pairs of computations u and v, agreement(u, v) specifies how far two computations

can be considered indistinguishable via experiments. Extent and agreement induce a

tree-like structure on the computations of an agent that records all successful experiments

performed on it. The behaviour of an agent (its ‘possible future’) is the full set of structured

computations that it may perform. To provide a local view of systems, it is important

to consider the structured set of computations between two agents X and U, that is, to

the fragment of the behaviour of X after which X behaves like U. The picture on the

following page describes, via the ‘fat’ lines, the structured set of computation from X to

U.

In this paper, we shall consider different kinds of observation domains and related

structured sets of computations, and will show that they correspond to known algebraic

models. Structured sets of computations will be organised as a category of generalised

trees built over a meet-semilattice monoid formalizing the observation domain. Theorems

allowing us to introduce the usual concurrency operators in the models and relating
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different models will then be obtained by first considering ordinary functors (on and

between the observation domains) and then lifting them to the categories of structured

sets of computations.

Our main aim is to show that the study of labelled structured sets of computations, in

analogy with that of automata languages, can be carried in a strict parametrical way both

in the interleaving and the true concurrent models, by simply changing the observation

domains, that is, the labelling, and not the underlying structure.

As shown in previous papers (Kasangian et al. 1987; Kasangian and Labella 1992),

and still in analogy with automata theory, we remind the reader that agents belong to a

category enriched over a category of structured sets of computations. Any pair of agents

can be related by considering the structured set of computations performed by the first

to evolve to the second.

We shall start by introducing the observation domains. In Section 2 we will introduce

the notion of meet-semilattice monoid and show that linear (discrete or continuous)

observation domains, and Mazurkiewicz trace observation domains, are examples of this

monoid. After introducing the observation domain, the crucial definition of observational

trees and the morphism between them is given. Linear and trace structured sets of com-

putations are shown to be the observational trees corresponding to the meet-semilattice

monoids mentioned above. They are then used to illustrate some instances of the appli-

cation of our theory, namely Milner’s agents (Milner 1983), Cardelli’s continuous time

agents (Cardelli 1982) and trees labelled by Mazurkiewicz Traces (Mazurkiewicz 1987)

as well as Winskel’s event structures (Winskel 1987). A few properties of the category

of observational trees are established. In particular, we prove that these categories are

equipped with a sum (which naturally models non-determinism) and a (non symmetric)

tensor product (which naturally models sequentialization). In the final part of Section 2

we prove a series of theorems that enable us to relate categories of languages and of

observational trees, and thus to evaluate our generalization from a categorical point of

view.

In Section 3, we start with an account of all the functors that can be defined between

categories of observational trees starting from homomorphisms between meet-semilattices.

We consider this section as the core of the paper: it shows that the functors relating the

different models follow directly from general structural reasoning and are not obtained

via ‘ad hoc’ constructions. In Section 3.2 our theory is re-read in strict categorical terms
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and used to establish more sophisticated results, which allow a deeper insight into the

structural connections between different concurrency models; in particular, it throws light

on the interplay between the branching structure of computations and the labelling in

different models when modelling non-deterministic behaviours. Some basic definitions of

category theory needed to read this section are given in the Appendix.

In Section 4, we present and comment on results obtained for the proposed notion of

an operational tree for modelling different aspects of concurrency. In particular, we show

how categories of agents can be defined, and how a synchronization operation can be

lifted to them starting from a synchronization function. We also explain how our category

of observational trees can carry a notion of iteration that is a direct generalization of

the Kleene ∗-operator and which enjoys initiality properties analogous to those of regular

languages.

Section 5 is devoted to comparisons with related work that is directed at the same

problem.

2. Basic definitions and constructions

In the first part of this section we introduce the basic definitions and the main categorical

structures; in the second part we compare these with well-known categories of languages

(like those in Betti and Kasangian (1985)).

2.1. Observation domains

As mentioned in the introduction, we are interested in viewing structured sets of compu-

tations as trees labelled from some observation domain. Hence we first present a structure

for modelling observation domains.

Definition 2.1. A meet-semilattice (S,6,∧,⊥) is a partial order with ∧ the greatest lower

bound for any pair of elements, and ⊥ the bottom element.

A meet-semilattice monoid (S, •, 1,6,∧,⊥) is a monoid (S, •, 1) such that the prefix relation

6 between its elements (that is, s 6 t if and only if there exists u ∈ S such that s • u = t)

induces a meet semilattice structure.

The following examples illustrate some of the meet-semilattice monoids we will consider

as possible observation domains.

a. Linear observation

A free monoid A∗ on an alphabet A is a meet-semilattice (A∗,6,∧, ε), where s 6 t if and

only if s is a prefix of t and s ∧ t is the maximal common prefix of s and t. The empty

word ε is the bottom element of the semilattice as well as its identity.

Given an alphabet A of atomic actions, we use A to denote the corresponding semilattice

monoid (A∗, •, ε,6,∧, ε), and we can use it as the observation domain when we are

interested in interleaving semantics for discrete time models.
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This example can be extended to elementary actions with different duration. Given an

alphabet A of atomic actions, a partial piece-wise constant function (pc-function, for short)

f is a function from R+ (the non-negative real numbers) to A defined on a bounded

interval [0, t) ⊆ R+, such that for any α∈A, we have f−1(α) is the union of finitely many

intervals of the form [r, s) , with r < s, where both r and s are non-negative real numbers.

Let us denote by CA the set of pc-functions. (CA, •,Ω,6,∧,Ω) can be viewed as a

meet-semilattice where:

(i) f 6 g iff if x∈dom(f), then f(x) = g(x),

(ii) f ∧ g is defined as follows:

(a) dom(f∧g) = [0, t) where t is such that for all x < t both f(x) and g(x) are defined,

f(x) = g(x), and, if f(t) and g(t) are both defined, then f(t) 6= g(t),

(b) (f ∧ g)(x) = f(x) for every x ∈ dom(f ∧ g).

(iii) The bottom element is the empty function Ω.

CA can also be viewed as a monoid by defining the composition f • g of two pc-functions

f : [0, s)→A, g : [0, t)→A, as follows:

(f • g)(x) = if x < t then f(x) else g(x− t).
The identity of • is the empty function Ω. One can easily see that 6 is prefix order with

respect to this composition.

The corresponding semilattice-monoid CA is the observation domain for interleaving

semantics in the continuous time case. Replacing R+ by N we would recover the discrete

case.

b. Mazurkiewicz traces

A monoid of traces on a concurrent alphabet (A, I), where A is a set of events and I is a

symmetric and irreflexive (independency) relation, is the monoid (A∗, ·, ε)/≡, where ≡ is

the following congruence relation (Mazurkiewicz 1987) :

s≡t iff there is a sequence < s0, s1, . . . , sn > such that:

(i) s = s0,

(ii) t = sn, and

(iii) for every 0 6 i 6 n − 1 there are ui, vi∈A∗ such that si = uiαβvi, si+1 = uiβαvi, and

(α, β)∈I .
A trace [s] is an equivalence class with respect to ≡. (A∗/≡,6,∧, [ε]) is a semilattice,

where, given the traces [u] and [v], we put [u] 6 [v] iff for every ui in [u] there is vj in

[v] such that ui is a prefix of vj . The meet of the two traces [u] and [v] is the trace [w]

such that w is a maximal word in the set {wij |wij prefix of ui and wij prefix of vj and

ui ∈ [u] and vj ∈ [v]}. It is easy to see that for any choice of the maximal word w we

indeed get the same trace, which is [w]. The bottom element is [ε], because the empty

string is a prefix of every string. The associated structure is called TA and will be the

(Mazurkiewicz) trace-observation domain. One could think of a temporal generalization

as in the previous case.
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2.2. Structured sets of computations

Structured sets of computations will be modelled as trees according to the intuition that

they are generalized ‘languages’ with extra information about agreement.

Definition 2.2. An observational tree over a meet-semilattice S or S-tree is a triple

C = (C, e, a), where

— C is a set (the set of paths)

— e : C→ S is a function called extent (the labelling of paths)

— a : C × C → S is a function called agreement (the gluing between paths)

such that for every x, y, z ∈ C
— a(x, y) 6 e(x) ∧ e(y)

— a(x, x) = e(x)

— a(x, y) ∧ a(y, z) 6 a(x, z)
— a(x, y) = a(y, x).

Let us now illustrate observational trees in the cases mentioned above.

a. Linearly labelled structured sets of computations

Let the observation domain be A (see a. above), then computations between Milner’s

agents can be viewed as (observational) trees over A by considering the structured set

of computations that connect pairs of agents (see also Kasangian et al. (1987) and

Kasangian and Labella (1992)). Here, structured sets of computations will be indicated

by the observational tree T =< T, e, a >, where the elements of T are denoted by pi.

– Every computation p in T is labelled by a word in A∗.
– Given any two computations p1 and p2, a(p1, p2) is a common prefix of e(p1) and e(p2).

As an example, let us take T = {p1, p2, p3}, A = {α, β, γ, ζ}, e(p1) = αβζ, e(p2) = αβα,

e(p3) = βγ, a(p1, p2) = α, a(p2, p3) = a(p1, p3) = ε, (and, of course, a(pi, pi) = e(pi) for

i = 1, 2, 3). They give rise to the structured set of computations T =< T, e, a > depicted

in the figure below, where the elements of T are written in ‘leaf positions’.

α

αζ

γββ

β

p
3

p
2

p
1

T  :

If we consider agents that may perform actions with temporal duration, as in Cardelli

(1982), we adopt the observation domain CA of pc-functions (see a. above). A structured

set of computations corresponding to CA, is, for example, a continuous tree with three

paths p1, p2, p3 labelled by f1, f2 and f3, respectively,

f−1
1 (α) = [0, t1), f−1

1 (ζ) = [t1, t2)

f−1
2 (α) = [0, t′1), f−1

2 (β) = [t′1, t′2)
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f−1
3 (α) = [0, t

′′
1), f−1

3 (γ) = [t
′′
1, t

′′
2)

a(p1, p2) = α on [0, t12), a(p2, p3) = α on [0, t23), a(p1, p3) = α on [0, t13)

can be represented as follows:

0

t13=t12

t23
t1
t1''
t1'

t2
t2''
t2'

p
1

α

β

γ

α

α

ζ

p
1

p1

The duration of an action is represented by its projection on the real axis and agreement

between paths is indicated by their running in parallel.

b. Mazurkiewicz trace labelled structured sets of computations

We can use TA to label our observational trees. Notice that in this case they cannot be

depicted as actual trees any longer; bifurcations are not points as in the previous (discrete)

case:

A = {α, β, γ, η} I = {(β, γ), (γ, β)} T = {p, q}
e(p) = αβγ e(q) = αβγη a(p, q) = αβ

where by [βγ] we indicate that the order in βγ is invertible. This example illustrates the

fact that we represent trees without relying on the classical notion of node; it is our notion

of agreement that enables us to obtain ‘trees’ from sets of traces. We cannot see how

classical, node-based trees, could be introduced to associate non-deterministic behaviour

to Mazurkiewicz traces.

α
[βγ][βγ]

η

q

p

c. Event structures

Let us now consider a different case. Recall that < E,6,# > is said to be a (prime) event

structure (Nielsen et al. 1981) iff

(i) E is a set of so-called events,
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(ii) 6 and # are two binary relations on E such that 6 ∩# =6,

(iii) 6 is a partial order such that ∀e ∈ E {e′|e′ 6 e} is finite, and

(iv) # is symmetric, irreflexive, and hereditary (that is, if e#e′ and e′ 6 e′′ then e#e
′′
).

For an event structure we can define a concurrency relation co as (E ×E)/(6 ∪ > ∪#),

that is symmetric and irreflexive.

An event structure is said to be conflict free if # =6; a configuration in E is a conflict

free, downwards closed subset of E.

It is well known, and immediately seen, that a conflict free event structure F can be

viewed as a trace over the concurrent alphabet consisting of the labels occurring in it

and the concurrency relation defined over it and vice versa. One can also show that an

event structure can be viewed as an observational tree labelled over this structure and

with bifurcation representing conflict. In fact, if L is the language of an event structure

E, we have (L∗, ·, ε)/co is a trace monoid. Let X be the set of its maximal (with respect

to inclusion) configurations: they are conflict free event structures, therefore they are

naturally thought of as labelled by traces. Agreement between two of them corresponds

to the maximal common subconfiguration.

But trace labelled trees are more expressive then event structures: the picture proposed

as an example of trace labelled tree above, can be viewed as the description of the

following ‘labelled’ event structure, where vertical lines denote order and # conflict:

α

γ
β

η

γ
#

Connections between trace languages and event structures are well known. They have

been studied, for instance, in Bednarczyk (1988) and Nielsen et al. (1981). In Winskel and

Nielsen (1995) it is claimed that labelled event structures and trace languages correspond to

different intuitions, in that labelled event structures generalize synchronization trees, while

trace languages generalize languages. We will see here that the notion of observational

tree, can encompass, in a very natural way, both trace languages and a kind of labelled

event structures.

2.3. The category of observational trees

Morphisms between trees are functions from paths to paths that: (i) preserve labels, and

(ii) have images that are ‘glued together’ at least as much as in their domain.

Definition 2.3. A morphism f : C1 → C2 between S-trees C1 =< C1, e1, a1 > and C2 =<

C2, e2, a2 > is a function from C1 to C2, still denoted by f, such that:
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(i) e1(x1) = e2(f(x1)) for any element x1 in C1, and

(ii) a1(x1, y1) 6 a2(f(x1), f(y1)), for any two elements x1, y1 ∈ C1, where 6 is the order in

S.

Example 2.1. Let us consider the tree T as above and T′ =< T ′, e′, a′ >, where

T ′ = {p4, p5, p6, p7},
e′(p4) = αβζ, e′(p5) = αβα, e′(p6) = βγ, e′(p7) = βζ,

a′(p4, p5) = αβ, a′(p7, p6) = β, a′(p4, p6) = a′(p5, p6) = a′(p7, p4) = a′(p7, p5) = ε.

The function f : T → T ′, such that f(p1) = p4, f(p2) = p5, and f(p3) = p6 is a morphism

between < T, e, a > and < T ′, e′, a′ >.

ζ

α

αζ

γββ

βα

γβ

β

α

ζ
p

6

p
2

p
3

p
1

p
4

p
5

p
7

f

Definition 2.4. We use STrees to mean the category of observational S-trees with the cor-

responding morphisms and composition defined as function composition (hence ATrees,

CATrees and TATrees will correspond to the observation domains A, CA and TA respec-

tively).

Facts.

(i) The category STrees has coproducts and initial object. We have that the sum of

C1 =< C1, e1, a1 > and C2 =< C2, e2, a2 > is C =< C1 + C2, e1 + e2, a >, where

+ denotes the disjoint union (that is, the coproduct in the category Set) and the

agreement function is defined as follows:

a(xi, yi) = ai(xi, yi) if xi and yi are in the same Ci (i = 1, 2).

=⊥ otherwise.

The initial object is the empty tree 0 =<6,6,6 >.

(ii) The category STrees has products and terminal object. The product C =< C, e, a > of

the trees C1 =< C1, e1, a1 > and C2 =< C2, e2, a2 > is defined as follows:

C = {< x1, x2 > |x1 ∈ C1, x2 ∈ C2, e1(x1) = e2(x2)},
e(< x1, x2 >) = e1(x1) (= e2(x2)) and

a(< x1, x2 >,< y1, y2 >) = a1(x1, y1) ∧ a2(x2, y2) , where xi, yi ∈ Ci (i = 1, 2).

The terminal object is the tree < S, 1S ,∧ >.
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The sum of two objects in STrees can be represented by gluing the roots, as in the

following picture:

T2T1

Sum will be used to model non-determinism.

Up to this point we have not exploited the monoidal structure of the different meet-

semilattice monoids we had in the examples. If S is a meet-semilattice monoid, we

can define a concatenation operator on STrees (Bergstra and Klop 1985). Essentially

concatenating two trees, T1 and T2, consists of appending a copy of the second one to

every leaf of the first one, as in the following picture of T1⊗T2:

T2

T1

T2T2

Proposition 2.1. Let S be a meet-semilattice monoid. The operation • : S×S→S induces

a tensor product ⊗ : STrees× STrees→ STrees. Thus, the category STrees is a monoidal

category (Eilenberg and Kelly 1965).

Proof. In STrees the concatenation ⊗ is defined as follows. For any two observational

trees C1 =< C1, e1, a1 > and C2 =< C2, e2, a2 >,

C1 ⊗ C2 =< C1×C2, e1 ⊗ e2, a12 >

where for xi, yi ∈ Ci (i = 1, 2),we have
e1 ⊗ e2(< x1, x2 >) = e1(x1) • e2(x2)

a12(< x1, x2 >,< y1, y2 >) = a1(x1, y1) • a2(x2, y2) if x1 = y1

= a1(x1, y1) otherwise.
For any two morphisms f : C1→ C3 and g : C2→ C4, where Ci =< Ci, ei, ai > for i ∈

{1, . . . , 4}, f⊗g is a morphism from C1⊗C2 to C3⊗C4, that is, from < C1×C2, e1⊗e2, a12 >

to <C3×C4, e3 ⊗ e4, a34 >, such that:

for any x1 in C1 and x2 in C2, (f ⊗ g)(x1, x2) =< f(x1), g(x2) > in C3×C4.

It is straightforward to verify that ⊗ is an associative functor, and 1 =< {x}, e, a >, where

e(x) = a(x, x) = ε, is its identity.
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Remarks.

(i) Our tensor product is non-commutative, because it reflects the essential asymmetry of

sequential composition.

(ii) 1 corresponds to a single computation with extent ε, and 0 has no corresponding

computation. One can see that 0 has the disaster, indeed we have 0⊗ T = T⊗ 0 = 0

for any T in STrees. On the other hand, 1 corresponds to successful termination.

(iii) In our model the equation 1 + 1 = 1 does not hold. We could obtain it by adding in

Definition 2.2, the extra (skeletality) condition

- a(x, y) = e(x) = e(y) implies x = y

We have preferred not to impose this condition, because, with the skeletality condition,

STrees would fail to be closed in many cases (see Theorem 4.1) and tensor product

would not be distributive on the left with respect to sum, as it is natural in order to

maintain the analogy with regular languages as far as possible. On the other hand,

the presence of an idempotence law T + T = T, would be in contrast with the fact

that sum is a coproduct.

2.4. Subcategories of ATrees and languages

Let us first compare the classical interleaving model for discrete time agents with languages

on the same alphabet. Any language (a subset of the free monoid A∗) can certainly be

viewed as a tree where

(i.) all agreements are ε and

(ii.) all branches have different extent, that is, with no multiplicity on the branches.

Hence languages over a fixed alphabet A constitute a subcategory Alang of ATrees;

morphisms are just language inclusions. In fact, the inclusion functor factors through

the subcategory Atrees of ATrees where trees are without multiplicities on the branches,

but still with non-trivial agreements. Let us denote by I : Alang→ Atrees the inclusion

functor.

We also define a forgetful functor V : Atrees→ Alang, that associates to each tree the

language of the words labelling its branches.

Proposition 2.2. V is right adjoint to I , and hence Alang is a coreflective subcategory of

Atrees. Furthermore, V also has a right adjoint N : Alang→ Atrees, and hence Alang is

also a reflective subcategory of Atrees.

N : Alang→ Atrees associates with each language the tree with maximal agreements

among the branches. The construction is straightforward: given two objects b1 and b2 in

the discrete A-tree L corresponding to the language L, their agreement N(L)(b1, b2) is just

the maximal common prefix of the two words. The construction is evidently functorial

because inclusions are preserved.
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If we drop the requirement of multiplicity on the branches, but keep the one on trivial

agreements, we obtain a coreflection between the subcategory of trees with trivial agree-

ments (multilanguages ALang) and ATrees, with an inclusion functor J : ALang→ ATrees

and a forgetful functor U, that simply forgets agreements and keeps multiplicities, hence

giving multilanguages. Of course, I and V are restrictions to the subcategory Atrees of J

and U, respectively.

There is also a functor M : ALang→ ATrees, associating with each multilanguage the

tree with maximal agreements among the branches, so N is the restriction of M to Alang.

Proposition 2.3. U is right adjoint to J , hence ALang is a coreflective subcategory of

ATrees. Furthermore, U also has a right adjoint M : ALang→ ATrees, hence there is a

reflection from ALang to ATrees.

Remark 2.1. Thus, given a language we have a free and a cofree tree, or a discrete and a

codiscrete one and the same happens with multilanguages. The adjunctions J a U a M
restrict to I a V a N from Alang to Atrees.

U is right inverse to both M and J , as V is right inverse to both N and I .

Alang Atrees

ALang ATrees

I

V

N

J

U

M

Proposition 2.4. M and U (N and V ) are monoidal functors (Eilenberg and Kelly 1965).

Similar results can be proved in the general case of STrees, and, therefore, for the obvious

generalization of languages to continuous time and for trace languages.

3. Relating different models

3.1. Changing observation domains

The aim of our work is to provide a general framework for describing concurrency

models. Here, we show that the algebraic structure we rely on enables us to capture

naturally different models as instances of our general framework, while permitting a

smooth (uniform) transition between the different models by means of morphisms between

different observation domains. In this way, the intrinsic relations between different models

become more evident. Below, we introduce the required morphisms.

Definition 3.1. If S and S′ are meet-semilattices, a local meet-semilattice homomorphism

f : S → S′ is a monotonic function such that if two elements have a common upper

bound, their meet is preserved.

https://doi.org/10.1017/S0960129599002935 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129599002935


Observational trees as models for concurrency 699

Proposition 3.1. (Change of base) A local meet-semilattice homomorphism S → S′ in-

duces a functor F : STrees→ S
′
Trees.

Proof. Monotonicity is sufficient to define F in the natural way. Given X = (X, e, a),

F(X) = (X, e′, a′), where e′ = fe and a′ = fa. The condition on preservation of meets

is needed to satisfy triangular inequality, because in that case a(x, y) and a(y, z) are

dominated by e(y) and, therefore, their meet is preserved. Given a morphism h, F(h) is

the same function.

Let us start by changing alphabet, that is by considering a literal monoid morphism

(that is, one induced by a function between the alphabets (Eilenberg 1974)) l : A∗ → A
′∗

between the corresponding free monoids. l is also a local meet-semilattice homomorphism,

so relabelling on trees L : ATrees→ A′Trees is an instance of Proposition 3.1 above.

Proposition 3.2. Though, in general, there is no right adjoint to a functor induced by a

local meet-semilattice homomorphism, we have that in the case of an injective relabelling,

L has a right adjoint, namely the functor that relabels back paths using l−1, deleting every

path whose label is not covered by the function l.

The relabelling functor can also be defined for traces, but in this case we have to require

that the function h between alphabets is such that if α and β are independent, then h(α)

6= h(β). This requirement is strictly related to the ‘absence of autoconcurrency’, which

is usually imposed on Mazurkiewicz’s traces: here it is crucial just to prove that we do

indeed have a local meet-semilattice homomorphism and hence the change of base is

possible.

Proposition 3.3. If S and S′ are both meet-semilattices monoids and the local meet-

semilattice homomorphism f : S → S′ is a monoid homomorphism, the corresponding

functor F : STrees→ S
′
Trees is a monoidal functor (Eilenberg and Kelly 1965).

Therefore the property of being a local meet-semilattice homomorphism is needed to

guarantee the tree structure, while preservation of composition is needed to preserve

concatenation.

Up to this point we have considered models for concurrency where functions between

observation domains are local meet-semilattice homomorphism and monoid homomor-

phism as well, but, as we shall see later, there are interesting models where only the first

property holds.

Let us now use the change of base machinery to investigate the relationships between

discrete and continuous time structured sets of computations. As remarked in Section 2,

if in CA we replace R+ with N, we obtain the definition of A. In other words, pc-functions

defined on N are equivalent to elements of A∗. Therefore A is a sub meet-semilattice

monoid of CA.

Proposition 3.4. The inclusion homomorphism c : A → CA has a left inverse d that is a

local meet-semilattice homomorphism.
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Proof. (Sketch) Given a pc-function f, we have d(f) = αn1

1 . . . α
nk
k , where αi are occur-

rences of values of f in an increasing order and ni is the maximal natural number in

|[r, s)|, with [r, s) = f−1(αi).

Corollary 3.1. Besides the obvious inclusion functor C : ATrees → CATrees induced by

the inclusion i, we have a ‘discretization functor’ D : CATrees→ ATrees as one of its left

inverses (but not an adjoint).

More interesting is the relationship between linear and trace labelled structured sets of

computations. Given a concurrent alphabet (A, I), we consider the categories ATrees and

TATrees. There is a canonical monoid homomorphism from A∗ to A∗/≡, which is induced

by the congruence ≡ generated by the independence relation I . This homomorphism is

still a local meet-semilattice homomorphism A → TA and induces a functor tr : ATrees

→ TATrees.

Thus, for any given A-tree T =< T, eT , aT > in ATrees, we get the TA-tree tr(T), with

the same paths. Words that label the paths of the tree are replaced by the corresponding

traces (see figure below; where for each path p∈T we use [[p]] to denote the corresponding

path in tr(T)).

Let us now consider the functor int : TATrees→ ATrees, called the interleaving functor.

Intuitively, given a tree with paths labelled by traces, the functor int constructs a tree with

paths labelled by all strings belonging to those traces. A path labelled by a trace is split

by int into a set of paths labelled by strings in the trace (interleaving). The agreement

between two paths with labels s1 and s2 is the maximal initial common sub-string of s1
and s2, which is not longer than the agreement of the corresponding traces. Functor int is

formally defined as follows:

— Given the TA-tree Z =< Z, eZ , aZ > (that is a tree labelled by traces in A∗/ ≡),

int(Z) =< Z ′, eZ ′ , aZ ′ > is the A-tree (a tree labelled by words in A∗) such that:

– Z ′ = {< p, s > |p ∈ Z, s ∈ eZ (p)},
– eZ ′ (< p, s >) = s,

– aZ ′ (< p1, s1 >,< p2, s2 >) = (s1 ∧ s2) restricted to the length of aZ (p1, p2).

— Given the TA-morphism f : Z1 → Z2, int(f) : int(Z1) → int(Z2) is the A-morphism

defined as follows: int(f)(< p, s >) =< f(p), s > (where f here denotes also the function

corresponding to the morphism f).

We have that int is a functor and, for any f, int(f) preserves the extents of paths.

The figure below provides an example of successive applications of tr and int to an

A-tree: the alphabet is A = {α, β, γ} and the independency relation is I = {< β, γ >,

< γ, β >}:
The two leftmost paths in the bottom tree represent the image of the original tree T as

a subtree of int(tr(T)) via the canonical morphism arising from the adjunction between

functors int and tr.

Theorem 3.1. The functor int is right adjoint to tr.
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i n  TATr e e si n  ATr e e s
α

γ
β
α

γγ
β

p

q

α

α

[βγ]

α

α

[βγ]

[βγ]

γ

β γ
α

β

γβ

β
γ γ

γ

ββγ

γβ

a([p],[q])=[αβ]={αβ}.
agreement:

q4q3q2q1

p1

[[p]]

[[q]]

tr

ins

Proof. Let us consider an A-tree T =< T, eT , aT > and a TA-tree Z =< Z, eZ , aZ >.

Let tr(T) be < T
′′
, eT ′′ , aT ′′ > and int(Z) be < Z ′, eZ ′ , aZ ′ >.

Recall that: T
′′

= T , and that [[p]] denotes the path in T
′′

corresponding to path p in T .

Given k : T→ int(Z) we define k′ : tr(T)→ Z as follows:

k′([[p]]) =def π1(k(p)) for any p ∈ T .

Conversely, given h : tr(T)→ Z we may define h : T→ int(Z) as follows:

h(p) =def< h([[p]]), eT (p) > for any p ∈ T . Thus, we have

tr

int

k

int(Z)

tr(T)T

k' h

TATreesATrees

Z

h

One can easily show that k′ is indeed a TA-morphism, because

(i) eT ′′ ([[p]]) = eZ (k′([[p]])), and

(ii)aT ′′ ([[p]], [[q]]) 6 aZ (k′([[p]]), k′([[q]])),

and h is an A-morphism, because:
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(i) eT (p) = eZ ′ (h(p)), and

(ii)aT (p, q) 6 aZ ′ (h(p), h(q)).

We have that (k′) = k, and (h)′ = h. The naturality conditions are easily checked.

3.2. Fibrations and event structures

The reader acquainted with the notion of enriched category will have certainly noticed

that we are in a particular case of enrichment over a locally posetal 2-category (Walters

1981):

— a meet-semilattice S is a particular locally posetal 2-category (see the Appendix)

— an S-tree is a symmetrical category (enriched) over S and an S-morphism is an

S-functor.

From this point of view, considering the well-known correspondence between enrich-

ments and fibrations (Betti et al. 1983), we could rephrase and extend the result about

relabelling in terms of fibrations. Let us also recall that a split op-fibration over a category

C is a functor from C to Cat (Gray 1966). We know that a category ATrees can be

associated with every free monoid A∗, considered as a posetal 2-category A. Similarly, a

category CATrees is associated with every CA and a category TATrees is associated with

TA.

Let us use LO (Linear Observation domains) to denote the category whose objects

are posetal 2-categories induced by free monoids and whose arrows are homomorphisms

of 2-categories (see the Appendix) induced by literal monoid morphisms between the

corresponding monoids. Analogously, we can consider CO (Continuous Observation

domains) and, more interestingly, TO (Mazurkiewicz Trace Observation domains), which

are the corresponding categories in the other cases defined with the morphisms used above

for the change of base. Therefore we have the following theorem.

Theorem 3.2. The construction of trees over a free monoid (semilattice of pc-functions), a

monoid of traces, respectively, amounts in every case to a split op-fibration given by the

following functors

treeL : LO→ Cat

treeC : CO→ Cat

treeT : TO→ Cat

Proof. The correspondence between objects is immediate:

treeL(A) = ATrees, treeC(CA) = CATrees, treeT(TA) = TATrees.

The change of base gives the correspondent of a morphism. The verifications are routine.

The functors above can be described as categories. For the first case, we will use

TREEL to denote the category of observational trees over a variable free monoid. Objects

of TREEL can be described as pairs (X,A), where A is the meet semilattice monoid
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associated with the alphabet A, and X is an A-tree. Morphisms of TREEL are pairs

(u, f) : (X,A) → (X ′,A′), where f : A → A′ is a morphism of LO, and u : F(X) → X′
is a morphism in A′Trees. Given (v, g) : (X′,A′) → (X

′′
,A

′′
), with g : A′ → A

′′
and

v : G(X′)→ X
′′
, the composite is given by (vG(u), gf).

The fibred structure of TREEL is reminiscent of a similar one in the context of enriched

categorical automata theory (Betti and Kasangian 1985). An analogous description can be

given in the trace case, that is, for TREET. Theorem 3.2 states that by changing alphabet

we obtain a very smooth transformation on the corresponding trees. Below we give a

schematic picture in the case of LO; the other cases are similar.

A'Trees

TREEL

LOA A'

ATrees

We can use the categories obtained above as fibrations to investigate more deeply the

comparison between trace labelled trees and the event structures considered in Section

2, seen as a tree labelled by traces. We shall prove that a ‘suitable’ category of event

structures is equivalent to a subcategory of the fibration TREET.

We will now define the category ES of event structures. Objects are event structures, as

defined in Section 2, morphisms are defined as follows.

Definition 3.2. Given two event structures E and F , morphisms of event structures are

functions h : E → F such that

(i) If C is a maximal configuration (with respect to inclusion) of E, then h(C) is a maximal

configuration of F .

(ii) h reflects the relations ‘<’ and ‘=’ locally, that is, if e, f ∈ C , then

— If h(e) < h(f), then e < f

— If h(e) = h(f), then e = f

Notice that our definition of morphisms is slightly more demanding than Winskel’s

(Winskel 1987). In particular, we require morphisms to be total functions. More informally,

Condition (i) is needed to preserve the extent of a path in a tree, while (ii) is needed to

have ‘good morphisms’ (the ones of TREET) between the correspondent trace monoids.

We call it local because it reflects relations when restricted to a maximal configuration.

As a consequence of (i) and (ii), h preserves concurrency and reflects conflicts.
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Definition 3.3. Let us define TSC (‘good’ Trace labelled Structured sets of Computations)

as the full subcategory of TREET made out of superskeletal trees, that is, those for which

it never happens that a(x, y) = e(x).

By considering TSC instead of TREET, we exclude some (in this case) pathological

structures, namely those where a path is completely glued to another path. This would

mean that a maximal configuration would be completely contained in another maximal

configuration.

In this context, we can establish a result similar to that reported in Winskel and

Nielsen (1995, Section 8.3.2), where an adjunction is defined between a category of event

structures and a category of trace languages. We will show how to define an adjunction

in our case, but we will also point out that the branching structure of trace-labelled trees

does not play an essential role; agreement between paths in a tree obtained from an

event structure is always obtained as the maximal one compatible with the labelling. This

means that, as pointed out in Winskel and Nielsen (1995), in contrast with labelled event

structures, trace languages and event structures do not properly take non-determinism

into account. Nevertheless, it is challanging to investigate how far trace-labelled trees can

go toward modelling non-determinism. The last theorem of this section will be the answer

to this question.

We now define a functor Θ : ES → TSC that describes an event structure as a tree

of traces. Given an event structure (E,6,#), consider the trace monoid TE, where E

is viewed as an alphabet and E∗ is quotiented out by the congruence generated by the

concurrency relation co. It is well known (see, for example, Winskel and Nielsen (1995))

that configurations correspond to objects of TE.

— On the objects, Θ is defined by Θ(E) = (XE,TE), where XE = ({Ci}, e, a) is the TE-tree

whose paths are maximal configurations of E. The extent e(Ci) is just the trace [f]i,

where f is any representative of Ci viewed as a trace. The agreement a(Ci, Cj) = [g]ij ,

where g is a representative of Ci ∩ Cj .
— As for the morphisms, observe first that an arrow h : E → F in ES induces a literal

morphism TE → TF (still called h), that is a local meet-semilattice morphism in TO,

because if α and β are independent, then h(α) 6= h(β), is injective when restricted to

a configuration and preserves the independency relation because it reflects order and

conflict.

To obtain an arrow in TSC from XE to XF, we still need a TF-morphism from

H(XE) to XF in TFTrees, where H(XE) has the same objects as XE, eH(XE)(x) = h(eXE
(x))

and aH(XE)(x1, x2) = h(aXE
(x1, x2)). Again, h induces a function from H(XE) to XF, since it

maps maximal configurations into maximal configurations, and it is in fact a TF-morphism

because h reflects conflicts, and hence preserves agreement.

To define a functor Γ : TSC→ ES:

— On the objects, we will associate with every (X,TA) in TSC an event structure

(E,6E,#E), where E is the set {αki}i∈J , of the letters α occurring in the extents e(xi)
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of X-paths, together with a double indexing according both to the path i and to

the occurrence order k, and quotiented out by the equivalence relation ρ defined as

follows: for all i and j in J , αki ρ αkj iff αk occurs in α(xi, xj).

The conflict relation #E is defined by: for all i and j in J , αki#Eαlj iff i 6= j and αk and

αl do not occur in α(xi, xj). The following relations are defined over occurrences and

then induced over equivalence classes.

The order relation 6E is induced by αki 6E αlj iff i = j and k 6 l.
— A TSC morphism (u, f) : (X,TA) → (X′,TA′) induces a function between the corre-

sponding event structures defined as Γ(u, f)(αki) = f(α)ku(i), which satisfies the require-

ments of Definition 3.2:

– It is well defined because of the non-autoconcurrency condition.

– It preserves maximal configurations because u preserves extents.

– It locally reflects ‘<’ and ‘=’ because f is a morphism of traces.

With all this, it is straightforward to prove the following theorem.

Theorem 3.3. The functor Γ : TSC → ES is right adjoint to Θ. Furthermore, ES is

isomorphic to a coreflective subcategory of TSC.

Theorem 3.3 establishes that an event structure corresponds to a particular choice

of conflicts in the world of its trace alphabet, because the agreement is always the

maximal one: the functor Θ selects this one. To consider actions in traces as events,

Γ distinguishes between different occurrences of the same action and defines ordering

and conflict according to the tree structure. Hence we have that trace-labelled trees are

considerably more expressive than (non-labelled) event structures with respect to non-

determinism (see Example b. of Section 2.2). On the other hand, they are not as expressive

as labelled event structures (general 2-categories woud be required to achieve this).

Actually trace-labelled trees lie between labelled and non-labelled event structures. We

will show that TSC is equivalent to the category of strictly labelled event structures, that

is, event structures where the labelling function strictly preserves concurrency in the sense

of Definition 3.4 below, where Condition (i) is the non-autoconcurrency condition of

Mazurkiewicz traces and Condition (ii) is a sort of preservation of concurrency.

Definition 3.4. A strictly labelled event structure < E,6,#, A, f > is an event structure

< E,6,# > with an aphabet A and a labelling function f : E → A such that, if e co e′

(i) f(e) 6= f(e′)
(ii) f(e) = f(e) and f(e′) = f(e′) implies that e and e′ are not consecutive in <.

A morphism between two strictly labelled event structures < E,6,#, A, f > and < E ′,6′,
#′, A′, f′ > is an event structure morphism h : E → E ′ and a function z : A → A′ such

that the following diagram commutes:

E

A'E'

A
f

zh

f'
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sLES is the category of strictly labelled event structures with their morphisms.

Theorem 3.4. There is an equivalence between TSC and sLES.

Proof. We can essentially re-use the proof of Theorem 3.3. Given < E,6,#, A, f >, to

define Θ′ from sLES to TSC:

— Let us consider TA as the trace monoid A∗ quotiented via the independence relation

generated by: aIa′ if there exist e and e′, such that e co e′ and a = f(e), a′ = f(e′).
This relation is well defined because, due to the strictness Condition (i) for f, we have

that aIa will never happen.

Then the trace labelled tree corresponding to < E,6,#, A, f >, E, has maximal

configurations as paths, each of them labelled via the trace of a linearization of its

labelled events; this trace is well defined because, by strictness Condition (ii), two

consecutive events will never have independent labels.

The agreement is given by the labelling of their intersection.

A morphism between strictly labelled event structures induces a morphism between

the corresponding trees. In fact, maximal configurations are sent into maximal con-

figurations, labelling is transformed according to z, which induces a trace language

morphism, because it commutes the diagram above and h preserves co and reflects

chains. The agreement in the image is not smaller than the image of the original

agreement because h reflects #.

— In the opposite direction, given a trace labelled tree (X,TA), to define Γ′ : TSC→ sLES,

we consider the set of all occurrences of labels on its paths as events; as in Theorem

3.3, A is the set of atomic labels with the obvious labelling function f from events

to labels; f is indeed a strict labelling. The rest of the proof goes as in Theorem

3.3, but in this case we have that Γ′Θ′(< E,6,#, A, f >) ∼=< E,6,#, A, f > and

Θ′Γ′(X,TA) ∼= (X,TA).

4. Further results on the model

So far we have described categories of observational trees extensively. It is possible to use

them in many ways for modelling different aspects of concurrency. Let us sketch some

applications and results (some of these have appeared before (Kasangian et al. 1987;

Kasangian and Labella 1992; Corradini et al. 1995)).

4.1. Modelling the world of agents

As pointed out in the Introduction, and in analogy with automata theory, we can use

our category of observational trees as a calculus and can relate pairs of agents (or states)

by means of the structured set of computations transforming one into the other. The
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composition of structured sets of computations is obtained by means of concatenation.

We will exploit here the fact that, due to the monoidal structure of S, (STrees, ⊗, 1) is

a monoidal category, therefore a category Ag of agents can be thought of as an STrees-

category in the sense of enrichment over a monoidal category, in the same way as an

automaton on an alphabet forms a category enriched over the corresponding languages.

STrees-functors transform categories of agents.

It is possible to show that, if the (left) cancellation property holds for S, the monoidal

category STrees is left-closed, that is, for every object T, the concatenation functor −⊗ T

has a right adjoint, to be considered as an internal hom-object functor; as a consequence

STrees is an STrees-category in a canonical sense and we have a canonical class of

models for agents on S. In simple terms, we have that an agent can be identified with its

behaviour.

Definition 4.1. A meet-semilattice monoid (S, •, 1,6,∧,⊥) enjoys the (left) cancellation

property if for every a, b and c in S: a • b = a • c implies b = c

Theorem 4.1. If S enjoys the (left) cancellation property, then the monoidal category

(STrees, ⊗, 1) is left closed and, therefore, it is an STrees-category in a canonical way.

Proof. Let us show how the assertion can be proved. The hom-object between any two

trees T1 =< T1, e1, a1 > and T2 =< T2, e2, a2 > consists of the part of T2 including all

paths from the root of T2 to a homomorphic copy of T1. Thus, the hom-object is the

structured set of computations leading from the agent T2 to a homomorphic copy of the

agent T1 (see figure below).

Explicitly, the tree STrees(T1,T2) =< T, e, a >, where:

— T = {π
sC : T1 → C|π

sC is a morphism, s ∈ S and C is a tree}, where:

– C is a subset of paths in T2 satisfying the following two conditions:

(i) for each path p ∈ C s 6 e2(p),

(ii)for each pair of paths p1,p2∈C s 6 a2(p1,p2), and

– eC(p) and aC(p1, p2) are defined via:

– e2(p) = s · eC(p) and

– a2(p1, p2) = s · aC(p1, p2),

— e(π
sC) = s, and for any pair of isomorphisms π1, π2 in T we have:

— a(π1, π2) = a(p1, p2), where pi is a path of T2 in the image of πi (i = 1, 2).

In the figure below we show three isomorphisms corresponding to s = αβ, αα, α.

4.2. Defining synchronization

It is also possible to define a notion of synchronization on STrees, that is, between

structured sets of computations, as a monoidal functor ∗ : STrees× STrees→ STrees and,

under suitable conditions, to lift the synchronization to computing agents.

As an example, consider CCS agents and their unfoldings (Milner 1980, p. 12); these

can be viewed as a category of agents in our sense when the observation domain S is
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α

β α
α

α
β

α
α

C C''C'

STrees  (T1, T2)

T2

T1

the 2-category A, and the monoidal functor ATrees× ATrees→ ATrees is obtained via a

synchronization table.

Proposition 4.1. If, for every object w in S, {v|v 6 w} is totally ordered with respect to 6,

a partial monoid morphism ∗ : S× S→ S (which is defined on the neutral element and is

such that whenever v ∗w is defined and v′ 6 v, then there is w′ 6 w such that v′ ∗w′ 6 v ∗w
is defined also) extends to a monoidal functor ∗ : STrees× STrees→ STrees.

Proof. (Sketch) The functor ∗ is defined on the objects as follows:

Given the trees Ti = {< Ti, ei, ai > for i = 1, 2}, T1 ∗ T2 is the tree T =< T, e, a > such

that:

— T = {< p1, p2 > |(e(p1) ∗ e(p2)) is defined with pi∈Ti for i = 1, 2},
— e(< p1, p2 >) = (e(p1) ∗ e(p2)), and

— a(< p1, p2 >,< q1, q2 >) is the maximal common prefix w of e(< p1, p2 >) and

e(< q1, q2 >) such that w = u ∗ v where u 6 a(p1, q1) and v 6 a(p2, q2).

Functor ∗ is defined on the morphisms as follows:

Given the morphisms f : T1 → T3 and g : T2 → T4, where Ti =< Ti, ei, ai > for

i = 1, . . . , 4, and p1 in T1, and p2 in T2 (f ∗ g) < p1, p2 >=< f(p1), g(p2) >.

One can easily check that ∗ is a monoidal functor with respect to the tensor product

⊗ (Eilenberg and Kelly 1965). Indeed, 1 is isomorphic to 1 ∗ 1, and there exists a natural

transformation such that for any 4-tuple of trees T1, T2, T3 and T4, the corresponding

component is an STrees-functor from (T1 ∗ T2) ⊗ (T3 ∗ T4) → (T1 ⊗ T3) ∗ (T2 ⊗ T4)

(Interchange Law).

Corollary 4.1. When considering ATrees (CATrees) a partial (synchronization) function

∗ : A×A→ A extends to a monoidal functor

∗ : ATrees× ATrees→ ATrees (CATrees× CATrees→ CATrees).

As a consequence of Proposition 4.1, we know that, using ∗, we can synchronize local

behaviours, but it can be proved (Kasangian et al. 1987; Kasangian and Labella 1992;

Kasangian and Labella 1992a) that in the case of the corollary, there also exists a functor

σ that enables us to define the agent that is the synchronization of the two given agents,

that is, we can synchronize global behaviours. This last result can be formulated in a

general way.

Definition 4.2. (Eilenberg and Kelly 1965) Given a monoidal category (M,⊗, I), a
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monoidal functor F : M×M → M and an M-category C, we can always construct

the M-category C×FC (called the effect of the monoidal functor): objects are pairs of

objects (A,B) in C× C and C×FC[(A,B), (A′, B′)] = F(C[A,A′],C[B, B′]).

Proposition 4.2. Let STrees be an STrees-category in a canonical sense. Assuming the

hypotheses of Proposition 4.1, there exists an STrees-functor σ : STrees×∗STrees→ STrees

lifting the monoidal functor ∗ : STrees× STrees→ STrees.

Proof. As before, we simply show how σ can be defined. Given a monoidal synchro-

nization functor ∗ and two trees T1 =< T1, e1, a1 > and T2 =< T2, e2, a2 >, we define an

STrees-functor σ on objects as follows: T1σT2 =< T, e, a >, where:

— T = T1 × T2,

— e(< p1, p2 >) is the maximal w = w1 ∗ w2, where wi is a prefix of ei(pi) (i = 1, 2) in S,

and

— a(< p1, p2 >,< q1, q2 >) is the maximal common prefix w of e(< p1, p2 >) and

e(< q1, q2 >) such that w = u ∗ v where u 6 a(p1, q1) and v 6 a(p2, q2).

The definition of σ on the hom-objects is given by the synchronization functor ∗.

Intuitively speaking, for example in the case of Milner’s agents, the synchronization of

two trees using σ is obtained by first synchronizing any two paths, one for each tree as

long as it is possible starting from the root using the given synchronization algebra ∗, and

then by computing the agreement between the resulting paths using ∗, as defined above.

A different kind of synchronization, related to a notion of non global clock, can also

be considered on the model (Kasangian et al. 1994).

4.3. Trees and regular languages

Let us now restrict to the case of ATrees. We can try to exploit the fact that our

trees originate from the analogy with language theory and compare them with regular

languages as a semantic for regular expressions. To this end, we need to introduce a

notion of iteration on ATrees.

Definition 4.3. Given a tree t = (X, e, a), we define t∞ = (X∞, e∞, a∞) as follows:

— X∞ = {< x1, x2, . . . , xn >| n ∈ N and xi ∈ X}
— e∞(< x1, x2, . . . , xn >) = e(x1)e(x2) . . . e(xn)

— a∞(< x1, x2, . . . , xn >,< y1, y2, . . . , ym >) = e(x1)e(x2) . . . e(xk)a(xk+1, yk+1) where k + 1

is the first index such that xk+1 6= yk+1

An approximant tj = (Xj, ej , aj) of t∞ is defined by:

— Xj = {< x1, x2, . . . , xn > |xi ∈ X, 0 6 n 6 j}
— ej < x1, x2, . . . , xn >) = e(x1)e(x2) . . . e(xn)
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— aj(< x1, x2, . . . , xn >,< y1, y2, . . . , ym >) = e(x1)e(x2) . . . e(xk)a(xk+1, yk+1)

where k + 1 is the first index such that xk+1 6= yk+1.

Fact. Trees of the form t∞ are colimits of chains of their approximants as follows:

t0 → t1 → t2 → t3 → . . .→ tj−1 → tj → tj+1 → . . .

where morphisms are the obvious inclusions (regular monos).

Let us now consider trees as objects of ATrees up to isomorphisms.

Definition 4.4. A tree is a regular tree on an alphabet A if it is defined as the image of a

regular expression P built from 0, 1, A,+, •, ()∗ with the non-empty word property through

the following interpretation function i:

i(0) = 0

i(1) = 1

i(a) = ({∗}, a, a) for every a in A

i(P + P ′) = i(P ) + i(P ′)
i(P • P ′) = i(P )⊗ i(P ′)

i(P ∗) = i(P )∞

Let T∞ be the set of regular trees (up to isos).

Proposition 4.3. If we define in T∞ a partial order 6 as the existence of a regular

monomorphism in ATrees from the left-hand to the right-hand side, t∞ is the least fixed

point for the endofunctor Ft : T∞ → T∞ defined as follows: Ft(−) = t⊗ (−) + 1.

Proof. Ft satisfies the cocompleteness condition required in order to have a minimal

fixed point (Smith and Plotkin 1982), that is, Ft(colim < Fnt (0), Fnt (0Ft(0)) >) ∼= colim

Ft(< Fnt (0), Fnt (0Ft(0)) >). In fact t∞ ∼= Ft(t
∞) is such an object and, therefore, the least

fixed point.

Looking for properties enjoyed by (T∞,6,⊗, 0, 1, (−)∞), one finds that a list very

similar to the set of axioms of Kozen for Kleene algebras (Kozen 1991) is sound for this

interpretation; namely

X + Y = Y +X

(X + Y ) + Z = X + (Y + Z)

X + 0 = X

(X • Y ) • Z = X • (Y • Z)

X • 0 = 0 = 0 •X
X • 1 = X = 1 •X

(X + Y ) • Z = (X • Z) + (Y • Z)
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X + Z = Y + Z ⇒ X = Y

1 +X •X∗ = X∗

Z +X • Y 6 Y ⇒ X∗Z 6 Y
In the first part of this list, one may notice the lack of the idempotence law for sum and

the left distributivity law of concatenation with respect to sum: the loss of the latter is

directly connected with non-determinism, while the former is missing and replaced by the

cancellation law for sum, because we are dealing with a coproduct. For this first part of

the list, our finite trees are an initial algebra.

The final part of the list expresses the fact that iteration is characterizable as a minimal

fixed point.

Trees or direct acyclic graphs have often been used as models of languages for concur-

rency similar to ours, more specifically as models for process algebras like CCS (Milner

1989), CSP (Hoare 1989) and ACP (Bergstra and Klop 1989). However, to the best of

our knowledge, none of the proposed structures turns out to be an initial model for the

corresponding axiom systems; all of them need a factorization through a suitable notion

of behavioural equivalence that, very often, is based on the notion of bisimulation (Park

1981), and in many cases they do not consider all the usual operators of Kleene algebras

(see also Rutten (1990), Benson and Tiuryn (1989), Aceto and Hennessy (1992) and

Bergstra et al. (1987)).

In our case, since sum is obtained as a disjoint union, isomorphism does correspond to

an equivalence that takes into account the number of times a transition is possible, and

a state is reachable (De Nicola and Labella 1998). This equivalence has been extensively

studied in Corradini et al. (1995) and called resource bisimulation (it was called counting

bisimulation in D’Agostino (1998)).

5. Comparisons and conclusions

If one wants to look for an ancestor for our way of considering trees as sets of paths, one

can think of the notion of category of paths on a graph introduced in Goguen (1974).

Although we were not aware of that work when we introduced observational trees†, we

find it is in the same spirit as ours.

Our work is also strictly related to Winskel’s in more than one respect; we can

mention three main topics treated in terms of category theory: synchronization trees,

event structures and functorial comparisons between models.

Winskel (Winskel 1987) constructs the categorical counterpart of different models by

defining in each case morphisms that make it possible to place suitable functors between

them and to look for adjunctions. In this way many categories are defined and related.

Our approach is different in two respects:

† We would like to thank Rocco De Nicola for having pointed out to us this paper during the fruitful

discussions about the present work.
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1. We have a single category of observational trees (whose morphisms are dictated by the

enriched framework) that is instantiated to encompass different models by changing the

base category. Hence, all comparisons are obtained by lifting simple transformations

between the labelling domains. This way of using category theory in a prescriptive

way, allows us to throw light on the intrinsic relations between different models of

concurrency.

2. Winskel’s constructions aim at describing the full behaviours of concurrent agents,

while our trees, like languages for automata, are local, in the sense that they describe

behaviours between concurrent agents, or, equivalently, between the states of an agent.

This basic intuition allows us to use observation domains as an internal logic in the

sense of Lawvere (Lawvere 1973). With this fact in mind, one can easily see that the

definitions of morphisms in Winskel’s work are derivable from our general definition,

if one ‘adds the conditions due to locality’.

As an example, let us consider the definition of morphism between prime event structures

(Winskel 1987):

Definition 3.2′. Given event structures E and F , morphisms of event structures are partial

functions h : E→F such that:

(i) If h(e) is defined, then (h(e)] v h(e].
(ii) If C is a configuration of E, then h(C) is a configuration of F .

(iii) h is injective if restricted to a configuration.

It is immediate to see that if we require that h in Definition 3.2′ be total and preserve

maximal configurations (conditions connected with the consideration of local behaviours),

the above definition collapses to our Definition 3.2.

Similar considerations can be made about morphisms between synchronization trees

(Winskel 1984). The change of perspective, puts us in a situation where we can claim that

our Definition 3.2 of morphism (and the others) is not only suitable, but is induced by

the algebraic framework.

A different means of providing a general account of classes of concurrency models

is given in Degano et al. (1993). Experiments over transition systems are structured as

trees whose nodes are labelled by the observations of the corresponding computations.

The trees are compared via bisimulations and it is shown that various observational

equivalences proposed in the literature can be recast in a general experimental setting.

They also study the impact of the chosen observations on the different equivalences.

The nodes are labelled by structures similar to our observation domains; hence the

result presented there about the different kind of observation function can be recast in

our framework.

They exploit computations, concatenation and prefix ordering over the observation

domain are exploited to classify observation functions as follows:

If o(−) is an observation function on computations, then

— o(−) is incremental if o(c) = o(c′) and o(d) = o(d′) implies o(cd) = o(c′d′)
— o(−) is cancellative if o(c) = o(c′) and o(cd) = o(c′d′) implies o(d) = o(d′).
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In our terminology: the first condition means that their observation functions do not

necessarily preserve the composition of computations, therefore their free concatenation

does not correspond to the structure of the computations, while it respects their order.

To encompass this kind of observation, our model must reasonably give up the monoidal

structure of the category though mantaining the order structure and, therefore, the

construction of STrees. On the other hand, the monoidal structure is not sufficient to

guarantee the (left) cancellation property (although all the domains of observation we

have considered as examples in the paper are cancellative, a counterexample can be easily

provided), hence our trees can also be used to model compositional non-cancellative

observations. In that case STrees will lose the closure properties shown in Section 4, and

their consequences.

In our view, the present work throws light, once again, but formally, on the central

role of automata in theoretical computer science. By mimicking the constructions of one

of the categorical presentations of automata that relies on an observational account of

computation, while taking into account non-determinism, we have shown that many of the

mathematical models of concurrency can be captured. There is one notable exception with

respect to the models that we can capture with our approach, namely those models based

on observations yielding pomsets (partially ordered multisets of actions). The remarks at

the end of Section 3 suggest generalizations in this direction. It is well known that pomsets

are associated with an observation function that is neither incremental nor cancellative,

hence an observation domain for pomsets will only have the order structure. Nonetheless,

they will no longer be a meet-semilattice because, due to the multiplicity of elements,

inclusions must be specified and we need a more general base 2-category. This will be the

subject of further investigation.

Appendix A.

We will assume that the reader is acquainted with the notions of tensor product, monoidal

category, monoidal functor and enrichment over a monoidal category: if you require details,

refer to Eilenberg and Kelly (1965) and Kelly (1982). Given the centrality of the notion

of enrichment (or ‘category based on’) for our treatement in the case of locally posetal

2-categories, we give the following definitions for the sake of completeness.

Definition A.1. (Bénabou 1967) A 2-category B consists of a class (possibly a set) of objects

Ob(B), together with, for each a, b in Ob(B), a category B(a, b), for each triple of objects

a, b, c in a Ob(B), a functor (called the composition functor) C : B(a, b)× B(b, c)→ B(a, c)

and, for each a in Ob(B), a functor j : 1 → B(a, a), where 1 is the trivial one object

category, such that the following diagrams commute:

For any a, b in Ob(B) the objects of B(a, b) are called morphisms of B (or 1-cells of B), and

they will be collectively denoted by morph(B). Analogously, for any a, b in Ob(B) the arrows

of B(a, b) are called 2 -cells of B. Composition in any B(a, b) is called vertical composition,
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B(a,b) × B(b,c) × B(c,d)
C × 1

C

1 × C

B(a,b) × B(b,d) B(a,d)

B(a,c) × B(c,d)

C

j × 1

B(a,b)

C

B(a,a) × B(a,b)

canonical

1 × B(a,b)

B(a,b) × B(a,a)
1 × j

C

B(a,b)

canonical

B(a,b) × l

while the composition defined by the functor C is called horizontal composition. If f and

g are objects of the same category B(a, b), that is 1-cells with common domain a and

common codomain b, then a 2-cell η from f to g may be written as η : f ⇒ g

Notice that functoriality of C yields that (αα′).(ββ′) = (α.β)(α′.α′) for 1-cells α and α′
(respectively, β and β′) with the same domain and codomain and such that dom β =cod

α. This is a remarkable interchange law between vertical and horizontal composition,

not to be confused with the one betwen the global tensor product on a 2-category and

horizontal composition.

Notice further that an equivalent definition of 2-categories could have been given

by just recalling that Cat is cartesian closed: a 2-category B is then just a Cat-enriched

category – any B(a, b) is an object of Cat. Following this line, one gets the classical notions

of 2-functor and 2-natural transformation, which are just Cat-functors and Cat-natural

transformations. A typical example of a 2-category is Cat, where 1-cells are functors and

2-cells are natural transformations. A degenerate example is a special 2-category with

only identity 2-cells. At the other extreme, a strict monoidal category is a 2-category with

one object.

The following definition describes a particular case of a 2-category (Walters 1981).
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Definition A.2. A locally posetal-2-category (lp-2-category for short) P consists of:

(i) a set of objects Ob(P);

(ii) for each pair of objects a and b, a poset(P(a, b),6) of 1-cells (or morphisms);

(iii) for each triple of objects a, b, and c, a monotonic operation

�(a, b, c) : P(a, b)×P(b, c)→ P(a, c),

called composition of 1-cells, which is associative;

(iv) for each object a, a 1-cell in P(a, a), called the identity 1-cell and denoted by 1a, which

is a left and right identity for composition of 1-cells.

Fact. Let (S,6,∧,⊥) be a meet-semilattice. It is possible to view S as an lp-2-category S

as follows:

(i) the set of objects Ob(S) is S;

(ii) for each pair of objects x and y, the poset S(x, y) is given by {k|k ∈ S and k 6 x∧ y};
(iii) for each triple of objects x, y, and z, the composition of 1-cells

S(x, y)×S(y, z)→ S(x, z),

is given by the meet operation ∧;

(iv) for each object x, the identity 1-cell 1x in S(x, x) is x itself.

By definition, for each pair of objects x and y we have that: S(x, y) = S(y, x).

Definition A.3. Let P be an lp-2-category. A P-category (also called category based on P,

or enriched over P) C is a triple < C, e, a >, where C is a set (the set Ob(C) of objects of

C), and

(i) e is a function, called extent, from C to Ob(P), and

(ii) a is a function, called agreement, from C×C to morph(P), satisfying the following

properties: for each c, d and f in C ,

— a(c, d) is an object of P(e(c), e(d)),

— a(c, c) is the identity 1-cell 1e(c), and

— a(c, d) � a(d, f) 6 a(c, f).

P is also called the base 2-category of C.

Remarks. For each pair of elements c and d in C , a(c, d) selects a 1-cell of P(e(c), e(d)), say

z, such that z 6 e(c) � e(d). Further, for each element c, a(c, c) selects the greatest object

of P(e(c), e(c)) (which is e(c) itself).

We say that a P-category C is symmetric iff a(c, d) = a(d, c). This notion makes sense

when in an lp-2-category for each pair of objects x and y, P(x, y) = P(y, x).

We say that a symmetric P-category is skeletal iff for any two objects c, d in C we have

that:

if e(c) = e(d) = a(c, d), then c = d.
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Definition A.4. A P-functor f : C1→ C2 between two P-categories C1 =< C1, e1, a1 > and

C2 =< C2, e2, a2 > is a function from C1 to C2, also denoted by f, such that:

i) e1(C1) = e2(f(C1)) for any object C1 in C1 , and

ii) a1(C1, d1) 6 a2(f(C1), f(d1)), for any two objects C1, d1 in C1, where 6 is in P .

Definition A.5. Given the lp-categories P1 = (S1,61, �1,⊥1) and P2 = (S2,62, �2,⊥2), a

homomorphism φ : P1→ P2 is given by:

— a function F from Ob(P1) to Ob(P2),

— for any pair x and y in Ob(P1)×Ob(P1) a functor F[x,y] (that is a monotonic function)

from P1(x, y) to P2(F(x), F(y)), such that

(i) for any x in Ob(P1) F[x,x](1x) = 1F(x), and

(ii) for any triple of objects x, y, and z, and

for any pair of 1-cells h, k in P1(x, y)×P1(y, z), F[x,y](h) �2 F[y,z](k) = F[x,z](h �1 k) .

Homomorphism is a special case of the notion of 2-functor.

Bearing in mind that monoidal categories and lp-2-categories are particular cases of

2-categories, the two notions of enrichement can be thought of as particular cases of a

more general one.

One can easily verify that our trees correspond to symmetric S-categories, and mor-

phisms between them to S-functors, while the categories of agents are STrees-categories.
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