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SUMMARY
In this paper, a simple and convenient method – Recursive
Matrix method – is proposed for kinematic and dynamic
analysis of all types of complex manipulators. After
addressing the principle of the method, an example – a
3-DOF parallel manipulator with prismatic actuators – is
demonstrated for the efficiency of the method in solving
kinematic and dynamic problems of complex manipulators.
With the inverse kinematic solutions, the inverse dynamic
problem is solved with the virtual powers method. Matrix
relations and graphs of the acting forces and powers for all
actuators are analysis and determined. It is shown that the
proposed method is an effective mean for kinematic and
dynamic modelling of parallel mechanisms.

KEYWORDS: Recursive matrix; Dynamic modelling;
Complex manipulators; Parallel mechanisms.

I. INTRODUCTION
Parallel mechanisms generally comprise two platforms
which are connected by joints or legs acting in parallel.1

Over the past decades, parallel mechanisms have received
more and more attention from researchers and industries.
They can be found in several practical applications, such
as aircraft simulators,2 positional tracker,3 telescopes4 and
micro-motion device.5

More recently, they have been used in the development
of high precision machine tools6−8 by many companies
such as Giddings & Lewis, Ingersoll, Hexel, Geodetic and
Toyoda, and others. The Hexapod machine tools are one of
the successful applications.

Parallel mechanisms have significant advantages over
serial mechanisms and in particular possess reduced moving
mass and higher stiffness. Thus, parallel mechanisms can
work at higher velocities, and yet maintain sufficient rigidity
to deliver high levels of accuracy.

The analysis of parallel manipulators is usually imple-
mented through analytical method in classical mech-
anics,9−11 in which projection and resolution of vector
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equations on the reference axes are written in a considerable
number of cumbersome, scalar equations and the solution
are rendered by large scale computations together with time
consuming computer codes.11 In this paper, a new method –
recursive matrix method – is introduced. It has been proved to
reduce the number of equations and computation operations
significantly by using a set of matrices for kinematics and
dynamic modelling.12,13

A spatial 3-DOF parallel mechanism [8], which can be
used in several applications, including machine tools is
proposed in this paper. Existing 3-DOF parallel mechanisms
can be classified in terms of the types of actuated joints, and
the structures of the supporting frames. In regard to the
types of actuated joints, they can be either revolute or
prismatic. Since the prismatic joints can easily achieve
high accuracy and heavy loads, the majority of the 3DOF
parallel mechanisms in reality use actuated prismatic joints.
A prismatic joint can have an extensible length or a fixed
length. The 3DOF parallel mechanism discussed in this
paper belongs to the type with extensible length and a
passive leg located in the centre to improve the stiffness.
In comparison with an approach for kinematic modelling
of robot manipulator, a dynamic modelling approach
could be systematized easily. Some systematic approaches
have been developed for general-purpose parallel mech-
anisms analysis.14−17 Meanwhile, quite a few of special
approaches have been conducted for dynamic modelling
of specific parallel mechanism configurations;18−22 Kane
and Levinson23 obtained some vector recursive relations
concerning the equilibrium of generalized forces that are app-
lied to a serial manipulator. Sorli et al24 conducted the
dynamic modelling for Turin parallel manipulator, though the
mechanism has three identical legs, it has 6-DOF. However,
to the best of our knowledge, there is no efficient dynamic
modelling approach available for parallel manipulator.

II. INVERSE KINEMATIC MODELLING
Let Ox0y0z0(T0) be a fixed Cartesian frame. A spatial
manipulator with three degrees of freedom is moving with
respect to this frame; the mechanism consists of four
kinematical chains, including three variable length legs with
identical topology and one passive constraining leg, all
connecting the fixed base to a moving platform (Fig. 1).
In this 3-DOF parallel mechanism, a kinematical chain,
associated with one of the three identical active legs, was
introduced between the base and the moving platform. It
consists of a fixed Hook joint, characterized by the angular
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Fig. 1. Parallel manipulator with prismatic actuators.

velocity ωA
10 = ϕ̇A

10 and the angular acceleration εA
10 = ϕ̈A

10, and
a moving link of length l2, mass m2 and tensor of inertia Ĵ2,
which has a relative rotation with the angle ϕA

21, so that
ωA

21 = ϕ̇A
21, ε

A
21 = ϕ̈A

21. An actuated prismatic joint is as well as
a moving link to the A3x

A
3 yA

3 zA
3 (T A

3 ) frame, having a relative
displacement λA

32, velocity vA
32 = λ̇A

32 and acceleration γ A
32 =

λ̈A
32. It has the length l3, mass m3 and tensor of inertia Ĵ3.

Finally, a ball-joint is attached to the platform.
The fourth constraining chain has a different architecture.

It consists of a prismatic joint attached to the base and a
moving link of length l1 and mass m1, having a purely vertical
displacement λD

10, velocity vD
10 = λ̇D

10 and acceleration γ D
10 =

λ̈D
10. A Hook joint is attached to the moving platform. The

moving platform is an equilateral triangle with edge l, mass
m4 and tensor of inertia Ĵ4.

Rotations of the moving platform are defined by the angles
ϕD

21 and ϕD
32 in the local coordinates (Fig. 2). The orientation

of the joints A, B, C on the fixed platform (Fig. 1) is given
by

αA = 0, αB = 2π

3
αC = −2π

3
. (1)

For convenience, the independent coordinates of the
platform have been chosen as zG

0 , α1, α2, where zG
0 is the

height of the platform and α1, α2 are the angles of the Hook
joint.

Assuming the passive leg D on the OD1D2D3 path, the
passing matrices are derived:

d10 = ê, d21 = d
ϕ

21a1, d32 = d
ϕ

32a2. (2)

Now, considering the OA1A2A3A4 track of the limb A, the
transfer matrices are given by

a10 = a
ϕ

10a1a
A
α , a21 = a

ϕ

21aβa2, a32 = a1, (3)

Where:25

a1 =

0 0 −1

0 1 0
1 0 0


 , a2 =


 0 0 −1

−1 0 0
0 1 0


 ,

x1
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A
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A z2
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Fig. 2. Kinematical scheme of the manipulator.

aA
α =




cos αA sin αA 0
− sin αA cos αA 0

0 0 1




aβ =




cos β sin β 0
− sin β cos β 0

0 0 1


 ,

a
ϕ

k,k−1 =

 cos ϕA

k,k−1 sin ϕA
k,k−1 0

− sin ϕA
k,k−1 cos ϕA

k,k−1 0

0 0 1


 (4)

ak0 =
k∏

j=1

ak−j+1, k−j , (k = 1, 2, 3).

The same equations can be written for the other two loops
O-B and O-C of the mechanism (Fig. 2).

Suppose the absolute motion of the platform is given by

zG
0 = l1 + l6 + zG∗

0

(
1 − cos

2π

3
t

)
,

αi = α∗
i

(
1 − cos

2π

3
t

)
(i = 1, 2). (5)

To solve the inverse kinematic problem, the passive leg can
be taken as a serial 3-DOF mechanism with the coordinates
determined by the conditions

d◦T
30 d30 = a, �uT

3

{�rD
10 + λ D

10 �u3 + dT
10�rD

21

} = zG
0 , (6)
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where a = a2a1 is a rotation matrix from the frame Ox0y0z0

to GxGyGzG, and �rD
10 = l6 �u3, �rD

21 = l1 �u3

d◦T
30 =


−1 0 0

0 0 1
0 1 0


 , �u3 =


0

0
1


 , ũ3 =


0 −1 0

1 0 0
0 0 0




(7)

a1 =

1 0 0

0 cos α1 sin α1

0 − sin α1 cos α1


 , a2 =


cos α2 0 − sin α2

0 1 0
sin α2 0 cos α2




It results

λ D
10 = zG

0 − l1 − l6, ϕD
21 = α1, ϕD

32 = α2. (8)

Once the solution of the inverse kinematic of this 3-DOF
serial chain is found, the complete position and orientation
of the limbs A, B, C can be determined by the following
geometric conditions

�rA
10 +

3∑
k=1

aT
k0�rA

k+1,k − dT
30�rA4

3

= �rB
10 +

3∑
k=1

bT
k0�rB

k+1,k − dT
30�rB4

3

= �rC
10 +

3∑
k=0

cT
k0�rC

k+1,k − dT
30�rC4

3

= zG
0 �u3, (9)

where

�rA
10 = l0a

AT
α �u1, �rA

21 = �0,

�rA
32 = l5 �u1 + λ A

32a
T
32 �u3, �rA

43 = l3 �u3.

�u1 =

1

0
0


 , �u2 =


0

1
0


 , �rA4

3 =

−l4 cos αA

0
l4 sin αA


 (10)

III. Velocities and accelerations
The motion of all links is characterized by the following skew
symmetric matrices [23]

ω̃A
k0 = ak,k−1ω̃

A
k−1,0a

T
k,k−1 + ωA

k,k−1ũ3. (11)

These matrices are associated with the absolute angular
velocities, given by the recurrence relations

�ωA
k0 = ak,k−1 �ωA

k−1,0 + ωA
k,k−1�u3. (12)

The velocity �vA
k0 of the joint Ak can be obtained as

�vA
k0 = ak,k−1

{�vA
k−1,0 + ω̃A

k−1,0�rA
k,k−1

} + vA
k,k−1�u3,

�vA
σ,σ−1 = �0 ( σ = 1, 2, 4). (13)

The following matrix conditions of connectivity constitute
the inverse kinematical model

ωA
10 �uT

i aT
10ũ3a

T
21

{�rA
32 + aT

32�rA
43

} + ωA
21 �uT

i aT
20ũ3

{�rA
32 + aT

32�rA
43

}
+ vA

32 �uT
i aT

30 �u3 = vD
10 �uT

i �u3 + �uT
i dT

30ω̃
D
30�rA4

3 . (14)

These relations generate Jacobian matrix of the mecha-
nism, defining the robot workspace. From equation (14),
relative velocities ωA

10, ω
A
21, v

A
32 result as functions of

platform’s characteristic velocities

vD
10 = żG

0 , ωD
21 = α̇1, ωD

32 = α̇2 (15)

Assume that the robot has a virtual motion determined
by the angular velocities vAv

32a = 1, vBv
32a = 0, vCv

32a = 0. The
characteristic virtual velocities, expressed as function of
manipulator’s position, are given by new connectivity
conditions of relative velocities

�uT
i aT

30

{�vAv
30a + ω̃Av

30a�rA
43

} = �uT
i dT

30

{�vDv
30a + ω̃Dv

30a�rA4
3

}
. (16)

Other two compatibility relations of the loops O-B and
O-C can be obtained, if one considers vBv

32b = 1 and vCv
32c = 1.

Some new connectivity relations of the angular
accelerations εA

10, ε
A
21, γ

A
32 of the links can be obtained

εA
10 �uT

i aT
10ũ3a

T
21

{�rA
32 + aT

32�rA
43

} + εA
21 �uT

i aT
20ũ3

{�rA
32 + aT

32�rA
43

}
+ γ A

32 �uT
i aT

30 �u3 = γ D
10 �uT

i �u3 + �uT
i dT

30

{
ω̃D

30ω̃
D
30 + ε̃D

30

}�rA4
3

−ωA
10ω

A
10 �uT

i aT
10ũ3ũ3a

T
21

{�rA
32 + aT

32�rA
43

}
−ωA

21ω
A
21 �uT

i aT
20ũ3ũ3

{�rA
32 + aT

32�rA
43

}
− 2ωA

10ω
A
21 �uT

i aT
10ũ3a

T
21ũ3

{�rA
21 + aT

32�rA
43

}
− 2ωA

10v
A
32 �uT

i aT
10ũ3a

T
21a

T
32 �u3 − 2ωA

21v
A
32 �uT

i aT
20ũ3a

T
32 �u3.

(17)

When the other two kinematical chains are pursued, the
similar relations can be easily obtained.

The following relations are for the angular accelerations
�εA
k0 and the linear accelerations �γ A

k0 of the joints

�εA
k0 = ak,k−1�εA

k−1,0 + εA
k,k−1�u3

+ωA
k,k−1ak,k−1ω̃

A
k−1,0a

T
k,k−1 �u3ω̃

A
k0ω̃

A
k0 + ε̃A

k0

= ak,k−1
{
ω̃A

k−1,0ω̃
A
k−1,0+ε̃A

k−1,0

}
aT

k,k−1+ωA
k,k−1ω

A
k,k−1ũ3ũ3

+ εA
k,k−1ũ3 + 2ωA

k,k−1ak,k−1ω̃
A
k−1,0a

T
k,k−1ũ3 �γ A

k0

= ak,k−1 �γ A
k−1,0 + ak,k−1

{
ω̃A

k−1,0ω̃
A
k−1,0 + ε̃A

k−1,0

}�rA
k,k−1,

�γ A
σ,σ−1 = �0 (σ = 1, 2, 4). (18)

The equations (14), (17) are the inverse kinematical model
of the manipulator.
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IV. Motion simulation
For the inverse dynamic problem, the virtual power method is
applied. Graphs and recursive matrix relations for the forces
and powers of the three actuators are obtained.

The three actuators forces are

�f A
32 = f A

32 �u3, �f B
32 = f B

32 �u3, �f C
32 = f C

32 �u3. (19)

The force of inertia and the resultant moment of the forces
of inertia of the rigid body Tk are determined in respect to
the centre of the joint Ak . On the other hand the characteristic
vectors �f ∗

k and �m∗
k evaluate the influence of the weight action

mk �g and all other external and internal forces applied to the
same Tk manipulator link.

Given the absolute motion of the platform by equation (5),
the position, velocity and acceleration of each joint can be
determined, and the wrench about Ak can also be determined.
Assuming that friction forces at the joints are negligible, we
can then calculate the actuating forces.

In the virtual-velocities method, the dynamic equilibrium
condition of the mechanism requires that the virtual power
of all external, internal and inertia forces, which is developed
during a general virtual displacement, to be set null. Applying
the fundamental equations of the parallel robots dynamics,13

the following matrix equation is obtained

f A
32 = �uT

3

{ �FA
3 + ωAv

21a
�MA

2 + ωBv
21a

�MB
2

+ ωCv
21a

�MD
2 + vDv

10a
�FD

1 + ωDv
32a

�MD
3

}
, (20)

where

�FA
k0 = mA

k �γ A
k0 + mA

k

{
ω̃A

k0ω̃
A
k0 + ε̃A

k0

}�rCA
k + 9.81mA

k ak0 �u3

�MA
k0 = mA

k r̃CA
k �γ A

k0 + Ĵ A
k �εA

k0 + ω̃A
k0Ĵ

A
k �ωA

k0 + 9.81mA
k r̃CA

k ak0 �u3

�FA
k = �FA

k0 + aT
k+1,k

�FA
k+1,

�MA
k = �MA

k0 + aT
k+1,k

�MA
k+1 + r̃A

k+1,ka
T
k+1,k

�FA
k+1,

(k = 1, 2, 3). (21)

The equations (20) and (21) represent the inverse dynamic
model of the-3-DOF parallel manipulator with prismatic
actuators.

An example is given with the following parameters

α∗
1 = π/12, α∗

2 = π/18, zG∗
0 = 0.1 m

l = 0.75 m, D1D2 = l1 = 0.65 m,

l2 = 1.2 m, A3A4 = l3 = 1.25 m

GA4 = l/
√

3, A2A3 = l5 = 0.25 m, OD1 = l6 = 0.1 m

sin β = (l1 + l6)/(l3 + l5), l0 = (l3 + l5) cos β + l4

m1 = 1 kg, m2 = 2.5 kg, m3 = 1.5 kg, m4 = 5 kg.

Finally, one obtains the graphs of the forces f A
32 (Fig. 3),

f B
32 (Fig. 4), f C

32 (Fig. 5) and powers pA
32 (Fig. 6), pB

32 (Fig. 7),
pC

32 (Fig. 8) of the three prismatic actuators.
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32 of the third actuator.
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V. CONCLUSIONS
In the paper, the matrix relations for the real time computation
of position, velocity and acceleration of each link of a 3-DOF
parallel manipulator have been established. The analytical
calculus involved in the Lagrange equation is very tedious,
thus presenting an elevated risk for errors. Furthermore, the
duration of numerical computations is getting longer when
the number of components of the mechanism is increased. In
this case, the new method showed its advantage over others.
With the example of the 3-DOF parallel mechanism, the new
method illustrated an efficient way to determine the real time
variation of the forces and powers of all the actuators of
a parallel manipulator. In a context of automatic control,
the iterative matrix relations (20) and (21) given in this
dynamic model can be easily transformed into a robust model
for the computerised control of the most general parallel
manipulators.
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