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We study the Cauchy problem for the nonlinear Schrodinger equation with dissipation

ut+£u+i\u\2u:0, reR, t>0,

(A)

U(O,I):uo(l‘), T €ER,
where L is a linear pseudodifferential operator with dissipative symbol
ReL(¢) > C1Ie/(1+€2) and [L'(€)] < Ca(f¢] + €]") for all ¢ € R. Here,
C1,C2 > 0, n > 1. Moreover, we assume that L(¢) = a&2 4+ O(|¢[217) for all |¢] < 1,
where v > 0, Rea > 0, Ima > 0. When L(¢) = aé?, equation (A) is the nonlinear
Schrodinger equation with dissipation u¢ — quzs + i\u\zu = 0. Our purpose is to
prove that solutions of (A) satisfy the time decay estimate

lu(®)lloe < C(1+6)72(1+log(1+ 1) 7127

under the conditions that ug € H™% N H! have the mean value
N 1
0(0) = E uo(x)dz #0

and the norm ||ug|| gm0 + |[uo|| gg0.1 = € is sufficiently small, where 0 =1 if Ima > 0
and 0 = 2 if Ima = 0, and

H"™ ={¢ €8s [[9llm.s = |(1+2°)2(1=02)" 6] < o0}, m,s€R

Therefore, equation (A) is considered as a critical case for the large-time asymptotic
behaviour because the solutions of the Cauchy problem for the equation

U — QUgy + iju|Plu = 0, with p > 3 have the same time decay estimate

lullLs= = O(~'/?) as that of solutions to the linear equation. On the other hand,
note that solutions of the Cauchy problem (A) have an additional logarithmic time
decay. Our strategy of the proof of the large-time asymptotics of solutions is to
translate (A) to another nonlinear equation in which the mean value of the
nonlinearity is zero for all time.
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1. Introduction

We consider the Cauchy problem for the following nonlinear Schrodinger equation
with dissipation

ug + Lu~+i|ul*u = 0, TER, t>0,
(1.1)

u(0,2) = up(x), z € R,

where the linear pseudodifferential operator £ is defined as L¢ = f_lL(f)qg(f), here

and below F¢ (or ¢) is the Fourier transform of ¢ defined by the formula

1 —ix
(&) = E/G $o(z) da

and F~'¢(z) (or ¢(z)) is the inverse Fourier transform of ¢, i.e.

1 1 iz
o(x) = E/G $o(€) de.

We assume that the linear operator L is dissipative, that is, its symbol satisfies

o1 le?
ReL(O > 13 )P

and  |L'(§)] < Ca (] + 1€]™) (1.2)

for all £ € R, where Cy,Cs > 0, n > 1. Moreover, we assume that the symbol has
the following asymptotic representation for small values of &

L&) = ag® + O(J¢|**7) for all €] <1, (1.3)

where v > 0, Rea > 0, Im « > 0. In particular, if we choose L(£) = a&?, then (1.1)
is the nonlinear Schrodinger equation with dissipation (it is also known as the
generalized Ginzburg-Landau equation) us — iz, +i|u|?*u = 0. Our main purpose is
to study the large-time asymptotics of solutions to the Cauchy problem (1.1). Large-
time asymptotics of solutions to the Cauchy problems for dissipative equations
has been extensively studied previously (see [1-4,6-8,12,17,19,21-25] and the
literature cited there in). Critical cases for the Cauchy problems with nonlinearities
involving derivatives of unknown functions were considered in [5,9,16,18,20]. The
fact that the nonlinearity has the form of the full derivative (and so the mean
value of the nonlinearity is zero for all time) enables us to find the large-time
asymptotics of solutions easily. In [11,14], the Cauchy problem to the nonlinear
heat equation u; — ty, + |u[P7'u = 0 was considered and it was shown that the
solution u satisfies the time decay estimate ||u(t)||z~ = O(t~Y?(log(1 +t))~'/?)
when p = 3 and |Ju(t)| z~ = O(t~/?) when p > 3. This fact means that the case
p = 3 is the critical one. These results on the large-time asymptotics of solutions
were extended to the case of the porous media equation with critical exponents
(see [10]). The aim of the present paper is to obtain the large-time asymptotics
of solutions to the critical Cauchy problem (1.1). The methods of papers [11,14]
do not work for the complex Ginzburg-Landau equation. On the other hand, our
method stated below in §§ 2 and 3 is also applicable to the Cauchy problem for the
nonlinear heat equation u; — ugzg + |u|?u = 0.
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The main idea of the present paper is to make a change of the dependent variable
u = ve"?WHY) in order to rewrite (1.1) in the form

v+ Lu +ie”2PwlPo — (¢ — i )v = 0,

in which the new nonlinearity ie™2¢|v|?v — (¢’ —i¥’)v has the zero mean value for
all time. Then we apply the method similar to that of [15,18,20].

To state our result precisely we introduce the following notation and function
spaces.

Let

0 0
8:893:8_1‘ and 815:%

As usual, we denote the Lebesgue space by L? = {¢ € §';||¢||, < oo}, where

ot = ([ ot ar)”

if 1 < p<ooand |¢|le = esssup{|¢(z)|;z € R} if p = co. For simplicity, we let
9|l = l|#||2. The weighted Sobolev space

H™ = {6 € 8 |Bllme = (1 2321 = 82)"/26] < o0}, m,s€R.

By C(I; B), we denote the space of continuous functions from a time-interval I
to the Banach space B. Denote W = H™ N H%! and [|¢[ww = ||}]ln.0+ ¢ll0.1,
where n is the same as in (1.2). Different positive constants might be denoted by
the same letter C. Denote also

92
=—Im—— >0,
- 4 /2|a)? + a2
64 9(3 — v/5)
po = 5 log ;
3(4ma) 3+V5
92[Lg_1/0

4 2]al? + o2’
0= ‘/uo(x) dz| = V2r|ao(0)| > 0.

w = Re

In the present paper we prove the following result.

THEOREM 1.1. Let the symbol L(§) satisfy conditions (1.2), (1.3) with Rea > 0
and Ima > 0. We assume that the initial data ug € W have the mean value

0(0) = <= [ wa(e) do £0

and the norm ||ugllww = € is sufficiently small. Then there exists a unique solution
of the Cauchy problem (1.1) such that u(t,z) € C*((0,00) x R) N C((0,00); W)
with the following time decay estimate

3¢

t [o’e) < 9
lu® V1+t(1+4 p,log(l+1t))t/20
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where 0 = 1 if Ima > 0 and 0 = 2 if Inma = 0. Moreover, the solution has the
following asymptotics for large time t — 0o uniformly with respect to x € R

0 2 . g
u(t,z) = e /4at+iwlog log t + ( ) 1.4
t.) 2V 2a /i1t logt Vtlogtloglogt (1.4)
in the case o0 =1 and
0 2 . 15
u(t,x) _ e~ /4at+iw/Togt + O( ) (15)
2mv2at1/4(log t)/* Vitlogt

in the case o = 2.

REMARK 1.2. Note that the asymptotic behaviour of solutions described in theo-
rem 1.1 in the case Im o > 0 have an additional logarithmic decay in comparison
with the linear evolution (as it happens in the case of the semilinear heat equation
with the critical exponent u; — uz, +u® = 0 (see [11,14])). This logarithmic decay
is defined by the first approximation of the perturbation theory (see the proof of
theorem 1.1 below). However, in the case Im o = 0, the coefficient pq vanishes and
the logarithmic decay of the solutions become slower (it is defined by the second
approximation of the perturbation theory).

We organize our paper as follows. In §2 we prepare some preliminary estimates
in lemmas 2.1 and 2.2. Section 3 is devoted to the proof of theorem 1.1.

2. Preliminaries

The solution of the linear Cauchy problem

u + Lu= f(t,z), v€ R, t>0,
u(0,x) =uo(z), =€ R,

can be written in the following form
u(t) = K(t)ug + /t Kt —7)f(r)dr,
0
where the Green operator K is given by K(t)¢ = }"_le_L(g)tqg(f). We denote also
6(1)6 = F1e06(6) = [ Gt =)oty dy,

where the heat kernel
e—m2/4at

1
G2 =7

LEMMA 2.1. Let dissipation condition (1.2) and asymptotic representation (1.3)
for the symbol L(§) of the operator L be fulfilled. Assume that a function f(t,)
has the zero mean value f(t,0) = 0 and satisfies the estimates

£l < e(1+ )73/ Bg=*/o(1)  for all t > 0,
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where 3 € |0, %), k = 0,1,2. We also assume that the function g(t) is such that
2(1+ po log(14+ 1)) < g(t) < 2(1 + polog(1+1t)) for allt > 0. Then the following
inequalities are valid

4

/0 dr g~/ (r)K(t = 1) f(7)

=

n,0

< Ce,
0,1

/0 dr g~/ (P)K(t = 1) f(7)

< Cegm /o) (1 4-1)71/278

o0

/0 drg=7 (1) (K(t — 1) — G(t — 7)) /()

/0 dr g7 (1)K (t —7)f(7)

and

for allt > 0.

< ng—(kJrl)/o(t)(l + t)—1/2—v/2—ﬁ

o0

Proof. Since the function f(t,z) has the zero mean value f(t, 0) = 0, applying dis-
sipation condition (1.2), the Plancherel theorem and the inequality

|f(r, )| = | f(r,€) — < CVIENF()los

we get

okt = Al < IRy [ el ag

lgl<1
b e P ac
1€1>1

CUF o+ 11 (llo1)?
(1Jit—7')1+l 1)

for all ¢ > 7 > 0, where 0 < [ < n. In the same manner, we obtain
(=7 ()R < I =717 +C [ 1aee 900 fr, ) de

<OVT=TIFR [ eestema
g1
e / O g2 (7, £)[2 de
[g]=1

£ ()13

<c
< Oe(1+7)73/27%,
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Whence, since g~/ (t) < 2, we get

¢—“ U7 (1)Kt = ) (r) dr

n,0

+ %“ ; g_l/o(T)/C(t —7)f(r)dr

0,1
t 4
vV1+t 1
< Cs/ ( T
o \T3/NWt—1  3/4t

We now prove the rest two estimates of the lemma. Note that, for 0 < ¢ < 4, these
estimates follow from the first one. So consider now ¢ > 4. Inequality (2.1) yields

)dT < Ce.

1Kt =) f(D)1Z < CIK(E = ) f(D)0:K(t = 7) f(7)]

SO+t =) ()l

< C(l 4+ t— 7_)—3/2(1 + T)—3/2—2ﬁg(7_)—2k/a

for all ¢ > 7 > 0. From the condition of the lemma for the function g(¢), we have
the estimates (1 +¢)~/8t8/2 < Cg= D/ (¢) for 0 < 8 < § and

_(k+1)/0(7.) (1 + po log(1 + \/_)) (k+1)/o

<C
< O(1+ o log(1 +t))~kFD/e
<C —(k+1) /0( )

sup g
TE[VE]

9

whence

[ - i

< Csft g~ /o () dr
= o (t _ 7.)3/47.3/4+ﬁ

< O34 Vdr + gm0/ V2 _dr
X 0 7_3/4+ﬁ \/1_5 7—3/4+ﬁ

t dr
—(k+1)/o (4 / —)
+g (t) oo (t— 7)3/4+5

L CtTV2Bm1/840/2 4 g= () o (p))
< Cg—(kJrl)/o(t)(l + t)—1/2—ﬁ
for all t > 4. If Re L(¢) > Reag?, using condition (1.3), we write the estimate
|e—L(§)t _ e—a§2t| <e Rea§2t|e—L(§)t+a§2t —1
< C|£|2+wte— Reagzt
< ClgPremee.
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The case Re L(¢) < Reag? is considered in the same manner. Hence

10" (K(t = 7) = G(t = 7)) f ()]

<O, [l variaesenag y caotn [ (e fir P ac
GES! l€[>1

< O 1+ = 7)1

SCE(1+t—7) 1A 4 1) 73220 ()72

Therefore, we get

“ / g ()K= 7) = G(t = 7)) f(r)dr

o0

<c f Y (Pt = ) — Gt — ) f ()| /2
% 10, (K (t —7) = Gt — 7)) f ()2 dr

< csft g~V (r)dr
o (t— 7-)3/4+’y/27-3/4+ﬁ

NG t/2
< Cst—3/4—7/2(/ dr +g—(k+1)/0(t)/ dr
0

73/4+8 N T3/445
¢ dr
—(k+1) /o (1\g—B+7/2 _dr
+g (t)t /;/2 (t— 7_)3/4+v/2)
< Cet™V/2=B=7/2(4=1/848/2 4 g=(k+1)/o (1))
< Ceg™ R0/ (1)(1 + ¢)7V/27F=7/2
for all t > 4. Lemma 2.1 is proved. 0

Denote &(t) = K(t)vg and

W(t) = —i/(;tg_l/”(T)/C(t - T)(|q5|2qs(T) - %f |B2®(T, x) dx) dr.

LEMMA 2.2. Let dissipation condition (1.2) and asymptotic representation (1.3)

be fulfilled. Also we assume that vo € W and the norm ||vo|lw = ¢ is sufficiently

small. Suppose that a function v(t, x) satisfies the estimates ||v(t)]|oo < (1 4+ t)7/2,

llo(t)]] < e(14t)~Y* for all t > 0, and have the asymptotic representation
081+20

gVt +1
for allt > 0. We also assume that the function g(t) is such that
(1 + polog(141)) < g(t) < 2(1 + po log(1 + 1))
for all t > 0 and |¢'(t)] < CO?7/(t + 1), with § = 99(0) when o = 2. Then the

following inequalities are valid
1
‘Elm/g_(”_l)/”(t)|v|20(t,x) dz| <

[o(t) = B(t) = (0 = )P (H)]| o0 <

0820
t+1

(2.2)
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and
1 20 ! (0—1)/c 2
5(1 4 20p, log(t +1)) < 1—71111 g (1) | |v|*v(r,z)dzdr
0
< 2(1 + 204 log(l + 1)) (2.3)

for allt > 0.

Proof. For t € [0,1], the estimates (2.2), (2.3) are trivial. Consider the case t > 1.
We have &(t) = K(t)vg = 0G(t) + R, where

is the heat kernel and the remainder term R = (G(t)vo — 0G(t)) + (K(t) — G(¢))vo
has the zero mean value R(¢,0) = 0. By virtue of estimate (1.3) and Plancherel’s
theorem (as in lemma 2.1), we get

0 RI? < €= [ €2 (€] + e C5" ag < 021+ )72,

where 3 = min(4, 1+). In the same manner, we have ||R|[o,1 < Ce(1 +¢)/47# and
| Rlloe < Ce(1+t)~'/278 First consider the case Ima > 0, that is, ¢ = 1. We have

Iv|*v — 63|G]*G||1 = [|[0RG(G + &) + RP* 4 rd(P + v) + 72|
CIRllss + ITlls) (OGN + 12]1* + [|v]|?)
o Ceb N Ce3
T+t A+

where r = v — @. By an easy computation, we obtain

0 2 _
-1 93/ GP*G(t,z)dx = -1 —/ —z7/4t(2/a+1/@) q
m |GI°G(t,z)dz m COEEENG e T
93
= —Im——
4rt /2|al? + a2
0
)
t
Then, since g~ (t) < C(1 + po log(1+1t))71, we get
Ce® Cce?

11
I 2u(t,z)d
‘m flvl (t:) x+t+1‘ 00+ (1 + palog(t + 1)) (¢ + )17

for all ¢ > 0, whence estimate (2.2) follows and

1 t
‘Elm/ dT/ lv]?v(T, x) dl‘+ﬂ110g(1+t)‘
0

<& / dr L& / dr
S0 Sy U+ mlog(l+7)) 0 Sy (1+7)HP
+ elog(1+ p1log(1 +1t))

e
< 2(1+ pylog(1+1)).
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Thus we obtain (2.3) in the case Ima > 0. Now we turn to the case Ima = 0,
i.e. 0 = 2. Now,

Im 93f |GI*G(t,z) dz = 0,
so we have to analyse in more details the second approximation ¥ of the pertur-

bation theory. We have |®|?®(t) = 3G3(t) + P(t), where the remainder term is
estimated as

Ce?

p— D 2 —eeee
[P(t)llw = [[0RG(0G + @) + RP* |l < EDEEE

for all t > 0. Hence
|20 (t) — /|Q5|2 (t,z)dx = 93(G3 /GS t,x) dx) + Q(¢),
where the remainder
Qt) = (P(t) —G(t)/P(t,x) dx) + %f |20 (t, x) dx

is estimated as [|Q(t)|lw < Ce®(1 +t)73/47# and satisfies the condition

/Q(t,x) de =

Whence, by lemma 2.1, we obtain

[ o= (iora) - 22 [ iototn) o
g Mg =) (G3<T> -6 [ @ x>) dz dr

o0

“ oKt —7)Q(7) dr

o0

+ 63

/0 Ve () (K(t - 7)

—G(t— T))(G3(T) —G(r) f G3(r, ) dx) dr

SO+ 4TV g (m) 7o),

where 3 = mln(4, 27) By an easy computation, we get

—y)? b _ exp(=2?/da(t — ((b—1)/b)7))
Varar(t —7) /exp( da(t —7) E)dy bt —(b—1)7

for any b # 0 and

1 2
GS -3 dat -1
/ (t,y)d (47Tat)3/2 /e v/ dy = (471'0[75\/5)
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Therefore,

G(t— T)(G3(T) —G(r) f G3(r,x) dx)

_fG(t—Tax—w(G?’(T’y) B %) ‘

—y? /4ot
o—(o—y)* /da(t—r) (e—3y2/4at _ #) dy
3

" (drar)2 ;m /
1 (exp(—x2/4a(t - %T)) e—x2/4at)

~ VB(4ma)3/2r e 7
uniformly in z € R. In particular, we see that
Ce3
VU(t)]oo < —1/o t
17(0)] < <™ (1)
and
U(t,z)= _L /t g_l/g(T)(eXP(—xQ/Zla(t - %T)) B e T /4at) ﬁ
V3(4ma)3/2 Jo T )7

+O(EE 1+t~

Then, by the fact that |@|? = 62|G|? + remainder terms, we obtain

—Imf@tx |*@(t,z)dx

0° )
- dre™® /2at
Barayprze) F
% /tg—l/o(T)(GXp(—x2/4a(t - %7-)) 3 e—x2/4at) ﬁ
0 t—27/3 Vit T

+O0(E(1+t)717P)
= 9—5 /t ﬁg—l/U(T)
V3(4ma)d/2t Jo T
/(e—x2/2at—x2/4a(t—2r/3) 6—39:2/40415
X —
t—27/3 Vi

) dz 4+ O(°(1 4+ t)~177)
L s VS (R S _ e
C 3(4ma)2t Sy T g ( )( V1—47/9t 1) +O((1+t)1+ﬁ). 24

= [ (A=) 5 (=)

Since |v(7)| < Cy/7, and via the condition |¢'(t)] < C027/(t + 1), we get

[ %) oyar| < e [Ngem S < oo,

Denote
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hence integration by parts with respect to 7 yields

tﬁ —-1/2 . ; _ — (4 —1/2 —3/2
[ o - ) - e ot ). e

Substitution of (2.5) into (2.4) gives
_ 2 _ 120 iy gy
Im [ |&(t, z)|*P (¢, z)dz = 9 t)+0 9 (t) (2.6)

for all ¢ > 1. By the condition of the lemma, we have

Ce”

oo = |9]°® = 2B|*¥ — $*P || < ————=
(t+1)g(t)

and via (2.6) we obtain

—Im/|vtx o(t, ) dx ——Im/@(t’xﬂw(tafﬂ)dx*O( = )

tg(t
__M2¢ =
t¢a5+0(ww)’

whence the representation (2.2) follows. Moreover, we have
1 ! 2
EIm Vg(r)dr | |v|*v(r,z)dz + polog(l +t)
0

057/‘t dr CES/t dr
<et— +— —
0 Jo (1+7)/T+mlogl+7) 0 Jo

+ev1+ polog(l+1t)

(14 polog(l+1t)).

~—

<e
<3

Whence we get (2.3) for the case o = 2. Lemma 2.2 is proved. O

3. Proof of theorem 1.1

First we state the local existence of classical solutions for the Cauchy problem (1.1)
(for the proof, see [13,19]).

THEOREM 3.1. Let the initial data ug € W. Then, for some T > 0, there exists
a unique solution u(t,z) € C*°((0,T) x R) N C((0,T); W) of the Cauchy prob-
lem (1.1). Moreover, if the initial data are sufficiently small ||uo||w < €, then there
exists a time T > 1 such that the solution u(t,x) of the Cauchy problem (1.1)
satisfies the estimates ||u|lw < 2e for all t € [0,T).

We make a change of the dependent variable u(t,z) = e=?®+T¥ ")y (¢ 2). Then
we get, from (1.1),

v+ Lu +ie”2PwlPo — (¢ — i )v = 0. (3.1)
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Now let us demand that the real-valued functions (t) and ¥ (t) satisfy the following
condition

[ Geelofo = (& = )z =0,
whence, via (3.1), we get

d
% v(t,z)de =0 for allt> 0.
Therefore, if we choose ¢(0) =0 and ¥ (0) = argd(0), we can write

B(t,0) = 19(0) = O~V g4(0) = >0

-
3

and equations
/ 1 —2¢ 2 / 1 —2p 2
pl=—ge Im [ |[v[’vdz and ¢’ = 7¢ Re [ |v|[*vdz. (3.2)
Thus we obtain a system
1
v +Ev+ie_2‘p(|v|2 - 5/ |v|2vdx)v =0, z€R, t>0,

1
=g Im/ [v*vdz, z€R, t>0,
v(0,z) =vo(z), ¢(0)=0, z€R,
where

vo(z) = u(0, 7) exp(—i arg/ (0, 7) dx).

After system (3.3) has been solved, the function ¥ can be computed from (3.2).
Multiplying the second equation of system (3.3) by the factor e>?¥() and then
integrating with respect to time ¢ > 0 and making a change of the dependent
variables v = & + (6 — 1)¥ 4+ 7 and e2?¢() = g(t), we get the system of integral
equations (r, g) = (A(r,g),B(r,g)), where @(t) = K(t)vg is the first approximation
of the perturbation theory,

W(t) = —i/: g VoKt — T)(|q5|2q5(7) - @f BB (7, x) dx) dr

is the second approximation of the perturbation theory and the operators

t

Al g)(t) = =i f g7 (Kt = 7)
< (1o = (0 = DiePatr) = L [ opotr,2)az

(3.4)

+ (o — 1)#/ |®|°®(r, x) dx) dr,

t
B(r,g)(t) =1— 270 Im/ g("_l)/”(T)/ lv[?v(T, ) dz dT.
0
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We prove that the transformation (A, B) gives us the contraction mapping in the
set
X—{TGC(( 00); W); g € C(0,00) :
sup((1+ )" 2g(@)llr(t)lloc + V1 +lr(t) 10
o DT Dllr) < 0
2(1+20pu, log(t + 1)) < g(t) < 2(1+ 20p, log(1+ 1)),

20'
lg'(t)] < f for allt>0}

First let us prove that the mapping (A, B) transforms the set X into itself. When
(r,g) € X, we get

o) = (o = DlaPen) = 22 [ oot

—(o—1) ét)f|q5| B(t, 2) do

\%4
< C3(14t) gl D/oyy,

Therefore, applying lemma 2.1, we get the following estimates:
[A(r, 9)(t)]lo < Ce(1+ )" 2g71(1),
Ce
A ) t n < o
IA(r, 9)(1)llm.0 i
A, 9) ()]0 < Cev1+t.

Furthermore, applying lemma 2.2, we get
0820

14 oot 1)) < Blrag)(0) < 20+ pologl 40, | SB0.000| < £

for all £ > 0. Thus the set X is transformed into itself. We have, by lemma 2.1,

iglg(l + 1) Y A(r1, 91)(t) — A(ra, g2) ()l
/ Kt—r1 ( 7(m) |1 [Poy = 92_1/0(7')|U2|2U2
~1/a( v
702 [P e
1/0 U2 2
+ g, )7/‘ |vg] vgdx) dr

t
d
< Copli+ 070" [ S (oup(1-+ ) ra(6) = ralt)
t>0 o T t>0
+sup(1 +¢)~°|g1(t) — ga(t)])
t>0
< 2(sup(L+ 1) 7°r1(t) = ra(t)lloe + sup(L +£)~°[g1(t) — g2(t)])
t>0 t>0

< Csup(l+1t)”
>0
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with some small § > 0 and, via lemma 2.2, we get

sup(l + t)_5|3(7"1, 91)(t) = B(r2, g2)(1)]

t>0
t
f (gf o) f [or[Por da = g5 /7 () f |vg|202dx) dr
0

t
- dr -
<sup 01407 [ Shalup(1 407 ra(0) = a0l
t>0 o T t>0 5
+ iglg(l +8) 7 lg1(t) = g2(1)])

< %(iglg(l + )71 (t) = ra(t)lloo + sup(l + £)°lg1(t) = g2(1)]).

< Csup(l+1)7°
>0

Thus we see that the transformation A, B is the contraction mapping. Therefore,
there exists a unique solution 7, g of the system of integral equations (3.4) from the
space X . From the proof of lemma 2.2, we see that

g(t) = plogt + O(elog py logt)
for ¢ — oo in the case o = 1 and
g(t) = palogt + O(e v/ 1 logt)

for t — oo in the case o = 2. Also, we get

2
%Re/ lv[2o(t, z) dz = 92Re/ |GI*G(t, x) derO(lE—Hg_l/”(t))

1/o 2
~ 2 o),

1+1 1+t

whence we get the asymptotics
t

¥ (t) —I/J(O)Jr%Re/(; g_l/”(T)/|v|2v(T,x)dxdT

w,u},/o dr

=0 *fo (1 7)(1+ o log(1+ 7))1/°
=wloglogt + O(g)

+O(e)

in the case 0 = 1 and similarly ¥ (t) = wv/logt + O(eloglogt) in the case o = 2.
Therefore, via formulae

u(t,z) = e $OHVOy (¢ z) = e ¢OFVO (P 4 (6 — 1) +7),

we obtain the asymptotics (1.4) and (1.5). Theorem 1.1 is proved.
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