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SUMMARY
The purpose of this paper is to design a stabilizing controller for a car with n connected trailers.
The proposed control algorithm is constructed on the Lyapunov theory. In this paper, the purpose of
navigating the system toward the desired point considering the slip phenomenon as a main source
of uncertainty is analyzed. First mathematical models are presented. Then, a stabilizing control
approach based on the Lyapunov theory is presented. Subsequently, an uncertainty estimator is taken
into account to overcome the wheel slip effects. Obtained results show the convergence properties of
the proposed control algorithm against the slip phenomenon.
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1. Introduction
The applications of mobile robots and intelligent vehicles are growing in the industry and research
today.1–4 For some purposes in robotics, multi-trailer systems are applicable. They consist of several
relatively similar units. Some units may be active while others may be passive. A multi-trailer struc-
ture allows a robotic system to accommodate different configurations for moving in the environment
and increasing its capacity relative to a single-body structure.

There are examples of multi-trailer vehicles in agricultural and transport applications, but these
systems are manned and in the future, these activities will be automated by mobile robots. Multi-
trailer systems have significant transportation advantages. The cargo capacity is increased by adding
trailers. Also, the ability to change the structure and extend the number of trailers is another positive
point.5 On the other hand, the cost of a multi-trailer vehicle is much less than multiple separate
vehicles. Applications include automated trailer systems, carriage and passenger land transport,
agricultural activities, transportation of goods to factories, airports, ports, and so on.6

Stability is the most important property for the control systems. Each control system, whether
linear or nonlinear, will be involved with the stability issue, which should be carefully analyzed.
Since physical systems are nonlinear, the Lyapunov linearization method is commonly used to justify
the examination of linear control techniques in practical applications. Therefore, the linear stabilizer
design guarantees the stability of the nonlinear systems around the equilibrium points. The Lyapunov
linearization method is related to the local stability of the nonlinear systems. This approach stems
from the notion that nonlinear systems have properties similar to the linearized nonlinear systems
around their equilibrium points.7, 8 The most common and useful method for studying the stability of
the nonlinear control systems is described by the Lyapunov stability in various forms.9–11 This theory
includes two approaches, that is, linearization and direct methods.12 In the linearization method, the
nonlinear system is linearized around the equilibrium points and using the stability measures of the
linear systems, the stability is analyzed around the equilibrium points. In the direct method, the defi-
nition of a quasi-energy function is used for the system to examine the nonlinear system stability.13, 14
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The Lyapunov theory is one of the most important techniques for stability analysis of the nonlinear
systems in modern and classical control. An important point in Lyapunov stability is that all of the
Lyapunov theorems determine sufficient conditions for analyzing stability. Therefore, investigating
a Lyapunov function for a dynamic system may be much difficult in some cases. As stated above,
in most of the control problems the Lyapunov theory is utilized to validate the stability based on the
direct or linearization approaches for continuous systems. But, there exist fewer investigations for
discontinuous systems. The variable gradient method based on Clarke’s generalized gradient is also
a useful method for constructing Lyapunov functions for discontinuous systems. This method, for
some discontinuous systems, leads to the discovery of a Lyapunov function.9, 10

Possible motion tasks for the tractor-trailer wheeled robots (TTWRs) result in two main control
problems, that is, tracking control15 and point stabilization. Stabilization around the desired con-
figurations with kinematic control inputs as a closed-loop control problem is one of the important
problems in Wheeled Mobile Robots (WMRs), which will be discussed in this paper. In the stabi-
lization problem around a given desired configuration, the robot should converge a desired ultimate
position from a desired initial situation.16 It may seem that stabilization is a special case of the tra-
jectory tracking problem, but it is not and requires different control strategies. The methods used for
trajectory tracking problems do not solve the stabilization problem around a given desired configu-
ration as a particular case.17 A driver also feels the difference that parking a car precisely around a
fixed steady-state configuration is different from tracking a trajectory. In references,18, 19 the litera-
ture review for the regulation of nonholonomic systems based on the kinematic models is presented.
Some solutions are also presented for stabilizing the nonholonomic systems in refs. [20–22]. For
nonholonomic systems, it is difficult to design a stabilizing feedback law.23–25 Indeed, the problem
is the stabilizing of a controllable multi-input-multi-output dynamical system. Based on the Brockett
theorem, nonholonomic systems cannot be stabilized using time-invariant continuous control laws.26

This is the most important limitation that has attracted much attention.
In recent years, different stabilization algorithms have been investigated for nonholonomic

systems. The proposed approaches can be classified into time-varying algorithms,27 discontinu-
ous controllers,28 and hybrid approaches.29 In this paper, a discontinuous controller is proposed
for stabilizing the last trailer of a multi-trailer system around a given desired configuration.
Nonholonomic constraints are due to non-slip limitations assumed ideally for robot wheels; some ref-
erences proposed tracking controllers in presence of wheel slips or self-collision such as refs. 30–32.

In this paper, the properties of the Lyapunov functions for the stabilization problem of WMRs are
examined. First, some stability concepts of the nonlinear systems are described using the Lyapunov
stability criterion. Next, the variable gradient method based on Clarke’s generalized gradient is uti-
lized to investigate a discontinuous Lyapunov-based controller for the stabilization problem. Also, a
slip estimation method is presented to overcome the wheel slip phenomenon. Obtained results show
the efficiency of the proposed algorithm in the stabilization of a multi-trailer system.

2. Problem Description
TTWR consists of a driving robot (called tractor) and one or more driven parts (called trailer) which
are hinged behind the tractor. In this section, as shown in Fig. 1 the generalized coordinates for
the TTWR are q = (xn, yn, θ0, θ1, . . . ,θn)

T , the system velocities are (ui , ωi ), (i = 0, 1, . . . , n), and
(P1, P2, . . . Pn) are the inactive revolute joints and n is the number of trailers.

Li is the spacing among the i-th trailer wheel axle and the connection joint with the (i-1)th unit,
and Lhi is the spacing among the i-th trailer wheel axle and the connection joint with the (i+1)th
unit. This type of connection causes the algebraic relationship between the control inputs, which can
be accessed easily through the inputs. Here, the main purpose is controlling the last trailer with the
generalized coordinates qn = (xn, yn, θn)

T .

3. Mathematical Model
In system modeling, it is assumed that the TTWR is made up of rigid bodies, the TTWR moves in
a planar surface, and wheels are assumed as solid disks having a point contact with motion surface.
The kinematic model of an n trailer WMR is as:

q̇i = G(qi )vi (i= 1 → n) (1)
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Fig. 1. The NTWMR and its configuration parameters.

where vi = [
ωi ui

]T
and

G(qi ) =
⎛⎝1 0

0 cosθi

0 sinθ i

⎞⎠ (2)

The kinematic model for the n-th trailer robot assuming the slip disturbances parallel with the control
inputs is as:

q̇n = G(qn)vn + G(qn) δn (3)

where δn = [
δn1 δn2

]T
express the slip effects parallel with the linear and angular velocity of the

last trailer. A general formula can be used for transforming the kinematic inputs between the robot
units as:

vi = Jivi−1 (4)

where Ji is the conversion matrix as

Ji =
⎡⎢⎣− Lhi

Li
cos(θi−1 − θi )

1

Li
sin(θi−1 − θi )

Lhi sin(θi−1 − θi ) cos(θi−1 − θi )

⎤⎥⎦ (5)
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The inverse transformation is also defined as

J−1
i =

⎡⎢⎣− Li

Lhi
cos(θi−1 − θi )

1

Lhi
sin(θi−1 − θi )

Li sin(θi−1 − θi ) cos(θi−1 − θi )

⎤⎥⎦ (6)

The determinant of Ji can be obtained as det(Ji ) = − Lhi
Li

, where Li �= 0 is necessary for reversibility.
Also the inverse of Eq. (4) can be obtained as

vi−1 = J−1
i vi (7)

Equation (4) is a recursive equation and can be simplified as

vi =
1∏

j=i

Jiv0, i = 1, . . . , n (8)

The inverse equation can be written as

vi−1 =
N∏

j=i

J−1
i vn, i = 1, . . . , n (9)

4. Mathematical Background
Theorem 1 (Ref. 33). Consider the autonomous system ẋ = f (x) in which f is continuous, and

suppose V(x) is a continuous differentiable scalar function. Suppose:

(a) For some l > 0, the region Ω l defined by the condition V(x) < l is bounded.
(b) For all x inside Ω l , V̇(x) ≤ 0

Suppose R is all points inside Ω l in which V̇(x)= 0 and M is the largest invariant set in R. Then
every response x(t) that starts at Ω l as t → ∞ tends to M.

Remark. It is not necessary to have a positive definite Lyapunov function.

Theorem 2 (Ref. 11). It is assumed that Ω as a compact set, therefore the Fillipov solution of
the system ẋ = f (x), starting from x(0) = x(t0) in Ω remains in Ω , ∀ t ≥ 0. Let V : Ω → R be

a regular time-independent function of time with v ≤ 0, ∀v ∈ ˙̃V, (if ˙̃V = 0 has a series of empty

and continuous solutions). Defining S = {x ∈ Ω|0 ∈ ˙̃V}. Then every trajectory in Ω converges to the
largest invariant set in S.

5. Discontinuous Control
Consider the following differential equation:

ẋ = f (x) (10)

where f :Rn →R
n is a possibly discontinuous and bounded column vector function of

n-dimensional state variables x . Special values of the state vector are called a “point” because it
represents a point in the system state space. Also, n is system order. A solution for x(t) of Eq. (1)
shows a curve in the system state space in which the time t is from zero to infinity, which is called the
state trajectory. x(t) is a Filipov solution. It should be noted that Eq. (1) represents a closed-loop con-
trol system and there is not the effect of the control signal. The open-loop equation is as ẋ = f (x, u),
where the control input has the form u = g(x) and therefore ẋ = f (x, g(x)) = f (x).

x(t) is absolutely continuous and ẋ ∈ K [ f ](x), where K [ f ](x) is the Filipov set defined
as K [ f ](x) = co {lim f (xi ) |xi → x, xi /∈ H}, where H indicates the set of points where f is
discontinuous and co denotes the convex closure.
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Let V :Rn →R be a Lipschitz and regular function which can be assumed as an attractive or
repulsive potential field. Then, V (x(t)) is absolutely continuous, d

dt V (x(t)) exists almost every-

where, and d
dt V (x(t))∈a.e. ˙̃V (x), where the set-valued map ˙̃V (x) is the generalized time derivative

˙̃V (x) = ∩ξ∈∂V (x(t))ξ
T K [ f ](x(t)) and ∂V is Clarke’s generalized gradient.

In other words for a dynamical system containing discontinuities, the time derivative of the
Lyapunov function is not a single-valued function in a set obtained by the connection of all val-
ues from dot multiplication of the gradient of the Lyapunov function with a vector enclosing the
Filippov set as a portion of its ingredients.

The generalized time derivative for the TTWR can be obtained as

˙̃V (x) =
[

∂V

∂xn

∂V

∂yn

]
K

[
uncosθn

unsinθn

]
= K [un]

(
∂V

∂xn
cosθn + ∂V

∂yn
sinθn

)
(11)

Assuming the first control input as

un= −αu

{
∂V

∂xn
cosθn + ∂V

∂yn
sinθn

}
(12)

where αu is a positive controller gain, results in the following negative semi-definite function:

˙̃V (x) = −αu

(
∂V

∂xn
cosθn + ∂V

∂yn
sinθn

)2

(13)

It can be concluded that the robot tends to the biggest invariant subset of the set S �{
∂V
∂xn

= ∂V
∂yn

= 0 ∨ ∂V
∂xn

cosθn + ∂V
∂yn

sinθn = 0
}
. However, whenever ∂V

∂xn
cosθn + ∂V

∂yn
sinθn = 0, therefore,

|arctan2( ∂V
∂yn

, ∂V
∂xn

)− θn| =π
2 , or |ωn| =π

2 which means that θn �= 0. Therefore, the choice of ωn =
αω

{
tan2

(
∂V
∂yn

, ∂V
∂xn

)− θn
}

renders the surface ∂V
∂xn

cosθn + ∂V
∂yn

sinθn = 0 noninvariant whenever the

robot is not located at ∂V
∂xn

= ∂V
∂yn

= 0. Therefore, the biggest invariant set in S is S0 �
{

∂V
∂xn

= ∂V
∂yn

= 0
}
.

An attractive positive semi-definite Lyapunov potential function for V can be assumed as V (xn, yn) =
exp

(− sgn (xn)xn

x2
n +y2

n

)
,34 which has the minimum value at the origin, where the sign(.) function is defined

as

sgn(x) =
{

1 x ≥ 0
0 x < 0

(14)

Based on the defined function V, the system configuration space can be partitioned into two con-
nected sets M1 = {.(xn, yn, θn)| xn ≥ 0} and M2 = {.(xn, yn, θn)| xn < 0} which are divided with
the surface S = {.(xn, yn, θn)| xn = 0}. Therefore, negative semi-definite function

˙̃V (x) =
−sgn(xn)αuexp

(− sgn (xn)xn

x2
n +y2

n

)
(
x2

n + y2
n

)2

[(
x2

n − y2
n

)
cosθn +2xn ynsinθn

]2 ≤ 0 (15)

To reach the asymptotic stability from ˙̃V = 0, it can be concluded that S � {. (xn, yn, θn)|
xn((y2

n − x2
n)cosθn −2xn ynsinθn ) = 0}. In any point where (y2

n − x2
n)cosθn − 2xn ynsinθn = 0, one

has |arctan2(2xn yn, x2
n − y2

n)− θn| =π
2 , which means that θn �= 0 and only xn = yn= 0; there-

fore, from ωn = αω {arctan2(2xn yn, x2
n − y2

n) − θn} it can be concluded that ωn �= 0. Also ˙̃V = 0
is satisfied for (x, y) = (0, 0) and for all θn . For any invariant set (0 , 0 , θn) from ωn= 0 one
obtains θn= 0

Therefore, the stabilizing control input is proposed as follows for the last trailer:

un = αu sgn(x)
[(

y2
n − x2

n

)
cosθn −2xn ynsinθn

]
ωn = αω

{
arctan2

(
2xn yn, x2

n − y2
n

)− θn
}

(16)

where αu and αω are positive controller gains.
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6. Slip Estimation
To estimate the slips as the main source of uncertainties in WMRs, the system state variables
q = (x y θn θn−1 . . . θ0)

T ∈R
n+3 are measured with specific sampling time, using sensors. The

performance of the system is compared with the desired states and accordingly, the decision is
made to adapt the system. The correction is applied to the system to overcome the uncertainties
and reach the desired states. Therefore, several stages are required for identifying, deciding, and
correcting a perturbed system. Achieving performance specifications in control systems is required
when the dynamic characteristics of the controlled process are largely uncertain and these character-
istics change over and over again during system operation. The idea is to design a controller that can
be adapted to the variations of the process dynamics and disturbance characteristics. The first step is
to identify unknown phenomena, such as slips imposed on the system. The next step is the decision
making and the correction of the uncertainties of the system or using the input signal. The designed
method uses an adaptation law to eliminate the error and converge the trajectories to the reference
values. The simplest method for estimating the slip values is using the data from the previous time

step. In this regard, using the system kinematic model, the slip vector δ̂ = (δ̂1 δ̂2)
T

can be estimated.
In other words, the estimate of the slip vector can be obtained using the data from the (k-1)th time
step as

δ̂ = G#(qn(k)){q̇n(k) − G(qn(k−1)) un(k−1)} (17)

where G# is the pseudo-inverse of the matrix G which is defined as G# =
{GT (qn(k))G(qn(k))}−1

GT (qn(k)).
For obtaining the slip vector estimate, using Eq. (1) it can be concluded that

q̇n(k) − G(qn(k−1)) un(k−1) =
⎛⎜⎝ ẋn(k) − un(k−1)cosθn(k−1)

ẏn(k) − un(k−1)cosθn(k−1)

ω̇n(k) − ωn(k−1)

⎞⎟⎠ (18)

Then Eq. (3) for the last trailer yields

δ̂ = G#{q̇n(k) − G(qn(k−1)) un(k−1)} (19)

Therefore, estimates of the system slip vector can be used to eliminate the slip effects in the feedback
control algorithm.

7. Obtained Results
It is assumed that n = 3 and the aim is to obtain the tractor’s linear and angular velocities as control
inputs to stabilize the last trailer. The relation among the kinematic inputs of the 3rd trailer and the
tractor can be obtained using the equations presented for the off-axle linking among the robot units.
The kinematic inputs vector for the last trailer is as

v3 =
[

ω3

u3

]
(20)

Based on the designed control method (16), one has

v3 =
[

ω3

u3

]
=
[

αω

{
arctan2

(
2x3 y3, x2

3 − y2
3

)− θ3
}− δ̂31

αu sgn(x)
[(

y2
3 − x2

3

)
cosθ3 −2x3 y3sinθ3

]− δ̂32

]
(21)

From Eq. (7), one can write the following equation to obtain v2:[
ω2

u2

]
=
⎡⎣− L3

Lh3
cos (θ2 − θ3)

1

Lh3
sin (θ2 − θ3)

L3sin (θ2 − θ3) cos (θ2 − θ3)

⎤⎦[ω3

u3

]
(22)
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Fig. 2. Proposed algorithm block diagram.

Similarly, v1 can be obtained as[
ω1

u1

]
=
⎡⎣− L2

Lh2
cos (θ1 − θ2)

1

Lh2
sin (θ1 − θ2)

L2sin (θ1 − θ2) cos (θ1 − θ2)

⎤⎦[ω2

u2

]
(23)

Also to achieve v0 one has[
ω0

u0

]
=
⎡⎣− L1

Lh1
cos (θ0 − θ1)

1

Lh1
sin (θ0 − θ1)

L1sin (θ0 − θ1) cos (θ0 − θ1)

⎤⎦[ω1

u1

]
(24)

In summary, from Eqs. (22)–(24) the following equation can be obtained:

v3 = J1 J2 J3 v0 (25)

In the simulations, the controller gains are chosen as ku = 10, kω = 3, kz = 10, and the system
geometrical parameters are Lh = Lh1 = Lh2 = Lh3= 0.17, L = L1 = L2 = L3= 0.05.

To have the performance and reasonable control inputs, the control gains have been chosen using
the trial and error technique and the simultaneous checking of the closed-loop system performance
and the control inputs. Because of the stability of the closed-loop system (according to Eqs. (13)
and (15) and related clarifications), from different initial configurations in a limited time, the robot
tracking errors converge to zero and the transient responses are eliminated, and the system tracks the
desired trajectory appropriately.

The slip effects are introduced as

δ31 =
{

1 0.05 ≤ t ≤ 0.2

0 cte

δ32 =
{

1 0.05 ≤ t ≤ 0.2

0 cte

(26)

In Fig. 2, the overall closed-loop control algorithm is shown.
Stabilization of a 3-trailer TTWR from different initial conditions is depicted in Fig. 3. Time-

history of stabilization errors in x and y directions is shown in Figs. 4 and 5. Kinematic control
inputs are demonstrated in Fig. 6. The Lyapunov function candidate as a function of the time is also
depicted in Fig. 7. Stabilization of a 3-trailer TTWR starting from different initial conditions and
different initial orientations is depicted in Fig. 8. Stabilization of a 3-trailer TTWR starting from
different initial conditions in the existence of wheel slippages using the slip estimator and without
using the slip estimator is demonstrated in Figs. 9 and 10.

As can be seen, the designed algorithm can effectively navigate the TTWR around the origin start-
ing from different initial configurations. In the existence of slip effects, although the designed method
can stabilize the system around the origin, using the slip estimator slip effects can be compensated
efficiently. Time-history of the Lyapunov function candidate from different initial conditions repre-
sents the stability of the closed-loop algorithm. As can be seen from the time-history of the tracking
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794 Stabilization of a tractor with n trailers

Fig. 3. Stabilization of a 3-trailer TTWR from different initial conditions.

Fig. 4. Time-history of stabilization errors in the x direction for a 3-trailer TTWR from different starting
configurations.

Fig. 5. Time-history of stabilization errors in the y direction for a 3-trailer TTWR from different starting
configurations.
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Fig. 6. Control inputs in the stabilization of a 3-trailer TTWR from different initial conditions.

Fig. 7. Time-history of Lyapunov function candidate in the stabilization of a 3-trailer TTWR from different
initial conditions.

Fig. 8. Stabilization of a 3-trailer TTWR starting from different initial conditions and different initial
orientations.
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Fig. 9. Stabilization of a 3-trailer TTWR starting from different initial conditions in the existence of slip effects
using slip estimator and without using slip estimator.

Fig. 10. Stabilization of a 3-trailer TTWR from different starting configurations in the existence of wheel slip
effects using slip estimator and without using slip estimator.

errors, as was expected from the system stability analysis it can be concluded that the error signals
are converging from different initial configurations.

8. Conclusion
A new discontinuous controller for the stabilization of a nonholonomic WMR towing n trailers in
the presence of wheel slip effects was investigated. The proposed algorithm was a Lyapunov-based
method accompanied by Clarke’s generalized gradient method. The aim of the proposed method was
the stabilization of the last trailer around the origin. The numerical comparative results demonstrate
the efficiency of the presented algorithm to stabilize the TTWR around the origin that can be hardly
achieved with the restricting nonholonomic constraints. It should be insisted that the robot base point
was chosen on the last trailer, which is practically important and revealed the advantages of the
recommended controller.
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