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This paper deals with a wave process induced by an acoustic impulse in a vertically in-

homogeneous half-space. The solvability of the corresponding direct initial boundary value

problem is proved. We also consider a class of one-dimensional inverse problems including,

in particular, the classical inverse problem of the scattering theory, the transmission and re-

flection problems of seismology, etc. It is shown that all these inverse problems are equivalent

in a certain sense, and therefore can be solved by identical methods. Theoretical results are

illustrated by numerical examples.

1 Introduction

Let us consider propagation of plane SH-waves through an elastic half-space z > 0 of

the Euclidean space R3 with mechanical properties which depend only on the depth z.

It is assumed that the waves are polarized along some axis parallel to the plane z = 0.

Under these conditions, a displacement w of the medium depends only on time t and z,

and satisfies the acoustic equation

(µwz)z = ρwtt. (1.1)

Here ρ(z) is the density of the medium and µ(z) is the shear modulus at depth z. It is

assumed that ρ and µ are strictly positive, twice continuously differentiable, and that, for

z > z0 > 0, they are constant and equal to some known values ρ0 and µ0.

The wave process is caused by external sources either at the surface or inside the

medium. The initial and boundary conditions for equation (1.1) depend on the location

of these sources and their physical nature. We consider a few typical boundary value

problems.

Let the normal stresses at the surface z = 0 be zero, i.e.

wz
∣∣
z=0

= 0, (1.2)

and suppose that oscillations are caused by an incident wave of the type ϕ(tv0 + z) which

propagates from the region z > z0 at the velocity v0 =
√
µ0/ρ0. The function ϕ(z) is
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considered to be zero outside some interval (a,∞). This means that the wave has a leading

front which moves along the z-axis towards the boundary z = 0. Obviously, the full wave

field in the medium coincides with the incident wave until its leading front reaches the

domain z 6 z0. In other words, there exists a moment t0 such that w(z, t) ≡ ϕ(tv0 + z) for

all t 6 t0, z > 0. Without loss of generality we can assume that t0 = 0. Then the support

of ϕ(z) lies in the domain z > z0, and the condition

w
∣∣
t60

= ϕ(tv0 + z) (1.3)

is valid. The system (1.1)–(1.3) is called a problem with internal sources or simply an

internal problem. We denote it by (i).

If the sources of oscillations are outside the half-space or at its boundary, condition

(1.2) should be replaced by the inhomogeneous equation

2µwz
∣∣
z=0

= ψ(t), (1.4)

where ψ(t) is zero for t 6 0. Since the medium must be at rest before the action of (1.4),

we have

w
∣∣
t60
≡ 0. (1.5)

The system (1.1), (1.4), (1.5) is called an external problem and we denote it by (e).

Equations (1.1)–(1.5) are conveniently rewritten in a canonical form. Denote the velocity

of wave propagation at the depth z by v(z) =
√
µ(z)/ρ(z), and assume that

x(z) =

∫ z

0

dy

v(y)
, σ(x) = ρ(z(x)) · v(z(x)).

Physically x(z) is the travel time from the surface to the depth z, and σ(x) is called the

acoustic impedance. Let us turn from z to the new independent variable x, and from w(z, t)

to u(x, t) =
√
σ(x)w(z(x), t). After a simple transformation, equation (1.1) leads to

uxx − q(x)u = utt, x > 0, t ∈ R; q(x) = (ln
√
σ)′′ +

[
(ln
√
σ)′
]2
. (1.6)

Conditions (1.2)–(1.3) become

(ux − ku)
∣∣
x=0

= 0, u
∣∣
t60

= f(t+ x); f(x) =
√
σ0ϕ(v0(x− x0) + z0). (1.7)

Here 2k = σ′(0)/σ(0), x0 = x(z0), σ0 = ρ0v0. Recall that ρ, µ and, consequently, v, σ are

twice continuously differentiable and σ(x) ≡ σ0 for x > x0. Hence, the coefficient q(x) is

continuous on the semi-axis x > 0 and vanishes for x > x0. The support of the function

f(x) lies in the segment [x0,∞).

Using the same transformation, we can reduce the problem (e) to equation (1.6) with

the initial and boundary conditions

(ux − ku)
∣∣
x=0

= g(t), u
∣∣
t60
≡ 0; 2

√
σ(0)g(t) = ψ(t). (1.8)

A popular geophysical inverse problem is to recover the acoustic impedance σ using

measurements of wave fields for the processes (i) or (e). Such problems may also be of

interest in scattering theory, biomedical tomography, nondestructive control, and other

applications. Solutions of the corresponding systems (i) or (e) measured at some fixed

point z = ζ for all t > 0, together with the right-hand sides of the conditions (1.3) or (1.4),
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serve as data for reconstruction. The point of measurement can be either at the surface

of the medium (ζ = 0) or inside it (ζ > 0). In the latter case, we assume that this point

lies in the region z > z0, where the parameter values of the medium are known.

These inverse problems can be formulated equivalently for equations (1.6)–(1.8). It is

necessary to determine the potential q(x) in equation (1.6) and the coefficient k in the

boundary condition (1.7) or (1.8) using one of the following pieces of information:

(ie) the form f(x) of the incident wave and the corresponding response u(0, t) at the point

ξ = 0 for system (1.6), (1.7);

(ii) the function f(x) and the corresponding solution u(ξ, t) of system (1.6), (1.7) at some

point ξ > x0;

(ee) the excitation g(t) and the corresponding response u(0, t) at the point ξ = 0 for

system (1.6), (1.8);

(ei) the function g(t) and the corresponding solution u(ξ, t) of system (1.6), (1.8) at some

point ξ > x0.

The first symbol in the abbreviations (ie), (ii), etc., characterizes the location of the

source, and the second symbol is the location of the receiver of perturbations (i denotes

an internal position and e is an external position). In accordance with the geophysical

terminology, (ie) and (ei) are called the transmission inverse problems, and (ii) and (ee)

the reflection inverse problems.

Most of these problems have already arisen earlier in different areas of mathematical

physics. The reflection problem (ii) is equivalent to the classical inverse problem of the

scattering theory. It was solved long ago with the help of spectral methods [1]–[7]. The

scattering technique was first applied by Alekseev [8, 9] to the other reflection problem

(ee). Various aspects of this application were studied in more detail by Alekseev &

Megrabov [10], Balanis [11], Sabatier [12], Symes [13], Carroll & Santosa [14], Bube &

Burridge [15], and other authors. The relation between the transmission problem (ei) and

the reflection problem (ee) was considered by Carroll & Santosa [16]. Only the problem

(ie) has not been studied in detail.

The main goal of this paper is to establish the complete equivalence of all the inverse

problems stated above. We show that any problem can be reduced to any other by explicit

formulae and the Fourier transform. Therefore, it is possible to formulate a unified

approach to their solution. These results were announced by Alekseev & Belonosov [17]

and partially published earlier [18].

2 Direct problems

The direct problems (i) and (e) have been much studied. Nevertheless, some review of these

results is desirable. We obtain a special representation of solutions, which is convenient

for further application to the corresponding inverse problems.

Let us consider the spectral problem

Uxx − q(x)U = −ω2U, x > 0; (2.1)

Ux − kU = 0, x = 0 (2.2)
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obtained from equation (1.6) and the first condition from (1.7) by the formal Fourier

transform

U(x, ω) =
1√
2π

∫ ∞
−∞
e−iωt u(x, t) dt.

Since the coefficient q(x) vanishes on the semiaxis x > x0, equation (2.1) has a special

solution e(x, ω), which coincides with exp (iωx) for x > x0. The function e is called the Jost

solution in scattering theory. It is holomorphic with respect to ω in the whole complex

plane and, together with the x-derivatives e′ and e′′, can be expressed in the form

e(k)(x, ω) = eiωx
[
(iω)k + ψk(x, ω)

]
, k = 0, 1, 2; (2.3)

|ψk(x, ω)| 6
{
Ck(|ω|+ 1)k−1 exp

[
α(| Imω| − Imω)

]
, x < x0,

0, x > x0.

Here Ck and α are some positive numbers.

For any ω� 0 the functions e(x, ω) and e(x,−ω) form a pair of linearly independent

solutions of equation (2.1) which are complex conjugates for real ω, i.e. e(x,−ω) = e(x, ω).

Their Wronskian e′(x, ω)e(x,−ω)− e′(x,−ω)e(x, ω) is independent of x and equals 2iω.

Substituting e(x, ω) into the boundary condition (2.2), we obtain the entire analytic

function j(ω) = e′(0, ω) − k e(0, ω). It is called the Jost function, and is important for

further consideration.

Lemma 1 The Jost function j(ω) does not vanish for Imω > 0, ω� 0, but it has a simple

zero at the point ω = 0.

Proof The fact that the Jost function has no zeros for Imω > 0, ω� 0 is well-known

from scattering theory [1]–[6]. It remains to consider the exceptional value ω = 0. In this

case, e(x, 0) and its ω-derivative e′ω(x, 0) satisfy the same equation U ′′ − q(x)U = 0. By

the transformation U =
√
σ(x)V this equation reduces to V ′′ + [ln σ(x)]′V ′ = 0, and its

general solution can be found easily:

U(x) =
√
σ(x)

[
C1

∫ x

0

dy

σ(y)
+ C2

]
.

For x > x0 the identities e(x, 0) = 1 and e′ω(x, 0) = ix are valid. Therefore

e(x, 0) =

√
σ(x)

σ0
, e′ω(x, 0) = i

√
σ0σ(x)

[∫ x

0

dy

σ(y)
−
∫ x0

0

dy

σ(y)

]
+ ix0e(x, 0).

Hence j(0) = 0, j ′(0) = i
√
σ0/σ(0)� 0. q

Besides the auxiliary spectral problem (2.1)–(2.2), we introduce some functional spaces

that are required. Let X and T be two intervals (probably infinite) on the axes x and

t, and Q = X × T be a rectangle in the plane (x, t). We denote by V (Q) the set of all

functions u(x, t) that are continuous in Q and such that

(a) both mappings x 7→ u(x, ·) : X 7→ L2(T ) and t 7→ u(·, t) : T 7→ L2(X) are continuous;
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(b) there exists a finite norm of the form

‖u‖2
Q = sup

x

∫
T

|u(x, t)|2 dt+ sup
t

∫
X

|u(x, t)|2 dx.

The closure of V (Q) with respect to the norm ‖ · ‖Q is called the space V2(Q).

The symbol Vn(Q) denotes the set of functions u(x, t) that have all the derivatives

u(k,m) = DkxD
m
t u of the orders 0 6 k + m 6 n belonging to V (Q). The closure of Vn(Q) in

the norm

‖u‖2
n,Q =

n∑
k+m=0

‖u(k,m)‖2
Q

is called the space Vn
2 (Q). The elements of Vn

2 (Q) have generalized derivatives in Q up

to the order n. The continuous mappings x 7→ u(k,m)(x, ·) and t 7→ u(k,m)(·, t) for each

such derivative u(k,m) are determined with values in the Sobolev spaces Wn−k−m
2 (T ) and

Wn−k−m
2 (X), respectively. For brevity, the space V 0

2 is identified with V2, and the norm

‖ · ‖0,Q with the norm ‖ · ‖Q. The norm in the Sobolev space Wn
2 is denoted by | · |n.

Let us consider the improper integral

v(x, t) =

∫ ∞
−∞

eiωtΦ(ω)ψ(x, ω) dω, (2.4)

which is understood as a limit of the proper integrals

vn(x, t) =

∫
Pn

eiωtΦ(ω)ψ(x, ω) dω.

Here {Pn} is an arbitrary sequence of expanding finite intervals, the union of which is

equal to (−∞,∞).

Lemma 2 Assume that Φ(ω) ∈ L2(R); X is some interval on the x-axis, Q = X × R;

ψ(x, ω) is continuous in Q, belongs to L2(Q), and |ψ(x, ω)| 6M for some M < ∞. Then the

sequence vn(x, t) is convergent in V2(Q). The corresponding value v(x, t) of the integral (2.4)

also belongs to V2(Q) and satisfies the inequality ‖v‖Q 6 C · |Φ|0, where C depends only on

M and |ψ|0.

This statement directly follows from the Plancherel theorem and the Hölder inequality.

Therefore, the details are left to the reader.

Now we can formulate and prove the main result of the present section.

Theorem 1 For any f ∈W 2
2 (R) vanishing outside the interval [x0,∞), there exists a unique

solution of the problem (1.6), (1.7) that belongs to V 2
2 in the half-plane Q = {(x, t) : x > 0}.

This solution satisfies the inequality

‖u‖2,Q 6 C · |f|2. (2.5)

The Fourier image U(x, ω) of the solution can be expressed for any ω� 0, Imω 6 0 in the

form

U(x, ω) = F(ω)

[
e(x, ω)− j(ω)

j(−ω)
e(x,−ω)

]
, (2.6)
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where F(ω) is the Fourier image of the function f(t), e(x, ω) is the Jost solution, and j(ω)

is the corresponding Jost function.

Proof The uniqueness of the solution belonging to V 2
2 follows from the general theory of

hyperbolic equations. Suppose that such a solution exists, and deduce the representation

(2.6).

By D’Alembert’s formula, u(x, t) equals to f(t+x)+g(t−x) in the domain x > x0. Here

f is the right-hand side of the condition (1.7). The functions u(x, t), f(t + x) and, hence,

g(t − x) belong to V 2
2 in the half-plane {x > x0, t ∈ R}. Consequently, it is possible to

apply the Fourier transform in t to each of these functions. As a result, we obtain

U(x, ω) = F(ω) eiωx + G(ω) e−iωx, x > x0, (2.7)

where U, F and G are the Fourier images of u, f and g, respectively.

On the other hand, the function U is a solution of the spectral problem (2.1), (2.2),

and decomposes into the linear combination U(x, ω) = a(ω)e(x, ω) + b(ω)e(x,−ω) for all

x > 0, ω � 0. Comparing this decomposition with the equation (2.7) and taking into

account that e(x,±ω) = exp (±iωx) for x > x0, we find

U(x, ω) = F(ω) e(x, ω) + G(ω) e(x,−ω), x > 0, ω� 0.

Substituting this expression into the boundary condition (2.2), we obtain the equation

Ux(0, ω)− kU(0, ω) = F(ω)j(ω) + G(ω)j(−ω) = 0

for the coefficient G(ω). By Lemma 1, the Jost function j(−ω) does not have zeroes for

Imω 6 0, ω� 0. Therefore G(ω) can be determined uniquely, and (2.6) is valid.

It remains to prove that the Fourier original u(x, t) of the function U(x, ω) presented by

formula (2.6) belongs to V 2
2 and satisfies the system (1.6), (1.7). For this purpose, consider

the auxiliary integral

un(x, t) =
1√
2π

∫ n

−n
eiωtU(x, ω) dω.

The function un is twice continuously differentiable. Besides, differentiation can be made

under the integral. It follows from this and (2.1)–(2.2) that un satisfies equation (1.6) and

the first condition from (1.7). If it can be proved that every derivative DkxD
m
t un of the

order k + m 6 2 tends to some limit in the space V2 as n → ∞, the function u(x, t) is an

element of V 2
2 and also satisfies the same equations.

Using (2.6) and (2.3), the corresponding derivatives can be easily expressed by the

formula

DkxD
m
t un = J1n + J2n + J3n, (2.8)

where

J1n =
1√
2π

∫ n

−n
eiω(t+x)(iω)k+mF(ω) dω,

J2n =
−1√

2π

∫ n

−n
eiω(t−x)(iω)k+mF(ω)

j(ω)

j(−ω)
dω,

J3n =
1√
2π

∫ n

−n
eiωt(iω)mF(ω)

[
eiωxψk(x, ω)− e−iωxψk(x,−ω)

j(ω)

j(−ω)

]
dω.
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The expression (iω)qF(ω) is the Fourier transform of the derivative f(q)(t). For q 6 2

all these derivatives, together with the functions (iω)qF(ω), belong to the space L2. In

accordance with the properties of the Jost function, we have∣∣∣∣ j(ω)

j(−ω)

∣∣∣∣ =

{
O(exp(2α| Imω|)), Imω < 0,

1, Imω = 0.
(2.9)

By the Plancherel theorem, J1n and J2n have limits in the space V2, and the norms of the

limiting functions are dominated by the value

C |(iω)k+mF(ω)|0 = C |Dk+mt f(t)|0 6 C |f|2.
The convergence of J3n, as well as a similar estimate of the norm of the limiting function,

follow from formulas (2.3), (2.9) and Lemma 2.

Thus, the function u(x, t) satisfies the equation (1.6) and the first condition from (1.7);

the inequality (2.5) also holds. It remains to verify the second condition from (1.7). On

account of the uniqueness theorem, it is sufficient to show that u(x, t) = f(x+ t) in some

quadrant { x > 0, t 6 τ 6 0 }.
This can be easily done when f is finite and infinitely differentiable. Indeed, by the

Paley–Wiener theorem [19], the Fourier image F(ω) of such a function is analytic in the

whole complex plane, and for any p > 0 it allows the estimate

|F(ω)| 6 Ap(|ω|+ 1)−p exp (a Imω), (2.10)

where a is the left bound of supp f.

Let us choose k = m = 0 in (2.8). Because of the inversion formula of the Fourier

transform, the integral J1n tends to f(x+t). To find the limit of J2n, we use the analyticity of

the integrand and modify J2n to the integral over the semicircle Γn = { |ω| = n, Imω 6 0 }.
On the basis of (2.9) and (2.10), we have for ω ∈ Γn∣∣∣∣e−iωxF(ω)

j(ω)

j(−ω)

∣∣∣∣ = O
(
(|ω|+ 1)−p exp[(2α− a)| Imω|]) .

But then, in accordance with the Jordan lemma, the integral J2n tends to zero for all

t < a− 2α. Similarly, using (2.3), (2.9), (2.10) and the Jordan lemma, we see that J3n tends

to zero for t < a− 2α− x0.

In the general case, there exists a sequence fn(t) of infinitely differentiable finite functions

converging to f in the space W 2
2 . This sequence can always be chosen so that the supports

of all functions lie in some interval [a− ε,∞), ε > 0. Let vn(x, t) denote the solution of the

problem (1.6), (1.7) with the incident wave fn(t). We have shown that vn(x, t) = fn(x + t)

for t < a− ε− 2α− x0. On the other hand, the inequality (2.5) is valid for the difference

u− vn. Thus,

‖u− vn‖2 6 C |f − fn|2 → 0 (n→∞).

Hence, for all t < a− ε− 2α− x0,

u(x, t) = lim
n→∞ vn(x, t) = lim

n→∞ fn(x+ t) = f(x+ t).

The theorem is proved. q
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Finally, we consider the external problem (1.6), (1.8), which is different from the internal

problem studied above. The differences are clear from the following statement:

Theorem 2 Fix g(t) ∈W 1
2 (R) vanishing for t < 0. Then there exists a unique solution of the

problem (1.6), (1.8) that belongs to the space V 2
2 (Qτ), Qτ = { x > 0, t 6 τ } for any finite τ.

The derivative ut of this solution belongs to V 1
2 in the half-plane Q = { (x, t) : x > 0 }, and

the following estimates hold:

‖u‖2,Qτ 6 Cτ · |g|1, ‖ut‖1,Q 6 C · |g|1. (2.11)

The proof of this theorem is similar to the previous one. Therefore, we give only a

sketch. First, let g be a smooth finite function and v(x, t) the solution of the problem (1.6),

(1.8), where the function g is replaced by its derivative gt. The existence of the solution

of this auxiliary problem in the space V 2
2 (Q) and the estimate ‖v‖1,Q 6 C · |g|1 are proved

as in Theorem 1. It is clear that the function

u(x, t) =

∫ t

0

v(x, θ) dθ,

for which the both inequalities (2.11) are valid, satisfies the original system (1.6), (1.8).

For the general case, g should be approximated by the smooth finite functions gn. Then

the corresponding solutions un are found, and we pass to the limit using the estimates

(2.11), which have already been proved for un.

Generally speaking, the solution u(x, t) of the problem (e) does not belong to Lp(R)

in the variable t for any p < ∞. Therefore, its Fourier transform exists only in the

distributional sense. Nevertheless, it follows from Theorem 2 that the Fourier image of

the derivative ut can be understood in the ordinary sense. Denoting it by V (x, ω) and

modifying, correspondingly, the reasoning given above, we obtain

V (x, ω) = G(ω)

[
iω

j(−ω)

]
e(x,−ω). (2.12)

Here, as before, { Imω 6 0, ω� 0 }; G(ω) is the Fourier image of the data g(t) in the

condition (1.8).

3 Inverse problems

Let us return to the inverse problems stated in Section 1. Suppose that the functions f or

g satisfy the conditions of Theorems 1 or 2, respectively. Substitute the observation point

x = ξ into formulas (2.6) or (2.12). Recall that ξ = 0 for the inverse problems (ie), (ee),

and ξ > x0 for the problems (ii), (ei). As a result, we obtain four relations:

U(ξ, ω) =Pii(ξ, ω)F(ω), Pii = eiωξ − e−iωξ [j(ω)/j(−ω)
]

;

U(0, ω) =Pie(ω)F(ω), Pie = −2iω/j(−ω);

V (ξ, ω) =Pei(ξ, ω)G(ω), Pei = e−iωξiω/j(−ω);

V (0, ω) =Pee(ω)G(ω), Pee =
[
iω/j(−ω)

]
e(0, ω).

The factors Pii, Pie, etc., are called the transition functions. These functions can be
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determined from the data of the inverse problems: all one needs to do is to divide the

both parts of the corresponding equality by F(ω) or G(ω). The only possible difficulty is

the presence of zeroes of F(ω) or G(ω), which can be regularized in the following way.

All data of the inverse problems vanish on some rays going to −∞. By the Paley–Wiener

theorem, the Fourier images of these data are analytic and have only isolated zeros in the

half-plane Imω < 0. It follows from the above formula that the quotients U/F or V/G

are also determined and are holomorphic for Imω < 0. Since the transition functions

are continuous in the closed half-plane Imω 6 0, their values on the real axis can be

interpreted as the limits of the corresponding quotients as Imω → −0. Moreover, we can

state

Theorem 3 On the real axis the Jost function can be expressed by any transition function,

and vice versa.

Proof This statement is evident for Pie and Pei. We consider Pee, which is the most

complicated case of the two remaining transition functions.

The relation between Pee(ω) and j(−ω) includes one more unknown value e(0,−ω).

Let us pass to RePee to exclude e(0,−ω). The values of Pee at the real points ω and −ω
are complex conjugates and therefore

2 RePee(ω) = Pee(ω) + Pee(−ω)

=
iω

|j(ω)|2
[
e′(0, ω)e(0,−ω)− e′(0,−ω)e(0, ω)

]
= − 2ω2

|j(ω)|2 .

Consequently, the function RePee(ω) for all real ω � 0 is expressed by |j(ω)|, and

vice versa. All one needs to do is to show that Pee and j(ω) are uniquely determined,

respectively, by the values of RePee(ω) and |j(ω)| on the real axis.

For this purpose, consider the function Pee(ω) + 1. It is analytic in the half-plane

Imω 6 0 and, owing to (2.3), has the asymptotics Pee(ω) + 1 = O(1/|ω|) as |ω| → ∞.

According to the Paley–Wiener theorem [19], we obtain the integral representation

Pee(ω) + 1 =
1√
2π

∫ ∞
0

e−iωtp(t) dt, Imω 6 0, (3.1)

where p(t) is a real-valued function belonging to L2(0,∞). Hence,

RePee(ω) + 1 =
1√
2π

∫ ∞
0

cosωt · p(t) dt, Imω = 0. (3.2)

If the values of RePee on the real axis are known, p(t) can be found by inversion of the

cosine transform in (3.2). After this, Pee can be easily reconstructed by (3.1).

The function log(−iω/j(−ω)) possesses similar properties: it is analytical in the half-

plane Imω 6 0 and has the asymptotics log(−iω/j(−ω)) = log
(
1 + O(1/|ω|)) = O(1/|ω|)

as |ω| → ∞. Consequently, for Imω = 0 this function can be uniquely reconstructed using

Re log(−iω/j(−ω)) = ln(|ω|/|j(ω)|). Then j(ω) can also be found, if the values of |j(ω)|
on the real axis are known.

Similarly, the transition function Pii makes it possible to find arg j(ω) for real ω. Then

we can reconstruct all values of the Jost function [1]–[7]. q

https://doi.org/10.1017/S0956792598003635 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792598003635


88 A. S. Alekseev and V. S. Belonosov

Thus, all the inverse problems stated in the previous section are equivalent in the

following sense: each of the four transition functions determines the Jost function uniquely

and, consequently, the remaining three transition functions. The Jost function, in turn,

makes it possible to reconstruct the coefficients q and k in the original equations (1.6)–

(1.8). We next prove this last statement, reducing it to the well-studied inverse spectral

problem for the Sturm–Liouville equation.

First, we recall the necessary information from the spectral theory of differential

operators. Let A denote the operator

u(x)→ −u′′(x) + q(x) u(x)

that acts in L2(0,∞). It is defined for all functions that belong to W 2
2 (0,∞) and satisfy the

boundary condition (2.2), i.e., u′(0)− k u(0) = 0.

This operator is evidently self-adjoint, and therefore its spectrum lies on the real axis

Im λ = 0 of the complex plane. Moreover, the finiteness of q(x) guarantees (see [6]) that

the whole half-line λ > 0 belongs to the continuous spectrum, but the spectrum in the

half-line λ < 0 can be only discrete. In our case operator A cannot have any eigenvalues

in the half-line λ 6 0. Otherwise, if we return to the initial physical variables, such as

density, velocity, depth, and displacement, we find non-positive eigenvalues for the spectral

problem

−(µwz)z = λρw, z > 0; wz
∣∣
z=0

= 0,

which is impossible.

Consider the solution of the Cauchy problem

−θ′′(x, λ) + q(x) θ(x, λ) = λθ(x, λ), θ(0, λ) = 1, θ′(0, λ) = k,

which is determined for all x > 0 and any complex λ. The function θ(x, λ) generates the

integral transform

v(λ) =

∫ ∞
0

u(x)θ(x, λ) dx. (3.3)

It is known [1]–[7] that this transform maps L2(0,∞) isometrically onto some weight

space L2,r(−∞,∞) that consists of all r-measurable functions v(λ) such that∫ ∞
−∞
|v(λ)|2 dr(λ) < ∞.

Operator A is transformed into multiplication by λ using (3.3), and the mapping inverse

to (3.3) has the form

u(x) =

∫ ∞
−∞

v(λ)θ(x, λ) dr(λ). (3.4)

Here r(λ) is a non-decreasing real-valued function that is continuous on the right. It is

called the spectral distribution function of the operator A. The points of increase for r(λ)

coincide with the spectral points of A, and a continuous function r(λ) corresponds to an

operator with a continuous spectrum. The properties of the operator A make it possible

to integrate over the interval (0,∞) in the inversion formula (3.4).

The classical Sturm–Liouville inverse problem consists of determinating q(x) and k

by the spectral distribution function r(λ), which corresponds to the operator A. There
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exist several effective methods for solving this problem. They were developed by V. A.

Marčenko, M. G. Kreı̌n, I. M. Gelfand and B. M. Levitan. We shall not dwell on the

description of these well-known results (see the review in Levitan [5]), but present a

theorem linking j(ω) and r(λ).

Theorem 4 The spectral function r(λ) of operator A vanishes in the domain λ 6 0. For λ > 0

we have

r′(λ) =

√
λ

π|j(√λ)|2 . (3.5)

This formula was first proved in scattering theory [2]–[7] for the Sturm–Liouville

operator with the Dirichlet boundary conditions. A different case of conditions (2.2) is

considered in earlier work [8] using some results of Kreı̌n [20]. Unfortunately, the proof

of these results was not published. Now it is possible to obtain formula (3.5) from the

latest achievements of the spectral theory [4, 5, 14]. Nevertheless, to make this discussion

complete we present a new simple proof, which is based on the statements of § 2.

Proof Operator A has no negative spectral points. Therefore, r(λ) ≡ 0 for λ 6 0, and we

have to consider only the positive values of λ.

Note that the function θ(x, λ) mentioned above satisfies equation (2.1) for ω =
√
λ and

decomposes into a linear combination of e(x, ω) and e(x,−ω). The coefficients of this

decomposition are easily found from the initial conditions θ(0, λ) = 1 and θ′(0, λ) = k:

θ(x, λ) = − j(−ω)

2iω
e(x, ω) +

j(ω)

2iω
e(x,−ω). (3.6)

Let us choose some finite infinitely differentiable function f(x) that vanishes for x < x0

and consider the corresponding solution u(x, t) of the direct problem (1.6), (1.7). In

accordance with Theorem 1, the function u belongs to the space V 2
2 . Consequently, for

any fixed t it lies in the domain of definition of operator A. This makes it possible to

apply the transform (3.3) to both parts of equation (1.6). Assuming that

v(λ, t) =

∫ ∞
0

u(x, t)θ(x, λ) dx, λ > 0, (3.7)

and taking into account that operator A becomes the multiplication by λ, we obtain the

elementary equation vtt = −λv, which has the general solution of the form

v(λ, t) = α(λ) exp(iωt) + β(λ) exp(−iωt).
The coefficients α and β can be determined from the condition (1.7). Let t < 0; then

u(x, t) = f(x + t) and the support of the function f(x + t) lies in the domain x > x0.

In the same domain, e(x,±ω) coincides with exp(±iωx). Consequently, substituting (3.6)

into (3.7) and taking F(ω) to denote the Fourier image of the function f(x), we obtain,

for negative t,

v(λ, t) =
1

2iω

∫ ∞
0

f(x+ t)
[
j(ω)e−iωx − j(−ω)eiωx

]
dx

=

√
2π j(ω)

2iω
F(ω) eiωt −

√
2π j(−ω)

2iω
F(−ω) e−iωt.

This relation also holds for t > 0 by the analyticity of v(λ, t) in t.
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Now let us substitute the found decomposition into (3.4) and assume that x = 0. Taking

into account that θ(0, λ) = 1, we obtain

u(0, t) =

∫ ∞
0

v(λ, t)θ(0, λ) dr(λ)

=
√

2π

∫ ∞
0

j(ω)

2iω
F(ω) eiωt dr(λ)−√ 2π

∫ ∞
0

j(−ω)

2iω
F(−ω) e−iωt dr(λ).

Changing the sign of ω in the second integral, we find

u(0, t) =
√

2π

∫ ∞
−∞

j(ω)

2i|ω|F(ω) eiωt dr(ω2).

On the other hand, the Fourier image of the function u(0, t) is related to F(ω) by the

equality (2.6). Hence,

u(0, t) = − 1√
2π

∫ ∞
−∞

2iω

j(−ω)
F(ω) eiωt dω.

These different representations of the function u(0, t) may be interpreted as the Fourier

transforms of two measures. Each measure is uniquely determined by its Fourier transform.

Therefore
πj(ω)

|ω| dr(ω2) =
2ω

j(−ω)
dω.

This equality implies that for ω > 0

d

dω
r(ω2) =

2ω2

π |j(ω)|2 ,
which is equivalent to (3.5). The theorem is completely proved. q

4 Numerical examples

To summarize the previous discussion, the spectral function r(λ) can be recovered from the

data of any inverse problem stated above. Now the corresponding differential operator

can be reconstructed in many ways. One of the most effective methods developed by

Kreı̌n [21] leads to the integral equation

y(x, 2ξ) +

∫ ξ

0

K(x− ζ)y(ζ, ξ) dζ = 1, 0 6 x 6 2ξ,

where

K(x) =
1

2

∫ ∞
0

cos(ωx) d

{
r(ω2)− 2ω

π

}
.

This equation has a unique solution y(x, ξ) [6, 21]. The required coefficients q(x), k and

the impedance profile σ(x) defined in § 1 can be expressed by y using the explicit formulae

q(x) =
1

y(2x, 2x)

d2

dx2
y(2x, 2x), k =

d

dx
ln y(2x, 2x)

∣∣∣
x=0
,

σ(x) = σ(0) · y2(2x, 2x).

We have constructed a numerical algorithm for typical inverse problems of geophysics
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Figure 1. Original velocity.
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Figure 3. The boundary influence.

and some other applications. This algorithm demonstrates a sufficiently high efficiency

and accuracy for the test examples. One of our numerical experiments is presented below.

We consider a model of a medium described by the profile in Figure 1. As before, x

denotes the travel time from the surface to the current point, and v is the wave propagation

velocity. We use realistic units to indicate the scale: seconds (s) and kilometres (km). The

velocity v(x) is assumed to have a constant value for x > 0.9.

It should be noted that the function represented in Figure 1 seems to be discontinuous,

but the basic conditions of § 1 admit only smooth medium parameters. Actually, we

suppose that v(x) is twice continuously differentiable. This is clear from Figure 2, where

a part of the initial profile is shown on a more convenient scale.

Finally, we assume that the density of the medium does not depend on x. Then the

transmission problem (1.6), (1.8) becomes

uxx − q(x)u = utt, x > 0, t ∈ R; q(x) = (ln
√
v)′′ +

[
(ln
√
v)′
]2

;

ux
∣∣
x=0

= g(t), u
∣∣
t60
≡ 0.

The corresponding inverse problem (ei) is to recover the velocity v(x), if the boundary

influence g(t) and the values of u(ξ, t) at some point ξ > 0.9 are known for all t > 0.

We consider the boundary impulse g(t) of the form shown in Figure 3 and calculate

the corresponding synthetic seismogram u(x, t). Since the problem is linear, the amplitude

of g is of no importance, and the values of g and u are shown on a representative scale.

To find u(x, t) we pass on to the frequency domain, calculate the solution of the obtained

boundary value problem for the ordinary differential equation (2.1), and return to the
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Figure 4. Calculated signal.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2.0

2.1

2.2

2.3

v, km/s

x, s

Figure 5. The restored profile.

time domain. This approach makes it possible to achieve a sufficient accuracy for each

frequency and, consequently, for all values of time. Figure 4 illustrates the computed

derivative ut(ξ, t) at the point ξ = 0.9.

Now the function g(t) and the calculated synthetic seismogram are used as the data

for the inverse problem. We assume that ut(ξ, t) coincides with the profile in Figure 4 for

t 6 7 and equals zero otherwise. The result is represented in Figure 5.

The most unstable step of the above algorithm is the division V (ω) : G(ω) to determine

the transition function. It can be interpreted as deconvolution in the time domain. There

exist a few effective deconvolution methods. In our case, however, a simpler procedure

can be used. Before computing G(ω), we estimate an absolute error ε of the numerical

Fourier transform for g(t). Then the transition function is calculated for all ω such that

|G(ω)| > ε by division. Interpolation is applied in the intervals where |G(ω)| < ε. All other

steps of the recovering algorithm are rather stable.

Our final experiment shows the sensitivity of the algorithm to random noise. We add

5% of uniformly distributed random noise to the accurate profile in Figure 4, and try to

repeat the medium’s reconstruction. This attempt is unsuccessful, because distortion of the

calculated transition function becomes too large for high frequency values. Nevertheless,

in the low frequency range the transition function changes only slightly, and can be used

for satisfactory medium’s recovery.

It follows from (2.3) that for |ω| → ∞ the function Pei(ω) should have the asymptotics

Pei(ω) = e−iωξiω/j(−ω) = −e−iωξ + O(|ω|−1).

We modify the calculated transition function, assuming that it is equal to −e−iωξ in the
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Figure 6. The influence of random noise.

frequency range f = ω/2π > 12,8 Hz. After this the recovery procedure is successfully

completed and leads to the profile shown in Figure 6.

5 Final observations

The internal inverse problems (ii) and (ie) are typical for applications, where the form

of an incident wave f(t) is known. Information on this form is naturally absent in the

problems of geophysics. Here the values of the full wave field (i.e. the sum of incoming

and scattered waves) at one or several points deep inside the medium and on its surface

are the usually observed characteristics of the wave process. In the present section the

algorithms described above are adapted to the needs of seismic prospecting.

We first find the information about the medium’s structure and the wave process that

is sufficient to recover an unknown incident wave. Let us return to formula (2.6) which

relates the Fourier images of u(x, t) and f(t). Differentiating (2.6) with respect to x and

assuming that J(ω) = j(ω)/j(−ω), we come to the system

U(x, ω) = F(ω) e(x, ω)− J(ω)F(ω) e(x,−ω),

Ux(x, ω) = F(ω) e′(x, ω)− J(ω)F(ω) e′(x,−ω).

}
(5.1)

Hence, taking into account the expression for the Wronskian of the Jost solutions, we get

F(ω) =
1

2iω
[Ux(x, ω) e(x,−ω)−U(x, ω) e′(x,−ω)]. (5.2)

Consequently, F(ω) can be found if the values of e(x,−ω), e′(x,−ω) and U(x, ω), Ux(x, ω)

at some point x are known. Note that e(x, ω) coincides with exp(iωx) in the domain x > x0.

Therefore it is sufficient to measure the full wave field u(x, t) and its x-derivative at some

point x > x0 to recover F(ω) and its Fourier original f(t).

This brings up the following question: to what extent are the medium’s parameters in

the internal problem (ie) determined by u(ξ, t) and uξ(ξ, t) at some ξ < x0? We will show

that these data, together with u(0, t), uniquely determine the coefficient q(x) of equation

(1.6) only in the segment 0 6 x 6 ξ. For x > ξ, the values of q(x) can be arbitrary.

Let u(x, t) be a solution of the problem (1.6)–(1.7) with f(t) that satisfies the conditions

of Theorem 1. We choose some ξ from the interval (0, x0) and change arbitrarily the

impedance σ(x) outside the segment [0, ξ] for it to remain positive, twice continuously

differentiable, and constant for all x large enough. The coefficient q(x) also changes.
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These modified functions σ and q are denoted by σ̃ and q̃. The identities σ̃(x) ≡ σ(x) and

q̃(x) ≡ q(x) are evidently valid in the segment [0, ξ].

Theorem 5 There exists a function f̃(t) ∈W 2
2 that vanishes in some ray t < α and such that

a solution ũ(x, t) of the problem (1.6)–(1.7) with the coefficient q̃(x) and the incident wave

f̃(t) coincides with u(x, t) for all x 6 ξ, −∞ < t < ∞.

Proof On the basis of Theorem 1 we pass from evolutional problems to the corresponding

spectral problems. The symbol ẽ(x, ω) denotes the lost solution for the equation

Ũxx − q̃(x)Ũ = −ω2Ũ. (5.3)

We need only find a solution of equation (5.3) that coincides with U(x, ω) in the interval

0 6 x 6 ξ and decomposes into the linear combination

Ũ(x, ω) = F̃(ω) ẽ(x, ω) + G̃(ω) ẽ(x,−ω). (5.4)

Here F̃(ω) and G̃(ω) are the Fourier transforms of some functions f̃(t) and g̃(t) from the

class W 2
2 with the supports bounded from the left. Let us show that the solution of the

Cauchy problem for equation (5.3) with the initial conditions

Ũ(ξ, ω) = U(ξ, ω), Ũx(ξ, ω) = Ux(ξ, ω) (5.5)

satisfies these requirements.

Since q(x) equals q̃(x) in the interval [0, ξ], the function U(x, ω) also equals Ũ(x, ω) for

x 6 ξ and all ω due to uniqueness of the solution of the Cauchy problem. In particular,

Ũ(x, ω), together with U(x, ω), satisfy the boundary condition (2.2).

Let us find the coefficients of the decomposition (5.4). Substituting (5.4) into the

boundary conditions (5.5) and applying (5.1), we obtain a system of linear equations for

F̃ and G̃, which implies that

F̃(ω) =
F(ω)

2iω

[
E ′(ξ, ω)ẽ(ξ,−ω)− E(ξ, ω)ẽ′(ξ,−ω)

]
,

G̃(ω) =
F(ω)

2iω

[
E(ξ, ω)ẽ′(ξ, ω)− E ′(ξ, ω)ẽ(ξ, ω)

]
,

where

E(ξ, ω) = e(ξ, ω)− J(ω) e(ξ,−ω), E ′(ξ, ω) = e′(ξ, ω)− J(ω) e′(ξ,−ω).

Note that F̃ and G̃ have removable singularities at ω = 0. Actually, on the basis

of Lemma 1 we have j(0) = 0, j ′(0)� 0 and, therefore, J(0) = −1, E(ξ, 0) = 2e(ξ, 0),

E ′(ξ, 0) = 2e′(ξ, 0). From this, using the representations

e(ξ, 0) = [σ(ξ)/σ0]1/2, ẽ(ξ, 0) = [σ̃(ξ)/σ̃0]1/2

found in Lemma 1, we obtain

E ′(ξ, ω)ẽ(ξ,−ω)− E(ξ, ω)ẽ′(ξ,−ω)
∣∣∣
ω=0

= [σ0σ̃0]−1/2[σ′(ξ)(σ̃(ξ)/σ(ξ))1/2 − σ̃′(ξ)(σ(ξ)/σ̃(ξ))1/2].

This expression is equal to zero, because σ and σ̃ coincide (together with their derivatives)
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at the point ξ. Similarly,

E(ξ, ω)ẽ′(ξ, ω)− E ′(ξ, ω)ẽ(ξ, ω)
∣∣∣
ω=0

= 0.

Thus, F̃ and G̃ are analytic in the half-plane Imω 6 0 and, due to (2.3), their modules

are majorized by the value C exp(−γ Imω), where C and γ are some positive constants.

All the necessary properties of the functions F̃ and G̃ follow from this statement. For

example, let us consider F̃ .

First, f(t) belongs to W 2
2 . Hence, the product F(ω)(1 + ω2) belongs to L2(−∞,∞). But

then F̃(ω)(1 + ω2) is also in L2(−∞,∞). Consequently, F̃(ω) is the Fourier transform of

some function f̃(t) from the class W 2
2 .

Second, the support of the function f(t) lies in some ray t > a. By the Paley–Wiener

theorem, this is equivalent to the analyticity of F(ω) in the half-plane Imω < 0 and the

uniform estimate ∫ ∞
−∞
|F(λ+ iµ)|2 dλ 6 const · e2aµ, µ < 0.

On replacement of a by a− γ, the function F̃ also satisfies the same estimate. Therefore,

supp f̃ lies in the domain t > a− γ. The theorem is proved. q

Thus, if the form of an incoming wave is unknown, one cannot say anything definite

about the medium’s structure outside the observation interval. For any parameters of the

medium in the domain x > ξ, the form of an incident wave can always be chosen so that

the response caused by it coincides with the observed wave field in the whole interval

0 6 x 6 ξ for all time moments.

Nevertheless, the result of Theorem 5 is positive, because it allows us to recover the

coefficients σ(x) and q(x) in the interval 0 6 x 6 ξ using the given values

u(ξ, t) = ϕ(t), ux(ξ, t) = ψ(t), u(0, t) = χ(t).

Indeed, let the values of the function σ and its first and second derivatives at the

point x = ξ be known additionally. We construct a new function σ̃(x) coinciding in the

interval [0, ξ] with the function σ(x) which is already available, but yet unknown. We

determine this function for x > ξ in any known way according to the requirements of

Theorem 5. By the conclusion of Theorem 5, there exists such an incident wave f̃(t) that

the corresponding solution ũ(x, t) satisfies the conditions

ũ(ξ, t) = ϕ(t), ũx(ξ, t) = ψ(t), ũ(0, t) = χ(t). (5.6)

Besides, we know the function σ̃(x) and the coefficient q̃(x) for x > ξ. Hence, we can find

the Jost solution ẽ(x, ω) of equation (5.4) and its derivative ẽ′(x, ω) in the domain x > ξ
and, in particular, at the point ξ itself. Then the Fourier image F̃(ω) of a hypothetical

incident wave f̃(t) is easily determined from the conditions (5.6) using formula (5.2). Thus,

we obtain the inverse problem (ie) on reconstruction of the function σ̃(x) using the given

f̃(t) and ũ(0, t). The solution of this problem provides full information about the initial

function σ(x) in the interval [0, ξ].
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Conclusion

We have an effective theory for a wide class of one-dimensional inverse problems, in

particular, for both the transmission and reflection problems of seismology. Nevertheless,

some principal questions are open. For example, the spectral methods are not justified for

operators with piecewise continuous coefficients. Also, stable algorithms of deconvolution

pose a challenge in numerical analysis. Finally, new correct statements of inverse problems

with unknown incident waves are of great interest in geophysics. All these aspects call for

more detailed research.
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