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We study the Muskat problem describing the vertical motion of two immiscible fluids in a two-
dimensional homogeneous porous medium in an L,-setting with p € (1, 00). The Sobolev space
W,(R) with s =1 + 1/p is a critical space for this problem. We prove, for each s € (1 + 1/p, 2), that
the Rayleigh—Taylor condition identifies an open subset of ¥/} (IR) within which the Muskat problem
is of parabolic type. This enables us to establish the local well-posedness of the problem in all these
subcritical spaces together with a parabolic smoothing property.
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1 Introduction

In this paper, we study the following system of nonlinear and nonlocal equations:

Y+ oS (6 X)(f(t,x) — f(t,x _y))a(t x—y)dy

1
0 f(t,x) = ;PV/R Y4+ (f(t,x) = f(t,x — y))?

_ au yosf (6, x) — (f(,x) —ftx—y)__
—Codyf (t,x) = w(t,x) + - PV/]R [y p——— o(t,x —y)dy,

for t > 0 and x € R that describes the motion of two immiscible Newtonian fluids with viscosities
n— and p and densities p_ and p in a vertical two-dimensional porous medium with constant
permeability k that we identify with R?. The fluid located below is denoted by —. The unknown
function f parameterises the sharp interface between the fluids, and 2(1 + (3f)*)~/?@ is the
jump of the velocity field in tangential direction at the interface, cf. [36, equation (2.6)]. For the
Muskat problem (1.1a), we consider the general scenario when

(1.1a)

T
po—ni€R - and  O=g(p-—pi)t

The constant g is the Earth’s gravity, |V| € R is the velocity at which the fluid system moves
vertically upwards if V' > 0 or downwards if V' < 0, and

VeR.

- k®
ap ="M e-1,l)  and  Coi=——,
M-+ oy M-+ oy
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Well-posedness of the Muskat problem L,-Sobolev spaces 225

where a,, is called Atwood number. Moreover, PV denotes the principal value and is taken at
zero and/or at infinity. The system (1.1a) is supplemented with the initial condition:

fQ0,-) = f. (1.1b)

Critical spaces for (1.1). It can be verified that, if / is a solution to (1.1a), then, given A > 0, the
function f; with:

St x) =27 (ht, hox)
also solves (1.1a). Moreover, given p € (1, 00) and r € (0, 1), it holds that
(0227 0:0]y, = [0 0],

exactly for k=1 and r=1/p. This property identifies the space W,(R) with s=1+1/p as a
critical space for (1.1a). We recall that, given 0 <s ¢ N with s = [s] 4 {s}, where [s] € N and
{s} € (0, 1), W;(R) is a Banach space with the norm:

1/p
HNW:@N%ﬁU%),

where
| FED(x) — FED(y) P [| fED — g £ D)2
[f]pWﬁ :Z/ T+(s) d(x.y) = 1 = dé.
R2 [x — y|I+isip |&| 1+ skp
Here, {7:}scr denotes the group of right translations and ||-[|, := |||, ). We study the problem

(1.1) in all subcritical spaces W (R) with s € (1 +1/p, 2).

Reformulation of (1.1). In a compact form, the problem (1.1) can be formulated as:

%=Mmm >0,
—Cof = (1 +a,ANN@], >0, (1.2)
1(0) = fo.

The first two equations of (1.2) should hold in W;‘l (R) and f'(¢) := d(f(¢))/dx. Moreover, A(f)
and B( /) are the singular integral operators defined by:

1 ') — (f(x) —f(x —

wi = ey [ LTG0 ) (13
1 / —f—

B(f)@] = —PV /R L ;{r ((x}((i) (x_)f(f (fy);))a(x— y) dv. (1.4)

Summary of known results. The Muskat problem was introduced in [43], but the reformulation
(1.1) and many of the results on this classical problem are very recent. It is important to stress
out that most of the results pertaining to (1.1) are established in L,-based Sobolev spaces. The
main reasons are

e The L,-continuity of singular integral operators is an important problem in the harmonic
analysis and many results are available in this context;
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e Plancherel’s theorem can be used;

e When a, #0, the equation (1.1a), (see also (1.2),) is a linear equation for w. In the
L,-setting, this equation can be solved using an integral identity, known as the Rellich formula.
An Ly-version, p # 2, of the Rellich formula is not available.

In the particular case when the Atwood number satisfies a,, = 0, the equation (1.1a), identifies
w as a function of / and (1.1) can be recast as a quasilinear equation for f which is parabolic
when the fluid located below is denser, that is, when p_ > p., cf., for example, [37]. The
well-posedness of the resulting equation in L,-based Sobolev spaces was established in [18]
in A3(R) and in [37] for H3?*¢(R)-data, € € (0, 1/2), while [16] addressed this issue in
W}f(R) N Ly(R) with 1 <p < oco. Solutions corresponding to medium-size data in H3/>*¢(R)
exists globally, cf. [9, 14, 15, 37, 46], while the solutions determined by certain initial data with
steeper slope break down in finite time [10, 11, 12]. Exponential stability results of the ( flat)
equilibria for the periodic counterpart of (1.1) were established in [35, 39]. For well-posedness
results in homogeneous L,-Sobolev spaces, we refer to [2, 21]. Moreover, the papers [8, 30]
studied the inhomogeneous Muskat problem with nonconstant permeability, while [20, 31]
consider (1.1) in a confined geometry.

The general case when a, # 0 is more involved as additionally, the equation (1.1a), needs
to be solved. In this context, the quasilinear character is lost and the Muskat problem has to
be treated as a fully nonlinear and nonlocal problem which is of parabolic type in the open
subset of the phase space identified by the Rayleigh—Taylor condition, cf. for example, [36]. The
Rayleigh—Taylor condition is a restriction imposed in the classical formulation of the Muskat
problem on the sign of the jump of the normal derivative of the pressure at the interface between
the fluids. The normal is taken to point into the upper region occupied by the fluid +. To be
more precise, the jump of the normal derivative of the pressure has to have positive sign at each
point of the interface when passing from the region occupied by the fluid — into the region of
the fluid 4. Local existence for the periodic counterpart of (1.1) was first established in [17] in
the phase space H>(S). Later on in [13], the authors proved a well-posedness result for //2-data
with small H3/>*¢-norm, with ¢ << 1. More recently, it was shown in [36, 38] that (1.1) is well
posed in H*(R) and H*(S) without any smallness conditions. Well-posedness in the subcritical
spaces H*(R?) with s > 1 4+ d/2 was only recently established in [45] by using a paradifferential
approach. This is the first local well-posedness result that covers all L,-subcritical spaces in all
dimensions. The existence of global weak solutions for medium-size initial data in critical spaces
together with sharp algebraic decay estimates for the 3D counterpart of (1.1) was addressed in
[28]. Finally, we point out that the exponential stability of the (flat) equilibria is established in
the periodic setting in [38].

Other papers consider the Muskat problem in other geometries or settings, cf. [4, 5, 7, 19, 22,
23, 24, 26, 33, 50, 52]. Besides, there are also many studies which address the Muskat problem
with surface tension effects, cf. [5, 22, 23, 24, 26, 29, 44, 48, 49, 51], see also the review articles
[27, 32]. A particular feature of the Muskat problem with surface tension is that in the case when
the less viscous fluid penetrates the region occupied by the fluid with a larger viscosity (or when
the denser fluid is located above), there may exist finger-shaped equilibria. The finger-shaped
equilibria with small amplitude are unstable, cf. [22, 23, 38]. Moreover, it is shown in [29] in
the context of the one-phase Muskat problem that surface tension prevents, for fluid interfaces
smaller than an explicit constant, the formation of fluid drops in finite time, and the corresponding
solutions are global in time. Furthermore, the solutions become instantly analytic.
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Main results and strategy of proof. The main goal of this paper is to establish a well-posedness
theory for (1.1) that covers all subcritical spaces W;(R) with

se(l+1/p,2) and 1<p<oo.

This setting has been previously considered only in [16] in the special case a,, = 0. We point out
that in [16], not all subcritical spaces were covered and additional L,-integrability of the data
was required. Our strategy is to formulate (1.1) as an abstract evolution problem, cf. (4.3), and
to prove that this problem is parabolic in the set where the Rayleigh—Talyor condition holds. In
this setting, the Rayleigh—Taylor condition can be formulated as:

Co +a,B(f)[@(f)]> 0, (1.5)

see Section 4, where B(f) is the operator introduced in (1.4). Moreover, given /"€ W (R), the
function @ = w( f) is identified as the unique solution to (1.2),, cf. (4.1). Our analysis shows that
B(Nlw(f)] € W;‘I(R), and therefore (1.5) implies that ® > 0. For ® > 0 (the case ® =0 is not
interesting, see Section 4), we prove that

O:={f e W,R) : Co +a,B(/H@(/)]> 0}

defines an open subset of ¥,(IR) and the problem (1.1) is parabolic within o'
An important tool in our analysis is the following result.

Theorem 1 Let a: R — R be continuously differentiable with bounded and Hélder-continuous
Sirst derivative. For f € C3°(R) let

0 = PV [ LD g (122200

fe=y) (.a(x)—a(x—y))
——exp lf dy.

lyl=e Y

= lim
£—0

Given p € (1, 00), the operator T, has an extension T, € L(L,(R)) and it holds that

I Tall e,y < Co(1 + 11 [lo0)-

The constant C, depends only on p.

The result of Theorem 1 also holds for a merely Lipschitz continuous. Then, the operator 7,
has to be defined by a suitable series as in [40, Section 9.6]. In the canonical case p = 2, this result
has already been established in [42] (see also [40, Chapter 9, Rel. (6.7)] and [41] for a weaker
version of this result). Theorem 1 extends the result from [42] to the L,-setting with p € (1, 00).

!Given f € W,(R), the operators A(f), B(f) are linear and @(f) = —Ce(1 + a, A())'[f']. Hence,
the Rayleigh—Taylor condition is equivalent to the relations:

©>0 and 1—a,BNI+a.A/)[f1]>0.

The first condition is imposed on the constants only, while the second one relates the Atwood number
a, tof.
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Actually, having established Theorem 1 for p € (1, 2), the case p > 2 follows by duality since the
adjoint T of T, € L(L,(IR)) is given by the formula:

TF=-T.,.

Theorem 1 follows in the case p € (1, 2) from well-known results of the theory of singular integral
operators, for example, [1, Theorem 5.5], once the so-called Hormander condition is established,
which is done in Lemma 1 below. We note that the estimate of the operator norm by a multiple
of 1 4 ||| follows by a simple scaling argument and an inspection of the proof in the same
way as, for example, in [1, Proposition 4.28]. Here, one uses that the constant in the Hérmander
condition and the operator norm on L,(R) can be bounded by a multiple of 1 + ||@’||so.

A further issue that we had to consider was to solve the equation (1.1a); (or equivalently (1.2),)
for w, as the Rellich formula is not available for p # 2. The arguments use quite technical locali-
sation procedures. Moreover, the proof in the case p € (1, 2) is different from that for p € (2, 00),
see Theorems 3 and 4 below.

The analysis becomes quite involved also when showing that the evolution problem (4.3)
below (which is a compact reformulation of (1.2)) is parabolic in O. With respect to this goal,
we establish in Lemma 12 a commutator estimate which is used several times in the paper
(especially, in the proof of the lemmas in the Appendix A, Theorem 7 and Proposition 1).

The main result of this paper is the following theorem.

Theorem 2 Let p € (1,00), se€ (14 1/p,2) and assume that ® > 0. Then, the following hold
true:
(1) (Well-posedness) Given fy € O, there exists a unique maximal solution:

[ =1C/0) € €10, T), O) N C([0, To), Wy~ (R),

where T = T.(fy) € (0, 00], to (1.1). Moreover, [(t, fy) — f(t; fo)] defines a semiflow on O.
(ii) (Parabolic smoothing)
(iia) [(t,x)— f(t,x)]:(0,Ty) x R — R is a real analytic function;

(iib) Given k € N, it holds that f € C*((0, T}.), W;‘(R)).2
The proof of Theorem 2 and of Remark 1 below is postponed to the end of Section 4.

Remark 1 Given a €(0,1), T > 0, and a Banach space X, let B((0, T, X) denote the Banach
space of all bounded functions from (0, T'] into X and set

rf(t) — s*f (s
C(0.77.0) = {feB((O, 110 ey = sup AHO LI < oo
SFEL -
Then, for each fy € O, the solution f = f(-; fo) found in Theorem 2 also satisfies

fe () CAOTLWR) VT e Ti(fo)

ae(0,1)

2Here, C® denotes real analyticity.
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Organisation of the paper. In Section 2, we establish the boundedness of certain multilinear
singular operators which is then used to derive some useful mapping properties for the operators
A and B in (1.2). Section 3 is devoted to the solvability issue for the equation (1.2),. Finally,
in Section 4, we formulate (1.1) as an evolution equation for / and show that this equation is
parabolic in O. We conclude this section with the proof of Theorem 2. In Appendix A, we prove
some technical results that are used in Section 4.

2 Preliminaries

We first clarify the notation used in this paper. Then, we check the Hérmander condition for
the kernel of the operator 7, in Theorem 1. This condition builds the fundament of the proof of
Theorem 1. The bulk of this section addresses the boundedness of certain multilinear singular
operators and culminates with the proof of Lemma 8 where mapping properties for the operators
A and B from (1.3) and (1.4) are established.

Notation. Given k € N, we let C*(R) denote the Banach space of k-times continuously differen-
tiable functions having bounded derivatives. Given « € (0, 1), the Holder space C***(R) is the
subspace of C*(R) that consists of functions with kth derivative having finite Holder seminorm,
that is,

[f(k)]a = sup /P =P <50
X#£y |x —yl"‘

Sobolev’s embedding states that W (IR) — C~V/P(R) provided that »> 1/p. Besides, given
k€N with k <r—1/p, since the smooth function with compact support are dense in W;(R),
for /"€ WJ(R) it holds that ®)(x) — 0 for |x| — oo. Furthermore, the following estimate finds
several times application in the analysis:

lighllwy < 2(lIglloo 121wy + 2lloollgllwy), &5 h € WH(R), 2.1)
where r € (1/p, 1) and p € [1, 00). We also write C'~ to denote local Lipschitz continuity.
The Hormander condition. Defining the singular kernel:

a9 — ax—)

1
k(x,y):= —exp (
y y

), xeR, ye R\ {0}, (2.2)
for f € C{°(R) it holds that:

LG =PV [ f0ktsx =0 dy.
A simple computation reveals that:

10k, )| <2(1+ ld loc)y ™%, x€R, yeR\ {0}, (2.3)

and the Hormander condition can be now established.
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Lemma 1 (The Hérmander condition) Let a: R — R be a Lipschitz continuous function and let

k be the kernel defined in (2.2). Given xy € R and y € R\ {0}, it then holds

f k(e -+ 30, — ) — k(x4 30,9)] de < 81+ [ lo0)
[IxI>2]yl]

Proof It follows from (2.3) and the mean value theorem that:

/ [ + 0,.x — ) — kx4 x0,3)] dx = f 10,k + 0, £y di
[IxI>2[y] [Ix[>2]yI]

<2(1+lla'lloo) 18,21 dx < 8(1 + [1d'll o),
[il>21y]

where we used that &, = x — ty, with ¢ € [0, 1], satisfies |&,| > |x|/2. O

Boundedness of some multilinear singular integral operators. The first goal of this subsection
is to show that, for any s € (1 + 1/p, 2), with p € (1, 00), it holds

A, B € C°(W5(R), LILy(R)) NC(Wy(R), LIy~ (R))). (2:4)
Theorem 1 is essential for this purpose. In the following, we set
St/ =) —fx=y)=(f—5/)x)  forx, yeR.

In order to establish (2.4), but also for later purposes, we provide the following lemma.

Lemma 2 Let p € (1,00) and n, m € N be given.

(i) Given Lipschitz continuous functions ay, . . ., ay, by, ..., b, :R— R, the singular integral
operator B, y(ai, . ..,an)b1,...,b,, -]defined by:

o(x — r'l— 8 X,V bi
Bn,m(ala ey am)[bla e bnsa](x) = PV/;Q w(xy y) l—lmnll:]l_f ([5’[] ]a/y/)y)Z]
i=1 x,y]%i

belongs to L(L,(R)) and ||B,m(ai,...,aw)lb1,..., by, - ew,my < CTITL, 16illso, where
C is a constant depending only on n, m, and max,_, _m ||a}||cc-
Moreover, By, € C'=(WLR)™, L1t (WLMR))" x L,(R), L,(R))).
(i) Givenre(1+1/p,2)and t € (1/p, 1), it holds

>

n
1Bum(@r . . ..am)brs - . .. by ®llloo < Cl@lws [ ] 1billwy

i=1
forallay,...,au,b1,...,b, € W;(R) andw € Wp’ (R), where C is a constant depending only

.....

Moreover, B, € C'= (W (R))", L1 (W, (R)" x W3 (R), Loo(R))).

Proof The proof of (i) is similar to that in the case p =2, cf. [37, Lemma 3.3], and relies to a
large extent on Theorem 1. The proof of (ii) uses similar arguments as that in the case p = 2, cf.
[36, Lemma 3.1]. O

The next lemma collects some properties of the operators B, .

https://doi.org/10.1017/50956792520000480 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792520000480

Well-posedness of the Muskat problem L,-Sobolev spaces 231

Lemma 3 Letp € (1,00) and n, m € N. Let further ay, . .., ay, by, ..., b, : R— R be Lipschitz
continuous and @ € Ly(R).

() Ifn>1and additionally by, ¢ € WL (R), then

(an,m(ala e nam)[bla AR bnna] _Bn,m(ala AR 7am)[b19 AR 9bl’l3 (pa]
2.5
= ban,m(als L) am)[bZa sy bns (p’ 6] - Bn,m(als ) am)[bZa sy bns (ps blw]
(i) Ifay,...,a, are Lipschitz continuous, then
nm(le .. am) bl» CIEIES »bnaw] _Bn,m(ab CIEIRS ,am)[bl, LRI »bnaa]
m (2.6)
- ZBn+2m+l(als EE) aia (7 s am)[bla ) bns a; +5i, a; _Ei,a].
i=1
Proof The proof is elementary. O
The importance of the operators B, , becomes clear when considering the relations:
T A(N@] = f'Boy(Nw] — Bia(NLSf, @], 2.7
7B(N)[@] = Boa(Nl@] +/ BiLi(fLf, @l (2.8)

These relations together with Lemma 2 (i) show that, given /" € W;(R), s € (1 + 1/p, 2), it holds
that A(f), B(f) € L(L,(R)). Arguing as in [37, Section 5], it actually holds

A, B e C°(W,(R), L(Ly(R))).

In order to establish the second mapping property in (2.4), some further analysis of the oper-
ators B, , is needed. To this end, we establish in Lemma 4 new estimates. The estimate (2.9) is
used in Lemma 5 below (which is the main ingredient in the proof of (2.4)), while (2.10) pro-
vides a commutator type L,-estimate which is essential when estimating the Wp"l-norm of this
commutator, cf. Lemma 6. Lemma 6 is used in the proof of Theorem 7.

Lemma 4 Let nmeN withn>1,re(14+1/p,2) and t € 2—r+1/p, 1) be given. Given
al,...,ay, € W;(R), there exists a constant C, depending only on n, m, r, and maxgi<m llaill w
(and on T in (2.10)), such that

n
1Bum(@rs .- s am)[br, -, bu, @]l < ClIB @] - H 1Dy 2.9)
i=2

and
”Bn,m(ala .. am)[bl, CIEIE naa] - 5Bn—l,m(alo sy am)[bZ’ sy bm bl]]”p

_ o (2.10)
< Clbillwg @l g1 [T 180,
i=2
Jorallby,...,bye W)(R)and w € Wlf’l(]R).
Moreover, By & C'~(W;(R))". Lot (Wy (R) x (WyR)"™ x Wy (R), Ly(R))).
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Proof Without loss of generality, we may assume @ € W/ (R). Using the identities:

9 (b b (x — Sxy1b 0
2 ( bxy] 1) _ A=) g ’yz] Soand @ —y) = — (@) — B — )
ay\ y y dy

and integration by parts (as in the proof of [36, Lemma 3.2]), we arrive at
Bum(ar, ... am)b1, ..., by, o](x)

= a(-)C)anl,m(al:» ey am)[sz ces by, b/l](x)
- fR Kij(x,p)a(x—y)dy+ ) /R Kaj(x,y) o(x — y) dy
Jj=2 j=1
- / Key)ydy—3 / Ksjx,y)dy+2) / Kyj(x, ) dy,
R = /R o /R

where, given x € R and y # 0, we have set

1_['7— Seatbi/y Sy

K(x,y) = 5
[ + (Spgai/y)] Y
l Ji 8[?‘ b/y 8[ ,y]b‘ —ybi(x —y)
Kyj(x,y) == 1. G )2 s ’
l:l [ (S[XaJ’]ai/y) ] Y
[T (Brennbi/y 8xy1j — YA(X = ¥) 8y 4
Ky j(x,y) =12 = ( E,,y] ) = 2 S
[1+ (Spearei/v) T, [1+ (s[x,y]ai/y) ] Y Y
[T Suenbily 8@ (Spnb;
Kaj(x,y) = — i e o ( ol b — y))
[T [T+ Guoas/y)] > Y
Orepai/y) ? 5x bify Sy ®@ [ Oy ,
Kaj(x,) = %/ [z Spn w® (O )Y
[1 + (8[x,y]aj/y) ] [T [1 + ( 19 /y) ] Y Y
Recalling Lemma 2 (i), we get, with respect to (2.9), that
@By 1m(@rs . . . am)b2, - . . by Bl < Cl@lool1B 1y [ T 18] lloo- 2.11)

i=2

Let now «€({r,1}. Since a>1/p we have W(R)— C*"'?(R) and together with
Minkowski’s integral inequality we obtain that

</R | /RKU(W)E(x —na| dx>l/p
< @l /R ( /R 'Ku(x,ynpdx)l/p .

n

_ 1y — by — vo,5]
< t@lntbdeyy | T 180 ) [ I gy
R

3 Ot+1/p
i=2,i#] |y|
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for 2 <j < n. Fubini’s theorem, Minkowski’s integral inequality, Hoélder’s inequality and a
change of variables now yield

”bj - Tybj _yrybj/‘”p
R |y|37a+l/p

1/p
/ , p
AQﬂ2MWP</‘/ i = (=) =it = y““‘do &
! 1 1/p
<_/0 [A; 2o+ /P (fR |b;(x — (1 = s)y) — bi(x = »)I dx) dy] ds
1 T—be ”p
2Wn/ i+ //’ 15 —vobilly
! [v>1] |y|2 otl/p v [yl<1] |y|2-e+l/p 4

1 (»—D/p
/ /
< Cligll, + € </y|<1 y|G—a=rp/(=1) dy> 1651 -

< Cllb,

”WI;—]-

Consequently, given 2 <j < n, we get

¥4 1/p n
(A‘éli(x,y)a(x—y)dy‘ dx) < @l oo[b1]a—1/p (]_[ ||b§||W;1), (2.12)

i=2

and by similar arguments:

¥4 1/p n
<fR‘/RK2,i(X,y)5(x—y)dy) dx) < Cll@llo[br]a=1/p (ll:! ||b;'||oo> 2.13)

Furthermore, given 2 <j < n, Holder’s inequality, Minkowski’s integral inequality and the
Sobolev embedding W (R) < C*~'/7(R) yield

» /p
(| [ &l a)
r!Jr
1/p
</ (/ |K3J(x,y)|pdx> dy
R \/R
" 1 1/p
2[b1]a—1yp [!”bi”oo /D%W—“Jrl/p(,é Iw—rywy’dx) dy

1 1/p
- = _ _—=p
AWP”W<AW W”“) @
1 1/p
< Cla| +/ —(/ |a—r5|de> dy
P Jipeny l2etie \ Jg v

1 p=D/p
< Clo @l S —
S Clilly + ey </y<1 [ G—a—rp/(—1) dy)

< Cll ;.

and
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We arrive at
» 1/p n
(| [&wmnafa) " <ciiymi, ([T).  2<i<n @
R R i=2

The same arguments show that

(f ‘fK(x,y)dy‘pdx)l/p+(f ‘fK4J(x,y)dy’de>l/p
rJR rJR

< CI@l g [Brla-1p (]‘[ ||b;-||oo> ,1<j<m,

i=2

Choosing o =1, (2.9) follows from (2.11) to (2.15) and the relation [bi]a—1/p < 115]1lp.
Moreover, (2.10) follows from (2.12) to (2.15) for & = 7. Finally, the local Lipschitz continuity
property is a consequence of (2.6). O

Lemma 4 enables us to establish estimates in suitable fractional Sobolev spaces for the
multilinear operators B,,,, considered above.

Lemma 5 Let n,m € Nandr € (1+ 1/p,2) be given. Given ay, . . ., an € W)(R), there exists a
constant C, depending only on n, m, r and maxgi<m lla;l s such that

”Bn,m(al, o sam)[bla ce ,bnaa]”Wg*l < CHEHW};*1 1_[ ”bZHWPr*l (215)
i=1

Jorallby,...,bye W)(R)andw € W;’l(R).
Moreover, By, € C'= (W5 (R)", Lup 1 (W5 (R)" x W~ (R), Wy~ (R))).

Proof Set B, :=B,u(ai,...,an)bi,..., b, ®]. Recalling Lemma 2 (i), it holds that
n
1Bmlly < Cliall, [ T 15:1wy-
i=1

It thus remains to consider the W;*I—seminonn of B, . To this end we observe that

B . ”Bn,m - TEBn,m”Z d
(Bnm v T T e g,

where, using (2.6), we write
Bum — TeBum)(x) =T1(x,§) + T1a(x, &) — T3(x,§), x€R, §#0,
with
T1(x,&) := Byw(ai, ...,an)lbi, ..., by, ® — 1:0](x),

Tz(xs g) = ZBn,m(ala ety am)[féblz cee tsbl'—la b[ - st[, bH—l: s b}’l’ TEE](X)’
i=1

T5(x, &) := ZBLH,mH[TSbl’ o Teby, ai + Tea;, a; — Tea;, T 0](X)

i=1
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and B w1 = Buromri(an, . .., a;, Tea;, . . ., Teay). Hence,

7%, S)Ilp
B \?Z | e @16
and, recalling Lemma 2 (i), it holds

IO o (e ) 22 (o e Y o
| ey 46 < D” (e, Rms ||w||W,11j!|| lloo | - @.17)

Furthermore, in virtue of (2.9), we get that

172(, )15 . 1b; — 7sb
DI 17 /
e <@ | ] |s|1+<r ] H (Al
i=1 » (2.18)
n

< @l - o

< (anuwp ! 1} 1651 )
and, by similar arguments:

IT5¢. &)1 _ o s

| ey 95 < { Cllly U LAY (2.19)
The estimates (2.16)—(2.19) lead to the desired estimate. Finally, the local Lipschitz continuity
follows from (2.6) and (2.15). O

We now estimate the commutator type operator from (2.10) in the ||| ,,-—1 -norm.
p

Lemma6 Letn,meN,n>1,re(1+4+1/p,2)andv € (1 + 1/p,r) be given. Given a, . . ., a, €
W, (R), there exists a constant C that depends only on n, m, r, ¥ and maxigi<m llaill wps such that

”Bn,m(ala e am)[bls e bma] - 5Bn—l,m(ala e am)[bZa s bns b/l]”W;fl
n

< Clballyy @l [T 161l
=2

(2.20)

Jorallby,...,bye W)(R)and w € WPV’I(R).

Proof Let 7T :=B,,(ai,...,an)lbi,...,by, @] —®By_1m(ai,...,an)lba, ..., by, b} In view
of (2.10), || T'||, can be estimated as in (2.20). It remains to consider the term:

I7— =Tl
[T]P”:[;{—”ds,

W £

for which it is convenient to write

(T_ TST)(X): T](X,E)—’— TZ(X,§)+ T3(x5‘§)+ T4()C,§), XGR, S ER,
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where,
T(-, &) == Bym(ar, ..., an)b1, ..., by, w — T:0]
—(@ — t:@)Bu—1mlai, . - ., am)[ba, . . ., by, b1,
T5(-, &) == Bywlai, . .., am)[b1 — web1, by, . .., by, T:00]
— T @By _1 m(ar, ..., an)b2, ..., by, by — 1eb}],
T53(-, &) == Bum(ai, . . ., an)lteb1, by, . . ., by, T: 0]
—Bym(tean, ..., tean)teby, . . ., Teby, T: 0],
Tu(-, &) = te@By_1 w(Tea1, . . ., Tsam)[Teba, . . ., Teby, Teb)]
—1:@By_1 m(ar, ... an)[b2, . .., by, T ].

Lemma 2 (i) and (ii) (with r =" — 1) implies that
173G, E)llp < Cllo — redll, b1l [ 115w

i=2
while (2.10) (witht =+ —r+1€ (2 —r+1/p, 1)) yields
172G, E)llp < Cllor = Tebill it @11 [ 115l
i=2

Finally, recalling (2.6), it holds that

T3(.’ %‘) = ZBn,m(ala R am)[tébl’ ey T&'b[,], bi - tébia bi+1’ ey bn: T&'E]
i=2

m
— ZBihLZ,erl[TEbl’ ey ‘Cgbn, a; + t:a;,a; — e 4, ‘L'ga],

i=1

T4(', s) = 7"EEZ:BVI,m(als ce sam)[bZ’ ) bi*ly tébi - bia TEbH*la ) bem téb/l]

i=2

m
_ i ’
+T:w E Bn+1,m+l [‘L’gbz, ey ‘L’gbn, a; + tza;, a; — t: q;, ‘L’gbl],
i=1
where, given 1 < i< m, we set
i -—
Bn+l,m+l = Bn+1,m+1(‘r§als e ‘Céaia aj, ... am)s
i .
Bn+2,m+1 = Bn+2,m+1(a1, e, ag, ‘L’gai, . ‘L'gam).

Repeated use of Lemma 4 (with r = #) yields

||T3(-,s)||p<C||a||W;fl||b1||W;[Z [T il | 16: = ebilly
=2 \j=2,j#i

n m
+ Tl | 3 llar = zeaily |
j=2 i=1

https://doi.org/10.1017/50956792520000480 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792520000480

Well-posedness of the Muskat problem L,-Sobolev spaces 237

and
n n
IaC O)llp < Cliwllyp-s ||b1||Wprf[Z [T 15l | 16; = webill g
i=2 \j=2,j#i

n m
+ [ TT 1ty | D i = weaillg |
j=2 i=1

Gathering these estimates, we conclude that

' —r+1

1
: 16y = 7y "
—1 < C||@|| - Nwr P
[T]Wpl\cllwnwplgnb,nwp 161l + /R =Tl It

which together with Lemma 7 below proves the claim. O

In the proof of Lemma 6, we have used the following result.

Lemma 7 Letp € (1,00) and 1 < ¥ <r < 2. Then, there exists a constant C > 0 such that
”b - Téb”l;/};/f)#l » ,
/]R W dg < C”b”WIS/ fO}" allb e Wp (R)

Proof The claim follows using the mean value theorem and the definition of the Sobolev norm.
We omit the details. O

We are now in a position to prove the second claim in (2.4).

Lemma 8 Given s € (1+ 1/p,?2), it holds that

A, B e COWSR), LOVS ™ (R))). 2.21)

Proof Combining (2.7)—(2.8), Lemma 5, and the algebra property of W;’I(R), it follows that

[f = AL [f = BN € C(WR), LIV, (R))).

Moreover, arguing as in [37, Section 5], it can be shown that A and B depend analytically on
S eW,([R). O

3 On the resolvent set of A(f)

We now fix s € (1 + 1/p,2) and f € W;(R). The main goal of this section is to show that the
equation (1.2); has a unique solution o € W;’l (R). Compared to the canonical case p = 2, where
the Rellich formula, see [36, equation (3.24)], can be used to solve (1.2),, for p # 2 we need to
find a new approach as the Rellich formula does not apply directly.

To start, we infer from the arguments in [37, Theorem 3.5] that, given A € R with |A| > 1, the
operator A — A(f) is an L,(R)-isomorphism, that is, it belongs to Isom(Z,(R)). Moreover, the

https://doi.org/10.1017/50956792520000480 Published online by Cambridge University Press


https://doi.org/10.1017/S0956792520000480

238 H. Abels and B.-V. Matioc
Ly-adjoint (A(f))* of A(f) is given by:

A @] =7~ BLi()LSf @] = Boi (/LS @)

Letting p’ = p/(p — 1) denote the dual exponent to p, it follows from Lemma 2 (i) that
g

(A" € LLy(R)). G.1

The main step towards our goal is to prove the invertibility of A — A(f) in £(L,(IR)) for all
A €R with |A| > 1, see Theorems 3 and 4 below. These results are then used to establish the
invertibility of A — A(f) in £( W;fl(R)) for all A € R with |X| > 1, see Theorem 5. This neces-
sitates the introduction of suitable partitions of unity. To be more precise, we choose for each
& €(0, 1), a finite e-localisation family, that is, a family:

{n{ : =N+ 1</ <N} CC*(R,[0,1]),
with N = N(¢) € N sufficiently large, such that

e supp 7/ is an interval of length & for all |/| <N — 1, supp 7y C [Ix] = 1/¢];
o 7f - =0if[[j — | =22, max{[/|, |/} <N —1Jor [ <N —2,j=N];

N
e > (@r=1
j=—N+1
o ()Pl < Ce~F forallk e N,—N +1<j<N.
To each finite e-localisation family we associate the second family:
{x; + =N+ 1<j<N}CCP(R, [0, 1])
with the following properties:

e x; =1onsuppr;;
e supp x; is an interval of length 3¢ and with the same midpoint as supp 7/, || < N;
e supp xy C[|x| = 1/e — e] and & 4 supp 7y, C supp xy, for [§] <e.

Each ¢-localisation family induces on /¥ (R) a norm equivalent to the standard norm.
Lemma 9 Let ¢ >0 and let {nj : —N +1<j < N} be afinite ¢-localisation family. Given p €
(1, 00) and r € [0, 00), there exists c = c(g, r, p) € (0, 1) such that

N

el fliwy < Il <Nl f € WIR),
7 P P

j=—N+1

Proof We omit the elementary proof. O

The result established in the next lemma is used in an essential way in the proof of Theorems 3
and 4 below.

Lemma 10 Let ¢ €(0,1) be arbitrary (but fixed) and let {n; : —N +1<j <N} and {x} :
—N + 1 <j < N} be as described above. Furthermore, fix | € W, (R), where s € (1+1/p,2).
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Given —N + 1 <j <N, the operator K; : L,(R) — L,(R) defined by
K@l = x (it AN@] - AN@)), @ e LR,
is compact.

Proof According to the Riesz—Fréchet—-Kolmogorov theorem, it suffices to show that

sup f [Ki[@] ()l dx— 0 for R — oo, (3.2)
lollp<t J[Ix[>R]
IIEIFEI I 7e (Kj[w]) — K;[@]ll, — 0 for & — 0. (3.3)
olp<

Step 1. For |j| < N — 1, the assertion (3.2) is obvious. Let now j = N. Then, it holds

1/p
([ wowra)
[1x/>R]
, 1/p
TR
k>Rl ' JR 14 5[yf/y) »?
1/p
(f ‘/ yf(x)_(s”fs”]”( )dy\pdx>
=81 i<t 1+ (Sppnf/y)° Y

1/p
(/ ’/ J’f (x) xy]f 5”’] j D(x — y)dy) dx)
(=R i1 1+ Sy S /) Y

=T+ T>.

N

N

If R is sufficiently large, then 7/ (x) = 1 =7/ (x — y) for all |x| > R and |y| < 1; hence, T; =0.
Concerning T3, it holds 7> < T, + Top + T, Where,

1/p
[x
To = (/ 7er| / ot dx) < OIS iy
[>R] [y>1]

1/p
[
Ty = (/ |/ (x) |p‘/ A%, o(x — Y)dJ/‘ dx> < Clfllzy (x> RDs
[Ix/>R] [Iyl>1]

. ST} r\
Ty 1= | UBE -] dr)
[ES I ES B

If R is sufficiently large, then njg(x) =1 for all |x| > R. In view of nf(x —y)=1forall x —y| >
1/¢ + ¢, it follows that 8}, )j77 = 0 for |x| > R and |x — y| > 1/¢ + ¢, hence,

ST} v\
T = ( / | f —L (f@) - dy| dx)
[k[>R] ' JyI>R—1/e—e] )V

2 1/p C
< / 2 ( / (D)=l dx) &<l
W>R—1/e—e] ¥~ \J[Ix|>R] —l/e—¢

These arguments show that (3.2) holds forall —-N + 1 <j < N.
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Step 2. With respect to (3.3), we note that |7:(Kj[w])—Kj[@]ll, <T1+T>»+ T3 for
all =N + 1 <j <N, where

Ty = llwex; — 1] ol AUO[@] — AN @], < Cllzexf — 1 oo < CIE L

._ T f/(x) 3[,(_5’ _g’:]ﬂff’?
e (/R | /R [1 + (S[Jrsjé]f/(y—S))2 yif ]

A I
1+(3[ f/y) y
Op—t y—g]T;
Tn e xty-e)f b—g9-617
a /|/ 1+ et/ [0 —§)T P

x 6x )
— S f 5 b7 ]a)(x y)dy‘ dx) p.
1+ (S[X, ]f/y) y

Moreover, T, < Ty, + T, where, using Holder’s inequality, we have

Spe—tye1TTE P /p ,
= ([ ereo=roor ([ [* a0 - p|a) @) <l -1,

uniformly for |§| < 1/2. Moreover, 75, is defined as the expression:

1
( / vl [ [ / T /0= Do dy\”dx) "
+ x—§.y— gf /v — E)) 1 + (S[X,y]f/Y)
Taking into account that for |§| < 1/2 it holds that
‘ St -1 /(v — §) Spen T [y
L+ (e /0= 8) 1+ (e f )’

1
< Clgp'=7 <1[|y|<1](y) + 1[|y|>1](V)|y—|> ,

]5(}6 b)) dy‘P dx) l/p,

Holder’s inequality leads, for |£| < 1/2, to
T < ClEFIP.

It remains to show that 75 — 0 for & — 0. Since,

—y Slx—gy—£17T] Spanf Oor T }

’ 14 (Spe—ey—e1f /(0 — i,?))2 =8y 1+ (5[x,y1f/y)2 »?

1
< Clgpitir (1[|y|<1(y)+1y|>1 0’)| |2)

for all || < 1/2, Minkowski’s inequality yields
L < ClgP'=r.
Hence, (3.3) holds true for all =N + 1 <j < N and the proof is complete. O

The next result is a key ingredient in the proof of Theorems 3 and 4 below.
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Lemma 11 Let ¢€(0,1) and {nf : =N+ 1<j< N} and {st : =N+ 1<j<N} be as
described above. Let further f € Wy(R), s € (1+1/p,2).and pick q € [p,00). Then, for each
—N + 1 <j <N, it holds that
X AKX N ey < 1,
provided that ¢ is sufficiently small.

Proof We first establish the claim for |j| <N — 1. Using Minkowski’s inequality and the
embedding W) (R) — Cs~VP(R), it follows that

o— l/q
B ; -
X ANIX @1y = (/ ‘/ f(x) oS (@) x —y) dy‘q dx)

1 + S[Xy f/J’) »
1/q
R suppxjg
S [f/]S—l—l/pHEHq/ =21 gy

supp x; —supp x;
s—1—1/p)—
< Cllflwge™ Pl

In the case j = N, we have || x; A(f)[x;@]lly < T1 + T2, where

T /"/ ' yf(x) S S (X @)x —y) dy‘qu Vi
TN e ey |

— 1/q
yf (xX) = Sy f @) x—y) 4
n= : dy| dx] .
. (/’/'y“ & 1+(5[x,y]f/y)2 ” y’ ’

Using the mean value theorem, we have

/ 1/2 1/2 _
0" @) = a1 /1 < 20 2 e L TS A2,

and herewith the term 7 can be estimated as follows:

172 1172 X o) x —y) q Va
2||f”LOQ( [lx|>1/e— 2)[f]5_1_1/p /‘/]|<1 Xj (x) 3/2+1/2p ) dy‘ dx
[y

1 1/q
172 172 _
2||f ”LOC( [Ix|>1/e— 2)[f ]Sflfl/p \/[\y<1] y3/2+1/2p_s/2 <\/R |(Xj a))(x_y)lq dx) dy

1/2 1/2,,—
<O ey 1 s 1.

Furthermore, T, < Tp, + Ty + T>. where

Ty = (/ |(f/Xf)(X)I‘1‘/y>1 ( =) ‘qu>1/‘1

9-p)/q
< CU I e IS ”Loo([|x|>1/a pll@llg,
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and
& (X'sw)(x _y) q la
Ty = ( / | / ()0 gy dx)
R Jis1 ¥
1/q
< / ( / A D) — y)|qu> dy
=11 ¥
< Cllf lzooqei=17e—1pll@ll g5
and finally,

(f o) ) 1
T, = (/ ‘/M xja;x y ’qu)
[ ( / S xeDx y>|qu)l/q dy
=11 V2

< Cllf Neooqii=17e—1p ll@llg-

N

Gathering these estimates and observing that f®(x) — 0 for |x| — oo and k=0, 1, we conclude
that the claim holds true. O

We are now in a position to establish the aforementioned invertibility result in £(L,(R)) for
pe(1,2].
Theorem 3 Letp € (1,2] and s € (1 +1/p,2). Given f € W;(R) and 1 € R with |A| > 1, it holds
A —A(f) e Isom (L,(R)).
Proof The claim in the particular case p = 2 has been established in [36, Theorem 3.5]. Let now
p€(1,2),f € W)(R)and A € R with [A] > 1 be given.

Step 1. We first prove that L — A(f) is injective. Let @ € L,(R) satisfy (A — A(f))[@] = 0. Given
& > 0, this equation is equivalent to the following system of equations:

=X ANx)rfo]l =K[®@]  for =N +1<j<N, (3.4)

where K;, —N + 1 <j < N, are the operators introduced in Lemma 10. Since p € (1, 2), in view
of Lemma 11, we may choose ¢ > 0 such that

A — XfA(f)Xj ) € Isom(L,(R)) N Isom(L,(R)) forall -N +1<j<N.

As @ € L,(R), the right-hand side K;[@] of (3.4) belongs to L,(R). Moreover, using once more
the fact that p € (1, 2) together with the L,,-bound:

- W) = S f o
K <
K [@])] < /R ST

LYy _
CfR ‘ (l[ysu(y)+ 1[|y>1](V)m) w(x—«V)’ dy
< Claol,, xeR,

wx - )| dy
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it follows that Kj[@] € Ly(R) for all =N 4 1 <j < N. Invoking (3.4), we then get
mo=0—x Ax) K@l € LR)NLy(R),  —N+1<j<N,

and therewith @ € L,(R). Since A — A(f) € Isom(L,(R)) for all » € R with |A| > 1, we conclude
that the equation (A — A(f))[w] = 0 in L,(IR) has only the trivial solution.

Step 2. We now prove there exists C > 0 with the property:
I =A@, = Clloll, forall w € L,(R) and A € R with [A] > 1. (3.5

Indeed, assuming the claim is false, we may find a sequence (w,), CL,(R) and a
bounded sequence (A,), C R with the properties |A,| > 1, |[@,ll, =1 for all n €N, and such
that (A, — A(f))[w,] =: ¢, — 0 in L,(R). After possibly extracting a subsequence, we may
assume that A, — A in R and w, — @ in L,(R). In virtue of (3.1), it holds that

((An = AU N@u]1h) L, = (@l (hn — (AR L,

for all » e N and / € L,y (R). Passing to the limit # — oo in the previous equation, it results that
(A = A(f))@]lh), =0 for all & € Ly(R). Since L — A(f) is injective, we get w = 0.

Let now & >0 be chosen such that (A, — x/A(/)x/), (A — x; A(f)x;) € Isom(Ly(R)) for
all =N +1<j< N and all n € N. Such an ¢ exists in virtue of Lemma 11 and of the fact that
[X] = 1 for all n € N. Because of

N

L=l@ullp< Y l7f@allps
j=—N+1

there exists —N + 1 <j, < N and a subsequence of (@,), (not relabelled) such that
lf @, > (2N)™"  forallneN. (3.6)
From (A, — A(f))[w,] = ¢, it then follows
75 @y = Oun — 1 AU TR @011 + O — 15 A [ 0] (3.7)

for all n e N. Recalling Lemma 10, we obtain Kj[@,]— 0 in L,(R). Furthermore, taking
into account that A, — x’ A(f)x; — A — x  A(N)x;, in L(L,(R)), we deduce from (3.7) that
7w, = 0 in Ly(IR), which contradicts (3.6).

We have thus established the validity of (3.5). Since A — A(f) € Isom(L,(R)) for |A| suffi-
ciently large, the method of continuity, cf. [3, Proposition I.1.1.1], leads us to the conclusion that

A —A(f) € Isom(L,(R)) for all |A| > 1. This completes the proof. O

We now consider the case p € (2, 00). From the proof of Theorem 3, we may infer that if
A —A(f) € L(L,(R)) is injective for all L € R with |A| > 1, then A — A(f) is an isomorphism
for all such A. The arguments used to establish the injectivity property of A — A(f) in the case
p € (1, 2], however, do not work for p € (2, 00), and therefore a new strategy is needed.

Theorem 4 Letp € (2,00) and s € (1 + 1/p, 2). Given f € W;(R) and 1 € R with |A| = 1, it holds

A —A(f) € Isom(L,(R)).
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Proof To each ¢ € (0, 1), we associate a function a, € C*°(R, [0, 1]) with the properties that
ax(x)=0 for |x| <&~!, a.(x) =1 for x| > e~! + 1 and |d,| < 2. Recalling (2.7), it is suitable to
write

A=A + Ay,
where,
A1 := (aef)Boa(f) — Bra(Nlaef, -1,
Ay = [(1 —ao)f1Boi(f) = Bia(NIA — as)f, -]

According to Lemma 2 (i), it holds that A;, € £L(L,(R)) for all 1 < g < oo. Since f and f” vanish
both at infinity, we obtain for ¢ — 0 that

”Al,a”L(Lq(]R)) < C”(a&f)/”oo < CIIf||WOIO([|x|>g_]]) — 0.
Hence, if ¢ is sufficiently small, then
A — Ay, € Isom(L,(R)) N Isom(Ly(R))

forall [A| >1
Letnow A € R with |A| > 1 and w € L,(R) satisfy (A — A(f))[@] =0, or equivalently

(= Ape)[@] = Ay e[@].
Assuming that
Ay [w] € Ly(R) N L,(R) for all ¢ that are sufficiently small, (3.8)

the previous equality together with A — A ; € Isom(L,(R)) N Isom(L,(R)) leads us to w € Ly(R).
Recalling that A — A(f) is an L,(R)-isomorphism, we may then conclude that w = 0.
It thus remains to establish (3.8). To this end, we write

A elo] = Ay elao] + Ax[(1 — az2)d].

In view of pe(2,00), it holds that (1 —a,2)w e Ly)(R)NL,(R) and therefore we obtain
that Ay .[(1 — a,2)w] € Lo(R) N L,(R). Letting g, := (1 — a,)f, it holds that

ax £ 2 172
1As e[a2@] 12 < </ \/yygs(f((s [;)f (a.2@)(x —y) db] dx) <T +T
[x.]

where,

ygg(x) 8[xygp . 2 )1/2
T = , 3 d d |
1 </ ‘/y|<1] Y2+ OBy f)? o @ —y) y‘ X

V8e(¥) =18 _ 2 ) 172
= ol )
ne (f ‘/.y|>l] 32 + By /)? 2 G ) R OE =) y‘ x

If ¢ is sufficiently small, then 77 =0. Indeed, let x € R. We distinguish two cases, namely
when |x| <&72 —lor |x| > e~ ! +2.If |x| < &2 — 1, it follows that [x — y| < 2 and therewith
a,2(x —y)=0. In the case when |x| > &~! +2, it holds |x —y| > ¢! + 1 and g.(x) = g:(x) =
gs(x - y) =0
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Concerning 75, we note that g.a,> = 0. Given |x| > &~ + 1, we get g/(x) = g.(x) =0, and
Holder’s inequality leads to:

T, = </ ‘/ YEX) = S ey dy‘zdx>l/2
w<e— 1417 sty V2 G /)? 0 °

) 1/2
< Cliglloo / </ —Ia 20 (x — y)dy> dx
lxl<e=1+1] \J[p1=17 VI
< C@)lig:llol@llz, -
This proves (3.8) and the injectivity of A — A(f) € L(L,(R)). O

Finally, we establish the invertibility of A — A(f), A e R with [A]| > 1, in E(W;*(R)).

Theorem S Letp € (1,00)and s € (1 + 1/p,2). Given f € W,(R) and 1 € R with |A| = 1, it holds

A — A(f) € Isom(W; ™ (R)).

Proof Givenw € le‘l(R) and A € Rwith |A| > 1, let ¢ := (A — A(f))[w]. Lemma 8 then yields
Qe W;‘l (R). Recalling Theorems 3 and 4, it holds that

_ o — ol (A — A(ze )@ — @] 15
@Y = | —WHS_UPP ds <C | P L dg
le — tepll) ICACS) — Ae/MN@DIIL
S 2pCfR AT +2PC/R A=
ICA(S) — A(ze/ @D
< 2pc[(p]pW£—1 +2pCA |§-|1+(s p . ds,

with C > maxp > 1o (A — A(f) ™! ||’2(LP(R)). Recalling (2.7), we further compute

IACS) — AGcgMNI@1, < 11 Boa(NI@] — tef "Boi(zef@]ll,
HIBL1(NOLf s @] = Bra(ze/)lzef, @]llps
and the relation (2.6), Lemma 2(ii) (with t =s/2 —1/24+1/2p e (1/p, 1) and r =), and (2.9)
(withr=s/24+1/24+1/2p (1 4+ 1/p,2)) yield
17" Boa (@] — tef Boa (ze/)@]ll,
< =z plBoi(NI@lloo + I NeolIBaa(fs TS + Tef o f — wef, @l

<CIf —wf' Ip @l yer2-1/241/20
where C = C(|| f]| WI;), and by similar arguments:

I1BL1(NLS s @] = Bri(te/)lTef, @]l
SBLN — wf, @1l + 1Bs2(f weNUf + 1/ — wef, wef o]l

<ClIf = Ipl@ 1 217241720
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The latter estimates together with Theorems 3 and 4 imply there exists a constant Cy (which
depends only on /') such that

13151 < Colll- = AN@ g1 + 1@ yz-12012), BEW,T'(R). (3.9)
Using the interpolation property:
WO R) = (WH(R), W2 (R))gp,  0< sy <51 <00, (1—6)s; +0s; N, (3.10)

where (-, o, € € (0, 1), denotes the real interpolation functor of exponent 6 and parameter p,
in the particular case s =0, s, =s— 1 and 8 :=(s — 1)~ !(s/2 — 1/2 + 1/2p), it follows from
Young’s inequality that

1
IIEIIW;/Z—I/ZH/ZP < 2—C0||5||W1§—1 + Cl@llp, oW, \(R).

This property combined with (3.9), Theorems 3, and 4 yields
||E||W571 <Cl(x — A(f))[E]HW;—l, we WS‘I(R) and A € R with |x] > 1.

The method of continuity [3, Proposition I.1.1.1] leads now to the desired conclusion. O

4 The abstract evolution problem

In this section, we first use the results of Section 3 to formulate (1.2) as an evolution problem
in W;_I(R) with /" as the only unknown (see (4.3)). Subsequently, we show that the Rayleigh—
Taylor condition identifies a domain of parabolicity for (4.3), cf. Theorem 6.

Observing that the Atwood number a,, satisfies |a, | < 1, Theorem 5 ensures that, for each f €
W,(R), the equation (1.2), has a unique solution:

a(f) = —=Co(l +a, A()'[f']- (4.1)
Moreover, Lemma 8 yields
[f = @(/)] € C*W3(R), Wy~ (R)). (4.2)

We can thus reformulate the system (1.2) as the abstract evolution problem:

dJ
Vo), 120, 0=, (4.3)

where the ( fully) nonlinear and nonlocal operator ® : W (R) — Wl‘j_l (R) is defined by
O(f) :=B(NOlw(/)].
In virtue of (2.21) and (4.2), it holds
® e C°(W3(R), Wy~ (R)). (4.4)

It is important to point out that the operator @ is fully nonlinear as the definition of the function
o(f)=—Co(1 +a,A(f)7'[f]e W;’I(R) requires that /7 € W;”(R), but also the ‘nonlinear
argument’ f in (1 4 a, A(f))~'is required to belong to W,(R). This differs of course if g, =0
and in this setting ® has (in a suitable setting) a quasilinear structure, cf. [37].
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The Rayleigh—Taylor condition can be simply formulated in our notation as:
Co +a,o(f) >0, (4.5)

cf., e.g., [36]. Since O(f) € W;_I(R), this condition implies, under the assumption® ® # 0, that
® > 0. Restricting to the setting when © > 0, it follows from (4.4) that the set

O:={f € WSR) : Co +a,®(f) > 0} (4.6)

is an open subset of 7(IR). The analysis below is devoted to showing that the Frechet derivative
aP(fp) of ® atfy € O generates an analytic semigroup in LZ(W;,"1 (R)), which in the notation from
[3] writes —9D(fo) € H(W,(R), W;_l (R)). This property identifies (4.3) as a parabolic evolution
equation in O and facilitates us the use of abstract parabolic theory from [34] when solving it.

Theorem 6 Let f € O. It then holds
—9D(fo) € HOV3(R), W3~ (R)).
The proof of Theorem 6 (which is postponed to the end of the section) requires some
preparation. In the following, we set
o :=o(f)) € Wy '(R).
By the chain rule,

IP(fo)Lf1=0B(fo) fN[wo] +B(f)[d@(f)[/1,  f€W,[R),

where

wIB(fo)[f1[@o] = —2B22(fo./0) fo.f> @o] + 1 Br1(fo) fo, @o]
+oB1.1(fO)LSf > @o] — 2£B32(fo,/0) 0, 10,1 > D).

Furthermore, differentiation of (4.1) with respect to f at f; yields

(1 + a, A(fo)@(f)[ /1] = —a,d A0 f1[@o] — Cef’s [ € W(R),

where,
mIAfo)fTwo] = f"Bo,1 (fo)l@o] — 2/gB22(fo, /o) fo,.f, @o]
—B11(Jo)Lf s @0l + 2B32(fo, /) fo. fo. /w0l f € Wy(R).
In the derivation of (4.7), we have several times made use of the formula:

a(Bn,m(f’ R ’f)[fa L ’fa ])|]0[f] - an,Wl(fb’ L 5f6)[ﬁ)5ﬁ]’ LK 5f5 ]
_2mBn+2,m+l(ﬁ)a DR aﬁ))[ﬁ)afba s afa ]

(4.7)

3The case when © = 0 is trivial as the function @( f) defined in (4.1) (hence also ®(f)) is identically
zero. Consequently, the initial surface is transported vertically with velocity 7 (and the Rayleigh-Taylor
condition needs not to be imposed) and the velocities of the fluids are zero.
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In order to establish Theorem 6, we consider a continuous path in L(W;(R), W;‘I(R)) which is
related to 3P(fy), that is we define W : [0, 1] — L(W,(R), W;_I(R)) by setting:

V(o) f1:=1aB(fo)[f1[@o] + B(zfo)w(T)[ /1],
where w € C([0, 11, LOV3(R), W3~ (R))) is defined as the solution to:
(1 + a AT/ WOL 1 = —7a, dA)Lfl[@o] — Caf — (1 — Da, /' @(fo)  (4.8)
for 7 € [0, 1] and / € W3(R).

Remark 2(i) Ift =1, then w(1) = dw( fy) and therewith V(1) = 0O(fp).

(ii) Letting H denote the Hilbert transform, it holds V(0) = H o w(0). Moreover, noticing that
A(0)=0, it holds

d
w(0) = —[Ce + %CD(fo)]a-

It is important to point out that the function of the right-hand side of the latter relation
is exactly the function in the Rayleigh—Taylor condition (4.5). This is one of the reasons
why we artificially introduced the term (1 — t)a,f"®(fy) in the definition (4.8). This
construction is essential for our purpose because it provides on one hand some useful
cancellations in the proof of Theorem 7 and on the other hand it facilitates us to establish
the invertibility of A —\U(0) € L(W,(R), W;’l(R)) for sufficiently large and positive
A, cf. Proposition 1. The latter point is important when establishing the invertibility of
A — 9D(fy) for such A.

(iii) H is the Fourier multiplier with symbol [ — —isign(§)] and
H o (d/dx) = (—d*/dx*)"/.

(iv) Given s'€ (1+1/p,s), Lemma 2 (i), Theorems 3 and 4 imply there exists a constant
C = C(fy) such that

WLy < Clf Ny s f€W,R), T€[0,1]. 4.9)
Besides, Lemma 5 (with r = s') and Theorem 5 (with s = s') yield

W@ g1 S CUS Ny, T €[011, /€ WE(R). (4.10)

Theorem 7 is the main step in the proof of Theorem 6. In Theorem 7, it is shown that the oper-
ator W(7) can be locally approximated by certain Fourier multipliers A; .. Theorem 7 also reveals
the importance of the Rayleigh—Taylor condition which ensures in this context the positivity of
the coefficient o (x7) in the definition of A; ; below.

Theorem 7 Let >0 be given and fix s € (14 1/p,s). Then, there exist ¢ €(0,1), an
e-localisation family {z{ : —N +1<j <N}, a constant K = K(¢, fo) and bounded operators:

Ajr e LWSR), Ws™\(R)),  je{-N+1,....N}and T €[0,1],
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such that
I W) = Al o1 <l g + Ky @.11)

Jorallje{-N+1,...,N}, v €[0,1], and f € W;(R). The operators A ; are defined by

& 1/2 d 2 1/2
Ajr = —ae(x)) <_E> + ﬂz(x;)a, JISN—=1,  Ay;:=-Co <_ﬁ> ,
where x; € supp i/, |j| < N — 1, and with functions o, B. given by
‘L'f/2 T _ 50
o = (1 - TOO’Z>[C® +a, ®(fo)l, B = ;Bl,l(f())[fo,wO] - ra“rfo/z'

Before proving Theorem 7, we first present some lemmas (which are proved in the
Appendix A) which are used in an essential way when establishing Theorem 7. The following
commutator estimate is used several times in the paper.

Lemma 12 Letn, meN, pe(1,00),s€(1+1/p,2), f € W, (R) and ¢ € C'(R) with uniformly
continuous derivative ¢’ be given. Then, there exist a constant K that depends only on n, m,
9" lloc, and || f 11wy such that

1@Bum(fs - s s oo s f s B = Bum(fs - SO o> Rl < KL (4.12)
forall h € L,(R).

The next lemma is used in the proof of Theorem 7.
Lemma 13 Let n, meN, pe(1,00), 1 +1/p<s' <s<2 and v € (0, 00) be given. Let fur-

ther f € W)(R) and @ € {1} U W;_I(R). For sufficiently small e € (0, 1), there exists a constant
K=K(e,n,m,| fllws, IIEIIW;_l) such that

|

forall [j| <N —1andhe W;’I(R) (with x; € supp 7/).

NS

JTjSEBn’m(f,...,f)[f,...,f,h]— [1+(f/(x;))2]m 0,0

Sl Al st + KA

[nj?h]’ ! (4.13)

s’ —1
WP

The next two lemmas are analogues of Lemma 13 and deal with the case j = N.

Lemma 14 Let n,meN, pe(l,00), 1+1/p<s <s<2 and ve(0,00) be given. Let
Surther f € W) (R) and o € W;_I(R). For sufficiently small ¢ € (0, 1), there exists a constant
K=K(e,n,m, || flws |@lls-1) such that

”ﬂjgaBn,m(fa ce Sf)[f’ e af’ h]”w[j—l < U”T[jgh”W[,;—l + K”h”W;LI (414)
forj=N and h e W;’l(R).

We now establish the counterpart of (4.14) in the case when w = 1.
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Lemma 15 Let n, meN, pe(1,00), 1 +1/p<s <s<2 and v €(0,00) be given. Let fur-
ther [ € W,(R). For sufficiently small ¢ € (0, 1), there exist a constant K =K(e,n, m, | fllw;)
such that

175 Bon (-« /IH) = Boalow Hll gt < vl il s + Kl (4.15)
and
70 By (fs -« OS5 oS h]llwg—l < vIIJTthIW;—l +K||h||W5/—1, n>1, (4.16)

forj=N and all h € W™\(R).

We are now in a position to prove Theorem 7.

Proof of Theorem 7 Let {n/:—-N+1<j<N} be an e-localisation family and
let {x/ : =N + 1</ < N} be an associated family, with & € (0, 1) to be fixed later on. In this
proof, we denote by C constants that depend only on fy. Constants denoted by K may depend
only on ¢ and fj.

Step 1: The terms 0B( fo)[ f1[@o]. In virtue of Lemma 6 (with » = and ¥ = s"), it holds
| = 2B22(fo. f)Lfos /- @0l + f3 Bri(fo)Lf s @o] — 23 B3 2(fo JOLS > fo fo @o]

—@o( = 2B12(fo. ) fo, /'] + f3Boa (LS — 2fg Ban(fou )L fos foo /1) | W (4.17)
<ClIf Iy -

Moreover, invoking Lemma 13, if ¢ is sufficiently small, then

7@ (= 2B12Cfos ) fo S 1+ fyBoa GILST = 23 Baafos S) o fon S )
@0 )fy ()
T+ ()2

for all |j| < N — 1. Besides, for j = N, Lemma 14 yields

Boolm/ 1]

Ko e
wit < IS g+ KNy

|77 @0 (= 2B1.2(fo. S for /1 +Fo Boa (S)Lf "1 — 23 Boa(fos ) fos fo.11) | !
< S g + K1 Ny
Finally, in view of (2.1) and of By 1(fo)[ fo, @o] € C*~'~1/P(R), it holds

7 B (o)l fos @0l — (Y Ba (o) fos Bl
< I Bua (o)l o, Bol = Bui(fo)Lfo» Bl DTV st + KISyt (418
< Sl g + K1l

for |j| <N — 1. Moreover, since By,1(fo)[ fo, wo] — 0 for |x| — oo, (2.1) yields

/ — I’L
I Bua G fos @yt < 1 g + KIS Ny
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for j = N. Hence, if ¢ is sufficiently small, then

. Two (x5 )fy (x7)
mETIB(fO) fl[@o] + ——— ——~Bool(Ef)]
H Y 0 0 (1 +(fo(xj))2) 0OR (4.19)
— 2B (Lo Bl | < S g + KIS Ny
forall |[j| <N —1andf € W;(R), and
I} TOBCOL @0l 1 < 517 g + KIS 1y (4.20)

forj=N and all /' € W,(R).

Step 2: The terms B(tfo)[w(r)[f]]. We first estimate ||nj5w(r)[f]||W1§_1, —N+1<j<N.
Recalling Lemma 12 and (4.9), it holds

ll7z; ACzfo)) (@)L D] = Alefo)) ity (WOL Ty < KILf -
Besides, multiplying (4.8) by 7/, it follows from Lemmas 5, 6, and 12 that

17 (1 + au AL My < Cllaf AL U@ollys-1 + ClES et
< Cl g + KIS 1y

In order to estimate the last three terms of 779 A(fo)[f][@o], we used Lemma 6 in a similar
manner as in the derivation of (4.17), and afterwards the commutator estimate in Lemma 12 to
write in the end ijs as a multiplying factor of /7.

Combining the last two estimates, we arrive at

11+ a, ACefo)) iy w)L Ny < Cll fllwg + K1 Ny -
Finally, Theorem 5 ensures there exists a constant Cy = Co(fp) > 0 with
IInjw(r)[f]nW;_l < Collzffllw +K||f||W1§,_ 4.21)

In virtue of Lemma 13 (with v = u/(8Cy), where Cj is the constant in (4.21)), (4.10) and (4.21)
for ¢ sufficiently small and |j| < N — 1, it holds that

I B o)L — 7~ Boolt w11y
< 3 17 U Myt + KOl 422)
< Sy + K1y

Lemmas 14, 15, (4.10) and (4.21) show that (4.22) stays true also for j = N.
We now set

Ta _
¢r :=Co + (1 — 1)a, ®(fo) + 7“30,1(1‘0)[0)0], t€[0,1],
and prove that
@o(x7)
1 —I—fo’z(xj)

| Boolm (DU + 0 6 Bool (e )1 + Tam (Y

. wy! (4.23)
< I g + K11 1y
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for all [j| <N — 1, provided ¢ is small. Indeed, since B(Z)j0 =m?H? = —7? idy, ), it holds
; . ey o)
| Boolm WU+ @) Bool e )1 + e — iy |
_ 1+f (xj) Wp (4.24)
& & & Ta//« C()()(xf) &l .
Besides, multiplying (4.8) by 77/ and using the definition of ¢., we arrive at
W] + 9 (TS — T4 @) [ 1=T\ + Ty + T (4.25)
i (X)) - l+f0’2(x_f) ool J =141+ f2+ 13, .
where
T1 == (1 = D)a (P(fo)x}) — P(fo)m/f',
1y = 2 (oML @] — Bos (@l s+ —0) )
2= ; 0 0 0,1(f0)[@o](x})7; T2 00l )

T3 := —aum; A(T/o)Iw(T)Lf1]-
The term T can be estimated, in view of ®(fy) e C*~!"1/7(R), by arguing as in (4.18).

Concerning 73, we infer from (2.7) that

T =— tja[M |:<7T;f0/B()’](‘L'fO)[W(T)[f]] - Hf.(;g—xj/z)(xa)
0

Bo,o[n;w<r)[f]]>

_ (nj8B1,1(rﬁ>)[ﬁ),w(r)[f]] - - Jox)

+T2—O/z()§)30,o[ﬂfvv(f)[.f ]])}

and both terms can be estimated using (4.10), Lemma 13 and (4.21). Finally, using (4.7), it holds
that

Ta,

n=-— |:7Tj6f’(30,1(ﬁJ)[50] — Bo1(fo)[@o](x))) + Tror[ /]

02 )@o(x7)

-2 (nj%woBl,z(fo,ﬁ))[ﬁ),f/] - W

Boo [”jgf/]>

@o(x;)
T+/200)

- (ﬂjsaoBo,l(fo)[f/] - Bo,o[ﬂff/]>

_ 2 (x5 Yo (x2)
‘o 1 L0 MO &4t
+2 (ﬂj 0B2,2(/0,/0)[fo, f0./"] 0 f()/z(x;)]zBo,O[nj f]) }
where

TLOT[f] = _Z(faBZ,Z(ﬁ)af(‘))[‘anfa 50] _fHEOBl,2(fbﬂﬂ)[ﬁ)7f,])
—B11(fOLf, @0l — @oBo,1(fo)[f'])
+2(B3 2(f0, J0) L fo- fo..f> @0] — @B (fo, /o) fosf0./'])-
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Lemma 6 yields
&€
: 1 <K
”T[j TLOT[f]HWP 1 ”f”Wp

The first term in the decomposition of 75 is estimated, since By (fo)[@o] € C*~!'~V/P(R), by argu-
ing as in (4.18). For the last three terms, we rely on Lemma 13, (4.10) and (4.21). Altogether, we

conclude that if ¢ is sufficiently small, then
o+ s = Bl
and together with (4.24) we have proven (4.23). From (4.22) and (4.23), we finally conclude

Ta, wo(xf) 1
g _ : s —+ K s
st S 4C, ||711f||W,, ”f”W;’a

|7 B LN + 7 e Bool ()] + 7 ) (tpy
J T > J /‘1+f0/2(x;) J

p Wyt (4.26)
<G Il + KISy

for all |j| <N — 1, provided that ¢ is small. Using also Lemmas 14 and 15, it is not difficult to
infer from the latter relations that

|7 B (L + 7 CoBool () g < 5 1/l + K1 /1y (4.27)

for j = N, provided that ¢ is small.

Combining the relation wy = —Ceqfy — a,A(fo)[wo] with the estimates (4.19) and (4.26)
(and recalling also Remark 2 (iii) and the identity By = H), we conclude that (4.11) holds
true in the case when [j| <N — 1. For j=N, the desired claim (4.11) follows from (4.20)
and (4.27). O

We now consider the Fourier multipliers from Theorem 7 more closely.
Lemma 16 There exists a constant n = n(fy) € (0, 1) with the property that
1 1
n<ar < u and  ||Brlleo < 0 (4.28)

for all T € [0, 1]. Moreover, given « € [n, 1/n] and |B| < 1/, there exists a constant ky > 1 such
that the Fourier multiplier:
2\ d
o=~ =
o * ( dxz) +h dx

satisfies
o h—Agpelsom(Wy(R), W3 '(R)), ¥V Reixl, (4.29)

o kolld = Ag )l Myt = AL I ot + 1l VS € W,(R),ReA > 1. (4.30)

Proof The bounds (4.28) are a consequence of fy € O. Finally, in order to prove the properties
(4.29)—(4.30), we first consider the realisations:

Agp € LW, (R),L,R)) and Agp € LIV (R), W) (R))
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for which the properties (4.29)—(4.30) (in the appropriate spaces) can be established in view of
the identification W;(R) =HIf(R), k € N (using Fourier analysis and, in particular, Mikhlin’s
multiplier theorem, cf. e.g. [1, Theorem 4.23]). Then, using the interpolation property (3.10), we
conclude that (4.29)—(4.30) hold true. O

We next exploit for a second time the Rayleigh—Taylor condition to show that A — W(0) is an
isomorphism provided that A € R is sufficiently large.

Proposition 1 Let § >0 and ¢ € W;_I(R) satisfy a .= 8 + ¢ > 0. Then, there exists a constant
wo > 0 such that

A+ Ho (ai) e Isom(W5(R), WS~ (R)) for X € [wy, 00). (4.31)
dx p P

Proof Let [t — B(7)]: [0, 1] = LW (R), W;‘I(R)) be the continuous path given by

d
B(t):=Ho <ara> s

where a; :=(1 —1)0 + ta=38 + t¢, T € [0, 1]. We show below that there exist constants wy > 0
and C > 0 such that

G-+ B My = Cllf Mg, VT el0,1], 2 € [wo, ), f € W(R). (4.32)

Since A + B(0) is the Fourier multiplier with symbol m; (§) := A + §|&|, £ € R, it then holds
that A + B(0) € Isom(W;(R), W;*I(R)) for all A > 0. The method of continuity and (4.32) imply
then that (4.31) holds true.

Step 1. Lets’ € (1 4+ 1/p, s). Given u > 0, we find below ¢ € (0, 1), an e-localisation family {m/ -
—N + 1 <j < N}, aconstant K = K(¢) and bounded operators:

Bi. € LW,([R), W, '(R)), je{-N+1,...,N}and €[0,1],
such that
7z BT = Bye [/ 11 < wllifllws + KA Wy (4.33)

forallje{—N+1,...,N},t€[0,1]and f € W;(R). The operators B; ; are defined by

42 1/2 P2 12
By.:=3$ <_ﬁ) and B; . = a.(x)) <_ﬁ) , JISN-—-1,

where x; € supp 7}
For —N + 1 <j < N it holds that

17 BOLST = Bye [/ Wy < ) BEOLST = B -
HIBET /1 = By [ My
Lemma 12 yields

7 BT = B st <K lygs  ~N+1<j<N.
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Moreover, for |j| <N — 1, we use the identity x/7; = 7] together with (2.1), Lemma 2 (ii) (with
r=sand t =5 — 1), and Lemma 5 to derive that

1B A1 = Byl Ty = NHI@e = ax ()1 i) g
< U@ = SENK ) Mgy
< U@ = N oo ISV gt + KIS Ty
< sl Nl + K

provided that ¢ is sufficiently small. This proves (4.33) for |j| < N — 1. Finally, for j =N, we
have

1B /1= Byl Wy = I = 8)x Grif) Myson
< CUDS Noel ) g1 + KN F Ny
<l fllwg + K1y
provided that ¢ is sufficiently small, and (4.33) holds also for j = N.
Step 2. Let n € (0, 1) be chosen such that the function a, satisfies
n<a: <1/, T €[0,1].

Lemma 16 implies there exists a constant k = (1) > 1 such that the Fourier multipliers:

&2 12
Ba = <—a¥> 5 0l€[773 77_1],

satisfy
KA B MMy Z 1A 1S Wyt + WS s S €WHR), 22> 1. (4.34)
Let ¢ > 0 be determined in the previous step for u := (2«)~". It then holds
26l G+ BEDL Mg > 26010+ B lyaer = 2l B = By [ 1l
> 1 llwg + 200 g1 = 2K F 1

for =N+ 1 <j <N, 7t €[0,1],and A > 1. Summing up over j, we conclude together with Lemma
9, (3.10) and Young’s inequality there are constants «y > 1 and @y > 0 such that

<oll0-+ BN 1 2 1 g + A Ny
forall T €[0, 1], A > wo and /€ W(RR). This proves (4.32) and the proof is complete. O

We are now in a position to prove Theorem 6.

Proof of Theorem 6 Let s' € (14 1/p,s). Let further ko > 1 be the constant determined in
Lemma 16 and set p:=1/2ky. Theorem 7 implies there exist ¢ € (0, 1), an e-localisation
family {n; : —N+1<j <N}, a constant K =K(e,fo) >0 and bounded operators A;. €
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LW,(R), W;_I(R)), —N+1<j< N and 7 €0, 1], satisfying:

260lltf L = Ayl Myt < Uil + 260K Ly, f € WER).
Furthermore, Lemma 16 yields

260l = Ay g = 2021 1 s + 207
forall -N +1</<N,7t€[0,1],Re A > 1, and f/ € W;(R). These two inequalities yield

2uc0 /15 (= WD -1
> 26010 = A )T Wyt — 260llf WL/ T = Ayl ot
> 2031 - Il gt + 1 g = 260K 11

forall =N +1<j<N, 7 €[0,1],Re A > 1 andf € W;(R). Summing up over j, Lemma 9, (3.10)
and Young’s inequality imply there exist constants k = x( fy) > 1 and w; = w;(fp) > 0 such that

KNG = W@ Mot = M- 1 gt + Wl (4.35)

forall T €[0,1], Re A > w; and f € W(R).

Let wp > 0 denote the constant from Proposition 1 found for § :=Ce¢ and ¢ :=a, P(f).
Setting @ :=max{wy, w1}, it holds w — W(0) € Isom(WV;(R), W;*I(R)), cf. Lemma 16. The
method of continuity together with (4.35) yields that

® — W(1) € Isom(W3(R), W5~ (R)). (4.36)

Gathering (4.35) (with T = 1) and (4.36), it follows that —d®(fy) € H(W,(R), W;’l(R)), cf. [3,
Chapter I] and the proof is complete. O

We conclude this section with the proof of our main result. The well-posedness result follows
by applying abstracts result for fully nonlinear parabolic problems from [34]. It is important to
point out that in fact we can establish the uniqueness of solutions in the setting of strict solutions
(as stated in Theorem 2), which is an improvement compared to the theory in [34]. This feature
is essential when proving the claim (ii) of Theorem 2, as it enables us to use a parameter trick
which was successfully applied also to other problems, cf., for example, [6, 25, 37, 47].

Proof of Theorem 2 Well-posedness: In view of (4.4) and Theorem 6, we find that the assump-
tions of [34, Theorem 8.1.1] are satisfied in the context of the evolution problem (4.3) when
restricting & to the open set O. Hence, given f; € O, there exists 7 > 0 and a solution f(-; /) to
(4.3) that satisfies

£ €C([0, T1,0) N C\([0, T1, W3~ (R)) N C((0, T1, W3 (R)

for some « € (0, 1) (actually, since the problem is autonomous, for all & € (0, 1)). Moreover, the
solution is unique within the class:

U o, 71, wi®y) n (o, 71, 0) N C'([0, T1, W5~ (R)).
ae(0,1)

In fact, the solution is unique in C([0, 7], ©) N C'([0, T7], Wy~ (R)). Indeed, assuming there are
two solutions f, f [0, T]1 — O corresponding to the same 1n1t1al data fy € O, since the problem
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(4.3) is autonomous, we can assume f(¢) 7’:j~‘(t) for t € (0, T]. Let now s" € (1 + 1/p, s) and set
a:=s5—5 €(0,1). In virtue of (3.10), there exists a positive constant C > 0 such that

1 @) =S @)l + @) =@y <Cln =0l 0. ne[0.7], (437)

and therefore f, /7 e C«([0, 171, W;/(R)) — C2((0, 17, W;/(R)). We may now apply the abstract
result [34, Theorem 8.1.1] in the context of (4.3) with ® € C“’((”)V, W;/_I(R)), where

O:={f e Wi R) : Co+a,®(f)>0}.

Since fy € O, we get in virtue of (4.37), that f :/7 on [0, T']; hence, our assumption was false.

Finally, the unique solution can be extended up to a maximal existence time 7. ( fy), see [34,
Section 8.2]. In virtue of [34, Proposition 8.2.3], the solution map also defines a semiflow on O,
and it remains to establish (ii).

Parabolic smoothing: Given A := (A1, A2) € (0, 00) x R and a maximal solution /' = f(-; fy) with
maximal existence time 7 = 7.(fy) to (4.3), let

S, x) =1 (At x + A1), xeR, 0<1< Ty, =T /M.

Straightforward calculations show that f; € C([0, Ty ,), O) N C'([0, T ), W;’I(R)) is a solution
to the evolution problem:

d
T wirn, 0. jo=p 438)
where W : O x (0,00) x R C W;(R) x R? - W;”(R) is defined by

af

dx’

Using (4.4), we get ¥ € C*(O x (0,00) x R, W;_I(R)). Also, given (fy, A) € O x (0, 00) x R,
the partial derivative of W with respect to f is

V(0 =2P(f) + 22

d
¥ (fo, 1) =110 P(fo) + Ao

Since d/dx is a Fourier multiplier with symbol m(§) = i&, & € R, the results leading to Theorem 6
can be easily adapted to deduce that the operator —d,W( fo, A) belongs to H(W,(R), W;" (R)) for
all (fo,2) € O x (0,00) x R. According to [34, Theorem 8.1.1 and Theorem 8.3.9] and arguing
as in the proof of (i), it follows that (4.38) has for each (fy, A) € O x (0, 00) x R a unique strict
solution:

F=1C3o,0) € €U0, T, 0)N CH([0, T), W~ (R)),
where T = T (fp, 1) € (0, 00] is the maximal existence time. Moreover, the set
Q:={(t,[0,2) : (Jo,A) €O x(0,00) xR, 0<t<Ti(fo, )}
is open and

[(#. /0, M) = f(#: /o, M)] € C*(R2, O).
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Hence, given fy € O, we may conclude that

Ty (fo)
A

T (fo, V)=

and  f(tfo,A)=/(), 0<t< @.
1

In particular, given #y < T ( fo), we may choose § > 0 such that #y < T.(fp, 1) for all A belonging
to the disc Ds((1, 0)), and therewith
[A = fi(t0)] - Ds((1,0)) = W,(R) (4.39)

is also a real analytic map. Repeated differentiation with respect to A, immediately yields (iib).
Let now xo € R. Since [ > h(xo)] : W,(R) — R is real analytic, then so is

[A I—)f()»ll‘(),X() + )»zto)] ZD(;((I, 0)) — R.

Besides, if ¢ > 0 small, the mapping ¢ : D.((#o, x0)) = Ds((1, 0)) with

r x—Xp
t,x):=\—,
¢l %) (to ) )

is well defined and real analytic, and composing it with the previous function shows that

[(#,x) = (2, )] : De((f0, X0)) = R,

is also real analytic. This proves (iia). O
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Appendix A Preparatory results used in Section 4

In this section, we present the proofs of Lemmas 12—15.

Proof of Lemma 12 We may assume that 4 € Cj°(R). Setting

T:=¢Bum(fs-- SO oS5 Bl = Bum(fs - SO - S o],

it follows from Lemma 2 (i) that

171, < Kll2lp- (A1)
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Moreover, given 0 # £ € R, it holds that

‘L'gT— T
3

where, using (2.5) and (2.6), it holds

=T+ T+ T3+ T4+ Ts,

e —9 <P

T = —— £ nm(TSf T&f)[":&fy-”;téfaféh],
h—h
Ty = ¢Bn,m(rgf,...,zgf)[rgf, e S, tfg |
h) — ph
Ty = —Bn,m(rgf,...,rgf)[rgf, ot W],
T4 ::TSJ;—_fZBn,m(z’gf,,.,,‘L’Ef)[fl,...,ﬁ,(p,‘[gf,...‘[gf,h]
i—1
_ZBn,m(T‘Ef""’TEf)[ﬁw"9ﬁ7§09r§f T‘Ef rSf f iI)
i—1
B Tgf f m
Tsi= =5 ZBHZ,,,H(QJ‘],...,rgf,-,f,...,f)[cp,rgf+f,f,...,f,h]
+ZBn+2,m+l(T§f1" . "f§ﬁ>fv" >f)|:(p’ T§f+f7f7' ":fa téf%__fh]a

i=1

where f; :=f for 1 <j <i. Lemma 2 (i) implies the limit lim;_,o(t: T — T')/& exists in L,(R).
Hence, T € W, (R) and

T' =@ Buw(fso o NS oo s fs M+ @Bumf s U S H]
_Bn,m(f)"'9f)[f7'")fawh/]_Bn,m(f:"'nf)[f)"'afa‘p/h]

+nf/B,,7m(f,...,f)[go,f,...,f,h]—nB,,m(f,...,f)[(p,f,...,f,f’h]]
_2mf/Bn+2,m+1(fs e af)[(p’fs e sf’ h] + 2mBn+2,m+1(f> cee ’f)[(p>f> e >f>f/h]'

Using again Lemma 2 (i), we get

17" = @Bum(fs - O s [T+ Bu(fs o S OU oS @Rl S KA. (A2)

It remains to estimate the term:

T6 ::(/)Bn,m(fw")f)[fa'"7f’h/]_Bn,m(fa'"’f)[fn"'afn(ph/]'

Since,

_ (8[x,ylf/y)n ) xy]@ “
To(x) = /R TGy S e, xR,
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integration by parts leads to the following representation:
To = Bun(f, - .U o fo @B = Busin(fs o U f o0, B

1B (fso o NS oo fs @, 'R = nByiiw(fs oo NS s f 0, B
_2mBn+2,m+1(fﬂ e nf)[fa e sfa (ﬂ,f/h] + 2mBn+3,m+1(f: e af)[fs e afa @, h]

and Lemma 2 (i) yields
I 76ll, < Kll2llp. (A3)
Gathering (A.1)—(A.3), we arrive at (4.12) and the proof is complete. O
We now establish Lemma 13.
Proof of Lemma 13 We first deal with the case |j| < N — 1 and write

()" ()"

DBy (fs - S oo f B — m

Bool/h]l =T\ + &) 1>,

with

Ty i= 1 @Bun(fs - o SN oo S s B = @B fs - S s o fo 0],
(@)

T :=Byulf,..., oo ] — —————
= Banf o U of R =

Boolm; h].

The term T). In view of an]? = th, we decompose T = T, + E(x]’?)le, where
Tia o= X/ @~ @ET B S-S,
Ty =1 By fs oo SO oo fs Rl = Bu(fs - OS5 S 7 B
Applying Lemma 12, we get
1716151 < KllAllp, —N+1<j<N. (A.4)

Moreover, recalling (2.1), it follows from (A.4), Lemma 5 (with » =) and Lemma 2 (ii) (with
r=sand T =5 — 1) that

ITiallygr < 205 @ = BED ool By fs - oo s e
K Bun(f s IS vl
< 20%f @ = D locllBun(fs-- D -of 7 Wl + KAl

Vv
<5 ll72; 2l -1 + K12

s'—15
Wp

provided ¢ is sufficiently small, and therewith

v
71 1ly-1 < Ellﬂfhllwg—l + K|lAl (A.5)

s/—1-
Wp
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The term T>. We use again the identity x;7; =7 and write 75 = T2, + T2, where

A
T+ (SR
_(Xj‘an,in(fa L ’f)[f’ L 5fs njsh] _Bn,m(f: s 1f)[f’ v ’fa st(njgh)])’

cepy
T

(x/ Boolm; h] — Boolx; (7w h)])

Top = X Bu(f - U s f ) B
Lemma 12 yields
1720l st < Kl llp-
It remains to estimate 75,. We first use Lemma 2 (i) to deduce that
1 T26 I, < K| 2l
Moreover, noticing that f’ ’(x]’f'“ ) =0 (f ’(xj‘? )idr)/y and recalling (2.6), we write

n—1
Ty = Y (F' GO A Besrm(fs - - ofof =) idg, 7R

k=0

(&)

k=0

263

(A.6)

(A7)

X Boit (o U =) ids, f 4+ £/ (x2) idg, 7).

Let T} := xkaH,m(f,...,f)[f,...,f,f—f/(xj)idR,nth] for 0 <k <n—1. In order to esti-

mate the W;"l-seminorm of Ty, we write for £ e R
T — 6 Tie = Tia + T + X/ Thcs
where, appealing again to (2.6), it holds

Tia = (X} — 1 X )teBrrrm(fs - U 5o fof —f() idg, 7] A,
Tig := X{ Biwrm(fs - O fof —f' () ide, 77 h — T )],

k
Tic =Y Bistn(fs o ONCSis s Tefiotaf = Tef oS ofof =2 idp, 76 (70 )]

J=1

+Bk+1,m(f: v 9f)[‘[§f9 RN Téf’f - Té“fa Tg(]’[;h)]

+ ) Bismltefs ot fotef — () ida, e f +fo e f = fr e ()],

J=1

where f; :=f for 1 <i<j—1and

Bdk+3,m+l :=Bk+3,m+1(f,f1;---;ﬁ—l,féf,~-~,fgf)-

Observing that

TkA = (Xf - Tést)TE (BkJrl,ni(f! L sf)[f’ cee 7f5 nj&h] _f/(xf)Bk,m(fa <. rf)[f’ see ’f’ T[fh])a
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Lemma 2 (ii) (with r =s and T =" — 1) yields
1 Thally <KILx = x5 Ipaes il <K = e ol (A8)

In order to estimate Typ, let F' denote the Lipschitz continuous function defined by F =f on
supp x; and I’ =f"(x{) on R \ supp x;. If |§] > ¢, we infer from Lemma 2 (i) that

I ks ll, < KAl - (A9)
If |§] <&, then § + supp 777 C supp x;, and Lemma 2 (i) and the properties defining £’ lead to
1Tially = 13 Bisimlfs e oo LS e f o F = £ idg, 7k — 1G],
< |V/ _f/(x;‘)”Loc(supp X]§)||7rj'8h - Té(njsh)”p (AIO)
< Itk — (),

v
12(n+ 1)C;

provided that ¢ is sufficiently small, where Cy := 1+ ||[@]l0o + || /|l c0-
Finally, Lemma 4 (with » = ') yields

1 Taclly S KIS = 7/ ol Bl s S KIS = 7 Nl (A.11)
The estimates (A.8)—(A.10) combined imply that

FAPES 17 hll s+ 1A

s/ —1-.
WP

v
4n+1)Cy |
The arguments used to estimate 7} show also that

(% Bocir (s NS =S G5 idrf /(7Y i, 77 A

v
< ——||7’hll s + A
4m 1 1O ll7z; 2l -1+ 112

W;,Jil s
provided that ¢ is chosen sufficiently small. Recalling also (A.7), we obtain for such ¢ that
v &
1 Tapllygor < 5 I Bl + Wl

and together with (A.5) and (A.6), we have established (4.13). O

We continue with the proof of Lemma 14.

Proof of Lemma 14 Letnow j =N. Since x;/7; =7/, it holds that

TE@Bu(fs- o NS s f s B =Ti + T,

where

Ty = % @( Bum(fs - - s S s oo f s B = Bu(fs - OS> 7 R]),
Ty = x;oBuu(f, - O s fs 7R
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Lemma 5 (with » = s) together with Lemma 2 (i) (with » =s and t =5’ — 1) and (2.1) yields
1720 st < 200 @lloo 1B (S -+ oS s s 75 Rl s

K Bu( - IS v f T R

<l Blooll] hll g + Kl -

<ol gt + KAy,

provided that ¢ is sufficiently small. We have made use here of the fact that if ¢ is sufficiently
small, then [|@]| . supp x) < V- Furthermore, Lemma 12 shows that

711y < K2l
and (4.14) follows. O
We conclude this appendix with the proof of Lemma 15.
Proof of Lemma 15 We first address the case n = 0. Then,
7 Bow(fs - . )] — Boolmhl = Ty + Ty + T,
where
Ta :=7;Bow(f, - . )] = Bow(f' - ... /)7 h],
Ty == x; Boolm hl = Boolx; (f )] — (X7 Bou(f', - - - . h] = Bow(f's - - . X7 (w7 WD),
Te i= 4 Bow( S, .. )R] — Boolf h).

Lemma 12 yields

I Zallys—r + 151l < K|Allp. (A.12)
It remains to estimate the term:
m—1
Tc = - Z XJ'SBZ,mfk(f’ cee ’f)[fsfs 7[;/1]-
k=0
Using Lemma 2 (i), we get
1 Tecll, < KlAlp. (A.13)

Let T := X{ Bom—i(f> - - -, US> k], 0 <k <m — 1. To estimate the Wl‘j‘l-seminorm of Ty,
we write for £ e R

T — w6 Tie = Tia + T + %] Thcs
where, using (2.6), we get
Tia := (X7 — e X, )TeBom—i(f .. . OUS 77 ],
Tis := X Bom—i(fs - - . O f 707 h = (),
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TkC :ZBZ,m—k(f: o nf)[f - rEf:fﬂ TE(T;]‘Sh/)] +B2,m—k(f9 cee 9f)[r$f9f - Téfa 7:5(7[]6]1)]

m—k

+ 234,m—k+](f19 cee ’ﬁa TEfn v Téf)[féf’ Téfa TEf +fa Tff_fﬂ Té(njgh)]’

=1

where f; :=f for 1 <j <{. Lemma 2 (ii) (with » = s and 7 =" — 1) yields
1 Tially K1z = 217 It Al SKIQ = 0 = el = ) lllygr (A1)

Let F denote the Lipschitz continuous function defined by F'=f on [|x| > 1 /¢ — €] and which is
linear in [|x| < 1/¢ —¢]. If |€]| > ¢, we infer from Lemma 2 (i) that

1 Tksllp < KAl (A.15)

If |§| <, then § + supp 77 C supp x;, and using Lemma 2 (i) we get

I Tksllp = 11X Bom—kc (S - - O Fomf b — te (]l

< CIF 12N h = te(f b, (A.16)
< —|th—e(xth)|
S3my 85 e

provided that ¢ is sufficiently small. The arguments in (A.16) rely on the fact that || F”||oc — 0
for ¢ — 0. Finally, Lemma 4 (with » = 5’) yields

1 Taclly S KIS = e £l il S KIS = 7 f Nl (A.17)

The estimates (A.12)—(A.17) lead us to (4.15).
The estimate (4.16) can be derived using the same arguments as above. O
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