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Abstract

One of the Leishmania species known to be non-infective to humans is Leishmania
(Mundinia) enriettii whose vertebrate host is the guinea pig Cavia porcellus. It is a good
model for cutaneous leishmaniasis, chemotherapeutic and molecular studies. In the last
years, an increased interest has emerged concerning the L. (Mundinia) subgenus after the
finding of Leishmania (M.) macropodum in Australia and with the description of other
new/putative species such as L. (M.) martiniquensis and ‘L. (M.) siamensis’. This review
focused on histopathology, glycoconjugates and innate immunity. The presence of
Leishmania RNA virus and shedding of extracellular vesicles by the parasite were also
evaluated.

Leishmaniasis

Leishmaniasis is a disease caused by protozoans of the sub-family Leishmaniinae (Jirků et al.
2012; Espinosa et al. 2016). Those parasites are transmitted by the bite of infected female sand
flies from the genus Phlebotomus in the Old World and Lutzomyia in the New World (Young
and Duncan, 1994). The protozoan is able to infect rodents, marsupials, canids, hyraxes, eden-
tates and primates (Grimaldi et al. 1989; Akhoundi et al. 2016). According to the World
Health Organization, leishmaniasis is one of the six most important neglected diseases (de
Guerra et al. 2007). In Brazil, most cases are due to Leishmania braziliensis (tegumentary leish-
maniasis) and Leishmania infantum (visceral leishmaniasis).

Leishmania enriettii and Leishmania (Mundinia) subgenus

Among the 50 species of Leishmania reported, approximately 20 are infectious to humans
(Akhoundi et al. 2016). One of the Leishmania species that is non-infective to humans is
Leishmania (Mundinia) enriettii (Muniz and Medina, 1948; Machado et al. 1994; Lainson,
1997), whose vertebrate host is guinea pig Cavia porcellus (Rodentia: Cavida). The subgenus
L. (Mundinia) has been recently established to accommodate those members formerly
included within the L. enriettii complex (Espinosa et al. 2016; Paranaíba et al. 2017). The sub-
genus was inspired by Mun (Muniz) and din (Medina) to pay tribute to the researchers that
reported this parasite.

No autochthonous cutaneous leishmaniasis (CL) cases were reported in Australia until
2003. However, strong evidence of Leishmania infecting red kangaroos (Macropus rufus)
was provided later (Rose et al. 2004; Dougall et al. 2009, 2011). Recently, the name
Leishmania (M.) macropodum was formally defined (Barratt et al. 2017) and the informal
name Leishmania ‘australiensis’ was discontinued to avoid usage of a nomen nudum
(Australian Government, 2016). Besides the Australian isolate, other species and/or putative
members of the L. (Mundinia) subgenus were reported in several parts of the world. Those
included Leishmania martiniquensis in Martinica and Thailand (Boisseau-Garsaud et al.
2000; Desbois et al. 2014; Pothirat et al. 2014; Liautaud et al. 2015) and different isolates of
‘Leishmania siamensis’ in Thailand (Bualert et al. 2012; Kanjanopas et al. 2013; Chusri
et al. 2014), United States of America (Reuss et al. 2012), Ghana (Kwakye-Nuako et al.
2015) and Central Europe (Muller et al. 2009; Lobsiger et al. 2010) (Fig. 1). Since ‘L. siamensis’
is not a taxonomically valid name, it should be used between quotation marks (Barratt et al.
2017; Cotton, 2017; Steverding, 2017). Based on the available literature, more studies are still
needed to ascertain their current taxonomic status of those species/isolates using molecular
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approaches. This subject also opens the possibility of epidemio-
logical studies in order to identify possible vectors and hosts.

Histopathology, glycoconjugates and innate immunity

The first histopathological description of L. enriettii lesion was
reported soon after its discovery in guinea pigs. It is characterized
by highly infected macrophages bearing a chronic inflammatory
infiltrate, a profile very similar to other dermotropic Leishmania
species (Medina, 2001). For this reason, L. enriettii has been suc-
cessfully used as a CL model but it may vary depending on the
host.

Similar to guinea pigs, hamsters may also develop and heal
lesions. Nevertheless, those were not ulcerative and/or metastatic
(Belehu and Turk, 1976). In red kangaroos, although a histo-
pathological description was provided, it is still unknown if the
lesions spontaneously healed in those hosts (Rose et al. 2004).
Several studies of histopathological lesions caused by L. enriettii
in guinea pigs were proposed (Paranaíba et al. 2015; Seblova
et al. 2015). Depending on the strain, the lesions can appear
between the third and sixth week and disappear between the
10th and the 14th week (Lobato Paraense, 1953; Bryceson et al.
1974; Medina, 2001). However, those papers did not use salivary
gland extract (SGE) together with parasite inoculum to mimic
natural transmission. Recently, two strains (L88 and Cobaia) of
L. enriettii isolated in different years (1945 and 1985) exhibited
different degrees of immunopathology in the guinea pigs. L88
strain was able to cause ulcerated lesions and those were

exacerbated in the presence of SGE (Paranaíba et al. 2015).
However, a missing step in the histopathology of L. enriettii is
to compare different strains in the presence/absence of SGE.

Glycoconjugates of Leishmania are very important during the
interaction of parasite and host. Lipophosphoglycan (LPG) and
glycoinositolphospholipids (GIPLs) have been demonstrated to
have an important role in the interaction with sand flies and
the innate immune system (Assis et al. 2012; de Assis et al.
2012; Ibraim et al. 2013). The LPGs of L88 and Cobaia strains
of L. enriettii were devoid of side-chains in their repeat units,
similar to those found in L. braziliensis (Soares et al. 2005),
Leishmania donovani (Sudan) (Sacks et al. 1995), L. infantum
type I (Coelho-Finamore et al. 2011) and Leishmania shawi
(Passero et al. 2015) (Fig. 2). Although the LPGs of both strains
were similar, their GIPLs were polymorphic (Paranaíba et al.
2015). Further studies are still necessary to define the biochemical
structure for L. enriettii GIPLs. Different from most Leishmania
species, LPG and GIPLs from L. enriettii were very
pro-inflammatory triggering the production of nitric oxide (NO)
and pro-inflammatory cytokines [tumour necrosis factor (TNF)-α,
interleukin (IL)-6 and IL-12p40] in murine macrophages via
TLR2/TLR4. Those properties varied intraspecifically where LPGs
and GIPLs of L88 strain were more pro-inflammatory than those
from Cobaia strain reflecting their immunopathology properties
in vivo. L88 strain was able to cause ulcerative lesions, whereas
Cobaia strain only developed a protuberance (Paranaíba et al. 2015).

In Table 1, it is possible to comparatively evaluate several innate
immune components involved in LPG and GIPLs activation by

Fig. 1. Distributions and hosts of Leishmania species from the L. (Mundinia) subgenus. Legend: CL, cutaneous leishmaniasis; VL, visceral leishmaniasis.

Fig. 2. Schematic diagram of lipophosphoglycan repeat units from Leishmania enriettii strains. The repeat units are 6-Gal(β1,4)Man(α1)-PO4.
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Table 1. Innate immune components involved in LPG and GIPLs activation by different Leishmania species

Glycoconjugates/
species/strains

TH1 TH2 Receptors

ReferenceTNF-α IL-1α IL-1β IL-2 IL-6 IL-12p70 IL-12p40 IFN-γ IFN-β NO IL-10 IL-4 IL-5 TLR-2 TLR-4 NF-kB

LPGs

Leishmania enriettii
(L88/Cobaia)

+ – + + + – + + + Paranaíba et al.
(2015)

Leishmania
braziliensis (M2903)

+ + – + – – + – – – + + + Ibraim et al. (2013)

Leishmania infantum
(BH46)

+ + – + – – + – – – + + + Ibraim et al. (2013)

Leishmania amazonensis
(PH8/Josefa)

+ – + – + – + + – Nogueira et al.
(2016)

Leishmania shawi
(M15789)

+ + + + Passero et al.
(2015)

Leishmania major
(Friedlin)

+ + + + de Veer et al. (2003)

L. major (ASKH) + + + + Becker et al. (2003)

Leishmania mexicana
(M379)

+ + + + Aebischer et al.
(2005)

L. mexicana (N.D.) + + + + + Argueta-Donohué
et al. (2008)

L. mexicana (N.D.) + + – – + Villaseñor-Cardoso
et al. (2008)

Leishmania donovani
(N.D.)

+ – – Privé and
Descoteaux
(2000)

L. donovani (AG83) + + Balaraman et al.
(2005)

L. amazonensis
(Josefa)

+ + + Pereira et al. (2010)

L. amazonensis
(Josefa)

+ + Vivarini et al. (2011)

L. major (LV39) + Proudfoot et al.
(1995)

GIPLs

L. enriettii
(L88/Cobaia)

+ – + + + – + + + Paranaíba et al.
(2015)

L. braziliensis (M2903) + – – – – + – – – + + Assis et al. (2012)

(Continued )
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different Leishmania species. The higher pro-inflammatory activity
of L. enriettii glycoconjugates may be important not only for the
severity of the lesions in guinea pigs, but also for the activation
of the immune system and subsequent healing. Most of those
mechanisms are still unknown probably due to the lack of studies
and the low veterinary importance of those animals.

Leishmania enriettii as a model for chemotherapeutic
studies and molecular biology

Guinea pigs have the ability to spontaneously cure cutaneous
lesions caused by L. enriettii. For this reason, chemotherapeutic
tests with this parasite are very scarce and only few reports were
available in the literature. This scenario is completely different
from that of Leishmania amazonensis, another dermotropic spe-
cies. This anergic species, commonly associated with treatment
failure and natural drug resistance, is the most used model for
in vitro chemotherapeutic studies (Rocha et al. 2013).

In 1961, L. enriettii-infected animals treated with Glucantime®
exhibited a lesion regression. In spite of that, no effect was
observed after in vivo treatment with Pentostam®, fuadin, tartar
emetic and hydroxy-stilbamidine (Ercoli and Fink, 1962).
Further, in vivo tests in C. porcellus and in vitro studies in macro-
phages infected with L. enriettii did not respond to treatment with
furazolidone and nitrofurazone (Neal et al. 1988). On the other
hand, levamisole-treated guinea pigs developed less severe lesions
and metastases (Rezai et al. 1988). Aside from that, Glucantime®
and Amphotericin B remain the first/second-line drugs for leish-
maniasis treatment in different parts of the world. Occurrences of
CL in kangaroos as an opportunistic agent (Dougall et al. 2011)
highlights the importance of more studies in order to determine
their role as hosts and perhaps to stimulate in vivo chemothera-
peutic protocols for those and other animals.

Alike other Leishmania species, L. enriettii has been used as a
model for molecular biology studies not only for developing
transfection protocols but also for understanding multidrug
resistance (MDR). Its LeMDR1 gene is an ABCB-type transporter
having high similarity to mammalian phosphoglycan protein P
and involved in vinblastine resistance (Chow et al. 1993).
Resistance against this drug was demonstrated by many molecular
approaches suggesting that accumulation inside intracellular com-
partments and further exocytosis was one of the mechanisms
(Dodge et al. 2004). Later, vinblastine resistance mechanism
was shown to be iron-dependent (Wong and Chow, 2006).
More recently, synthetic flavonoid dimers were tested against pen-
tamidin and sodium stibogluconate-resistant strains of L. enriettii.
Some of those compounds, known to inhibit ATP-binding cas-
settes transporters, were able to reverse MDR in those parasites
(Wong et al. 2007).

Some reports have looked at differentially expressed genes in
L. enriettii in the two stages as a means to understand parasite
developmental biology. During Leishmania life cycle, parasite
alternates from a promastigote form in the sand fly to an amasti-
gote form in the vertebrate host. Among several morphological
changes, differentially expressed proteins are also observed such
as tubulin. This protein is very important for flagellum assembly,
a structure absent/unapparent in the amastigotes and their genes
are tandemly arranged in the genome (Landfear et al. 1983).
Although α- and β-tubulin genes are equally arranged in both
forms, their mRNA expression levels are higher in the promasti-
gote stage (Landfear and Wirth, 1985). Besides those studies on
tubulins, two publications also reported on membrane glucose
transporters. Glucose is a very important carbohydrate for trypa-
nosomatids and its uptake occurs not only extracellularly, but also
from the cytosol to the glycosome. They are also a family of tan-
dem repeated genes, whose mRNAs were almost exclusivelyTa

b
le

1.
(C
on

tin
ue
d.
)

G
ly
co
co
nj
ug

at
es
/

sp
ec
ie
s/
st
ra
in
s

TH
1

TH
2

Re
ce
pt
or
s

Re
fe
re
nc
e

TN
F-
α

IL
-1
α

IL
-1
β

IL
-2

IL
-6

IL
-1
2p

70
IL
-1
2p

40
IF
N
-γ

IF
N
-β

N
O

IL
-1
0

IL
-4

IL
-5

TL
R
-2

TL
R
-4

N
F-
kB

L.
in
fa
nt
um

(P
P
75
)

+
–

–
–

–
+

–
–

–
+

+
As
si
s
et

al
.
(2
01
2)

L.
sh
aw

i
(M

15
78
9)

+
+

+
+

Pa
ss
er
o
et

al
.

(2
01
5)

L.
m
aj
or

(F
ri
ed

lin
)

–
+

+
–

de
Ve
er

et
al
.(
20
03
)

L.
m
aj
or

(L
V3
9)

–
P
ro
ud

fo
ot

et
al
.

(1
99
5)

N
.D
.,
st
ra
in

no
t
de

te
rm

in
ed

.

1268 Larissa F. Paranaiba et al.

https://doi.org/10.1017/S0031182017001810 Published online by Cambridge University Press

https://doi.org/10.1017/S0031182017001810


expressed in the insect’s promastigotes encoding for two isoforms
(iso-1 and iso-2) (Stack et al. 1990; Langford et al. 1994). Later on,
with the development of more advanced molecular protocols,
alike other Leishmania species, L. enriettii was also used for tran-
sient and stable transfections with different genes (Laban and
Wirth, 1989; Laban et al. 1990; Tobin et al. 1991). Those results
were published in outstanding journals and were landmarks for
standardizing those protocols in other Leishmania/trypanosoma-
tid species. Although L. enriettii was used with the model for
molecular biology studies, a lot is still to be accomplished, espe-
cially regarding virulence and target genes for parasite typing.

Leishmania enriettii: the Leishmania RNA virus and
extracellular vesicles

The first report of viruses or virus-like particles (VLPs) uncovered
in protozoans of the sub-family Leishmaniinae (Jirků et al. 2012;
Espinosa et al. 2016) have been found in the promastigotes of
Leishmania hertigi species in culture. The VLPs were immediately
observed in the cytoplasm of these parasites when examined by
the electronic microscope, particles were spherical with 55–60
diameter (Molyneux, 1974).

The Leishmania RNA virus (LRV) (Totiviridae) was reported
to infect Leishmania species from subgenera Viannia (LRV1)
and Leishmania (LRV2). LRV1 is a double-stranded RNA
(dsRNA) virus first described in Leishmania guyanensis strains
from the Amazon region (Guilbride et al. 1992). The molecular
structure of the LRV2 virus is different from LRV1 (Scheffter
et al. 1995). Many studies have found a correlation between
LRV1 and severity of pathology, a mechanism dependent on
TLR3 activation by the viral dsRNA (Ives et al. 2011). More
recently, the finding of LRV was expanded in other Latin
American countries including Bolivia, Peru and French Guiana
(Adaui et al. 2016; Ginouvès et al. 2016; Macedo et al. 2016), con-
firming that biogeographically this virus seems confined to the nor-
thern regions of South America. The presence of LRV1-infected
strains was already detected in a biopsy from patients with CL
from Caratinga, Minas Gerais state, Brazil (Ogg et al. 2003).
However, a presence of LVR1 in parasites isolated from patients
was not detected in Minas Gerais state and other regions of
Brazil, suggesting that the frequency of LRV1 in L. braziliensis

Fig. 3. LRV1/LRV2 absence in two Leishmania enriettii strains (L88 and Cobaia).
Legend: M, molecular marker; C1+, LVR1-positive control (Leishmania guyanensis ref-
erence strain M4147); C−, LRV1-negative control (Leishmania braziliensis reference
strain M2903); C2+, LVR2-positive control (Leishmania major reference strain ASKH);
lane 1, strain L88; lane 2, strain Cobaia; NC, negative controls (capsid and β-tubulin).

Fig. 4. Extracellular vesicles release by Leishmania enriettii strains (L88 and Cobaia strain). Scanning electron microscopy (SEM) of parasite membrane shedding
after incubation in culture medium (a–d, bars: 3–10 µm). (a, b) L. enriettii L88 strain, (c, d) L. enriettii Cobaia strain. Magnification: (a) 26 468; (b) 50 000; (c) 15 276
and (d) 50 000.
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strains seems to be very low in these localities (Pereira et al. 2013;
Macedo et al. 2016). Regarding the L. (Mundinia) subgenus, the
occurrence of LRV1/2 is a promising field for future investigations.

In this context, previous studies showed that L88 strain of
L. enriettii caused more severe lesion than Cobaia strain
(Paranaíba et al. 2015). However, no information on LRV1/LRV2
on L. enriettii was available at that time. A capsid PCR using pri-
mers for LRV1/LRV2 (Macedo et al. 2016) did not detect the
virus in both L. enriettii strains (Fig. 3). Those data reinforced
the role of the glycoconjugates in the severity of the pathology
and perhaps are strain-specific. Those data are in accordance
with previous published papers showing that LRV1 prevalence is
higher in the Amazon and Northern parts of South America
(Cantanhêde et al. 2015; Ito et al. 2015; Adaui et al. 2016;
Ginouvès et al. 2016), whereas in the Southeast its finding is rare
(Pereira et al. 2013; Macedo et al. 2016).

Another unknown aspect of the host–parasite interaction in
L. enriettii is the release of extracellular vesicles (EVs) by the para-
site. The first report on EVs in Leishmania was in L. donovani
(Silverman et al. 2010). In this species, those vesicles abrogated
immune response favouring parasite development by several
mechanisms. A recent study has determined the role of EVs dur-
ing the interaction between L. infantum and the sand fly
Lutzomyia longipalpis (Atayde et al. 2015). EVs have been the
focus of great interest not only in Leishmania but also in other
pathogens [reviewed by (Marcilla et al. 2014; Campos et al.
2015; Szempruch et al. 2016)]. EVs have importance not only
in intercellular communication but also during the host–parasite
interaction not only in Leishmania but also in other parasites
(Szempruch et al. 2016). For example, Trichomonas vaginalis
EVs are determinant for tissue tropism and attachment, whereas
in Trypanosoma brucei they confer resistance to trypanosome

Fig. 5. Nanoparticle tracking analysis (NTA) and dot-blot from Leishmania enriettii strains (L88 and Cobaia). (a) NTA analysis from EVs released by L88 and (b)
Cobaia strains (c); size exclusion chromatoghraphy (SEC) of EVs from Cobaia strain, and (d) gp63 detection of EV-containing fractions probed with mAb anti-gp63
(1:500).
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lytic factors (Stephens and Hajduk, 2011; Twu et al. 2013). In
Trypanosoma cruzi, EVs were determinant during the invasion,
adhesion and modulation of the immune system (Trocoli
Torrecilhas et al. 2009; Torrecilhas et al. 2012; Nogueira et al.
2015). However, it is still unknown if these subcellular structures
were present in L. enriettii strains. The basic vesiculation protocol
was performed and both strains (L88 and Cobaia) shed vesicles, as
demonstrated by scanning electron microscope (SEM) analysis
(Fig. 4). Nanoparticle tracking analysis (NTA) quantitatively con-
firmed SEM studies (Fig. 5a and b). The EVs released by L88 and
Cobaia strains had similar size distributions with modal sizes of
136 (±1·5) nm and 141 (±5·4) nm, respectively. After normaliza-
tion by cultured parasite concentrations, a slightly higher amount
of EVs was observed for the Cobaia strain. EVs from the Cobaia
strain were isolated by size exclusion chromatography and frac-
tions were analysed by NTA and dot-blot for the detection of
gp63 (Fig. 5c and d). The gp63 glycoprotein is a virulence factor
found in Leishmania-derived EVs resulting in some of their
immunomodulatory properties (Hassani et al. 2014). Therefore,
the detection of gp63 in the same fractions in which particles
were detected by NTA, not only corroborates their vesicular
nature but also suggests that L. enriettii EVs are likely to be
involved in the immunomodulation of host cells. However,
more studies are necessary to qualitatively compare the EVs con-
tents, not only their surface antigens, but also their miRNA cargo.
Those features could help to understand the differences in the
immunopathology of both strains.

Concluding remarks

Many aspects of L. enriettii and the other newly members of the
L. (Mundinia) subgenus are still unknown. This comprehensive
review aimed to explore and update most of the knowledge of
those protozoans. Regarding L. martiniquensis and ‘L. siamensis’,
many studies are still needed to address their current taxonomical
status and to determine many epidemiological aspects, such as
vertebrate and invertebrate hosts. In the case of L. enriettii from
Brazil, there is still a lack of information on the wild reservoir
and confirmation of the sand fly vector. Finally, we preliminary
demonstrated the release of EVs by L. enriettii and demonstrate
the absence of LRV1 and LRV2 in those strains. Those data
reinforce the need for more studies in order to understand the
complexity of factors involved in the immunopathology of this
species in the host–parasite interface.
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