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We consider an M/G/1 retrial queue with finite capacity of the retrial group. We
derive the Laplace transform of the busy period using the catastrophe method. This
is the key point for the numerical inversion of the density function and the com-
putation of moments. Our results can be used to approach the corresponding descrip-
tors of the M/G/1 queue with infinite retrial group, for which direct analysis seems
intractable.

1. INTRODUCTION

In this article we consider an M/G/1 retrial queue. Primary customers arrive accord-
ing to a Poisson process with arrival rate A and have a general service requirement
with common probability distribution function B(x) (B(0) = 0), kth moment Sy,
and Laplace transform B(s). Any customer who, upon arrival, finds the server busy
immediately leaves the service area and joins a retrial group called orbit. Each cus-
tomer in orbit can retry for service after an exponential time of rate y. The flow of
primary arrivals, the intervals between successive repeated attempts, and the ser-
vice times are assumed to be mutually independent.

The system state at time 7 can be described by means of the process X =
{(C(1),N(1),£&(1)); t = 0}, where C(r) represents the server state at time ¢, 0, or 1
according to whether the server is free or busy, N(z) denotes the number of cus-
tomers in orbit, and if C(7) = 1, then &(¢) is defined as the elapsed service time of
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the customer being served. We assume that p = A3, < 1, so the queuing model is
stable and the limiting probabilities P; = lim,_,., P{C (1) =i,N(t) = j}, for (i,j) €
S ={0,1} X N, exist and are positive.

The model described above is presented in the work of Falin and Templeton
[4] as “the main single-server model.” Generalizations of the M/G/1 retrial queue
can be used to model stochastically many telephone networks where new devel-
opments such as autorepeat facilities lead to an increase of the repeated attempts.
The existing literature includes a large number of applications to computer and
telecommunication systems: cellular mobile networks, call centers, collision-
avoidance protocols for local area networks, and so forth.

The analysis of the limiting probabilities of the M/G/1 retrial queue is numer-
ically tractable. In fact, the partial generating functions P;(z) = 272, z/P;, fori €
{0,1}, have explicit solutions [4, Sect. 1.2]. Alternatively, the recursive computa-
tion of the limiting probabilities can be based on different approaches (embedded
Markov chain at departure epochs, regenerative approach, limit results from Mar-
kov renewal theory, etc.). In contrast, it is still necessary to carry out a qualitative
investigation of other classical descriptors of the queueing performance whose exact
solution is very cumbersome. This is the case of the distributions of the busy period
(i.e., the subject matter of this article) and the waiting time.

The busy period of the M/G/1 retrial queue, L, starts with the arrival of a pri-
mary customer who finds the system empty and ends at the first service completion
epoch at which the system becomes empty again. The Laplace transform of L is
given by (see [4, Sect. 1.6])

szo(s) Bls+ A— Au)
0

du
LH(s) = e(s,u)(B(s + A — Au) —u) Y w1

fLio(s) du
0 e(s,u)(B(s + A — Au) — u)

where L} (s) denotes the Laplace transform for the busy period in the standard
M/G/1 queue satisfying L% (s) = B(s + A — AL%,(s)) and e(s,u) is

- {lfus-i-)\—/\ﬁ(s-i-/\—/\v)d} 0=y 2
e(s,u) = exp A BGtA— o) —o v, =u “(s). (1.2)

Formulas (1.1) and (1.2) provide a theoretical solution, but they have serious
limitations in practice. In particular, the moments of L cannot be obtained by direct
differentiation. From the theory of regenerative processes, it is easy to express the
expectation E[L] as follows:

1/ 1
E[L] = X<P——l> 1.3)
00
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In [3], direct method of calculation is developed to obtain explicit expressions for
the second order moments of L.

Unfortunately, it does not seem possible to numerically invert the density func-
tion of L because solution (1.1) is derived when s is a real number and algorithmic
methods of numerical inversion typically require to one evaluate the Laplace trans-
form at any desired complex s. Our main objective in this article is to overcome the
difficulties inherent to the busy period in the M/G/1 retrial queue. To this end, we
approximate the original M/G/1 model by putting a fictitious limit, K, on the orbit
capacity. The resulting M/G/1/K retrial queue can be algorithmically investigated
by using simple tools.

For an approximate analysis of L in the M/M/c retrial queue, see the recent
treatment given in [1]. As related work, we also mention the article by Artalejo and
Falin [2] who studied in more detail the structure of L, in the single-server case by
introducing two new characteristics of the orbit.

In the next section we use the catastrophe method to derive the system of equa-
tions governing the dynamic of L in the M/G/1/K retrial queue. As a result, we
obtain a highly tractable route of approximate evaluation for the characteristics of
L in the original intractable M/G/1 retrial queue. A numerical example illustrates
the implementation of our approach.

2. THE BUSY PERIOD

In this section we investigate the busy period of the M/G/1/K retrial queue. We
employ the method of catastrophes, which simplifies the probabilistic reasoning
and readily leads to equations governing the dynamic of the busy period (see [5,
Chap. 7]). Let us assume that L starts at the instant 7 = 0. We consider a catastrophe
process independent of the functioning of our queuing system, which generates catas-
trophes at a rate s according to a Poisson process. Suppose that at the epoch of the
kth service completion, there are j customers in orbit, no catastrophe occurred prior
to that moment, and the busy period is still in progress. Let Pj(k)(s) denote the prob-
ability of that event. We also define IT;(s) as the probability that during the busy
period, no catastrophe occurs and k customers are served.
The probabilities Pj(k)(s) satisfy the following formulas:

P(s) = ki(s), O0=j=K-—1, 2.1)
P (s) = kis), 2.2)
PG = 3 PEI() k()
n=1 s+ A+ nu
+j+21 P“"‘)(S)Lk-, (s) 0sj=K-1,k=2, (2.3)
i s+A+nu " ’ ’ ’
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K

P(/\’) — P(k*l) ke
K (S) n;] n (S) s+/\+n,u K ”(S)
+ ,,2, P (s) —+ " ki, . (s), k=2, 2.4
where
% (Ax)/
k(s)= | e =—ap(v), =0, 2.5)
’ 0 J!
o) Jj—1
ki(s) = X k,(s) =B(s) = 2 ku(s), 0=j=K. (2.6)
m=j m=0

To prove (2.1) we note that the event under consideration takes place if no
catastrophe occurs and j primary customers arrive during the service time. Equation
(2.3) describes the motion between two successive service completion epochs. The
term A/(s + A + nu) (respectively nu/(s + A + nu)) indicates that the kth service
time corresponds to a primary arrival (respectively retrial customer). In the case j =
K, we accumulate the probability of the blocked customers and use the same argu-
ment to get (2.2) and (2.4).

It is clear that

(s) = Py(s),  k=1. 2.7)

Thus, the Laplace transform L*(s) can be obtained as

L*(s) = 2 P (s). (2.8)

We now extend the notation and define ¢;(s) = 2,2, Pj(k)(s), for0=j=K,so
L*(s) = ¢o(s). Then, from (2.1)—(2.4), we have

B(5) = K (5) + 2 6,(5) k()

Jjt+1

+ E b, (s) T ki—psi(s),  0=j=K-—1, 2.9)

j— a S /\ a
Gi(s) = kils) + 3 duls) o ke (s)

+ 2 bu(s) T ki1 (5). (2.10)
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FI1GURE 1. The effect of the service time distribution on L.

After solving the linear system (2.9)—(2.10), we can compute L*(s) for any
given s. This is the key to using Laplace inversion algorithms (see [ 7, Appendix F])
for the numerical inversion of the density f; (x).

After appropriate differentiation, we get equations for the computation of the
moments of L. The derivations are standard and thus omitted. In particular, the
expectation E[L] is helpful to determine the truncation level K as the first positive
integer such that the first four decimal digits of E[L] are fitted. According to this
criterion, we need to increase successively the value of K and compare the expected
value of L in the M/G/1/K and the M/G/1 retrial queues. The latter can be calcu-
lated from (1.3).

In Figure 1, we compare the shape of f; (x) for different choices of the service
time distribution. To this end, we consider exponential, Erlang-4 (E4), and hyper-
exponential (H,) service times with p = 0.4 and 8, = 1. We take the coefficient of
variation of the H, law as 1.25. Exponential and H, densities exhibit a decreasing
shape, whereas we observe a bell shape associated with E, case. We note that the
numerical inversion is consistent with the Tauberian expression f; (0) = lim,_, ., sL*(s).
As lim,_,., sk;(s) = 8;0f5(0) (here fz(x) denotes the service time density and 8, is
Kronecker’s function), (2.9) yields f;(0) = f3(0).

A question worthy of being investigated is the convergence of the truncated retrial
queue to the original M/G/1 retrial queue as K — oo. Since the distribution function
of L in the M/G/1 retrial queue is unknown, in our numerical experiments we com-
pare the value of the Laplace transform L*(s) of the infinite model versus their coun-
terparts obtained in truncated models with increasing values of K. According to our
experience, the convergence is fast and the proposed method for choosing K suf-
fices for practical purposes. Indeed, our work yields more accurate estimations than
those based on the use of the principle of maximum entropy [6].
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