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We consider an M0G01 retrial queue with finite capacity of the retrial group+ We
derive the Laplace transform of the busy period using the catastrophe method+ This
is the key point for the numerical inversion of the density function and the com-
putation of moments+Our results can be used to approach the corresponding descrip-
tors of the M0G01 queue with infinite retrial group, for which direct analysis seems
intractable+

1. INTRODUCTION

In this article we consider an M0G01 retrial queue+ Primary customers arrive accord-
ing to a Poisson process with arrival rate l and have a general service requirement
with common probability distribution function B~x! ~B~0! � 0!, kth moment bk,
and Laplace transform b~s!+ Any customer who, upon arrival, finds the server busy
immediately leaves the service area and joins a retrial group called orbit+ Each cus-
tomer in orbit can retry for service after an exponential time of rate µ+ The flow of
primary arrivals, the intervals between successive repeated attempts, and the ser-
vice times are assumed to be mutually independent+

The system state at time t can be described by means of the process X �
$~C~t !,N~t !,j~t !!; t � 0% , where C~t ! represents the server state at time t, 0, or 1
according to whether the server is free or busy, N~t ! denotes the number of cus-
tomers in orbit, and if C~t !� 1, then j~t ! is defined as the elapsed service time of

Probability in the Engineering and Informational Sciences, 21, 2007, 77–82+ Printed in the U+S+A+

© 2007 Cambridge University Press 0269-9648007 $16+00 77

https://doi.org/10.1017/S0269964807070052 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964807070052


the customer being served+We assume that r� lb1 � 1, so the queuing model is
stable and the limiting probabilities Pij � limtr`P $C~t !� i,N~t !� j %, for ~i, j ! �
S � $0,1%� N, exist and are positive+

The model described above is presented in the work of Falin and Templeton
@4# as “the main single-server model+” Generalizations of the M0G01 retrial queue
can be used to model stochastically many telephone networks where new devel-
opments such as autorepeat facilities lead to an increase of the repeated attempts+
The existing literature includes a large number of applications to computer and
telecommunication systems: cellular mobile networks, call centers, collision-
avoidance protocols for local area networks, and so forth+

The analysis of the limiting probabilities of the M0G01 retrial queue is numer-
ically tractable+ In fact, the partial generating functions Pi~z!�(j�0

` z jPij , for i �
$0,1%, have explicit solutions @4, Sect+ 1+2# + Alternatively, the recursive computa-
tion of the limiting probabilities can be based on different approaches ~embedded
Markov chain at departure epochs, regenerative approach, limit results from Mar-
kov renewal theory, etc+!+ In contrast, it is still necessary to carry out a qualitative
investigation of other classical descriptors of the queueing performance whose exact
solution is very cumbersome+ This is the case of the distributions of the busy period
~i+e+, the subject matter of this article! and the waiting time+

The busy period of the M0G01 retrial queue, L, starts with the arrival of a pri-
mary customer who finds the system empty and ends at the first service completion
epoch at which the system becomes empty again+ The Laplace transform of L is
given by ~see @4, Sect+ 1+6# !

L*~s! �

�
0

L`
* ~s! b~s � l� lu!

e~s,u!~b~s � l� lu!� u!
du

�
0

L`
* ~s! du

e~s,u!~b~s � l� lu!� u!

, s � 0, (1.1)

where L`
* ~s! denotes the Laplace transform for the busy period in the standard

M0G01 queue satisfying L`
* ~s!� b~s � l� lL`

* ~s!! and e~s,u! is

e~s,u! � exp� 1

µ
�

0

u s � l� lb~s � l� lv!

b~s � l� lv!� v
dv� , 0 � u � L`

* ~s!+ (1.2)

Formulas ~1+1! and ~1+2! provide a theoretical solution, but they have serious
limitations in practice+ In particular, the moments of L cannot be obtained by direct
differentiation+ From the theory of regenerative processes, it is easy to express the
expectation E @L# as follows:

E @L# �
1

l
� 1

P00

� 1�+ (1.3)
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In @3# , direct method of calculation is developed to obtain explicit expressions for
the second order moments of L+

Unfortunately, it does not seem possible to numerically invert the density func-
tion of L because solution ~1+1! is derived when s is a real number and algorithmic
methods of numerical inversion typically require to one evaluate the Laplace trans-
form at any desired complex s+ Our main objective in this article is to overcome the
difficulties inherent to the busy period in the M0G01 retrial queue+ To this end, we
approximate the original M0G01 model by putting a fictitious limit, K, on the orbit
capacity+ The resulting M0G010K retrial queue can be algorithmically investigated
by using simple tools+

For an approximate analysis of L in the M0M0c retrial queue, see the recent
treatment given in @1# +As related work, we also mention the article by Artalejo and
Falin @2# who studied in more detail the structure of L, in the single-server case by
introducing two new characteristics of the orbit+

In the next section we use the catastrophe method to derive the system of equa-
tions governing the dynamic of L in the M0G010K retrial queue+ As a result, we
obtain a highly tractable route of approximate evaluation for the characteristics of
L in the original intractable M0G01 retrial queue+ A numerical example illustrates
the implementation of our approach+

2. THE BUSY PERIOD

In this section we investigate the busy period of the M0G010K retrial queue+ We
employ the method of catastrophes, which simplifies the probabilistic reasoning
and readily leads to equations governing the dynamic of the busy period ~see @5,
Chap+ 7# !+ Let us assume that L starts at the instant t � 0+We consider a catastrophe
process independent of the functioning of our queuing system,which generates catas-
trophes at a rate s according to a Poisson process+ Suppose that at the epoch of the
kth service completion, there are j customers in orbit, no catastrophe occurred prior
to that moment, and the busy period is still in progress+ Let Pj

~k!~s! denote the prob-
ability of that event+ We also define Pk~s! as the probability that during the busy
period, no catastrophe occurs and k customers are served+

The probabilities Pj
~k!~s! satisfy the following formulas:

Pj
~1!~s! � kj ~s!, 0 � j � K � 1, (2.1)

PK
~1!~s! � kK

a ~s!, (2.2)

Pj
~k!~s! � (

n�1

j

Pn
~k�1!~s!

l

s � l� nµ
kj�n~s!

� (
n�1

j�1

Pn
~k�1!~s!

nµ

s � l� nµ
kj�n�1~s!, 0 � j � K � 1, k � 2, (2.3)
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PK
~k!~s! � (

n�1

K

Pn
~k�1!~s!

l

s � l� nµ
kK�n

a ~s!

� (
n�1

K

Pn
~k�1!~s!

nµ

s � l� nµ
kK�n�1

a ~s!, k � 2, (2.4)

where

kj ~s! ��
0

`

e�~s�l!x
~lx! j

j!
dB~x!, j � 0, (2.5)

kj
a~s! � (

m�j

`

km~s!� b~s!� (
m�0

j�1

km~s!, 0 � j � K+ (2.6)

To prove ~2+1! we note that the event under consideration takes place if no
catastrophe occurs and j primary customers arrive during the service time+ Equation
~2+3! describes the motion between two successive service completion epochs+ The
term l0~s � l� nµ! ~respectively nµ0~s � l� nµ!! indicates that the kth service
time corresponds to a primary arrival ~respectively retrial customer!+ In the case j �
K, we accumulate the probability of the blocked customers and use the same argu-
ment to get ~2+2! and ~2+4!+

It is clear that

Pk~s! � P0
~k!~s!, k � 1+ (2.7)

Thus, the Laplace transform L*~s! can be obtained as

L*~s! � (
k�1

`

P0
~k!~s!+ (2.8)

We now extend the notation and define fj~s!�(k�1
` Pj

~k!~s!, for 0 � j � K, so
L*~s!� f0~s!+ Then, from ~2+1!–~2+4!, we have

fj ~s! � kj ~s!� (
n�1

j

fn~s!
l

s � l� nµ
kj�n~s!

� (
n�1

j�1

fn~s!
nµ

s � l� nµ
kj�n�1~s!, 0 � j � K � 1, (2.9)

fK ~s! � kK
a ~s!� (

n�1

K

fn~s!
l

s � l� nµ
kK�n

a ~s!

� (
n�1

K

fn~s!
nµ

s � l� nµ
kK�n�1

a ~s!+ (2.10)

80 J. R. Artalejo and A. Gómez-Corral

https://doi.org/10.1017/S0269964807070052 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964807070052


After solving the linear system ~2+9!–~2+10!, we can compute L*~s! for any
given s+ This is the key to using Laplace inversion algorithms ~see @7,Appendix F# !
for the numerical inversion of the density fL~x!+

After appropriate differentiation, we get equations for the computation of the
moments of L+ The derivations are standard and thus omitted+ In particular, the
expectation E @L# is helpful to determine the truncation level K as the first positive
integer such that the first four decimal digits of E @L# are fitted+ According to this
criterion, we need to increase successively the value of K and compare the expected
value of L in the M0G010K and the M0G01 retrial queues+ The latter can be calcu-
lated from ~1+3!+

In Figure 1, we compare the shape of fL~x! for different choices of the service
time distribution+ To this end, we consider exponential, Erlang-4 ~E4!, and hyper-
exponential ~H2! service times with r� 0+4 and b1 � 1+We take the coefficient of
variation of the H2 law as 1+25+ Exponential and H2 densities exhibit a decreasing
shape, whereas we observe a bell shape associated with E4 case+We note that the
numerical inversion is consistent with the Tauberian expression fL~0!� limsr` sL*~s!+
As limsr` skj~s!� dj0 fB~0! ~here fB~x! denotes the service time density and dj0 is
Kronecker’s function!, ~2+9! yields fL~0!� fB~0!+

Aquestion worthy of being investigated is the convergence of the truncated retrial
queue to the original M0G01 retrial queue as Kr`+ Since the distribution function
of L in the M0G01 retrial queue is unknown, in our numerical experiments we com-
pare the value of the Laplace transform L*~s! of the infinite model versus their coun-
terparts obtained in truncated models with increasing values of K+ According to our
experience, the convergence is fast and the proposed method for choosing K suf-
fices for practical purposes+ Indeed, our work yields more accurate estimations than
those based on the use of the principle of maximum entropy @6# +
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Figure 1. The effect of the service time distribution on L+
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