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We present an analytical model of nonlinear evolution of two-dimensional single-mode
Rayleigh–Taylor instability (RTI) in cylindrical geometry at arbitrary Atwood number
for the first time. Our model covers a full scenario of bubble evolution from the earlier
exponential growth to the nonlinear regime with the bubbles growing in time as 1

2 abt2

for cylindrical RTI, other than as Vbt for planar RTI, where ab and Vb are the bubble
acceleration and velocity, respectively. It is found that from this model the saturating
acceleration ab is formulated as a simplified function of the external acceleration,
Atwood number and number of perturbation waves. This model’s predictions are in good
agreement with data from direct numerical simulations.

Key words: buoyancy-driven instability, nonlinear instability

1. Introduction

Rayleigh–Taylor instability (RTI) occurs at a perturbed interface between two fluids
when an external acceleration imposes points from the heavier to the lighter fluid
(Rayleigh 1900; Taylor 1950). The interface evolves gradually to the spikes of the heavier
fluid penetrating into the lighter fluid, and the bubbles of the lighter fluid rising into
the heavier fluid. This instability plays an important role in inertial confinement fusion
(Nuckolls et al. 1972; Bodner et al. 1998; Besnard 2007) and supernova explosions
(Gamezo et al. 2003; Caproni et al. 2015). To predict accurately the growth rate
of bubbles/spikes is of great significance in understanding the dynamics of unstable
interfaces.

Great advancement has been achieved for the planar RTI in the form of elegant analytical
solutions for the bubble evolution. Specifically, for the linear regime defined by a limit
of small perturbation amplitudes, η0 (kη0 � 1, k is the perturbation wavenumber), the
perturbation to an inviscid incompressible RTI has an exponential growth (Rayleigh
1900; Taylor 1950) η0(t) ∼ η0(0)eγ t with a growth rate γ = √

ATkg, where AT is
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the Atwood number AT = (ρh − ρl)/(ρh + ρl), ρh and ρl are the heavier and lighter
fluid density, g is the magnitude of external acceleration g and η0(0) is the initial
amplitude. For the nonlinear regime, as the amplitude becomes large enough (kη0 ∼ 1),
the perturbation grows into bubbles that have a linear-in-time amplitude growth (Layzer
1955; Mikaelian 1998; Zhang 1998; Goncharov 2002; Mikaelian 2003; Sohn 2003; Zhang
& Guo 2016) η0 ∼ Vbt, where Vb is the bubble velocity. Such a transition is commonly
referred to as a ‘nonlinear saturation’, in terms that the bubble velocity saturates at√

2AT/(1 + AT)(g/Cgk) (Goncharov 2002; Mikaelian 2003; Sohn 2003), where Cg = 3
and 1 for the two- and three-dimensional planar geometries, respectively. Valuable physical
insights have been obtained by extensive studies on the planar RTI (Zhou 2017a,b), for
example, as to explore the effects of viscosity (Hu et al. 2019), vorticity (Bian et al. 2020)
and compressibility (Wieland et al. 2019; Luo et al. 2020).

The RTI also occurs in the convergence geometry for some practical cases, such as
inertial confinement fusion (Nuckolls et al. 1972; Bodner et al. 1998; Besnard 2007) and
supernova explosions (Gamezo et al. 2003; Caproni et al. 2015). Actually, most effects
on the RTI in convergence geometries can be captured by use of cylindrical geometry
(Weir, Chandler & Goodwin 1998; Mikaelian 2005; Zhou 2017b; Zhao et al. 2018), which
is a canonical convergence geometry. On the other hand, the cylindrical geometry has
been usually employed in experiments, because the perturbation growth of the RTI in
the cylindrical geometry can be conveniently measured by a direct line-of-sight diagnostic
access along the axial direction (Hsing et al. 1997; Wang et al. 2013). Thus, the cylindrical
geometry has been widely used to study the convergence effects on the RTI growth. Such
virtues have stimulated a variety of research efforts on the cylindrical RTI, including
experimental measurements (Hsing et al. 1997; Weir et al. 1998), theoretical analyses
(Epstein 2004; Mikaelian 2005; Yu & Livescu 2008; Forbes 2011; Chambers & Forbes
2012; Wang et al. 2013; Guo et al. 2018; Zhao et al. 2018) and numerical simulations
(Glimm, Grove & Zhang 1999; Chambers & Forbes 2012; Joggerst et al. 2014; Morgan &
Greenough 2016).

The cylindrical geometry has a profound influence on the RTI growth which has an
intriguing dependence on the direction of uniform external acceleration g (Yu & Livescu
2008; Wang et al. 2013; Guo et al. 2018). Different instability growth rates are found
for the convergent (g acting radially inward) and divergent (g acting radially outward)
cases (Yu & Livescu 2008). For inviscid incompressible fluids, the perturbation of the
cylindrical RTI in the linear regime also takes an exponential growth (Wang et al. 2013;
Guo et al. 2018), i.e. γ = √

ATng/r0 for either the convergent or divergent case, where
n is the number of perturbation waves and r0, the radius of the unperturbed interface.
This behaviour is similar to the planar RTI. While bubbles/spikes get formed, the weakly
nonlinear model (Wang et al. 2013) only depicts that the inward growth of bubbles is
greater than the outward growth of spikes in the divergent case at small AT . However, the
underlying nonlinear mechanisms are still unclear for the cylindrical RTI. To the best of
our knowledge, a theoretical model for the nonlinear evolution of cylindrical RTI has never
been proposed for the understanding of the RTI dynamics under the cylindrical geometry
effect.

The characteristics of the RTI may be related to the spatial dimension of fluid domain
(e.g. Chertkov 2003; Boffetta & Mazzino 2017). Actually, some physical mechanisms are
also consistent with each other in the two- and three-dimensional cases. Based on the
analytical investigation (Goncharov 2002) and numerical simulation (Bian et al. 2020), the
two- and three-dimensional bubble velocities saturate to constant values in the nonlinear
stage for single-mode RTI. Therefore, the two-dimensional investigations are useful in
understanding the physical mechanisms of the RTI (Zhang & Guo 2016; Hu et al. 2019;
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Wieland et al. 2019; Luo et al. 2020). Moreover, the two-dimensional cylindrical geometry,
or a circular region in polar coordinates, is usually used to investigate the convergence
effects on the RTI (Weir et al. 1998; Mikaelian 2005; Zhou 2017b; Zhao et al. 2018).

In the present study, an analytical model of nonlinear evolution of two-dimensional
single-mode RTI in cylindrical geometry has been derived for inviscid, irrotational and
incompressible fluids, and verified via high-fidelity direct numerical simulation (DNS).
The remainder of this paper is organized as follows. The DNS strategy for verifying the
theoretical model is briefly described in § 2. The analytical model of nonlinear evolution
of RTI in cylindrical geometry is given and the relevant results are discussed in § 3. Finally
the concluding remarks are addressed in § 4.

2. Numerical simulations

2.1. Governing equations
DNS has been performed on the RTI of cylindrical geometry for verifying the theoretical
model and analysing the relevant behaviours. Considering the RTI of cylindrical geometry
described by the cylindrical coordinates (r, θ ), the initial pressure pI and density ρI =
(ρh + ρl)/2 at the heavier/lighter fluid interface are chosen as the characteristic scales,
where ρh and ρl are the heavier and lighter fluid density. Then the characteristic velocity
and temperature are described as UI = √

pI/ρI and TI = pI/(RρI) with the perfect gas
constant, R, respectively. The radius of the unperturbed interface, r0, is used as the
characteristic length. Thus, the non-dimensionalized governing equations are given as

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.1)

∂(ρu)

∂t
+ ∇ · (ρuu) = −∇p + 1

Re
∇ · τ − ρ

Fr
êr, (2.2)

∂(ρE)

∂t
+ ∇ · [(ρE + p)u] = 1

Re
∇ · (τ · u) + 1

RePr
∇ · (∇T) − ρ

Fr
u · êr, (2.3)

where t, ρ, u = [ur, uθ ], p, T and E = T/(Γ − 1) + u · u/2 denote the time, density,
velocity, pressure, temperature and total energy, respectively, where Γ = 1.4 is the specific
heat ratio. Here, êr is the unit vector in the radial direction. The stress tensor is obtained
as

τ = 2μS − 2
3
μ(∇ · u)δ, (2.4)

where S is the strain-rate tensor, μ = T3/2(1 + c)/(T + c) is the viscosity computed by
the Sutherland law, with c = 110/Tr and the reference temperature Tr and δ is the unit
tensor. The above governing equations are closed with the equation of state of ideal gas,
i.e. p = ρT .

The non-dimensional parameters in (2.1)–(2.3) are the Reynolds, Froude and Prandtl
numbers defined, respectively, as

Re = ρIUIr0

μI
, Fr = U2

I

r0g
and Pr = Cp

μI

κ
, (2.5a–c)

where g is the external acceleration, Cp the constant-pressure specific heat and κ the
thermal conductivity.
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FIGURE 1. (a) Positions of the material interface, transmitted shock and reflected shock versus
time. (b) Velocity of the material interface versus time. The lines represent the results of our
DNS, and the circles represent those of Zhang & Graham (1998).

2.2. Numerical method and validation
The present DNS of cylindrical RTI is performed based on a numerical algorithm
composed of high-order accuracy schemes to solve the compressible Navier–Stokes
equations in cylindrical coordinates (Li et al. 2019). Specifically, the seventh-order
finite difference weighted essentially non-oscillatory (WENO) scheme is implemented to
discretize the convective terms (Jiang & Shu 1996) and the eighth-order central difference
scheme to discretize the viscous terms in the governing equations (2.1)–(2.3). The time
derivative is approximated by the standard third-order Runge–Kutta method.

To validate our DNS algorithm, we typically employ the multicomponent Riemann
problem in cylindrical geometry (Zhang & Graham 1998), i.e. an incident circular
shock colliding with a circular material interface. This problem also involves dynamical
evolution of cylindrical interfaces, similar to the RTI problem considered here. However,
it is much more complicated as the material interface evolves due to its interaction with
moving shocks, and thus contains both density and pressure discontinuities. The test
calculation is set following Zhang & Graham (1998), namely, an incident shock with shock
Mach number 1.2 propagates inward from the air towards the SF6 (sulphur hexafluoride).
Figure 1(a) shows the positions of the material interface, transmitted shock and reflected
shock, which agree well with those of Zhang & Graham (1998). The velocity of the
material interface in figure 1(b) is also in good agreement with the data of Zhang &
Graham (1998). The relevant extensive tests ensure that the present DNS is reliable for
capturing interfacial dynamics.

2.3. Problem statement and numerical results for cylindrical RTI
To avoid the instability suppression due to background stratification, the uniform density
field is initialized as ρh = 1 + AT and ρl = 1 − AT on each side of the interface (Bian et al.
2020), where the Atwood number AT = (ρh − ρl)/(ρh + ρl). The initial velocity field is set
to be zero. The hydrostatic equilibrium requires that dp/dr = −ρi/Fr(i = l, h) away from
the interface, thus the pressure field can be determined by assuming p = 1 at the interface.
The initial temperature field can be obtained by the equation of state. The interface at
r0 = 1 is perturbed by the cosine wave η0(0) cos(nθ), where η0(0) is the initial amplitude
and n is the number of perturbation waves. The velocity, pressure and density at the far
boundary are fixed at their initial values to ensure hydrostatic equilibrium (Hu et al. 2019).
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FIGURE 2. Location of the bubble tip for AT = 0.6 and n = 4 with different grid resolutions.

Although a uniform density field is initialized to avoid the background stratification,
the dynamic compressibility of flow should be noticed. Here, we present the
relevant analysis. The reference Mach number, Ma = u∞/c∞, is used to consider the
dynamic compressibility, where the reference velocity for single-mode RTI is u∞ =√

ATgλ/(1 + AT) (Bian et al. 2020) with λ being the perturbation wavelength, and the
reference sound speed is c∞ = √

Γ pI/ρI . Thus, the reference Mach number reaches
Ma = √

AT/(1 + AT)(2π/nFrΓ ). In the present study, the Froude number is selected as
Fr = 10 for the convergent case and as Fr = −10 for the divergent case, the Atwood
number is AT = 0.3 and 0.6, the numbers of perturbation waves are n = 4 and 8, the
Prandtl number is Pr = 0.72 for air and the Reynolds number is Re = 40 000. Based on
these parameters, the typical case with AT = 0.6 and n = 4 used in our simulations has
the maximum reference Mach number 0.205. Therefore, we can reasonably determine that
the compressibility effect on the RTI simulations is weak.

In the present simulation, to avoid a pole singularity at the centre of cylindrical
coordinates, the inner boundary radius rmin = 0.05 has been used based on the previous
treatment (e.g. Annamalai et al. 2014; Lombardini, Pullin & Meiron 2014). To verify that
the spatial resolutions are enough to predict properly the RTI evolution, we present some
typical results calculated by three sets of the grid resolution, i.e. M = 500, 750 and 1000 in
the radial direction; N = 800, 1200 and 1600 in the circumferential direction, respectively.
The radial grids are set as ri+1 = ri(1 + Δθ), where ri is the radial position of the ith grid
and the width of uniform circumferential grids Δθ = 2π/N. Figure 2 shows the location
of the bubble tip with different grid resolutions for a typical case AT = 0.6 and n = 4. The
location of the bubble is determined as the point of the bubble tip with ρ = ρI . It is seen
that the results collapse together for the different grid resolutions. To make the prediction
accurate, the results given in the following were calculated by M = 1000 and N = 1600,
which are enough to properly resolve the hydrodynamic scales.

The reliability of simulations for cylindrical RTI is also verified by comparing the
positions of the bubble tips with the exponential growth (Wang et al. 2013; Guo et al.
2018) that η0 = η0(0) cosh(γ t) for inviscid incompressible RTI in the linear regime. As
shown in figure 3, it is seen that the numerical simulation results are in good agreement
with the linear theory, indicating that the simulation results are reliable and the effects of
compressibility and viscosity can be reasonably ignored. When γ t > 1.4, the simulation
results with n = 8 somewhat deviate from the linear theory, which is related to the fact
that the RTI begins to enter the nonlinear stage.
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FIGURE 3. Comparisons of radial positions of bubble tips for the convergent (a) and divergent
(b) cases with linear theory.
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FIGURE 4. Bubble velocity growth of cylindrical RTI at AT = 0.6 obtained by DNS.

Further, figure 4 shows our numerical results on the bubble velocity behaviours for the
convergent and divergent cases in the nonlinear regime. The bubble velocity is determined
at the point of the bubble tip with ρ = ρI . It is revealed that the bubble velocity of the
divergent case when γ t ≤ 4.6 prevails, and when γ t > 4.6 becomes overridden by that
of the convergent case. Of particular interest, no evident saturation of bubble velocity is
realized as in the planar RTI. Therefore, to understand the bubble dynamics under the
cylindrical geometry effect, an analytical model for the nonlinear evolution of cylindrical
RTI is presented as follows.

3. Analytical models

3.1. Model of nonlinear bubble evolution
We consider two inviscid, irrotational, incompressible fluids that have a cylindrical
perturbed interface rI(θ, t) = r0 + η(θ, t), where η(θ, t) is the perturbation displacement.
The external acceleration is imposed as g = −ĝer for the convergent case and as g = ĝer
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for the divergent case. The velocity potentials of the lighter (ϕl) and heavier (ϕh) obey the
Laplace equations

Δϕl = Δϕh = 0. (3.1)

At the interface (r = rI), the following kinematic and dynamic boundary conditions must
be satisfied (Goncharov 2002; Wang et al. 2013):

∂η

∂t
= ∂ϕl

∂r
− 1

r2

∂η

∂θ

∂ϕl

∂θ
= ∂ϕh

∂r
− 1

r2

∂η

∂θ

∂ϕh

∂θ
, (3.2)

ρl

(
∂ϕl

∂t
+ |∇ϕl|2

2
+ Ψ

)
− ρh

(
∂ϕh

∂t
+ |∇ϕh|2

2
+ Ψ

)
= f (t), (3.3)

where f (t) is an arbitrary function of time, the potential of external force Ψ = gr and −gr
for the convergent and divergent cases, respectively. In reality, (3.2) and (3.3) represent the
continuity of the velocity component normal to the interface, and pressure at the interface.
Following Layzer’s treatment (Layzer 1955), we expand the perturbation of the bubble tip
localized at the point {r, θ} = {rI(0, t), 0} to the second order in θ , i.e. η = η0(t) + η2(t)θ 2.
A similar expanding procedure applied to (3.2) and (3.3) yields six equations for zero- to
second-order of θ , which are well posed by six unknown functions of time. As three of
these six functions have been given as η0(t), η2(t) and f (t), the other three are required to
be given by the velocity potentials. Inspired by Goncharov’s model (Goncharov 2002), by
solving the corresponding eigenvalue problem for the velocity potentials, the expressions
of velocity potentials near the bubble tip are presumed as

ϕh = a1(t) cos(nθ)

(
r

r0 + η0(t)

)Shn

, (3.4)

ϕl = b1(t) cos(nθ)

(
r

r0 + η0(t)

)Sln

+ b2(t) ln
r

r0 + η0(t)
, (3.5)

where Sh = −1 and Sl = +1 corresponding to the convergent case, and Sh = +1 and
Sl = −1 to the divergent case. Note that ϕl is valid only near the bubble tip which cannot
take the limit of r → 0 and r → +∞ in (3.5). Thus only the first term of the Fourier series
is kept in (3.4) and (3.5), which can obtain an excellent approximation at the bubble tip
as verified by Goncharov (2002). Then the models for both the convergent and divergent
cases are given as follows, respectively.

For the convergent case, using (3.4) and (3.5) and expanding (3.2) and (3.3) near the
bubble tip, we have the following relations:

η̇2 = −(3n + 1)η̇0

r0 + η0
η2 − n2

2
η̇0, (3.6)

n2 − 4ATHn − 12ATH2

2(6H − n)(r0 + η0)

d[(r0 + η0)η̇0]
dt

+ ATHη̇2
0

r0 + η0

− (4AT − 3)n2 + 6(3AT − 5)Hn + 36ATH2 + 12(AT − 1)H
2(6H − n)2(r0 + η0)

n2η̇2
0 = ATgH, (3.7)
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where H = η2/(r0 + η0). Here, we assume the initial perturbation as η0(0) cos(nθ) and
expand as η0(0)(1 − n2θ 2/2) at the bubble tip. Then, by integrating (3.6), it reads

H =
[

n2

6n + 4
− n2η0(0)

2(r0 + η0(0))

] (
r0 + η0(0)

r0 + η0

)3n+2

− n2

6n + 4
. (3.8)

Further, by substituting (3.8) into (3.7) and integrating it, an analytic relation for the bubble
amplitude can be obtained. In reality, such a relation is difficult to formulate explicitly
because (3.7) is nonlinear. Thus the bubble amplitude can be determined by means of a
numerical solution of (3.7).

Similarly, for the divergent case, an analytical model is given as

− n2 + 4ATHn − 12ATH2

2(6H + n)(r0 + η0)

d[(r0 + η0)η̇0]
dt

− ATHη̇2
0

r0 + η0

+ (4AT − 3)n2 − 6(3AT − 5)Hn + 36ATH2 + 12(AT − 1)H
2(6H + n)2(r0 + η0)

n2η̇2
0 = ATgH, (3.9)

H =
[
− n2

6n − 4
− n2η0(0)

2(r0 + η0(0))

] (
r0 + η0

r0 + η0(0)

)3n−2

+ n2

6n − 4
. (3.10)

To verify the above theoretical solutions, we employ our high-fidelity DNS on the
evolution of the cylindrical RTI, especially in the nonlinear regime. Figure 5 shows the
positions of the bubble tip for the convergent and divergent cases, where the Atwood
number is chosen as AT = 0.3 and 0.6, and the number of perturbation waves as n = 4
and 8 (coloured by red and blue, respectively) with an initial perturbation amplitude
η0(0) = 0.02r0. It is identified that the results of the analytical models (3.7) and (3.9)
are in good agreement with data from DNS. Further, it is found that the bubbles grow
exponentially (see the black solid lines in figure 5) in the linear regime (nη0/r0 � 1),
which is consistent with the linear theory (Wang et al. 2013), and a significant influence
of the cylindrical geometry occurs in the nonlinear regime (nη0/r0 > 1).

3.2. Model of nonlinear bubble saturation
The effect of cylindrical geometry on the nonlinear evolution of RTI can be evidently
revealed by the asymptotic solutions of (3.7) and (3.9). As shown in figure 5, taking the
limit of t → ∞, the asymptotic tendency is obtained as (r0 + η0(0))/(r0 + η0) → 0 for the
convergent case and (r0 + η0)/(r0 + η0(0)) → 0 for the divergent case. Then substituting
the above limits into (3.8) and (3.10), we have H → −n2/(6n + 4) and H → n2/(6n − 4)
for the convergent and divergent cases, respectively. Finally, (3.7) and (3.9) are reduced as
the following asymptotic ordinary differential equations:

1
r0 + η0

d[(r0 + η0)η̇0]
dt

+ C
η̇2

0

r0 + η0
= D, (3.11)

1
r0 + η0

d[(r0 + η0)η̇0]
dt

+ E
η̇2

0

r0 + η0
= F, (3.12)

where the constants C − F can be obtained based on (3.7) and (3.9) and the asymptotic
expression H. The solutions of (3.11) and (3.12) are derived as η̇0/

√
r0 + η0 =√

2D/(3 + 2C) and η̇0/
√

r0 + η0 = −√
2F/(3 + 2E), respectively.

Different from planar geometry, the bubble velocity Vb = η̇0 cannot saturate to a
constant value in cylindrical geometry. Of special interest, η̇0/

√
r0 + η0 approaches a
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FIGURE 5. Radial positions of the bubble tip for the convergent (a) and divergent (b) cases at
AT = 0.3 (blue/red solid lines and squares) and AT = 0.6 (blue/red dashed lines and circles)
obtained by the analytical models (blue/red solid and dashed lines) and DNS (blue/red squares
and circles). For comparison, the profiles are also plotted for the exponential growth (black solid
thin line) with η0 = η0(0) cosh(γ t) in the linear regime given by Wang et al. (2013), and for
quadratic-in-time growth (green solid thin lines) with r0 + η0 ∼ 1/2abt2 in the nonlinear regime
obtained by the present study.

constant value as t → ∞, which is given as for the convergent and divergent cases,
respectively,

η̇0√
r0 + η0

→
(

4n(3n + 1)2ATg
54(AT + 1)n4 + 9(15AT + 17)n3 + 3(35AT + 53)n2 + 24(AT + 3)n + 12

) 1
2

,

(3.13)

η̇0√
r0 + η0

→ −
(

4n(3n − 1)2ATg
54(AT + 1)n4 − 9(15AT + 17)n3 + 3(35AT + 53)n2 − 24(AT + 3)n + 12

) 1
2

.

(3.14)
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FIGURE 6. Normalized |Vb|/√r0 + η0 in convergent (a) and divergent (b) cases at AT = 0.3
and 0.6 calculated by our DNS. Here, the dashed line of value 1 is plotted to illustrate the
tendency of asymptotic analytical solution.

Further, the saturation of Vb/
√

r0 + η0 in the cylindrical RTI has been confirmed
by our DNS results for AT = 0.3 and 0.6 in figure 6. It is clearly identified that the
normalized |Vb|/√r0 + η0 reaches approximately the expected quasi-steady value at
γ t ≈ 4.0 when the nonlinear bubble evolution is realized. The nonlinear bubble growth is
quadratic-in-time, i.e. r0 + η0 ∼ 1/2abt2 (see the green solid thin lines in figure 5), where
the bubble acceleration is obtained analytically as ab = D/(3 + 2C) for the convergent
case and as ab = F/(3 + 2E) for the divergent case. It reveals that the bubbles grow
asymptotically with a motion of uniform acceleration in the nonlinear regime for the
cylindrical RTI.

Based on the preceding analysis, when the cylindrical RTI grows from the linear
into the nonlinear regime, the bubble evolution changes from the exponential to the
quadratic-in-time growth. We could call such a transition ‘nonlinear saturation’ for the
cylindrical RTI; it means that the bubble acceleration (or Vb/

√
r0 + η0) tends to be a

constant value. As the bubble tip has r0 + η0 → ∞ for the convergent case and r0 + η0 →
0 for the divergent case, the bubble velocity is bound to have Vb → ∞ and Vb → 0 when
the bubbles evolve in the nonlinear regime. Thus, it is rational that the bubble velocity of
the divergent case is smaller than that of the convergent case at a certain moment, such as
γ t ≥ 4.6 in figure 4.
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Furthermore, we can verify that the nonlinear saturation of cylindrical RTI
(quadratic-in-time growth) could be reduced to that of planar RTI (linear-in-time growth),
when the effect of cylindrical geometry becomes vanishingly small. The RTI in cylindrical
geometry differs from that in plane geometry in two typical aspects. One is that the
curvature effect 1/r0 occurs at the cylindrical interface, the other is that the external
acceleration direction is not parallel, with the maximum angle 2π/n at single perturbation
wave. Thus, the effect of cylindrical geometry will become negligibly weak as r0 → ∞
and n → ∞. Further, the nonlinear saturation regime appears as nη0/r0 ∼ 1, thus r0 
 η0
lies in this regime as a result of the reduction of cylindrical geometry to a planar one.
As r0 
 η0 and n → ∞, the right-hand sides of (3.13) and (3.14) are simplified as
±√

2AT/(1 + AT)(g/3n) as n → ∞ and
√

r0 + η0 ∼ √
r0 as r0 
 η0. Then, (3.13) and

(3.14) are reduced as η̇0 → ±√
ATgλ/(1 + AT)(1/3π) with the perturbation wavelength

λ = 2πr0/n. The reduced bubble velocity is the same as that in the planar RTI (Goncharov
2002; Mikaelian 2003; Sohn 2003). This analysis also ensures that the nonlinear saturation
models (3.13) and (3.14) are valid for the cylindrical RTI.

4. Concluding remarks

We have proposed an analytical model of nonlinear evolution for two-dimensional
single-mode RTI in cylindrical geometry for inviscid, irrotational and incompressible
fluids. This model reliably covers the full bubble evolution from the earlier exponential
growth to the nonlinear regime saturating with a quadratic-in-time growth. The asymptotic
solution of this model reveals that the nonlinear saturation is equivalent to a bubble growth
of uniform acceleration. The saturating acceleration has been derived as a simplified
function of the external acceleration, Atwood number and number of perturbation waves.
This model can be reduced to that of the saturating bubble velocity of planar RTI as
the cylindrical geometry effect vanishes. Further, this model’s predictions are in good
agreement with data from direction numerical simulations.

Although our analytical model is for inviscid single-mode RTI, we can take some
inspiration from recent work (Xie et al. 2017; Kord & Capecelatro 2019) for the growth
analysis of multimode RTI in cylindrical geometry by considering the effect of viscosity.
The evolution of perturbation with short-wavelength mode is dominated by diffusion
and its RTI growth will be suppressed due to the effect of viscosity. Hence, there exist
optimal perturbations that the growth of multimode RTI in cylindrical geometry may be
suppressed, which is worth being investigated. In addition, we are aware of the limitations
of this analytical model based on the two-dimensional assumption; nevertheless, we feel
that the results obtained from this model will be helpful in a physical understanding of the
mechanisms of the RTI in cylindrical geometry.
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